1
|
Eustace N, Amini A, Malhotra J, Higgins KA, Williams TM, Lee P. Stereotactic body radiation therapy in the management of lung neoplasms: is it ready for prime time? Curr Opin Pulm Med 2025; 31:326-334. [PMID: 40265515 DOI: 10.1097/mcp.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Advances in radiation delivery have expanded the scope of stereotactic body radiation therapy (SBRT) in lung cancer treatment, as it offers better local control, shorter treatments, and enhanced immunostimulation. This review summarizes recent literature regarding SBRT's role in nonoperable and operable early-stage, locally advanced, central, and oligometastatic nonsmall cell lung cancer (NSCLC), and its mixed results with immunotherapy. RECENT FINDINGS Recent studies demonstrate SBRT achieves excellent local control in inoperable early-stage NSCLC and is being explored as an alternative to surgery for operable cases. Additionally, SBRT can be done safely in central tumors if strict dose limits to normal structures are observed. SBRT shows promise in locally advanced disease, as consolidative local therapy for oligoprogressive and oligometastatic disease and in combination with immune checkpoint inhibitors. Advances in adaptive radiation therapy and novel fractionation schedules, including ultra-hypofractionation and personalized approaches, further refine SBRT's role in lung cancer management, with more practice changing clinical trials on the horizon. SUMMARY SBRT provides durable and well tolerated treatment for patients with localized and metastatic lung cancer. With ongoing trials exploring its synergy with immunotherapy and its applicability in operable patients and large tumors, SBRT is poised to play an even greater role in personalized lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Jyoti Malhotra
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Kristin A Higgins
- Department of Radiation Oncology, City of Hope Atlanta, Newnan, Georgia
| | | | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California, USA
| |
Collapse
|
2
|
Park S, Park JW, Lee EH, Suh YJ, Lee CY, Park BJ, Lee CG, Yoon HI, Lee SH, Cui R, Kim EY, Cho J. Stereotactic body radiotherapy for early‑stage non‑small cell lung cancer: Comprehensive analysis of outcomes and recurrence from a single‑center experience. Oncol Lett 2025; 29:314. [PMID: 40337607 PMCID: PMC12056538 DOI: 10.3892/ol.2025.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
This study aimed to analyze prognostic factors in patients with early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT), focusing on symptomatic radiation pneumonitis (RP) and treatment failure patterns. This retrospective cohort study included 271 patients with early-stage NSCLC (276 lesions) treated with SBRT from May 2012 to January 2022. SBRT was administered according to standardized protocols with doses ranging from 28.5 to 80 Gy in 1 to 10 fractions. Tumor recurrence, RP, and failure patterns were assessed through imaging and clinical evaluations. Prognostic factors for overall survival (OS) and local control (LC) were identified using Kaplan-Meier survival analysis, Cox models, and logistic regression for RP risk. With a median follow-up of 30.8 months, the 1-, 2- and 3-year OS rates were 96.1, 91.8, and 86.5%, respectively, and LC rates were 98.8, 96.5, and 92.9%, respectively. The Eastern Cooperative Oncology Group performance status (P=0.002) and higher fractional dose (P=0.041) were significant predictors of OS. Larger tumor size (P<0.001) and higher solid-to-total tumor ratio (P=0.028) were associated with increased local recurrence risk. Symptomatic RP (7.2% of lesions) was associated with solid tumor size (P=0.050). Larger tumors with a higher solid component had more in-field recurrences, while marginal recurrences were often attributable to air space spread and pleural involvement. Higher fractional doses in SBRT benefit patients with early-stage NSCLC, especially those with larger tumors or significant solid components, suggesting that dose escalation or more biologically effective therapies could enhance outcomes and optimize SBRT protocols.
