1
|
Liu C, Wu X, Zhao Q, Fahad M, Liu Z, Wu L. Mining Genetic Variations Reveals the Differentiation of Gene Alternative Polyadenylation Involving in Rice Panicle Architecture Regulation. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40364587 DOI: 10.1111/pce.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Panicle architecture is a critical determinant of rice yield and resilience, yet the genetic and environmental factors shaping this trait remain incompletely understood. Here, we applied an integrative genomic approach combining multi-locus association mapping, transcriptome analysis and population genomics to dissect the genetic basis of key panicle traits in rice. We identified robust genetic loci underlying the number of primary branches, panicle length and spikelets per panicle, with many showing sensitivity to temperature, underscoring the importance of gene-environment interactions for yield stability. Notably, we discovered that variation in alternative polyadenylation (APA) of specific transcripts is associated with panicle trait diversity at the population level, suggesting that regulatory mechanisms such as APA are significant contributors to phenotypic plasticity and adaptation. These findings deliver both novel candidate genes in panicle development and mechanistic insights to support the breeding of rice varieties with enhanced productivity and climate resilience.
Collapse
Affiliation(s)
- Chuanjia Liu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinye Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Jiang D, Kejiou N, Qiu Y, Palazzo AF, Pennell M. Constraints on the optimization of gene product diversity. Mol Syst Biol 2025; 21:472-491. [PMID: 40210719 PMCID: PMC12048591 DOI: 10.1038/s44320-025-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
RNA and proteins can have diverse isoforms due to post-transcriptional and post-translational modifications. A fundamental question is whether these isoforms are mostly beneficial or the result of noisy molecular processes. To assess the plausibility of these explanations, we developed mathematical models depicting different regulatory architectures and investigated isoform evolution under multiple population genetic regimes. We found that factors beyond selection, such as effective population size and the number of cis-acting loci, significantly influence evolutionary outcomes. We found that sub-optimal phenotypes are more likely to evolve when populations are small and/or when the number of cis-loci is large. We also discovered that opposing selection on cis- and trans-acting loci can constrain adaptation, leading to a non-monotonic relationship between effective population size and optimization. More generally, our models provide a quantitative framework for developing statistical tests to analyze empirical data; as a demonstration of this, we analyzed A-to-I RNA editing levels in coleoids and found these to be largely consistent with non-adaptive explanations.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Nevraj Kejiou
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Xu X, Wang S, Zhou H, Tan Q, Lang Z, Zhu Y, Yuan H, Wu Z, Zhu L, Hu K, Li W, Zhou D, Wu M, Wu X. Transcriptome-wide association study of alternative polyadenylation identifies susceptibility genes in non-small cell lung cancer. Oncogene 2025:10.1038/s41388-025-03338-8. [PMID: 40205015 DOI: 10.1038/s41388-025-03338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Alternative polyadenylation (APA) plays a crucial role in cancer development and prognosis. However, the molecular characteristics of APA related to non-small cell lung cancer (NSCLC) susceptibility remain understudied, especially in East Asian populations. In this study, we constructed an atlas of APA-regulated 3' untranslated region (3'UTR) and profiled its genetic regulation in 747 lung tissue samples (including tumors and paired normal tissues) from 417 NSCLC Chinese patients. We verified a significant global shortening of 3'UTRs in tumor samples compared to normal samples and underscored the value of APA-regulation as a prognostic marker. The 3'UTR APA quantitative trait loci (3'aQTL) was identified by regressing the percentage of distal poly(A) site usage index (PDUI) value on genetic variants. We found that a significant proportion 3'aQTLs are independent of genetic regulation of expression and are specific in Chinese. We also conducted a 3'UTR APA transcriptome-wide association study (3'aTWAS) by integrating the APA regulation atlas with a genome-wide association study (GWAS) for NSCLC involving 7035 cases and 185,413 cancer-free controls. We identified NSCLC-associated genes, highlighting TUBB, TEAD3, and PPP1R10. Combining the consistent results from colocalization analysis, differential APA analysis, and survival analysis, we provide novel evidence for the role TUBB APA regulation in NSCLC and identified potential upstream regulators. Overall, our study profiled the APA regulation and highlighted the substantial role of APA in NSCLC carcinogenesis and prognosis in East Asian populations.
Collapse
Affiliation(s)
- Xiaohang Xu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Sicong Wang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Hanyi Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qilong Tan
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Zeyong Lang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huadi Yuan
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixiang Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejia Hu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyuan Li
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Dan Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xifeng Wu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
- Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
4
|
Shaji F, Ali J, Laishram RS. Cleavage site heterogeneity at the pre-mRNA 3'-untranslated region regulates gene expression in oxidative stress response. Redox Biol 2025; 81:103565. [PMID: 40031128 PMCID: PMC11915162 DOI: 10.1016/j.redox.2025.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
The endonucleolytic cleavage step of the eukaryotic mRNA 3'-end processing is considered imprecise, which leads to heterogeneity of cleavage site (CS) with hitherto unknown function. Contrary to popular belief, we show that this imprecision in the cleavage is tightly regulated, resulting in the CS heterogeneity (CSH) that controls gene expression in antioxidant response. CSH centres around a primary CS, followed by several subsidiary cleavages determined by CS's positions. Globally and using reporter antioxidant mRNA, we discovered an inverse relationship between the number of CS and the gene expression, with the primary CS exhibiting the highest cleavage efficiency. Strikingly, reducing CSH and increasing primary CS usage induces gene expression. Under oxidative stress (we employ three conditions that induce antioxidant response, tBHQ, H2O2, and NaAsO2) conditions, there is a decrease in the CSH and an increase in the primary CS usage to induce antioxidant gene expression. Key oxidative stress response genes (NQO1, HMOX1, PRDX1, and CAT) also show higher CSH compared to the non-stress response genes and that the number of CSs are reduced to impart cellular response to oxidative stresses. Concomitantly, ectopic expression of one of the key antioxidant response gene (NQO1) driven by the primary CS but not from other subsidiary CSs, or reduction in CSH imparts tolerance to cellular oxidative stresses (H2O2, and NaAsO2). Genome-wide CS analysis of stress response genes also shows a similar result. Compromised CSH or CSH-mediated gene control hampers cellular response to oxidative stress. We establish that oxidative stress induces affinity/strength of cleavage complex assembly, increasing the fidelity of cleavage at the primary CS, thereby reducing CSH inducing antioxidant response. Together, our study reports a novel cleavage imprecision- or CSH-mediated anti-oxidant response mechanism that is distinct and operates downstream but in concert with the transcriptional pathway of oxidative stress induction.
