1
|
Huang Z, Mandelkow T, Debatin NF, Lurati MCJ, Ebner J, Raedler JB, Bady E, Müller JH, Simon R, Vettorazzi E, Menz A, Möller K, Gorbokon N, Sauter G, Lennartz M, Luebke AM, Höflmayer D, Krech T, Lebok P, Fraune C, Hinsch A, Jacobsen F, Marx AH, Steurer S, Minner S, Dum D, Weidemann S, Bernreuther C, Clauditz TS, Burandt E, Blessin NC. A Tc1- and Th1-T-lymphocyte-rich tumor microenvironment is a hallmark of MSI colorectal cancer. J Pathol 2025; 266:192-203. [PMID: 40181205 PMCID: PMC12056287 DOI: 10.1002/path.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
Microsatellite instability is a strong predictor of response to immune checkpoint therapy and patient outcome in colorectal cancer. Although enrichment of distinct T-cell subpopulations has been determined to impact the response to immune checkpoint therapy and patient outcome, little is known about the underlying changes in the composition of the immune tumor microenvironment. To assess the density, composition, degree of functional marker expression, and spatial interplay of T-cell subpopulations, 79 microsatellite instable (MSI) and 1,045 microsatellite stable (MSS) colorectal cancers were analyzed. A tissue microarray and large sections were stained with 19 antibodies directed against T cells, antigen-presenting cells, functional markers, and structural proteins using our BLEACH&STAIN multiplex-fluorescence immunohistochemistry approach. A deep learning-based framework comprising >20 different convolutional neuronal networks was developed for image analysis. The composition of Type 1 (T-bet+), Type 2 (GATA3+), Type 17 (RORγT+), NKT-like (CD56+), regulatory (FOXP3+), follicular (BCL6+), and cytotoxic (CD3+CD8+) or helper (CD3+CD4+) T cells showed marked differences between MSI and MSS patients. For instance, the fraction of Tc1 and Th1 was significantly higher (p < 0.001 each), while the fraction of Tregs, Th2, and Th17 T cells was significantly lower (p < 0.05) in MSI compared to MSS patients. The degree of TIM3, CTLA-4, and PD-1 expression on most T-cell subpopulations was significantly higher in MSI compared to MSS patients (p < 0.05 each). Spatial analysis revealed increased interactions between Th1, Tc1, and dendritic cells in MSI patients, while in MSS patients the strongest interactions were found between Tregs, Th17, Th2, and dendritic cells. The additional analysis of 12 large sections revealed a divergent immune composition at the invasive margin. In summary, this study identified a higher fraction of Tc1 and Th1 T cells accompanied by a paucity of regulatory T-cell, Th17, and Th2 T-cell subpopulations, along with a distinct interaction profile, as a hallmark of MSI compared to MSS colorectal cancers. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhihao Huang
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Mandelkow
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus F Debatin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Magalie C J Lurati
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Julia Ebner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jonas B Raedler
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- College of Arts and SciencesBoston UniversityBostonMAUSA
| | - Elena Bady
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jan H Müller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eik Vettorazzi
- Department of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anne Menz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Möller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Natalia Gorbokon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas M Luebke
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Doris Höflmayer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Krech
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Patrick Lebok
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Christoph Fraune
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Andrea Hinsch
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Frank Jacobsen
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Stefan Steurer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sarah Minner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - David Dum
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sören Weidemann
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Till S Clauditz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eike Burandt
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Niclas C Blessin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Arnold‐Heller‐Straße 3University Medical Center Schleswig‐HolsteinKielGermany
| |
Collapse
|
2
|
Pinco P, Facciotti F. Unconventional T Cells' Role in Cancer: Unlocking Their Hidden Potential to Guide Tumor Immunity and Therapy. Cells 2025; 14:720. [PMID: 40422223 DOI: 10.3390/cells14100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Unconventional T (UC T) cells, including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and double-negative (DN) T cells, are key players in immune surveillance and response due to their properties combining innate-like and adaptive-like features. These cells are widely present in mucosal tissues, where they can rapidly respond to infections and tumor-associated changes. In fact, UC T cells can have both pro- and anti-tumoral effects, with their activity influenced by factors such as microbial composition and the tumor microenvironment. In particular, intratumoral microbiota significantly impacts the development, function, and activation of UC T cells, influencing cytokine production and shaping the immune response in various cancers. The complex crosstalk between UC T cells and the surrounding factors is discussed in this review, with a focus on how these cells might be interesting candidates to explore and exploit as anticancer therapeutic agents. However, the great potential of UC T cells, not only demonstrated in the context of adoptive cell transfer, but also enhanced through techniques of engineering, is still flanked by different challenges, like the immunosuppressive tumor microenvironment and heterogeneity of target molecules associated with some specific categories of tumors, like gastrointestinal cancers.
Collapse
Affiliation(s)
- Paola Pinco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
3
|
Veronez LC, Silveira DSCD, Lopes-Júnior LC, Dos Santos JC, Barbisan LF, Pereira-da-Silva G. Jacalin Attenuates Colitis-Associated Colorectal Carcinogenesis by Inhibiting Tumor Cell Proliferation and Intestinal Inflammation. Inflamm Bowel Dis 2025; 31:1344-1354. [PMID: 39745886 DOI: 10.1093/ibd/izae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant cause of morbidity and mortality worldwide. In patients with inflammatory bowel disease, who have twice the risk of developing CRC, chronic inflammation has been recognized to contribute to colitis-associated cancer (CAC) development. Jacalin, a lectin extracted from jackfruit seeds, has been shown to recognize altered glycosylation and to exert antiproliferative and cytotoxic effects in CRC. However, its activity in CAC remains unknown. Herein, we sought to investigate the effects of jacalin in CAC progression using the dextran sulfate sodium (DSS) and azoxymethane (AOM) mouse model. METHODS Colitis-associated cancer induction was performed in male C57BL/6 mice by an intraperitoneal injection of AOM, followed by 3 cycles of 2.5% DSS diluted in drinking water for 7 days, intercalated by 2 weeks of normal drinking water. After 1 week of daily pretreatment, mice were orally treated with phosphate-buffered saline (control group), 100 or 500 µg of jacalin three times a week for an additional 11 weeks. RESULTS We showed that jacalin-treated mice presented tumors with reduced volumes and mean size compared to the control group. In addition, both doses of jacalin reduced the number of proliferating cells (Ki-67 positive cells) in tumor tissues, while the higher dose (500 µg) showed also a similar effect in "normal-appearing" colonic crypts. Jacalin treatment attenuated the clinical scores of inflammations, which was accompanied by a reduction of intestinal and/or tumoral production of IL-1β, IL-23, and IL-17. CONCLUSIONS Collectively, our findings demonstrated that jacalin suppresses CAC development, highlighting its anti-inflammatory and antitumoral role in the AOM/DSS-induced model.