Collapse
Affiliation(s)
- Sangjoon Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Won Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Hye Lee
- Department of Internal Medicine, Division of Pulmonology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi 16995, Republic of Korea
| | - Young Joo Suh
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung Jo Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Geol Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Division of Pulmonology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ronglan Cui
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Division of Pulmonology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Tatsuno Y, Mukumoto N, Ishida T, Shimizu Y, Yamamoto Y, Seno S, Ishihara T, Miyawaki D, Sasaki R. Comprehensive plan quality assessment of simplified volumetric-modulated arc therapy for lung stereotactic body radiotherapy. Radiol Phys Technol 2025; 18:547-555. [PMID: 40343593 PMCID: PMC12103334 DOI: 10.1007/s12194-025-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
In lung stereotactic body radiation therapy, optimizing plan quality, including dosimetric quality and plan complexity, is paramount for mitigating adverse effects and enhancing dose delivery accuracy. This study evaluated the plan quality of dynamic conformal arc-based volumetric-modulated arc therapy (d-VMAT) as a simplified VMAT compared to conventional VMAT (c-VMAT) across various prescription isodose lines (PIL) and planning target volume (PTV) sizes. Twenty inoperable non-small cell lung cancer patients were retrospectively analyzed (PTV: 7.6-68.7 cm3). The prescribed dose comprised 48 Gy delivered in four fractions, encompassing 95% of the PTV, with the PIL ranging from 60 to 90% in 10% increments, using a 6X-flattening filter-free beam. The d-VMAT and c-VMAT plans were generated for each patient and PIL setting. Dose indices, including the conformity index (CI), gradient index (GI), and plan complexity, were assessed for each plan. The GI of d-VMAT closely mirrored that of c-VMAT at 60% and 70% PIL. Nevertheless, d-VMAT exhibited significantly higher GI values than c-VMAT at 80% and 90% PIL, particularly for smaller PTV sizes. Notably, d-VMAT demonstrated reduced plan complexity across all PIL compared to c-VMAT. Clinically, significant differences in CI and dose coverage between d-VMAT and c-VMAT were not observed across varying PIL settings in the range of 60-80%. The dose to the organs at risk with d-VMAT was comparable to that with c-VMAT, except at 90% PIL. In conclusion, the simplification of VMAT treatment plan using d-VMAT demonstrates superior plan quality across various PTV sizes at 60% and 70% PIL.
Collapse
Affiliation(s)
- Yuya Tatsuno
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Naritoshi Mukumoto
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoya Ishida
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshihiko Yamamoto
- Center for Radiology and Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Satoshi Seno
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeaki Ishihara
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Miyawaki
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Department of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
4
|
Ladbury C, Sidiqi B, Cantrell N, Jones G, Skalina KA, Fekrmandi F, Andraos TY, Gogineni E, Dolan J, Siva S, Slotman B, Lee P. Stereotactic Body Radiation Therapy for Primary Lung Cancer and Metastases: A Case-Based Discussion on Challenging Cases. Pract Radiat Oncol 2025; 15:262-276. [PMID: 39424129 DOI: 10.1016/j.prro.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Data informing the safety, efficacy, treatment logistics, and dosimetry of stereotactic body radiation therapy (SBRT) for lung tumors has primarily been derived from patients with favorably located solitary tumors. SBRT is now considered a standard-of-care treatment for inoperable early-stage non-small cell lung cancer and lung metastases, and therefore extrapolation beyond this limited foundational patient population remains an active source of interest. METHODS AND MATERIALS This case-based discussion provides a practical framework for delivering SBRT to challenging, yet frequently encountered, cases in radiation oncology. The cases highlighted herein include the use of SBRT for ultracentral tumors, multiple tumors, and reirradiation. Patient characteristics, fractionation, prescription dose, treatment technique, and dose constraints are discussed. Relevant literature to these cases is summarized to provide a framework for the treatment of similar patients. RESULTS Treatment of challenging cases with lung SBRT requires many considerations, including treatment intent, fractionation selection, tumor localization, and plan optimization. In such scenarios, patient selection is critical to understanding the risk-benefit profile of an SBRT approach despite significant advances in delivery techniques and safety. CONCLUSIONS A case-based discussion was developed by the Radiosurgery Society to provide a practical guide to the common challenging scenarios noted above affecting patients with lung tumors. A multidisciplinary approach should guide the treatment of such cases to maximize the therapeutic window.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Baho Sidiqi
- Department of Radiation Medicine, Northwell Health Cancer Institute, New Hyde Park, New York
| | - Nate Cantrell
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Gavin Jones
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Karin A Skalina
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Therese Y Andraos
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Jennifer Dolan
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victora, Australia
| | - Ben Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California; Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California.