Collapse
Affiliation(s)
- Feba Shaji
- Rajiv Gandhi Centre for Biotechnology, Cardiovascular Biology Group, Trivandrum, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Jamshaid Ali
- Rajiv Gandhi Centre for Biotechnology, Cardiovascular Biology Group, Trivandrum, 695014, India
| | - Rakesh S Laishram
- Rajiv Gandhi Centre for Biotechnology, Cardiovascular Biology Group, Trivandrum, 695014, India.
| |
Collapse
|
5
|
Vo K, Shila S, Sharma Y, Pei GJ, Rosales CY, Dahiya V, Fields PE, Rumi MAK. Detection of mRNA Transcript Variants. Genes (Basel) 2025; 16:343. [PMID: 40149494 PMCID: PMC11942493 DOI: 10.3390/genes16030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic genes express more than one mature mRNA, defined as transcript variants. This complex phenomenon arises from various mechanisms, such as using alternative transcription start sites and alternative post-transcriptional processing events. The resulting transcript variants can lead to synthesizing proteins that possess distinct functional domains or may even generate noncoding RNAs, each with unique roles in cellular processes. The generation of these transcript variants is not merely a random occurrence; it is cell-type specific and varies with developmental stages, aging processes, or pathogenesis of diseases. This highlights the biological significance of transcript variants in regulating gene expression and their potential impact on cellular functionality. Despite the biological importance, investigating transcript variants has been hampered by challenges associated with detecting their expression. This review article addresses the advancements in molecular techniques in detecting transcript variants. Traditional methods such as RT-PCR and RT-qPCR can easily detect known transcript variants using primers that target unique exons associated with the variants. Other techniques like RACE-PCR and hybridization-based methods, including Northern blotting, RNase protection assays, and microarrays, have also been utilized to detect transcript variants. Nevertheless, RNA sequencing (RNA-Seq) has emerged as a powerful technique for identifying transcript variants, especially those with previously unknown sequences. The effectiveness of RNA sequencing in transcript variant detection depends on the specific sequencing approach and the precision of data analysis. By understanding the strengths and weaknesses of each laboratory technique, researchers can develop more effective strategies for detecting mRNA transcript variants. This ability will be crucial for our comprehensive understanding of gene regulation and the implications of transcript diversity in various biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.V.); (S.S.); (Y.S.); (G.J.P.); (C.Y.R.); (V.D.); (P.E.F.)
| |
Collapse
|
6
|
Lu X, Liu C, Wu R, Hu Z, Liu S, Li X, Liu Y, Li M, Liang J, Huang Y, Han Y, Ou X, Deng K, Liang C, Chen S, Fu Y, Xu A. E3 ligase SYVN1-mediated polyubiquitination of CPSF6 promotes alternative polyadenylation and antivirus effects of macrophages. Cell Rep 2025; 44:115276. [PMID: 39951376 DOI: 10.1016/j.celrep.2025.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Transcriptome-wide alternative polyadenylation (APA) is involved in both innate and adaptive immune responses of immune cells. Downregulation of the CPSF6 protein, one of the 3' end-processing factors, mediates APA in macrophages with responses to virus infection and plays an important role in its anti-virus effect. However, the signaling pathway and molecular mechanism underlying the downregulation of the CPSF6 protein remain elusive. Here, we found that MAVS triggers the nuclear import of the E3 ligase SYVN1 mediated by NUP153 in response to vesicular stomatitis virus infection. Then, SYVN1 catalyzes K48-linked polyubiquitination of CPSF6, resulting in degradation of CPSF6 via the proteasome and then transcriptome-wide APA and anti-virus effects. Our results identify an antiviral mechanism via APA regulation based on ubiquitination modification of the CPSF6 protein, which may serve as a target for developing immune interventions.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao Liu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Runze Wu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijie Hu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Susu Liu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuening Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuchi Liu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengxia Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingting Liang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingye Huang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuting Han
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Ou
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Deng
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Liang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Sun Yat-sen University Institute of Advanced Studies, Hong Kong SAR 999077, China.
| |
Collapse
|
7
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 PMCID: PMC11837677 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
8
|
Bondhus L, Nava AA, Liu IS, Arboleda VA. Epigene functional diversity: isoform usage, disordered domain content, and variable binding partners. Epigenetics Chromatin 2025; 18:8. [PMID: 39893491 PMCID: PMC11786378 DOI: 10.1186/s13072-025-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications. RESULTS In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes. CONCLUSIONS Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.