Collapse
Affiliation(s)
- Luciana Chain Veronez
- Graduate Program in Basic and Applied Immunology, Biochemistry and Immunology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Denise Sayuri Calheiros da Silveira
- Graduate Program in Basic and Applied Immunology, Biochemistry and Immunology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Luis Carlos Lopes-Júnior
- Nursing Department, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Jéssica Cristina Dos Santos
- Graduate Program in Basic and Applied Immunology, Biochemistry and Immunology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Luis Fernando Barbisan
- Structural and Functional Biology Department, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil
| | - Gabriela Pereira-da-Silva
- Graduate Program in Basic and Applied Immunology, Biochemistry and Immunology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil
- Maternal-Infant and Public Health Nursing Department, Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil
| |
Collapse
|
4
|
Tang J, Chen L, Shen X, Xia T, Li Z, Chai X, Huang Y, Yang S, Peng X, Lai J, Li R, Xie L. Exploring the Role of Cellular Interactions in the Colorectal Cancer Microenvironment. J Immunol Res 2025; 2025:4109934. [PMID: 40255905 PMCID: PMC12008489 DOI: 10.1155/jimr/4109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/22/2025] [Indexed: 04/22/2025] Open
Abstract
Colorectal cancer (CRC) stands as one of the tumors with globally high incidence and mortality rates. In recent years, researchers have extensively explored the role of the tumor immune microenvironment (TME) in CRC, highlighting the crucial influence of immune cell populations in driving tumor progression and shaping therapeutic outcomes. The TME encompasses an array of cellular and noncellular constituents, spanning tumor cells, immune cells, myeloid cells, and tumor-associated fibroblasts, among others. However, the cellular composition within the TME is highly dynamic, evolving throughout different stages of tumor progression. These shifts in cell subpopulation proportions lead to a gradual transition in the immune response, shifting from an early antitumor growth to a late-stage environment that supports tumor survival. Therefore, it is crucial to further investigate and understand the complex interactions among the various cell populations within the TME. In this review, we explore the key cellular components of varying origins, subpopulations with shared origins, and noncellular elements within the CRC TME, examining their interconnections and critical considerations for developing personalized and precise immunotherapy strategies.
Collapse
Affiliation(s)
- Jiadai Tang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Liuhan Chen
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xin Shen
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Tingrong Xia
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Zhengting Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xiaoying Chai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Yao Huang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Shaoqiong Yang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xinjun Peng
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Junbo Lai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Rui Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Lin Xie
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| |
Collapse
|
5
|
Krause MJ, Sinkala M, Ramesar R. Distinct dysregulated pathways in sporadic and Lynch syndrome-associated colorectal cancer offer insights for targeted treatment. FEBS Lett 2025; 599:1006-1028. [PMID: 39973357 PMCID: PMC11995676 DOI: 10.1002/1873-3468.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lynch syndrome (LS) is a hereditary disorder that increases the risk of colorectal cancer (CRC) due to constitutional pathogenic variants in mismatch repair (MMR) genes. When coupled with somatic mutations in the same gene, MMR deficiency occurs. However, the mechanisms driving cancer development remain unclear. This study aimed to identify distinct molecular drivers in LS-associated and sporadic CRC. We found that PI3K-Akt signalling is dysregulated in LS-associated CRC, while Wnt signalling predominates in sporadic CRC. Moreover, our findings highlight the therapeutic potential of PI3K-Akt pathway inhibitors, such as taselisib, for LS-associated CRC patients with high pathway dependency. Similarly, Wnt signalling pathway inhibitors, such as XAV939, offer a promising therapeutic approach for sporadic CRC. These findings underscore the importance of understanding the biological basis of disease for developing targeted therapies tailored to CRC subtype-specific oncogenic pathways.
Collapse
Affiliation(s)
- May J. Krause
- UCT MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular MedicineFaculty of Health Sciences, University of Cape TownSouth Africa
| | - Musalula Sinkala
- Computational Biology Division, Department of Integrative Biomedical Sciences, School of Health SciencesUniversity of Cape TownSouth Africa
| | - Raj Ramesar
- UCT MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular MedicineFaculty of Health Sciences, University of Cape TownSouth Africa
| |
Collapse
|
6
|
Denk D, Ramakrishnan M, Conche C, Pallangyo C, Pesic M, Ceteci F, Kennel KB, Kirisözü AC, Engel E, Mohs K, Ritter B, Pardo AM, Özkurt E, Hildebrand F, Waisman A, Arkan MC, Greten FR. IL-17RA signaling provides dual tumor-suppressor function during late-stage colorectal carcinogenesis. Immunity 2025; 58:701-715.e8. [PMID: 40023157 DOI: 10.1016/j.immuni.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/13/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Expression of interleukin (IL)-17 family cytokines is associated with tumor-promoting inflammation. We found that low expression of IL17RA associated with worse prognosis in late-stage colorectal cancer (CRC) patients. Deletion of Il17ra in intestinal epithelial cells (IECs) in a murine model of CRC enhanced epithelial-to-mesenchymal transition (EMT) via increased expression of the epidermal growth factor receptor and subsequent activation of the kinase Src. Yet, these mice were protected from metastatic disease; Il17ra deletion impaired intestinal barrier function and enhanced systemic fungal invasion and associated immunity. However, in macrophages, IL-17RA was required for spleen tyrosine kinase (Syk) activation upon fungal-induced dectin-1 engagement, and Il17ra ablation impaired IL-18 release and protective CD8+ T cell-mediated anti-tumor immunity. Combining recombinant IL-17 and heat-killed Candida albicans rendered colorectal tumors sensitive to α-PD-1 treatment in a model of microsatellite stable (MSS) CRC. Thus, IL-17RA engages two distinct tumor-suppressive mechanisms in CRC, linking EMT and fungal-induced anti-tumor immunity during tumor progression.
Collapse
Affiliation(s)
- Dominic Denk
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Goethe University Frankfurt, University Hospital, Medical Clinic 1, 60590 Frankfurt/Main, Germany
| | - Mallika Ramakrishnan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Claire Conche
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Charles Pallangyo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Kilian B Kennel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Asude C Kirisözü
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Esther Engel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Kathleen Mohs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Birgit Ritter
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Angeles Macias Pardo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Ezgi Özkurt
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Decoding Biodiversity, Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Decoding Biodiversity, Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Melek C Arkan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
8
|
Huang X, Feng D, Mitra S, Andretta ES, Hooshdaran NB, Ghelani AP, Wang EY, Frost JN, Lawless VR, Vancheswaran A, Jiang Q, Leslie CS, Rudensky A. Opposing Functions of Distinct Regulatory T Cell Subsets in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637083. [PMID: 39975175 PMCID: PMC11839124 DOI: 10.1101/2025.02.07.637083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Regulatory T (Treg) cells contribute to solid organ cancer progression, except in colorectal cancer (CRC) despite being abundantly present. Here, we demonstrate that two distinct tumoral IL-10⁺ and IL-10⁻ Treg cell subsets exert opposing functions by counteracting and promoting CRC tumor growth, respectively. The tumor restraining activity of IL-10⁺ Treg cells was mediated by their suppression of effector CD4 T cell production of IL-17, which directly stimulates CRC tumor cell proliferation. Consistently, IL-10⁻ Treg cells were more abundant in both mouse and human CRC tumors than in tumor-adjacent normal tissues, whereas IL-10+ Treg cells exhibited the opposite distribution. Furthermore, relative abundance of IL-10⁺ and IL-10⁻ Treg cells correlated with better and worse disease prognoses in human CRC, respectively. This functional dichotomy between Treg cell subsets provides a rationale for therapeutic strategies to selectively target pro-tumoral Treg cells while preserving their anti-tumoral counterparts across barrier tissue cancers that harbor both subsets.