| |
Collapse
|
5
|
Alfaifi SA, Louie AV, Siva S, Guckenberger M, Videtic GMM, Higgins KA, Alshafa F, AlGhamdi H, Gillespie EF, Stephans K, Mula-Hussain L, Harrow S, Palma DA. International Patterns of Practice for Stereotactic Ablative Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: Are We All in Sync?: Global patterns of practice for SABR for early-stage NSCLC. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00390-6. [PMID: 40311704 DOI: 10.1016/j.ijrobp.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
PURPOSE To generate an understanding of the similarities and variations in international practice patterns for stereotactic ablative radiotherapy (SABR) in early-stage non-small cell lung cancer (NSCLC). METHODS An online survey was conducted from October to December 2023, addressing general clinical and technical considerations for lung SABR, and for 5 specific anatomical NSCLC locations (peripheral, abutting chest wall, near brachial plexus, central, and ultra-central). Invitations to participate were extended through email and were distributed on social media. RESULTS The survey was completed by 255 radiation oncologists, each representing a single institution across 51 countries. Respondents reported treating a median of 20 cases annually. A total of 38% of participants reported using single-fraction SABR, and 54% applied an upper limit on the maximum dose (Dmax). Among those who applied a Dmax limit, 58% reported a Dmax threshold at ≥130% of the prescription, though this limit varied by region and national economy status. Respondents from low- and middle-income countries were less likely to set a Dmax limit at ≥130% (30% vs. 66%, p < 0.01) and less likely to use single-fraction SABR (14% vs. 44%, p < 0.01). Higher annual SABR patient volumes were associated with higher Dmax adoption (г = 0.23, p < 0.01). Across the 5 clinical scenarios presented; 57 distinct dose regimens were recommended. The most common regimen in each scenario was: 54 Gy in 3 fractions for peripheral tumors, 50 Gy in 5 fractions for apical, central, and abutment of chest wall, and 60 Gy in 8 fractions for ultra-central tumors. Approximately two-thirds of practices recommend a biologically effective dose (BED10) <100 Gy for one or more anatomical sites. CONCLUSION The findings reveal considerable variation in global SABR practice. These differences highlight the need for further data to guide prescription practices, and an international experts' consensus may be beneficial to standardize practice.
Collapse
Affiliation(s)
- Salem A Alfaifi
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Oncology Center, King Faisal Medical City, Abha, Saudi Arabia.
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre and the Sir Peter McCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and the University of Zurich, Zurich, Switzerland
| | | | - Kristin A Higgins
- Department of Radiation Oncology, City of Hope Atlanta, Newnan, GA, USA
| | - Faiz Alshafa
- Oncology Center, King Faisal Medical City, Abha, Saudi Arabia
| | - Hamza AlGhamdi
- Oncology Center, King Faisal Medical City, Abha, Saudi Arabia
| | - Erin F Gillespie
- Department of Radiation Oncology, University of Washington School of Medicine and Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Kevin Stephans
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Layth Mula-Hussain
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen Harrow
- Department of Clinical Oncology, Edinburgh Cancer Centre, Edinburgh, United Kingdom
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
6
|
Jang K, Cross S, Yeghiaian-Alvandi R. Stereotactic reirradiation for in-field lung cancer recurrence after stereotactic ablative radiotherapy: A systematic review and meta-analysis. Radiother Oncol 2025; 208:110898. [PMID: 40262688 DOI: 10.1016/j.radonc.2025.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE There is paucity of data for thoracic in-field reirradiation with two courses of stereotactic ablative radiotherapy (SABR). This meta-analysis evaluates the safety and efficacy of repeat SABR as salvage therapy for in-field failures after definitive SABR. MATERIALS AND METHODS A systematic search of PubMed, Cochrane Library, MEDLINE, and EMBASE databases was conducted in accordance with PRISMA guidelines. Studies were included if they involved adult patients treated with salvage SABR for in-field recurrences of lung cancer following prior SABR. To address varying definitions of local failure, studies were included if recurrence occurred within the original planning target volume (PTV). Studies with out-of-field failures (>1 cm from PTV) or those using non-SABR techniques were excluded. Pooled 1- and 2-year local control (LC) rates, overall survival (OS), and toxicities were calculated using a random-effects model. Population-weighted linear regression was employed to assess the relationship between dosimetric and clinico-pathologic variables and patient outcomes. RESULTS Twelve studies involving 197 patients were included in the quantitative analysis. All patients received two courses of SABR, with a median total dose of 50 Gy in 5 fractions. Pooled 1- and 2-year LC rates were 78.2 % (95 % CI: 66-87 %) and 68.0 % (95 % CI: 55-79 %), respectively. Patients receiving a cumulative biologically effective dose (BED) ≥ 200 Gy had significantly higher LC rates (84.9 %, 95 % CI: 70-93 %) vs (64.9 %, 95 % CI: 54-75 %, p = 0.02). Median OS did not significantly differ between low and high BED groups, though there was a trend toward improved survival with higher BED (21.4 vs 32.6 months). The pooled median OS across all studies was 26.3 months (95 % CI: 25.4-27.1). Improved LC rates were associated with smaller tumours (<2 cm), higher BED from the initial treatment and longer interval (>12 months) between initial and repeat SABR (p < 0.01). Toxicities were minimal, with a pooled incidence of ≥ grade 2 pneumonitis at 6.4 % and only 0.10 % reporting ≥ grade 3 toxicity. CONCLUSIONS Salvage in-field reirradiation with SABR achieves high local control and low toxicity, particularly in patients receiving higher cumulative BED (≥200 Gy) and with longer intervals (≥12 months) between treatments. These results suggest that repeat SABR is a viable salvage option for selected patients. Further prospective studies are needed to optimise dosing and patient selection for safe and effective reirradiation.