Collapse
Affiliation(s)
- Leroy Bondhus
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Isabelle S Liu
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Yeganeh Markid T, Pourahmadiyan A, Hamzeh S, Sharifi-Bonab M, Asadi MR, Jalaiei A, Rezazadeh M, Ghafouri-Fard S. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. J Neurochem 2025; 169:e16255. [PMID: 39556113 DOI: 10.1111/jnc.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are one of the prevailing conditions characterized by progressive neuronal loss. Polyadenylation (PA) and alternative polyadenylation (APA) are the two main post-transcriptional events that regulate neuronal gene expression and protein production. This systematic review analyzed the available literature on the role of PA and APA in NDDs, with an emphasis on their contributions to disease development. A comprehensive literature search was performed using the PubMed, Scopus, Cochrane, Google Scholar, Embase, Web of Science, and ProQuest databases. The search strategy was developed based on the framework introduced by Arksey and O'Malley and supplemented by the inclusion and exclusion criteria. The study selection was performed by two independent reviewers. Extraction and data organization were performed in accordance with the predefined variables. Subsequently, quantitative and qualitative analyses were performed. Forty-seven studies were included, related to a variety of NDDs, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Disease induction was performed using different models, including human tissues, animal models, and cultured cells. Most investigations were related to PA, although some were related to APA or both. Amyloid precursor protein (APP), Tau, SNCA, and STMN2 were the major genes identified; most of the altered PA patterns were related to mRNA stability and translation efficiency. This review particularly underscores the key roles of PA and APA in the pathogenesis of NDDs through their mechanisms that contribute to gene expression dysregulation, protein aggregation, and neuronal dysfunction. Insights into these mechanisms may lead to new therapeutic strategies focused on the modulation of PA and APA activities. Further research is required to investigate the translational potential of targeting these pathways for NDD treatment.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Pourahmadiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soroosh Hamzeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
11
|
Gao Y, Shaw VR, Amos CI. Alternative polyadenylation shapes the molecular and clinical features of lung adenocarcinoma. Hum Mol Genet 2025; 34:1-10. [PMID: 39487796 DOI: 10.1093/hmg/ddae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Indexed: 11/04/2024] Open
Abstract
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation that affects mRNA stability, localization and translation efficiency. Previous pan-cancer studies have revealed that APA is frequently disrupted in cancer and is associated with patient outcomes. Yet, little is known about cancer type-specific APA alterations. Here, we integrated RNA-sequencing data from a Korean cohort (GEO: GSE40419) and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA alterations in lung adenocarcinomas (LUADs). Comparing expression levels of core genes involved in polyadenylation, we find that overall, the set of 28 of 31 genes are upregulated, with CSTF2 particularly upregulated. We observed broad and recurrent APA changes in LUAD growth-promoting genes. In addition, we find enrichment of APA events in genes associated with known LUAD pathways and an increased heterogeneity in polyadenylation (polyA) site usage of proliferation-associated genes. Upon further investigation, we report smoking-specific APA changes are also highly relevant to LUAD development. Overall, our in-depth analysis reveals APA as an important driver for the molecular and clinical features of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yipeng Gao
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Vikram R Shaw
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
12
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
13
|
Abdelhafez N, Aladsani A, Alkharafi L, Al-Bustan S. Association of selected gene variants with nonsyndromic orofacial clefts in Kuwait. Gene 2025; 934:149028. [PMID: 39442823 DOI: 10.1016/j.gene.2024.149028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION AND OBJECTIVES Non-syndromic orofacial clefts (NSOFCs) are complex congenital abnormalities involving both environmental and genetic factors involved in orofacial development. This study aimed to investigate the genetic association of specific genetic variants at different CYRIA gene loci with the development of NSOFCs in Kuwait. METHODS Four genetic variants (rs7552, rs3758249, rs3821949, and rs3917201) at four selected gene loci (CYRIA, FOXE1, MSX1, and TGFB3) were genotyped in a total of 240 DNA samples (patients (n = 114) and random controls (n = 126)) employing TaqMan® allele discrimination assay. For each variant and its genotype, the frequencies were determined and tested for Hardy-Weinberg Equilibrium. Genotype frequencies was compared between patients and controls using Pearson's test. Logistic regression analyses were employed to test for the associations of the four selected variants with the occurrence of NSOFCSs. RESULTS Significant differences in the distribution of genotypes between cases and controls, rs7552, rs3821949, and rs3917201 were found to have a positive association with NSOFCs. After adjusting for gender, the GG genotype of the rs7552 variant, the AG genotype of the rs3821949 variant, and the CC genotype of the rs3917201 variant showed nearly a two-fold increased risk of NSOFC (p < 0.05). CONCLUSION This study reports significant findings on the contribution and modest effect of CYRIA rs7552, MSX1 rs3821949, and TGFB3 rs3917201 in the development of NSOFCs. Our findings provide further evidence on the molecular mechanism and the role of the selected genes in NSOFCs.
Collapse
Affiliation(s)
- Nada Abdelhafez
- Department of Biological Sciences, College of Science, Kuwait University, Shadadiyah, Kuwait.
| | - Amani Aladsani
- Department of Biological Sciences, College of Science, Kuwait University, Shadadiyah, Kuwait.
| | - Lateefa Alkharafi
- Department of Orthodontics, Ministry of Health, Sulaibikhat, Kuwait.
| | - Suzanne Al-Bustan
- Department of Biological Sciences, College of Science, Kuwait University, Shadadiyah, Kuwait.
| |
Collapse
|
14
|
Zou X, Zhao Z, Chen Y, Xiong K, Wang Z, Chen S, Chen H, Wei GH, Xu S, Li W, Ni T, Li L. Impact of rare non-coding variants on human diseases through alternative polyadenylation outliers. Nat Commun 2025; 16:682. [PMID: 39819850 PMCID: PMC11739498 DOI: 10.1038/s41467-024-55407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
Although rare non-coding variants (RVs) play crucial roles in complex traits and diseases, understanding their mechanisms and identifying disease-associated RVs continue to be major challenges. Here we constructed a comprehensive atlas of alternative polyadenylation (APA) outliers (aOutliers), including 1334 3' UTR and 200 intronic aOutliers, from 15,201 samples across 49 human tissues. These aOutliers exhibit unique characteristics from transcription or splicing outliers, with a pronounced RV enrichment. Mechanistically, aOutlier-RVs alter poly(A) signals and splicing sites, and perturbation indeed triggers APA events. Furthermore, we developed a Bayesian-based APA RV prediction model, which successfully pinpointed a specific set of 1799 RVs impacting 278 genes with significantly large disease effect sizes. Notably, we observed a convergence effect between rare and common cancer variants, exemplified by regulation in the DDX18 gene. Together, this study introduced an APA-enhanced framework for genome annotation, underscoring APA's role in uncovering functional RVs linked to complex traits and diseases.
Collapse
Affiliation(s)
- Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Kewei Xiong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zeyang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shuxin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hui Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
- Center for Evolutionary Biology, and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
15
|
Catacalos-Goad C, Chakrabarti M, Salem DH, Camporeale C, Somalraju S, Tegowski M, Singh R, Reid RW, Janies DA, Meyer KD, Janga SC, Hunt AG, Chakrabarti K. Nucleotide-resolution Mapping of RNA N6-Methyladenosine (m6A) modifications and comprehensive analysis of global polyadenylation events in mRNA 3' end processing in malaria pathogen Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631827. [PMID: 39829786 PMCID: PMC11741415 DOI: 10.1101/2025.01.07.631827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Plasmodium falciparum is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in P. falciparum using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends. In this process we identified 894, 788, and 1,762 m6A-modified genes in Ring, Trophozoite and Schizont stages respectively, with an average of 5-7 m6A sites per-transcript at the individual gene level. Notably, several genes involved in malaria pathophysiology, such as KAHRP, ETRAMPs, SERA and stress response genes, such as members of Heat Shock Protein (HSP) family are highly enriched in m6A and therefore could be regulated by this RNA modification. Since we observed preferential methylation at the 3' ends of P. falciparum transcripts and because malaria polyadenylation specificity factor PfCPSF30 harbors an m6A reader 'YTH' domain, we reasoned that m6A might play an important role in 3'-end processing of malaria mRNAs. To investigate this, we used two complementary high-throughput RNA 3'-end mapping approaches, which provided an initial framework to explore potential roles of m6A in the regulation of alternative polyadenylation (APA) during malaria development in human hosts.