Collapse
|
9
|
Bertin A, Marie JC. [What if effector T cells could induce cancer?]. Med Sci (Paris) 2025; 41:130-132. [PMID: 40028949 DOI: 10.1051/medsci/2025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Affiliation(s)
- Alexia Bertin
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Université Claude Bernard de Lyon 1, Centre Léon Bérard, Lyon, France - Équipe labellisée par la Ligue nationale contre le cancer
| | - Julien C Marie
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Université Claude Bernard de Lyon 1, Centre Léon Bérard, Lyon, France - Équipe labellisée par la Ligue nationale contre le cancer
| |
Collapse
|
10
|
Feng S, Li S, Wu Z, Li Y, Wu T, Zhou Z, Liu X, Chen J, Fu S, Wang Z, Zhong Z, Zhong Y. Saffron improves the efficacy of immunotherapy for colorectal cancer through the IL-17 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118854. [PMID: 39326815 DOI: 10.1016/j.jep.2024.118854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron is one of the traditional medicinal herbs, which contains various active ingredients, such as safranal, crocin, saffron acid, etc. It has anti-inflammatory, antioxidant, and anti-cancer properties, and is widely used in clinical practice. The anti-cancer efficacy of saffron has been previously confirmed, but its anti-cancer mechanism in colorectal cancer remains unclear. OBJECTIVE We investigated the effect of active compounds of saffron on the efficacy of immunotherapy for colorectal cancer. METHODS TCMSP and liquid chromatography-mass spectrometry analysis (LC-MS), GeneCards, and DisGeNET databases were used to identify the active compounds of saffron, drug targets and the disease targets of colorectal cancer. They were then subjected to Gene Ontology Enrichment (GO) and Signalling Pathway Enrichment (KEGG) analyses. The core targets and corresponding compounds were selected for molecular docking. The effect of active components of saffron on the proliferation of CT26 and HCT116 cells was investigated using the cell counting kit-8 (CCK-8). In vitro experiments were conducted by subcutaneous injection of CT26 cells to establish a colon cancer model. Enzyme-linked immunosorbent assay (ELISA), western blotting (WB), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and flow cytometry (FCM) were employed to validate the effects of saffron on colorectal cancer immunotherapy. RESULTS 1. LC-MS analysis revealed that the main active component of saffron extract was crocin. The active chemicals of saffron intersected with 170 colorectal cancer targets, with 17 predicting targets for saffron treatment. GO and KEGG enrichment analyses revealed that the active components of saffron can prevent colorectal cancer development by enhancing Th17 cell differentiation and the IL-17 signaling pathway. 2. In vitro studies revealed that saffron alcohol extract, crocin, and safranal can suppress the proliferation of CT26 and HCT116 cells. 3. In vivo studies showed that crocin and safranal can increase the body mass and decrease the tumor mass of loaded mice, decrease the serum level of IL-17, and lower the mRNA expression level of IL-17, IL-6, TNF-α, TGF-β, and PD-L1 and IL-17, PD-L1 protein in tumors. This inhibitory effect was strengthened after combined immunotherapy. In addition, saffron modulated CD4+ and CD8+ T cells and the CD4+/CD8+T ratio in mouse spleens. CONCLUSION The active components of saffron can reduce the expression of inflammatory factors and ameliorate the immunological microenvironment of tumors via the IL-17 signaling pathway, thereby improving the efficacy of immunotherapy for colorectal cancer. This study provides pharmacological support for the application of saffron in enhancing the efficacy of immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Siqi Feng
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shiying Li
- Seoul National University, Seoul, Korea.
| | - Zhonghua Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Li
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Tingting Wu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhangjie Zhou
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian Chen
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shujuan Fu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhiying Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | - Yi Zhong
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| |
Collapse
|
11
|
Shi S, Ou X, Liu C, Li R, Zheng Q, Hu L. NF-κB signaling and the tumor microenvironment in osteosarcoma: implications for immune evasion and therapeutic resistance. Front Immunol 2025; 16:1518664. [PMID: 39949765 PMCID: PMC11821961 DOI: 10.3389/fimmu.2025.1518664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Osteosarcoma, a highly aggressive malignancy with a generally poor prognosis, is characterized by tumor cells' ability to evade immune responses and resist treatment. The nuclear transcription factor NF-κB signaling pathway is crucial in regulating inflammatory and immune reactions. It occupies a central position in the development of the osteosarcoma tumor microenvironment. This research aimed to explore how NF-κB influences the recruitment and polarization of tumor-associated macrophages and myeloid-derived suppressor cells, both of which contribute to immunosuppression. Furthermore, NF-κB facilitates immune surveillance evasion in osteosarcoma cells by altering the expression of immune checkpoint molecules, such as PD-L1. It also enhances tumor cell resistance to chemotherapy and radiotherapy by activating anti-apoptotic signaling pathways and exacerbating treatment-induced inflammation. Potential therapeutic approaches include using NF-κB inhibitors, possibly in combination with immune checkpoint inhibitors, to overcome tumor cell resistance mechanisms and reshape antitumor immune responses. A thorough examination of NF-κB's role in osteosarcoma development is expected to yield novel clinical treatment strategies, and significantly improve patient prognosis by targeting this key signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, XI’an, China
| |
Collapse
|
12
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
13
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Jasmine F, Almazan A, Khamkevych Y, Argos M, Shahriar M, Islam T, Shea CR, Ahsan H, Kibriya MG. Gene-Environment Interaction: Small Deletions (DELs) and Transcriptomic Profiles in Non-Melanoma Skin Cancer (NMSC) and Potential Implications for Therapy. Cells 2025; 14:95. [PMID: 39851523 PMCID: PMC11764317 DOI: 10.3390/cells14020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC. Comparing the (a) NMSC tissue (n = 32) and corresponding blood samples from each patient, and (b) an independent set of non-lesional, healthy skin (n = 16) and paired blood, we identified NMSC-associated DELs. Differential expressions of certain gene pathways (TGF-β signaling pathway, IL-17 pathway, PD-L1 pathway, etc.) showed significant interactions with these somatic DELs and As exposure. In low-As-exposure cases, the DELs in APC were associated with the up-regulation of inflamed T-Cell-associated genes by a fold change (FC) of 8.9 (95% CI 4.5-17.6), compared to 5.7 (95% CI 2.9-10.8) without APC DELs; in high-As-exposure cases, the APC DELs were associated with an FC of 5.8 (95% CI 3.5-9.8) compared to 1.2 (95% CI -1.3 to 1.8) without APC DELs. We report, for the first time, the significant associations of somatic DELs (many in STR regions) in NMSC tissue and As exposure with many dysregulated gene pathways. These findings may help in selecting groups of patients for potential targeted therapy like PD-L1 inhibitors, IL-17 inhibitors, and TGF-β inhibitors in the future.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Armando Almazan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Yuliia Khamkevych
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Maria Argos
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA;
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh;
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Yong Y, Demmler R, Zohud BA, Fang Q, Zhang T, Zhou Y, Petter K, Flierl C, Gass T, Geppert CI, Merkel S, Schellerer VS, Naschberger E, Stürzl M. AMIGO2 characterizes cancer-associated fibroblasts in metastatic colon cancer and induces the release of paracrine active tumorigenic secretomes. J Pathol 2025; 265:14-25. [PMID: 39523830 PMCID: PMC11638658 DOI: 10.1002/path.6363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Secretomes of cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC) contribute to malignancy. Detailed knowledge is available on the components and functions of CAF secretomes. Little is known about the regulation of CAF secretomes. Here, we searched for receptor-like membrane-bound molecules in CAFs, which may regulate the production and release of tumor-activating secretomes. The adhesion molecule with Ig-like domain 2 (AMIGO2) was significantly upregulated in cultivated CAFs compared to normal tissue-associated fibroblasts (NAFs), and this was confirmed in patient-derived tissues. AMIGO2 expression was low or absent in healthy colon, significantly increased in fibroblasts of primary CRC, and highest in the stromal tissues of CRC-derived liver metastases. AMIGO2 expression in CAFs correlated with a higher T-category, increased lymph node metastasis, progressed tumor stages and was associated with reduced survival in different cohorts of CRC patients. Interestingly, AMIGO2 expression was induced by transforming growth factor-β and higher in female patients, who exhibit a more aggressive disease course. In functional studies, conditioned media of NAFs with experimentally induced AMIGO2 overexpression enhanced proliferation and migration of different CRC tumor cells, while siRNA-mediated inhibition of AMIGO2 in CAFs attenuated these effects. Accordingly, therapeutic inhibition of the receptor-like AMIGO2 protein in CRC CAFs could prevent tumorigenic secretomes in CRC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yongsong Yong
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Richard Demmler
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Bisan Abdalfatah Zohud
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Qi Fang
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tong Zhang
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Yonghua Zhou
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Katja Petter
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Christian Flierl
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tobias Gass
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Carol I Geppert
- Institute of Pathology, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Susanne Merkel
- Department of Surgery, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Vera S Schellerer
- Department of Surgery, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- Department of Pediatric SurgeryUniversity Medicine GreifswaldGreifswaldGermany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC Erlangen‐EMN: Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA)ErlangenGermany
- BZKF: Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC Erlangen‐EMN: Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA)ErlangenGermany
- BZKF: Bavarian Cancer Research Center (BZKF)ErlangenGermany
| |
Collapse
|
16
|
Hu S, Qin J, Ding M, Gao R, Xiao Q, Lou J, Chen Y, Wang S, Pan Y. Bulk integrated single-cell-spatial transcriptomics reveals the impact of preoperative chemotherapy on cancer-associated fibroblasts and tumor cells in colorectal cancer, and construction of related predictive models using machine learning. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167535. [PMID: 39374811 DOI: 10.1016/j.bbadis.2024.167535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Preoperative chemotherapy (PC) is an important component of Colorectal cancer (CRC) treatment, but its effects on the biological functions of fibroblasts and epithelial cells in CRC are unclear. METHODS This study utilized bulk, single-cell, and spatial transcriptomic sequencing data from 22 independent cohorts of CRC. Through bioinformatics analysis and in vitro experiments, the research investigated the impact of PC on fibroblast and epithelial cells in CRC. Subpopulations associated with PC and CRC prognosis were identified, and a predictive model was constructed using machine learning. RESULTS PC significantly attenuated the pathways related to tumor progression in fibroblasts and epithelial cells. NOTCH3 + Fibroblast (NOTCH3 + Fib), TNNT1 + Epithelial (TNNT1 + Epi), and HSPA1A + Epithelial (HSPA1A + Epi) subpopulations were identified in the adjacent spatial region and were associated with poor prognosis in CRC. PC effectively diminished the presence of these subpopulations, concurrently inhibiting pathway activity and intercellular crosstalk. A risk signature model, named the Preoperative Chemotherapy Risk Signature Model (PCRSM), was constructed using machine learning. PCRSM emerged as an independent prognostic indicator for CRC, impacting both overall survival (OS) and recurrence-free survival (RFS), surpassing the performance of 89 previously published CRC risk signatures. Additionally, patients with a high PCRSM risk score showed sensitivity to fluorouracil-based adjuvant chemotherapy (FOLFOX) but resistance to single chemotherapy drugs (such as Bevacizumab and Oxaliplatin). Furthermore, this study predicted that patients with high PCRSM were resistant to anti-PD1therapy. CONCLUSION In conclusion, this study identified three cell subpopulations (NOTCH3 + Fib, TNNT1 + Epi, and HSPA1A + Epi) associated with PC, which can be targeted to improve the prognosis of CRC patients. The PCRSM model shows promise in enhancing the survival and treatment of CRC patients.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - QianNi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| |
Collapse
|
17
|
Liang J, Wang N, Yao Y, Wang Y, An X, Wang H, Liu H, Jiang Y, Li H, Cheng X, Xu J, Liang X, Lou J, Xin Z, Zhang T, Wang X, Lin W. NEDD4L mediates intestinal epithelial cell ferroptosis to restrict inflammatory bowel diseases and colorectal tumorigenesis. J Clin Invest 2024; 135:e173994. [PMID: 39688910 PMCID: PMC11785928 DOI: 10.1172/jci173994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Various factors play key roles in maintaining intestine homeostasis. Disruption of the balance may lead to inflammatory bowel diseases and even colorectal cancer (CRC). Loss or gain of function of many key proteins can result in dysregulated intestinal homeostasis. Our research demonstrated that neural precursor cells expressed developmentally downregulated 4-like protein (NEDD4L, or NEDD4-2), a type of HECT family E3 ubiquitin ligase, played an important role in maintaining intestinal homeostasis. NEDD4L expression was significantly inhibited in intestinal epithelial cells (IECs) of patients with Crohn's disease, ulcerative colitis, and CRC. Global KO of NEDD4L or its deficiency in IECs exacerbated colitis induced by dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) and CRC induced by azoxymethane and DSS. Mechanistically, NEDD4L deficiency in IECs inhibited expression of the key ferroptosis regulator glutathione peroxidase 4 (GPX4) by reducing the protein expression of solute carrier family 3 member 2 (SLC3A2) without affecting its gene expression, ultimately promoting DSS-induced IEC ferroptosis. Importantly, ferroptosis inhibitors reduced the susceptibility of NEDD4L-deficient mice to colitis and colitis-associated CRC. Thus, NEDD4L is an important regulator in IEC ferroptosis, maintaining intestinal homeostasis, making it a potential clinical target for diagnosing and treating IBDs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ning Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yihan Yao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiang An
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Haofei Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Huan Liu
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China
| | | | | | - Xiaojing Liang
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lou
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zengfeng Xin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ting Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojian Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Wenlong Lin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
18
|
Han L, Yang H, Jiang X, Zhou Z, Ge C, Yu K, Li G, Wang W, Liu Y. Prognostic model based on disulfidptosis-related lncRNAs for predicting survival and therapeutic response in bladder cancer. Front Immunol 2024; 15:1512203. [PMID: 39687628 PMCID: PMC11647029 DOI: 10.3389/fimmu.2024.1512203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Background With poor treatment outcomes and prognosis, bladder cancer remains a focus for clinical research in the precision oncology era. However, the potential of disulfidptosis, a novel cell death mechanism, and its related long non-coding RNAs to support selective cancer cell killing in this disease is still unclear. Methods We identified key disulfidptosis-related lncRNAs in bladder cancer, constructed a prognostic risk model with potential therapeutic targets, and confirmed the findings through quantitative PCR analysis. Results We identified five crucial lncRNAs (AC005840.4, AC010331.1, AL021707.6, MIR4435-2HG and ARHGAP5-AS1) and integrated them into a predictive model centered on disulfidptosis-associated lncRNAs. Reliability and validity tests demonstrated that the lncRNA prediction index associated with disulfidptosis effectively discerns patients' prognosis outcomes. Additionally, high-risk patients exhibited elevated expression levels of genes involved in the PI3K-Akt signaling pathway, extracellular matrix organization, and immune escape mechanisms, which are associated with poor prognosis. Notably, high-risk patients demonstrated higher sensitivity to Sorafenib, Oxaliplatin and MK-2206, underscoring the promise of these lncRNAs as precise therapeutic targets in bladder cancer. Conclusion By revealing the predictive importance of disulfidptosis-associated lncRNAs in bladder cancer, our research offers new perspectives and pinpoints potential therapeutic targets in clinical environments.