Collapse
Affiliation(s)
- Cassandra Catacalos-Goad
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX
| | - Doaa Hassan Salem
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Carli Camporeale
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Sahiti Somalraju
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruchi Singh
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| |
Collapse
|
16
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
18
|
Duan S, Ma G, Chen J, Shi X, Yuan Z, Zhou W, Deng Q, Wang Y, Yin J, Yuan Y, Liu C. A protocol for acquiring high-quality single-cell multi-omics data from human peripheral blood. STAR Protoc 2024; 5:103430. [PMID: 39488839 PMCID: PMC11567067 DOI: 10.1016/j.xpro.2024.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Single-cell analysis of human peripheral blood cells provides insights into innate and adaptive immune systems. However, robust protocols are essential to ensuring single-cell sequencing data quality and cell viability. Here, we present a protocol for acquiring high-quality single-cell multi-omics data from human peripheral blood mononuclear cells (PBMCs). We describe steps for collecting human blood followed by single-cell sequencing, whole-genome sequencing, and metabolome and proteome analysis of PBMCs using modified multi-omics sample processing.
Collapse
Affiliation(s)
- Shanshan Duan
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | - Zishuo Yuan
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | | | - Qiuting Deng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yue Yuan
- BGI Research, Shenzhen 518083, China.
| | - Chuanyu Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
19
|
Zhang F, Wan W, Li Y, Wang B, Shao Y, Di X, Zhang H, Cai W, Wei Y, Ma X. Construction of a Full-Length transcriptome resource for the African sharptooth catfish (Clarias gariepinus), a prototypical air-breathing Fish, based on isoform sequencing (Iso-Seq). Gene 2024; 930:148802. [PMID: 39094712 DOI: 10.1016/j.gene.2024.148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The African sharptooth catfish (Clarias gariepinus) assumes significance in aquaculture, given its role as a farmed freshwater species with modified gill structures functioning as an air-breathing organ (ABO). To provide a scientific basis for further elucidating the air-breathing formation mechanism and deeply utilizing the genetic resources of Clarias gariepinus, we utilized the PacBio sequencing platform to acquire a comprehensive full-length transcriptome from five juvenile developmental stages and various adult tissues, including the ABO, gills, liver, skin, and muscle. We generated 25,766,688 high-quality reads, with an average length of 2,006 bp and an N50 of 2,241 bp. Following rigorous quality control, 34,890 (97.7 %) of the high-quality isoforms were mapped to the reference genome for gene and transcript annotation, yielding 387 novel isoforms and 14,614 new isoforms. Additionally, we identified 28,582 open reading frames, 48 SNPs, 5,464 variable splices, and 6,141 variable polyadenylation sites, along with 475 long non-coding RNAs. Many DEGs were involved with low oxygen GO terms and KEGG pathways, such as response to stimulus, biological regulation and catalytic activities. Furthermore, it was found that transcription factors such as zf-C2H2, Homeobox, bHLH, and MYB could underpin the African sharptooth catfish's developmental plasticity and its capacity to adapt its morphology and function to its environment. Through the comprehensive analysis of its genomic characteristics, it was found that the African sharptooth catfish has developed a series of unique respiratory adaptive mechanisms during the evolutionary process, These results not only advances the understanding of genetic adaptations to hypoxia in Clarias fish but also provides a valuable framework for future studies aimed at improving aquaculture practices,besides provide important references and inspirations for the evolution of aquatic organisms.
Collapse
Affiliation(s)
- Feiran Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenjing Wan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yang Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Bo Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yiting Shao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Xiangyi Di
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Han Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| | - Xiaoli Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| |
Collapse
|
20
|
Fan Y, Yao D, Ma J, You F, Wei X, Ji T. Alternative Splicing and Alternative Polyadenylation-Regulated Cold Stress Response of Apis cerana. INSECTS 2024; 15:1006. [PMID: 39769608 PMCID: PMC11677483 DOI: 10.3390/insects15121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Temperature is a pivotal ecological factor in the regulation of insect survival and reproduction [...].
Collapse
Affiliation(s)
- Yuanchan Fan
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| | - Dan Yao
- Guizhou Institute of Integrated Agriculture Development, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Jinmeng Ma
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| | - Fangdong You
- Yunnan Provincial Department of Agriculture and Rural Affairs, Yunnan Animal Husbandry Station, Kunming 650225, China;
| | - Xiaoping Wei
- Guizhou Institute of Integrated Agriculture Development, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| |
Collapse
|
21
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
22
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024; 57:22-32. [PMID: 39632657 PMCID: PMC11802343 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On the one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Feiyan Liu
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Yu Zhou
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
23
|
Eisenberg E. Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes. Methods Enzymol 2024; 710:241-265. [PMID: 39870448 DOI: 10.1016/bs.mie.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data. In this chapter we review some of the main computational approaches currently used, describe potential hurdles, challenges and pitfalls, and discuss possible ways to mitigate them.
Collapse
Affiliation(s)
- Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Zhang Q, Kang L, Yang H, Liu F, Wu X. Supervised analysis of alternative polyadenylation from single-cell and spatial transcriptomics data with spvAPA. Brief Bioinform 2024; 26:bbae720. [PMID: 39799000 PMCID: PMC11724721 DOI: 10.1093/bib/bbae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities. Here, we proposed a supervised analytical framework termed spvAPA, specifically used for APA analysis from both single-cell and spatial transcriptomics data. First, an iterative imputation method based on weighted nearest neighbor was designed to recover missing APA signatures, by integrating both gene expression and APA modalities. Second, a supervised feature selection method based on sparse partial least squares discriminant analysis was devised to identify APA features distinguishing cell types or spatial morphologies. Additionally, spvAPA improves the visualization of high-dimensional data for discovering novel cell subtypes, which considers APA features and dual modalities of gene expression and APA. Evaluations across nine single-cell and spatial transcriptomics datasets demonstrate the effectiveness and applicability of spvAPA. spvAPA is available at https://github.com/BMILAB/spvAPA.