Collapse
Affiliation(s)
- Lirui Han
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Hankai Yang
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Xuan Jiang
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Ziyu Zhou
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Chang Ge
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Kairan Yu
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Guofang Li
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Wei Wang
- Ministry of Education (MOE) Key Laboratory of Bio-Intelligent Manufacturing, Dalian University of Technology, Dalian, China
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Liaoning, Shenyang, China
| | - Yubo Liu
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
- Ministry of Education (MOE) Key Laboratory of Bio-Intelligent Manufacturing, Dalian University of Technology, Dalian, China
| |
Collapse
|
19
|
DeLira-Bustillos N, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Velazquez-Roman J, Tapia-Pastrana G, Canizales-Quinteros S, Velázquez-Cruz R, Cortez-Hernández JA, Canizalez-Roman A. Cyclomodulins-harboring Escherichia coli isolated from obese and normal-weight subjects induces intestinal dysplasia in a mouse model. World J Microbiol Biotechnol 2024; 40:371. [PMID: 39487241 DOI: 10.1007/s11274-024-04176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Recently, cyclomodulins have been identified in Escherichia coli (E. coli), which can induce dysplastic damage. This work aimed to determine the dysplastic activity of cyclomodulin-harboring E. coli isolated from CRC patients, obese and normal-weight subjects in a mouse model. Forty-two mice were pretreated with streptomycin, azoxymethane, and dextran sodium sulfate. Mice were infected with E. coli pks + isolated from a CRC patient, with E. coli pks + cif + isolated from obese or normal-weight subjects, or with E. coli HB101. The presence of cyclomodulin-harboring E. coli in the feces, weight loss, changes in fecal consistency, and the presence of blood in the feces were monitored and used to assess the disease activity index (DAI). After 62 days, the mice were sacrificed to evaluate the presence of intestinal polyps and dysplastic damage by histologic sections. Cyclomodulin-harboring E. coli colonized the mice; these mice exhibited weight loss and watery diarrhea, and isolated normal-weight E. coli had a higher DAI. Polyps were observed in mice infected with cyclomodulin-harboring E. coli in the ileum but to a greater extent in obese isolates. E. coli isolated from CRC showed more significant endothelial damage associated with dysplasia in the ileum in equal proportions from obese and normal-weight isolates. In conclusion, E. coli harboring cyclomodulins isolated from CRC, obesity, or normal weight can cause dysplastic damage in the ileum of mice and may be a risk factor for CRC development.
Collapse
Affiliation(s)
- Nora DeLira-Bustillos
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa, 80030, Mexico
| | | | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
- Pediatric Hospital of Sinaloa, Culiacan Sinaloa, 80200, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
- The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan Sinaloa, 80058, Mexico
| | - Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS- BIENESTAR) Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, 71256, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, 14610, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
| | | | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico.
- The Women's Hospital, Secretariat of Health, Culiacan Sinaloa, 80020, Mexico.
| |
Collapse
|
20
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Castro-Pando S, Howell RM, Li L, Mascaro M, Faraoni EY, Le Roux O, Romanin D, Tahan V, Riquelme E, Zhang Y, Kolls JK, Allison JP, Lozano G, Moghaddam SJ, McAllister F. Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis. Cancer Immunol Res 2024; 12:1170-1183. [PMID: 38842383 PMCID: PMC11369627 DOI: 10.1158/2326-6066.cir-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.
Collapse
Affiliation(s)
- Susana Castro-Pando
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rian M. Howell
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Le Li
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marilina Mascaro
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- CONICET, Buenos Aires, Argentina.
| | - Erika Y. Faraoni
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Olivereen Le Roux
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Romanin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Virginia Tahan
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay K. Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, Louisiana.
| | - James P. Allison
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillermina Lozano
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyed J. Moghaddam
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
23
|
Fesneau O, Thevin V, Pinet V, Goldsmith C, Vieille B, M'Homa Soudja S, Lattanzio R, Hahne M, Dardalhon V, Hernandez-Vargas H, Benech N, Marie JC. An intestinal T H17 cell-derived subset can initiate cancer. Nat Immunol 2024; 25:1637-1649. [PMID: 39060651 PMCID: PMC11362008 DOI: 10.1038/s41590-024-01909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Approximately 25% of cancers are preceded by chronic inflammation that occurs at the site of tumor development. However, whether this multifactorial oncogenic process, which commonly occurs in the intestines, can be initiated by a specific immune cell population is unclear. Here, we show that an intestinal T cell subset, derived from interleukin-17 (IL-17)-producing helper T (TH17) cells, induces the spontaneous transformation of the intestinal epithelium. This subset produces inflammatory cytokines, and its tumorigenic potential is not dependent on IL-17 production but on the transcription factors KLF6 and T-BET and interferon-γ. The development of this cell type is inhibited by transforming growth factor-β1 (TGFβ1) produced by intestinal epithelial cells. TGFβ signaling acts on the pretumorigenic TH17 cell subset, preventing its progression to the tumorigenic stage by inhibiting KLF6-dependent T-BET expression. This study therefore identifies an intestinal T cell subset initiating cancer.
Collapse
Affiliation(s)
- Olivier Fesneau
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valentin Thevin
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Chloe Goldsmith
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Baptiste Vieille
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Saïdi M'Homa Soudja
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Nicolas Benech
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
- Hospices Civils de Lyon, Service d'Hépato-Gastroentérologie, Croix Rousse Hospital, Lyon, France
| | - Julien C Marie
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Lyon, France.
| |
Collapse
|
24
|
Hong L, Herjan T, Chen X, Zagore LL, Bulek K, Wang H, Yang CFJ, Licatalosi DD, Li X, Li X. Act1 drives chemoresistance via regulation of antioxidant RNA metabolism and redox homeostasis. J Exp Med 2024; 221:e20231442. [PMID: 38861022 PMCID: PMC11167376 DOI: 10.1084/jem.20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.
Collapse
Affiliation(s)
- Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Leah L. Zagore
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Donny D. Licatalosi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Takeda Pharmaceutical Company, San Diego, CA, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Chen J, Singh N, Ye X, Theune EV, Wang K. Gut microbiota-mediated activation of GSDMD ignites colorectal tumorigenesis. Cancer Gene Ther 2024; 31:1007-1017. [PMID: 38898209 PMCID: PMC11257976 DOI: 10.1038/s41417-024-00796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Activation of Gasdermin D (GSDMD) results in its cleavage, oligomerization, and subsequent formation of plasma membrane pores, leading to a form of inflammatory cell death denoted as pyroptosis. The roles of GSDMD in inflammation and immune responses to infection are well documented. However, whether GSDMD also plays a role in sporadic cancer development, especially that in the gut epithelium, remains unknown. Here, we show that GSDMD is activated in colorectal tumors of both human and mouse origins. Ablation of GSDMD in a mouse model of sporadic colorectal cancer resulted in reduced tumor formation in the colon and rectum, suggesting a tumor-promoting role of the protein in the gut. Both antibiotic-mediated depletion of gut microbiota and pharmacological inhibition of NLRP3 inflammasome reduced the activation of GSDMD. Loss of GSDMD resulted in reduced infiltration of immature myeloid cells, and increased numbers of macrophages in colorectal tumors. Activation of GSDMD is also accompanied by the aggregation of the endosomal sorting complex required for transport (ESCRT) membrane repair proteins on the membrane of colorectal tumor cells, suggesting that active membrane repairment may prevent pyroptosis induced by the formation of GSDMD pore in tumor cells. Our results show that gut microbiota/NLRP3-mediated activation of GSDMD promotes the development of colorectal tumors, and supports the use of NLRP3 inhibitors to treat colon cancer.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, 528000, China
| | - Neha Singh
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
26
|
Theune WC, Chen J, Theune EV, Ye X, Ménoret A, Vella AT, Wang K. Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development. Front Immunol 2024; 15:1408710. [PMID: 38947320 PMCID: PMC11211274 DOI: 10.3389/fimmu.2024.1408710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.