Collapse
Affiliation(s)
- Qinglong Zhang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Liping Kang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Haoran Yang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Fei Liu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Xiaohui Wu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| |
Collapse
|
25
|
Calvo-Roitberg E, Daniels RF, Pai AA. Challenges in identifying mRNA transcript starts and ends from long-read sequencing data. Genome Res 2024; 34:1719-1734. [PMID: 39567236 DOI: 10.1101/gr.279559.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 11/22/2024]
Abstract
Long-read sequencing (LRS) technologies have the potential to revolutionize scientific discoveries in RNA biology through the comprehensive identification and quantification of full-length mRNA isoforms. Despite great promise, challenges remain in the widespread implementation of LRS technologies for RNA-based applications, including concerns about low coverage, high sequencing error, and robust computational pipelines. Although much focus has been placed on defining mRNA exon composition and structure with LRS data, less careful characterization has been done of the ability to assess the terminal ends of isoforms, specifically, transcription start and end sites. Such characterization is crucial for completely delineating full mRNA molecules and regulatory consequences. However, there are substantial inconsistencies in both start and end coordinates of LRS reads spanning a gene, such that LRS reads often fail to accurately recapitulate annotated or empirically derived terminal ends of mRNA molecules. Here, we describe the specific challenges of identifying and quantifying mRNA terminal ends with LRS technologies and how these issues influence biological interpretations of LRS data. We then review recent experimental and computational advances designed to alleviate these problems, with ideal use cases for each approach. Finally, we outline anticipated developments and necessary improvements for the characterization of terminal ends from LRS data.
Collapse
Affiliation(s)
- Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Rachel F Daniels
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
26
|
Zhu XT, Sanz-Jimenez P, Ning XT, Tahir Ul Qamar M, Chen LL. Direct RNA sequencing in plants: Practical applications and future perspectives. PLANT COMMUNICATIONS 2024; 5:101064. [PMID: 39155503 PMCID: PMC11589328 DOI: 10.1016/j.xplc.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Tong Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
27
|
Zhang HY, Minnis C, Gustavsson E, Ryten M, Mole SE. CLN3 transcript complexity revealed by long-read RNA sequencing analysis. BMC Med Genomics 2024; 17:244. [PMID: 39367445 PMCID: PMC11451007 DOI: 10.1186/s12920-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Batten disease is a group of rare inherited neurodegenerative diseases. Juvenile CLN3 disease is the most prevalent type, and the most common pathogenic variant shared by most patients is the "1-kb" deletion which removes two internal coding exons (7 and 8) in CLN3. Previously, we identified two transcripts in patient fibroblasts homozygous for the 1-kb deletion: the 'major' and 'minor' transcripts. To understand the full variety of disease transcripts and their role in disease pathogenesis, it is necessary to first investigate CLN3 transcription in "healthy" samples without juvenile CLN3 disease. METHODS We leveraged PacBio long-read RNA sequencing datasets from ENCODE to investigate the full range of CLN3 transcripts across various tissues and cell types in human control samples. Then we sought to validate their existence using data from different sources. RESULTS We found that a readthrough gene affects the quantification and annotation of CLN3. After taking this into account, we detected over 100 novel CLN3 transcripts, with no dominantly expressed CLN3 transcript. The most abundant transcript has median usage of 42.9%. Surprisingly, the known disease-associated 'major' transcripts are detected. Together, they have median usage of 1.5% across 22 samples. Furthermore, we identified 48 CLN3 ORFs, of which 26 are novel. The predominant ORF that encodes the canonical CLN3 protein isoform has median usage of 66.7%, meaning around one-third of CLN3 transcripts encode protein isoforms with different stretches of amino acids. The same ORFs could be found with alternative UTRs. Moreover, we were able to validate the translational potential of certain transcripts using public mass spectrometry data. CONCLUSION Overall, these findings provide valuable insights into the complexity of CLN3 transcription, highlighting the importance of studying both canonical and non-canonical CLN3 protein isoforms as well as the regulatory role of UTRs to fully comprehend the regulation and function(s) of CLN3. This knowledge is essential for investigating the impact of the 1-kb deletion and rare pathogenic variants on CLN3 transcription and disease pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Christopher Minnis
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Emil Gustavsson
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK.
| |
Collapse
|
28
|
Foroutan Kahangi M, Tavakolpour V, Samiei Mosleh I, Oraee-Yazdani S, Kouhkan F. Involvement of oncomiRs miR-23, miR-24, and miR-27 in the regulation of alternative polyadenylation in glioblastoma via CFIm25 cleavage factor. Metab Brain Dis 2024; 39:1269-1281. [PMID: 39190234 DOI: 10.1007/s11011-024-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. The cleavage factor Im 25 (CFIm25), a crucial component of the CFIm complex, plays a key role in regulating the length of the mRNA 3'-UTR and has been implicated in various cancers, including GBM. This study sought to investigate the regulatory influence of specific microRNAs (miRNAs) on CFIm25 expression in GBM, a highly aggressive brain tumor. Bioinformatics analysis identified miRNA candidates targeting CFIm25 mRNA, and gene expression profiles from the NCBI database (GSE90603) were used for further analysis. Expression levels of CFIm25 and selected miRNAs were assessed using qRT-PCR in GBM clinical samples (n = 20) and non-malignant brain tissues (n = 5). Additionally, the MTT assay was performed to examine the effect of miRNA overexpression on U251 cell viability. Lentivectors expressing the identified miRNAs were employed to experimentally validate their regulatory role on CFIm25 in U251 cell lines, and Western blot analysis was conducted to determine CFIm25 protein levels. We observed significantly increased levels of miR-23, miR-24, and miR-27 expression, associated with a marked reduction in CFIm25 expression in GBM samples compared to non-malignant brain tissues. In particular, overexpression of miR-23, miR-24, and miR-27 in U251 cells resulted in CFIm25 downregulation at both the mRNA and protein levels, while their inhibition increased CFIm25 and reduced cell proliferation. These observations strongly implicate miR-23, miR-24, and miR-27 in regulating CFIm25 expression in GBM, emphasizing their potential as promising therapeutic targets for enhancing treatment responses in glioblastoma.
Collapse
Affiliation(s)
- Mozhgan Foroutan Kahangi
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Tavakolpour
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Iman Samiei Mosleh
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
29
|
Sun J, Kim JY, Jun S, Park M, de Jong E, Chang JW, Cheng S, Fan D, Chen Y, Griffin TJ, Lee JH, You HJ, Zhang W, Yong J. Dichotomous intronic polyadenylation profiles reveal multifaceted gene functions in the pan-cancer transcriptome. Exp Mol Med 2024; 56:2145-2161. [PMID: 39349823 PMCID: PMC11541570 DOI: 10.1038/s12276-024-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 11/08/2024] Open
Abstract
Alternative cleavage and polyadenylation within introns (intronic APA) generate shorter mRNA isoforms; however, their physiological significance remains elusive. In this study, we developed a comprehensive workflow to analyze intronic APA profiles using the mammalian target of rapamycin (mTOR)-regulated transcriptome as a model system. Our investigation revealed two contrasting effects within the transcriptome in response to fluctuations in cellular mTOR activity: an increase in intronic APA for a subset of genes and a decrease for another subset of genes. The application of this workflow to RNA-seq data from The Cancer Genome Atlas demonstrated that this dichotomous intronic APA pattern is a consistent feature in transcriptomes across both normal tissues and various cancer types. Notably, our analyses of protein length changes resulting from intronic APA events revealed two distinct phenomena in proteome programming: a loss of functional domains due to significant changes in protein length or minimal alterations in C-terminal protein sequences within unstructured regions. Focusing on conserved intronic APA events across 10 different cancer types highlighted the prevalence of the latter cases in cancer transcriptomes, whereas the former cases were relatively enriched in normal tissue transcriptomes. These observations suggest potential, yet distinct, roles for intronic APA events during pathogenic processes and emphasize the abundance of protein isoforms with similar lengths in the cancer proteome. Furthermore, our investigation into the isoform-specific functions of JMJD6 intronic APA events supported the hypothesis that alterations in unstructured C-terminal protein regions lead to functional differences. Collectively, our findings underscore intronic APA events as a discrete molecular signature present in both normal tissues and cancer transcriptomes, highlighting the contribution of APA to the multifaceted functionality of the cancer proteome.
Collapse
Affiliation(s)
- Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jin-Young Kim
- Department of Pharmacology, Chosun University School of Medicine, Gwangju, 61452, Republic of Korea
| | - Semo Jun
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 61452, Republic of Korea
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Ebbing de Jong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
- SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jae-Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Deliang Fan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Jung-Hee Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 61452, Republic of Korea
| | - Ho Jin You
- Department of Pharmacology, Chosun University School of Medicine, Gwangju, 61452, Republic of Korea.
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
30
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
31
|
Mills TW, Wu M, Alonso J, Puente H, Charles J, Chen Z, Yoo SH, Mayes MD, Assassi S. Unraveling the role of MiR-181 in skin fibrosis pathogenesis by targeting NUDT21. FASEB J 2024; 38:e70022. [PMID: 39250282 PMCID: PMC11512580 DOI: 10.1096/fj.202400829r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by widespread fibrosis in the skin and several internal organs. Nudix Hydrolase 21 (NUDT2 or CFIm25) downregulation in fibroblasts is known to play detrimental roles in both skin and lung fibrosis. This study aims to investigate the upstream mechanisms that lead to NUDT21 repression in skin fibrosis. We identified transforming growth factor β (TGFβ1) as the primary cytokine that downregulated NUDT21 in normal skin fibroblasts. In the bleomycin-induced dermal fibrosis model, consistent with the peak activation of TGFβ1 at the late fibrotic stage, NUDT21 was downregulated at this stage, and delayed NUDT21 knockdown during this fibrotic phase led to enhanced fibrotic response to bleomycin. Further investigation suggested TGFβ downregulated NUDT21 through microRNA (miRNA) 181a and 181b induction. Both miR-181a and miR-181b were elevated in bleomycin-induced skin fibrosis in mice and primary fibroblasts isolated from SSc patients, and they directly targeted NUDT21 and led to its downregulation in skin fibroblasts. Functional studies demonstrated that miR-181a and miR-181b inhibitors attenuated bleomycin-induced skin fibrosis in mice in association with decreased NUDT21 expression, while miR-181a and miR-181b mimics promoted bleomycin-induced fibrosis. Overall, these findings suggest a novel role for miR-181a/b in SSc pathogenesis by repressing NUDT21 expression.
Collapse
Affiliation(s)
- Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jerry Alonso
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hydia Puente
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julio Charles
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D. Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Kowalski MH, Wessels HH, Linder J, Dalgarno C, Mascio I, Choudhary S, Hartman A, Hao Y, Kundaje A, Satija R. Multiplexed single-cell characterization of alternative polyadenylation regulators. Cell 2024; 187:4408-4425.e23. [PMID: 38925112 PMCID: PMC12052259 DOI: 10.1016/j.cell.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.
Collapse
Affiliation(s)
- Madeline H Kowalski
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Isabella Mascio
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Saket Choudhary
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Yuhan Hao
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
34
|
Jiang D, Kejiou N, Qiu Y, Palazzo AF, Pennell M. Genetic and selective constraints on the optimization of gene product diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603951. [PMID: 39091777 PMCID: PMC11291005 DOI: 10.1101/2024.07.17.603951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNA and protein expressed from the same gene can have diverse isoforms due to various post-transcriptional and post-translational modifications. For the vast majority of alternative isoforms, It is unknown whether they are adaptive or simply biological noise. As we cannot experimentally probe the function of each isoform, we can ask whether the distribution of isoforms across genes and across species is consistent with expectations from different evolutionary processes. However, there is currently no theoretical framework that can generate such predictions. To address this, we developed a mathematical model where isoform abundances are determined collectively by cis-acting loci, trans-acting factors, gene expression levels, and isoform decay rates to predict isoform abundance distributions across species and genes in the face of mutation, genetic drift, and selection. We found that factors beyond selection, such as effective population size and the number of cis-acting loci, significantly influence evolutionary outcomes. Notably, suboptimal phenotypes are more likely to evolve when the population is small and/or when the number of cis-loci is large. We also explored scenarios where modification processes have both beneficial and detrimental effects, revealing a non-monotonic relationship between effective population size and optimization, demonstrating how opposing selection pressures on cis- and trans-acting loci can constrain the optimization of gene product diversity. As a demonstration of the power of our theory, we compared the expected distribution of A-to-I RNA editing levels in coleoids and found this to be largely consistent with non-adaptive explanations.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Nevraj Kejiou
- Department of Biochemistry, University of Toronto, Canada
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Canada
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
35
|
Niu Y, Luo J, Zong C. Single-cell total-RNA profiling unveils regulatory hubs of transcription factors. Nat Commun 2024; 15:5941. [PMID: 39009595 PMCID: PMC11251146 DOI: 10.1038/s41467-024-50291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Recent development of RNA velocity uses master equations to establish the kinetics of the life cycle of RNAs from unspliced RNA to spliced RNA (i.e., mature RNA) to degradation. To feed this kinetic analysis, simultaneous measurement of unspliced RNA and spliced RNA in single cells is greatly desired. However, the majority of single-cell RNA-seq chemistry primarily captures mature RNA species to measure gene expressions. Here, we develop a one-step total-RNA chemistry-based single-cell RNA-seq method: snapTotal-seq. We benchmark this method with multiple single-cell RNA-seq assays in their performance in kinetic analysis of cell cycle by RNA velocity. Next, with LASSO regression between transcription factors, we identify the critical regulatory hubs mediating the cell cycle dynamics. We also apply snapTotal-seq to profile the oncogene-induced senescence and identify the key regulatory hubs governing the entry of senescence. Furthermore, from the comparative analysis of unspliced RNA and spliced RNA, we identify a significant portion of genes whose expression changes occur in spliced RNA but not to the same degree in unspliced RNA, indicating these gene expression changes are mainly controlled by post-transcriptional regulation. Overall, we demonstrate that snapTotal-seq can provide enriched information about gene regulation, especially during the transition between cell states.