Collapse
Affiliation(s)
- William C. Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
27
|
Hu S, Wen J, Fan XD, Li P. Study on therapeutic mechanism of total salvianolic acids against myocardial ischemia-reperfusion injury based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117902. [PMID: 38360382 DOI: 10.1016/j.jep.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae, also known as Danshen in Chinese, effectively activates the blood and resolves stasis. Total salvianolic acids (SA) is the main active ingredient of Danshen, and related preparations, such as salvianolate injection are commonly used clinically to treat myocardial ischemia-reperfusion injury (MIRI). However, the potential targets and key active ingredients of SA have not been sufficiently investigated. AIM OF THE STUDY This study aimed to investigate the mechanism of action of SA in treating MIRI. MATERIALS AND METHODS Network pharmacology and molecular docking techniques were used to predict SA targets against MIRI. The key acting pathway of SA were validated by performing experiments in a rat MIRI model. RESULTS Twenty potential ingredients and 54 targets of SA in treating MIRI were identified. Ingredient-target-pathway network analysis revealed that salvianolic acid B and rosmarinic acid had the highest degree value. Pathway enrichment analysis showed that SA may regulate MIRI through the IL-17 signaling pathway, and this result was confirmed in the rat MIRI experiment. CONCLUSION The results of this study indicate that SA may protect MIRI by regulating the IL-17 pathway.
Collapse
Affiliation(s)
- Shuang Hu
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Wen
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-di Fan
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| |
Collapse
|
28
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
29
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
31
|
Jiang J, Lin C, Chang T, Lo L, Lin C, Lu R, Yang C. Decreased interleukin-17RA expression is associated with good prognosis in patients with colorectal cancer and inhibits tumor growth and vascularity in mice. Cancer Med 2024; 13:e7059. [PMID: 38491831 PMCID: PMC10943367 DOI: 10.1002/cam4.7059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) is a pro-inflammatory cytokine that plays a vital role in the promotion of tumorigenesis in various cancers, including colorectal cancer (CRC). Based on current evidence, IL-17 binds to interleukin-17 receptor A (IL-17RA); however, the role of IL-17RA has not been elucidated in previous studies on CRC. In this study, we explored the role of IL-17RA in human CRC tissues and the progression of CRC in humans and mice. METHODS The expressions of IL-17RA and epithelial-mesenchymal transition (EMT)-related genes were examined in CRC cells and tissue samples by quantitative real-time polymerase chain reaction. The role of IL-17RA in pathogenesis and prognosis was evaluated using a Chi-squared test, Kaplan-Meier analysis, univariate, and multivariate Cox regression analysis in 133 CRC patients. A tumor-bearing mice model was executed to evaluate the role of IL-17RA in tumor growth, vascularity and population of infiltrating immune cells. RESULTS IL-17RA expression was found to be significantly higher in CRC tissues than in adjacent normal tissues. The expression of IL-17RA in Stage IV patients was significantly higher than that in Stages I and II patients. Patients with high IL-17RA expression exhibited significantly worse overall and CRC-specific survival than those with low IL-17RA expression. Functional assessment suggested that the knockdown of IL-17RA expression distinctly suppressed cellular proliferation, migration, invasion, and EMT-related gene expression. In a tumor-bearing mouse model, decreased IL-17RA expression significantly repressed tumor growth and vascularity and reduced the population of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). CONCLUSION Reduced IL-17RA expression also suppressed cellular proliferation, migration, and invasion, and the expression of EMT genes. Knockdown of IL-17RA inhibited tumor growth and vascularity and decreased the population of Tregs and MDSCs in mouse tumors. Overall, IL-17RA expression was identified to be independently associated with the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Jeng‐Kai Jiang
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Microbiology and ImmunologyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ting‐An Chang
- Department of Pathology, Ren‐Ai BranchTaipei City HospitalTaipeiTaiwan
| | - Liang‐Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Ping Lin
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Ruey‐Hwa Lu
- Department of Surgery, Zhongxing BranchTaipei City HospitalTaipeiTaiwan
| | - Chih‐Yung Yang
- Commission for General EducationNational United UniversityMiaoliTaiwan
- General Education CenterUniversity of TaipeiTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| |
Collapse
|
32
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
33
|
Wang KL, Chen KD, Tang WW, Chen ZP, Wang YJ, Shi GP, Chen YG. Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes. World J Clin Oncol 2024; 15:89-114. [PMID: 38292658 PMCID: PMC10823938 DOI: 10.5306/wjco.v15.i1.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND A recently hypothesized cause of cell death called disulfidptosis has been linked to the expansion, emigration, and vascular rebuilding of cancer cells. Cancer can be treated by targeting the pathways that trigger cell death. AIM To discover the long non-coding RNA of the disulfidaptosis-related lncRNAs (DRLs), prognosis clinical survival, and treat patients with colorectal cancer with medications. METHODS Initially, we queried the Cancer Genome Atlas database to collect transcriptome, clinical, and genetic mutation data for colorectal cancer (CRC). Training and testing sets for CRC patient transcriptome data were generated randomly. Key long non-coding RNAs (lncRNAs) related to DRLs were then identified and evaluated using a least absolute shrinkage and selection operator procedure, as well as univariate and multivariate Cox regression models. A prognostic model was then created after risk scoring. Also, Immune infiltration analysis, immune checkpoint analysis, and medication susceptibility analysis were used to investigate the causes of the different prognoses between high and low risk groups. Finally, we validated the differential expression and biomarker potential of risk-predictive lncRNAs through induction using both NCM460 and HT-29 cell lines, as well as a disulfidptosis model. RESULTS In this work, eight significant lncRNAs linked to disulfidptosis were found. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of differentially expressed genes between high- and low-risk groups from the prognostic model showed a close relationship with the immune response as well as significant enrichment in neutrophil extracellular trap formation and the IL-17 signaling pathway. Furthermore, significant immune cell variations between the high-risk and low-risk groups were seen, as well as a higher incidence of immunological escape risk in the high-risk group. Finally, Epirubicin, bortezomib, teniposide, and BMS-754807 were shown to have the lowest sensitivity among the four immunotherapy drugs. CONCLUSION Our findings emphasizes the role of disulfidptosis in regulating tumor development, therapeutic response, and patient survival in CRC patients. For the clinical treatment of CRC, these important LncRNAs could serve as viable therapeutic targets.
Collapse
Affiliation(s)
- Kui-Ling Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Kai-Di Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Wen Tang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Ze-Peng Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Ji Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Guo-Ping Shi
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
34
|
Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, Sun F, Liddle C, Uboha NV, Halberg R, Xu W, Marker P, Fu T. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight 2024; 9:e170428. [PMID: 38258906 PMCID: PMC10906220 DOI: 10.1172/jci.insight.170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.