Collapse
Affiliation(s)
- Yichi Niu
- Department of Molecular and Human Genetics, Houston, TX, USA
- Genetics & Genomics Program, Houston, TX, USA
| | - Jiayi Luo
- Department of Molecular and Human Genetics, Houston, TX, USA
- Cancer and Cell Biology Program, Houston, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Houston, TX, USA.
- Genetics & Genomics Program, Houston, TX, USA.
- Cancer and Cell Biology Program, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Program, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Chakrabortty A, Mondal S, Bandyopadhyay S. Conformational Properties of Poly(A)-Binding Protein Complexed with Poly(A) RNA. J Phys Chem B 2024; 128:6449-6462. [PMID: 38941243 DOI: 10.1021/acs.jpcb.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| |
Collapse
|
37
|
Li Z, Zhang W, Li S, Tao X, Xu H, Wu Y, Chen Q, Ning A, Tian T, Zhang L, Cui J, Wang W, Chu M. Integration of apaQTL and eQTL analysis reveals novel SNPs associated with occupational pulmonary fibrosis risk. Arch Toxicol 2024; 98:2117-2129. [PMID: 38538875 DOI: 10.1007/s00204-024-03734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 06/13/2024]
Abstract
To explore the association between apaQTL/eQTL-SNPs and the susceptibility to silicosis. A silicosis-related GWAS was initially conducted to screen for single nucleotide polymorphisms (SNPs) associated with the risk of silicosis. Candidate SNPs with apaQTL and eQTL functions were then obtained from the 3'aQTL-atlas and GTEx databases. Subsequently, additional case-control studies were performed to validate the relationship between the candidate apaQTL/eQTL-SNPs and the risk of silicosis. Finally, experiments were conducted to illustrate APA events occurring at different alleles of the identified apaQTL/eQTL-SNPs. The combined results of the GWAS and iMLDR validations indicate that the variant T allele of the rs2974341 located on SMIM19 (additive model: OR = 0.66, the 95% CI = 0.53-0.84, P = 0.001) and the variant T allele of the rs2390488 located on TMTC4 (additive model: OR = 0.72, 95% CI = 0.57-0.90, P = 0.005) were significantly associated with decreased risk of developing silicosis susceptibility. Furthermore, 3'RACE experiments verified the presence of two poly (A) sites (proximal and distal) in SMIM19, rs2974341 may remotely regulate the binding between miRNA-3646 and SMIM19 with its high LD locus rs2974353 to affect the expression level of SMIM19. The rs2974341 variant T allele may contribute to the generation of the shorter 3'UTR transcript of SMIM19 and affect the binding of miRNA-3646 to the target gene SMIM19. The apaQTL/eQTL-SNPs may provide new perspectives for evaluating the regulatory function of SNPs in the development of silicosis.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anhui Ning
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi, Wuxi, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
38
|
Yang X, Chen X, Liu C, Wang Z, Lei W, Li Q, Zhao Y, Wang X. Dynamic Alternative Polyadenylation during Litopenaeus Vannamei Metamorphosis Development. Genes (Basel) 2024; 15:837. [PMID: 39062616 PMCID: PMC11275414 DOI: 10.3390/genes15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As an important mechanism in the post-transcriptional regulation of eukaryotic gene expression, alternative polyadenylation (APA) plays a key role in biological processes such as cell proliferation and differentiation. However, the role and dynamic pattern of APA during Litopenaeus vannamei metamorphosis are poorly understood. Here, RNA-seq data covering from the embryo to the maturation (16 time points) of L. vannamei were utilized. We identified 247 differentially expressed APA events between early and adult stages, and through fuzzy mean clustering analysis, we discovered five dynamic APA patterns. Among them, the gradual elongation of the 3'UTR is the major APA pattern that changes over time, and its genes are enriched in the pathways of protein and energy metabolism. Finally, we constructed mRNA-miRNA and PPI networks and detected several central miRNAs that may regulate L. vannamei development. Our results revealed the complex APA mechanisms in L. vannamei metamorphosis, shedding new light on post-transcriptional regulation of crustacean metamorphosis.
Collapse
Affiliation(s)
- Xueqin Yang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Xiuli Chen
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Zezhong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Wei Lei
- Department of Pharmaceutical and Graduate Life Sciences, College of Pharmacy, Natural & Health Sciences, Manchester University, Fort Wayne, IN 46845, USA;
| | - Qiangyong Li
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Yongzhen Zhao
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Xia Wang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
39
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
40
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
41
|
Blake D, Gazzara MR, Breuer I, Ferretti M, Lynch KW. Alternative 3'UTR expression induced by T cell activation is regulated in a temporal and signal dependent manner. Sci Rep 2024; 14:10987. [PMID: 38745101 PMCID: PMC11094061 DOI: 10.1038/s41598-024-61951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/12/2024] [Indexed: 05/16/2024] Open
Abstract
The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.