Collapse
Affiliation(s)
- Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Chunmiao Cai
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yu Zhu
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sally Coulter
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fei Sun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - Richard Halberg
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Paul Marker
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Chen J, Madina BR, Ahmadi E, Yarovinsky TO, Krady MM, Meehan EV, Wang IC, Ye X, Pitmon E, Ma XY, Almassian B, Nakaar V, Wang K. Cancer immunotherapy with enveloped self-amplifying mRNA CARG-2020 that modulates IL-12, IL-17 and PD-L1 pathways to prevent tumor recurrence. Acta Pharm Sin B 2024; 14:335-349. [PMID: 38261838 PMCID: PMC10792965 DOI: 10.1016/j.apsb.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 01/25/2024] Open
Abstract
Targeting multiple immune mechanisms may overcome therapy resistance and further improve cancer immunotherapy for humans. Here, we describe the application of virus-like vesicles (VLV) for delivery of three immunomodulators alone and in combination, as a promising approach for cancer immunotherapy. VLV vectors were designed to deliver single chain interleukin (IL)-12, short-hairpin RNA (shRNA) targeting programmed death ligand 1 (PD-L1), and a dominant-negative form of IL-17 receptor A (dn-IL17RA) as a single payload or as a combination payload. Intralesional delivery of the VLV vector expressing IL-12 alone, as well as the trivalent vector (designated CARG-2020) eradicated large established tumors. However, only CARG-2020 prevented tumor recurrence and provided long-term survival benefit to the tumor-bearing mice, indicating a benefit of the combined immunomodulation. The abscopal effects of CARG-2020 on the non-injected contralateral tumors, as well as protection from the tumor cell re-challenge, suggest immune-mediated mechanism of protection and establishment of immunological memory. Mechanistically, CARG-2020 potently activates Th1 immune mechanisms and inhibits expression of genes related to T cell exhaustion and cancer-promoting inflammation. The ability of CARG-2020 to prevent tumor recurrence and to provide survival benefit makes it a promising candidate for its development for human cancer immunotherapy.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | | | - Elham Ahmadi
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- CaroGen Corporation, Farmington, CT 06030, USA
| | | | | | - Eileen Victoria Meehan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Isabella China Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Loomis Chaffee School, Windsor, CT 06095, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Elise Pitmon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
37
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
38
|
Shahgoli VK, Dubik M, Pilecki B, Skallerup S, Schmidt SG, Detlefsen S, Sorensen GL, Holmskov U, Baradaran B, Moeller JB. Expression of FIBCD1 by intestinal epithelial cells alleviates inflammation-driven tumorigenesis in a mouse model of colorectal cancer. Front Oncol 2023; 13:1280891. [PMID: 38090485 PMCID: PMC10715588 DOI: 10.3389/fonc.2023.1280891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, highlighting the pressing need to address its development. Inflammation plays a crucial role in augmenting the risk of CRC and actively contributes to all stages of tumorigenesis. Consequently, targeting early inflammatory responses in the intestinal tract to restore homeostasis holds significant potential for preventing and treating CRC. Fibrinogen C domain-containing 1 (FIBCD1), a chitin-binding transmembrane protein predominantly found on human intestinal epithelial cells (IECs), has garnered attention in previous research for its ability to effectively suppress inflammatory responses and promote tissue homeostasis at mucosal barriers. METHODS In this study, we investigated the role of FIBCD1 in CRC development using transgenic mice that mimic human expression of FIBCD1 at the intestinal mucosal barrier. To model aspects of CRC, we employed the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. Additionally, we examined the expression pattern of FIBCD1 in surgical specimens obtained from human CRC patients by immunohistochemical methods. By accessing public data repositories, we further evaluated FIBCD1 expression in colon adenocarcinoma and explored survival outcomes associated with FIBCD1 expression. RESULTS Here, we demonstrate that FIBCD1 substantially impacts CRC development by significantly reducing intestinal inflammation and suppressing colorectal tumorigenesis in mice. Furthermore, we identify a soluble variant of FIBCD1 that is significantly increased in feces during acute inflammation. Finally, we demonstrate increased expression of FIBCD1 by immunohistochemistry in human CRC specimens at more developed tumor stages. These results are further supported by bioinformatic analyses of publicly available repositories, indicating increased FIBCD1 expression in tumor tissues, where higher expression is associated with unfavorable prognosis. CONCLUSION Collectively, these findings suggest that FIBCD1 influences early inflammatory responses in the AOM/DSS model, leading to a reduction in tumor size and burden. The increased expression of FIBCD1 in human CRC samples raises intriguing questions regarding its role in CRC, positioning it as a compelling candidate and novel molecular target for future research.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Magdalena Dubik
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Skallerup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sandra Gaedt Schmidt
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Grith L. Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jesper B. Moeller
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Gao WT, Liu JX, Wang DH, Sun HJ, Zhang XY. Melatonin reduced colon inflammation but had no effect on energy metabolism in ageing Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109731. [PMID: 37611884 DOI: 10.1016/j.cbpc.2023.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.
Collapse
Affiliation(s)
- Wen-Ting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
41
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
42
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
43
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y, Zheng T. The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine 2023; 169:156271. [PMID: 37331095 DOI: 10.1016/j.cyto.2023.156271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Biliary tract cancer (BTC) is a highly malignant tumor that originates from bile duct epithelium and is categorized into intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA) and gallbladder cancer (GBC) according to the anatomic location. Inflammatory cytokines generated by chronic infection led to an inflammatory microenvironment which influences the carcinogenesis of BTC. Interleukin-6 (IL-6), a multifunctional cytokine secreted by kupffer cells, tumor-associated macrophages, cancer-associated fibroblasts (CAFs) and cancer cells, plays a central role in tumorigenesis, angiogenesis, proliferation, and metastasis in BTC. Besides, IL-6 serves as a clinical biomarker for diagnosis, prognosis, and monitoring for BTC. Moreover, preclinical evidence indicates that IL-6 antibodies could sensitize tumor immune checkpoint inhibitors (ICIs) by altering the number of infiltrating immune cells and regulating the expression of immune checkpoints in the tumor microenvironment (TME). Recently, IL-6 has been shown to induce programmed death ligand 1 (PD-L1) expression through the mTOR pathway in iCCA. However, the evidence is insufficient to conclude that IL-6 antibodies could boost the immune responses and potentially overcome the resistance to ICIs for BTC. Here, we systematically review the central role of IL-6 in BTC and summarize the potential mechanisms underlying the improved efficacy of treatments combining IL-6 antibodies with ICIs in tumors. Given this, a future direction is proposed for BTC to increase ICIs sensitivity by blocking IL-6 pathways.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ruisi Na
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shihui Lai
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ying Guo
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jianhua Nie
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shuyuan Zhang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Yuan Wang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
44
|
Abstract
Cancer cells originate from a series of acquired genetic mutations that can drive their uncontrolled cell proliferation and immune evasion. Environmental factors, including the microorganisms that colonize the human body, can shift the metabolism, growth pattern and function of neoplastic cells and shape the tumour microenvironment. Dysbiosis of the gut microbiome is now recognized as a hallmark of cancer by the scientific community. However, only a few microorganisms have been identified that directly initiate tumorigenesis or skew the immune system to generate a tumour-permissive milieu. Over the past two decades, research on the human microbiome and its functionalities within and across individuals has revealed microbiota-focused strategies for health and disease. Here, we review the evolving understanding of the mechanisms by which the microbiota acts in cancer initiation, promotion and progression. We explore the roles of bacteria in gastrointestinal tract malignancies and cancers of the lung, breast and prostate. Finally, we discuss the promises and limitations of targeting or harnessing bacteria in personalized cancer prevention, diagnostics and treatment.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
45
|
Li F, Ling X, Chakraborty S, Fountzilas C, Wang J, Jamroze A, Liu X, Kalinski P, Tang DG. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J Exp Clin Cancer Res 2023; 42:213. [PMID: 37596619 PMCID: PMC10439624 DOI: 10.1186/s13046-023-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Sayan Chakraborty
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christos Fountzilas
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Tumor Immunology & Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
46
|
Nikonova AS, Deneka AY, Silva FN, Pirestani S, Tricarico R, Kiseleva AA, Zhou Y, Nicolas E, Flieder DB, Grivennikov SI, Golemis EA. Loss of Pkd1 limits susceptibility to colitis and colorectal cancer. Oncogenesis 2023; 12:40. [PMID: 37542051 PMCID: PMC10403611 DOI: 10.1038/s41389-023-00486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with an annual incidence of ~135,000 in the US, associated with ~50,000 deaths. Autosomal dominant polycystic kidney disease (ADPKD), associated with mutations disabling the PKD1 gene, affects as many as 1 in 1000. Intriguingly, some studies have suggested that individuals with germline mutations in PKD1 have reduced incidence of CRC, suggesting a genetic modifier function. Using mouse models, we here establish that loss of Pkd1 greatly reduces CRC incidence and tumor growth induced by loss of the tumor suppressor Apc. Growth of Pkd1-/-;Apc-/- organoids was reduced relative to Apc-/- organoids, indicating a cancer cell-intrinsic activity, even though Pkd1 loss enhanced activity of pro-oncogenic signaling pathways. Notably, Pkd1 loss increased colon barrier function, with Pkd1-deficient animals resistant to DSS-induced colitis, associated with upregulation of claudins that decrease permeability, and reduced T cell infiltration. Notably, Pkd1 loss caused greater sensitivity to activation of CFTR, a tumor suppressor in CRC, paralleling signaling relations in ADPKD. Overall, these data and other data suggest germline and somatic mutations in PKD1 may influence incidence, presentation, and treatment response in human CRC and other pathologies involving the colon.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexander Y Deneka
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Flaviane N Silva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shabnam Pirestani
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rossella Tricarico
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna A Kiseleva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emmanuelle Nicolas
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sergei I Grivennikov
- Departments of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
48
|
Shakir N, Sharif A, Ali S, Akhtar B, Akhtar MF, Muhammad F, Saleem A, Akhtar K, Tariq I, Khan MI. Pirarubicin loaded biodegradable nanoparticles downregulate IL-6, COX-II and TNF-α along with oxidative stress markers in comparison to conventional pirarubicin in healthy albino rats. J Drug Deliv Sci Technol 2023; 84:104498. [DOI: 10.1016/j.jddst.2023.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
|
49
|
Long T, Hernandez JE, Ma S, Steele S, Luo C, Li Y, Xie Q, Telese F, Zhou B, Huang WJM. The long non-coding RNA MALAT1 regulates intestine host-microbe interactions and polyposis. Front Cell Dev Biol 2023; 11:1168693. [PMID: 37325561 PMCID: PMC10265687 DOI: 10.3389/fcell.2023.1168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The long non-coding RNA (lncRNA) Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) maintains the integrity of the intestinal epithelial barrier and regulates local inflammation. However, its influences on intestinal microbial communities and tissue susceptibility to cancer development remain unexplored. Here, we report that MALAT1 regulates host anti-microbial response gene expression and the composition of mucosal-associated microbial communities in a region-specific manner. In the APC mutant mouse model of intestine tumorigenesis, knocking out MALAT1 results in higher polyp counts in the small intestine and colon. Interestingly, intestine polyps that developed in the absence of MALAT1 were smaller in size. These findings highlight the unexpected bivalent role of MALAT1 in restricting and promoting cancer progression at different disease stages. Among the 30 MALAT1-targets shared by both the small intestine and colon, ZNF638 and SENP8 levels are predictive of colon adenoma patient overall survival and disease-free survival. Genomic assays further revealed that MALAT1 modulates intestinal target expression and splicing through both direct and indirect mechanisms. This study expands the role of lncRNAs in regulating intestine homeostasis, microbial communities, and cancer pathogenesis.
Collapse
Affiliation(s)
- Tianyun Long
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Juan E. Hernandez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Scarlet Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Claire Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Yuxin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Qinghong Xie
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Feng WQ, Zhang YC, Xu ZQ, Yu SY, Huo JT, Tuersun A, Zheng MH, Zhao JK, Zong YP, Lu AG. IL-17A-mediated mitochondrial dysfunction induces pyroptosis in colorectal cancer cells and promotes CD8 + T-cell tumour infiltration. J Transl Med 2023; 21:335. [PMID: 37211606 DOI: 10.1186/s12967-023-04187-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Interleukin-17A (IL-17A), a proinflammatory cytokine primarily secreted by Th17 cells, γδT cells and natural killer T (NKT) cells, performs essential roles in the microenvironment of certain inflammation-related tumours by regulating cancer growth and tumour elimination proved in previous literature. In this study, the mechanism of IL-17A that induces mitochondrial dysfunction promoted pyroptosis has been explored in colorectal cancer cells. METHOD The records of 78 patients diagnosed with CRC were reviewed via the public database to evaluate clinicopathological parameters and prognosis associations of IL-17A expression. The colorectal cancer cells were treated with IL-17A, and the morphological characteristics of those cells were indicated by scanning electron microscope and transmission electron microscope. After IL-17A treatment, mitochondrial dysfunction was tested by mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). The expression of pyroptosis associated proteins including cleaved caspase-4, cleaved gasdermin-D (GSDMD), IL-1β, receptor activator of nuclear NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck like protein containing a card (ASC), and factor-kappa B was measured through western blotting. RESULTS Positive IL-17A protein expression was observed in CRC compared to the non-tumour tissue. IL-17A expression indicates a better differentiation, earlier stage, and better overall survival in CRC. IL-17A treatment could induce mitochondrial dysfunction and stimulate intracellular reactive oxygen species (ROS) production. Furthermore, IL-17A could promote pyroptosis of colorectal cancer cells and significantly increase the secretion of inflammatory factors. Nevertheless, the pyroptosis induced by IL-17A could be inhibited through the pre-treatment with Mito-TEMPO (a mitochondria-targeted superoxide dismutase mimetic with superoxide and alkyl radical scavenging properties) or Z-LEVD-FMK (caspase-4 inhibitor, fluoromethylketone). Additionally, after being treated with IL-17A, an increasing number of CD8 + T cells showed in mouse-derived allograft colon cancer models. CONCLUSION IL-17A, as a cytokine mainly secreted by γδT cells in the colorectal tumour immune microenvironment, can regulate the tumour microenvironment in multiple ways. IL-17A could induce mitochondrial dysfunction and pyroptosis through the ROS/NLRP3/caspase-4/GSDMD pathway, and promote intracellular ROS accumulation. In addition, IL-17A can promote the secretion of inflammatory factors such as IL-1β、IL-18 and immune antigens, and recruit CD8 + T cells to infiltrate tumours.
Collapse
Affiliation(s)
- Wen-Qing Feng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Yu-Chen Zhang
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Zhuo-Qing Xu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Su-Yue Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Jian-Ting Huo
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Min-Hua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Jing-Kun Zhao
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ya-Ping Zong
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ai-Guo Lu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| |
Collapse
|