Collapse
Affiliation(s)
- Davia Blake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabel Breuer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, Marcon E, Burke G, Tong AH, Chan K, Ha KH, Blencowe B, Moffat J, Greenblatt J. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res 2024; 52:4483-4501. [PMID: 38587191 PMCID: PMC11077057 DOI: 10.1093/nar/gkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Katherine Chan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| |
Collapse
|
43
|
Miskin RP, DiPersio CM. Roles for epithelial integrin α3β1 in regulation of the microenvironment during normal and pathological tissue remodeling. Am J Physiol Cell Physiol 2024; 326:C1308-C1319. [PMID: 38497112 PMCID: PMC11371326 DOI: 10.1152/ajpcell.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3β1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3β1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3β1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3β1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3β1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3β1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3β1 as a clinical target for the treatment of cancer or wound healing.
Collapse
Affiliation(s)
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
44
|
Geng DY, Chen QS, Chen WX, Zhou LS, Han XS, Xie QH, Guo GH, Chen XF, Chen JS, Zhong XP. Molecular targets and mechanisms of different aberrant alternative splicing in metastatic liver cancer. World J Clin Oncol 2024; 15:531-539. [PMID: 38689626 PMCID: PMC11056863 DOI: 10.5306/wjco.v15.i4.531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 04/22/2024] Open
Abstract
Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.
Collapse
Affiliation(s)
- De-Yi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Qing-Shan Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Wan-Xian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Lin-Sa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Xiao-Sha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Qi-Hu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Geng-Hong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Xue-Fen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Jia-Sheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Xiao-Ping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| |
Collapse
|
45
|
Li Y, Gong J, Sun Q, Vong EG, Cheng X, Wang B, Yuan Y, Jin L, Gamazon ER, Zhou D, Lai M, Zhang D. Alternative polyadenylation quantitative trait methylation mapping in human cancers provides clues into the molecular mechanisms of APA. Am J Hum Genet 2024; 111:562-583. [PMID: 38367620 PMCID: PMC10940021 DOI: 10.1016/j.ajhg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.
Collapse
Affiliation(s)
- Yige Li
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China
| | - Qingrong Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang Province, China; College of Information Science and Technology, ZheJiang Shuren University, Hangzhou 310015, ZheJiang, China
| | - Eu Gene Vong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binghong Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
46
|
Pérez Baca MDR, Jacobs EZ, Vantomme L, Leblanc P, Bogaert E, Dheedene A, De Cock L, Haghshenas S, Foroutan A, Levy MA, Kerkhof J, McConkey H, Chen CA, Batzir NA, Wang X, Palomares M, Carels M, Dermaut B, Sadikovic B, Menten B, Yuan B, Vergult S, Callewaert B. Haploinsufficiency of ZFHX3, encoding a key player in neuronal development, causes syndromic intellectual disability. Am J Hum Genet 2024; 111:509-528. [PMID: 38412861 PMCID: PMC10940049 DOI: 10.1016/j.ajhg.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.
Collapse
Affiliation(s)
- María Del Rocío Pérez Baca
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Pontus Leblanc
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Chun-An Chen
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nurit Assia Batzir
- Schneider Children's Medical Center of Israel, Petach Tikvah 4920235, Israel
| | - Xia Wang
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - María Palomares
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Marieke Carels
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; VIB UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bart Dermaut
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bo Yuan
- Seattle Children's Hospital, Seattle and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105, USA
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
47
|
Liu M, Chen J, Zhang C, Liu S, Chao X, Yang H, Muhammad A, Zhou B, Ao W, Schinckel AP. Deciphering Estrus Expression in Gilts: The Role of Alternative Polyadenylation and LincRNAs in Reproductive Transcriptomics. Animals (Basel) 2024; 14:791. [PMID: 38473176 DOI: 10.3390/ani14050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The fertility rate and litter size of female pigs are critically affected by the expression of estrus. The objective of this study was to elucidate the regulatory mechanisms of estrus expression by analyzing the differential expression of genes and long intergenic non-coding RNAs (lincRNA), as well as the utilization of alternative polyadenylation (APA) sites, in the vulva and vagina during the estrus and diestrus stages of Large White and indigenous Chinese Mi gilts. Our study revealed that the number of differentially expressed genes (DEG) in the vulva was less than that in the vagina, and the DEGs in the vulva were enriched in pathways such as "neural" pathways and steroid hormone responses, including the "Calcium signaling pathway" and "Oxytocin signaling pathway". The DEGs in the vagina were enriched in the "Metabolic pathways" and "VEGF signaling pathway". Furthermore, 27 and 21 differentially expressed lincRNAs (DEL), whose target genes were enriched in the "Endocrine resistance" pathway, were identified in the vulva and vagina, respectively. Additionally, we observed that 63 and 618 transcripts of the 3'-untranslated region (3'-UTR) were lengthened during estrus in the vulva and vagina, respectively. Interestingly, the genes undergoing APA events in the vulva exhibited species-specific enrichment in neural or steroid-related pathways, whereas those in the vagina were enriched in apoptosis or autophagy-related pathways. Further bioinformatic analysis of these lengthened 3'-UTRs revealed the presence of multiple miRNAs binding sites and cytoplasmic polyadenylation element (CPE) regulatory aspects. In particular, we identified more than 10 CPEs in the validated lengthened 3'-UTRs of the NFIX, PCNX4, CEP162 and ABHD2 genes using RT-qPCR. These findings demonstrated the involvement of APA and lincRNAs in the regulation of estrus expression in female pigs, providing new insights into the molecular mechanisms underlying estrus expression in pigs.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Ao
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
48
|
Liu S, Luo S, Yang D, Huang J, Jiang X, Yu S, Fu J, Zhou D, Chen X, He H, Fu H. Alternative polyadenylation profiles of susceptible and resistant rice (Oryza sativa L.) in response to bacterial leaf blight using RNA-seq. BMC PLANT BIOLOGY 2024; 24:145. [PMID: 38413866 PMCID: PMC10900630 DOI: 10.1186/s12870-024-04839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.
Collapse
Affiliation(s)
- Shaochun Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Junying Huang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinlei Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shangwei Yu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
49
|
Torres-Ulloa L, Calvo-Roitberg E, Pai AA. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage. RNA (NEW YORK, N.Y.) 2024; 30:256-270. [PMID: 38164598 PMCID: PMC10870368 DOI: 10.1261/rna.079783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.
Collapse
Affiliation(s)
- Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
50
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|