Collapse
Affiliation(s)
- Kevin Jang
- Department of Radiation Oncology, Nepean Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shamira Cross
- Department of Radiation Oncology, Nepean Hospital, Sydney, New South Wales, Australia
| | | |
Collapse
|
7
|
Chuong MD, Mittauer KE, Bassetti MF, Rojas C, Glide-Hurst C, Kalman NS, Tom MC, Rubens M, Crosby J, Burr A, Tolakanahalli R, Gutierrez AN, Bassiri N, Mehta MP, Kotecha R. Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy in One Fraction: A Multicenter, Single-Arm, Phase 2 Trial. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00263-9. [PMID: 40158734 DOI: 10.1016/j.ijrobp.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is an advanced technique that enables precise delivery of radiation directly to a tumor, typically in ≤5 fractions. Single-fraction SBRT for visceral tumors is uncommon, likely related to concerns about risks of geographic tumor miss because of suboptimal cone beam computed tomography scan quality on conventional linear accelerators (linacs). Magnetic resonance (MR) guided linacs are a novel technology offering superior imaging that might facilitate the safe delivery of single-fraction SBRT. METHODS AND MATERIALS We conducted a multicenter phase 2 trial of single-fraction SBRT delivered on a 0.35 Tesla MR-linac for primary or metastatic lesions of the lung (30-34 Gy; biologically effective dose [BED10] = 120-149.6 Gy10), liver (35-40 Gy; BED10 = 157.5-200 Gy10), pancreas (25 Gy; BED10 = 87.5 Gy10), adrenal gland (25 Gy10), kidney (25 Gy10), and abdominal/pelvic lymph nodes (25 Gy10). Primary objectives included feasibility and safety. The trial is registered with ClinicalTrials.gov, NCT04939246. RESULTS The study accrued 30 patients with 32 lesions at 2 centers in the United States between June 2021 and June 2023. All patients had 1 lesion except for 2 with 2 lesions each. Target locations included lung (34.4%), adrenal gland (28.1%), lymph node (18.8%), liver (15.6%), and pancreas (3.1%). The primary objectives were met; total in-room time was <90 minutes for 87.1% of delivered plans and 1 acute grade 3 adverse event was possibly related to single-fraction SBRT. No late grade 3-to-5 adverse events were observed. One-year local control and overall survival were 96.2% (95% CI, 88.8%-100%) and 86.3% (95% CI, 73.8%-98.8%), respectively. CONCLUSIONS This is the first prospective study to demonstrate that MR guided single-fraction SBRT is feasible, safe, and effective for not only tumors in the peripheral lung, but also the abdomen and pelvis. Future studies should clarify patient selection for single- versus multifraction SBRT.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida.
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carolina Rojas
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Carri Glide-Hurst
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Noah S Kalman
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Martin C Tom
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Miami, Florida
| | - Jennie Crosby
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam Burr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
8
|
Abrina JP, Baker S, Cruz-Lim EM, Chng N, Ye A, Rathod S, Caon J, Schellenberg D, Liu M, Mou B. Effect of Treatment Delivery Schedule for Patients With Early-Stage Non-Small Cell Lung Cancer Treated With Stereotactic Ablative Radiation Therapy: A Population-Based Analysis. Pract Radiat Oncol 2025; 15:e143-e154. [PMID: 39303778 DOI: 10.1016/j.prro.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The optimal SABR treatment delivery schedule in stage I non-small cell lung cancer (NSCLC) remains unclear. This population-based study investigated grade ≥2 toxicity rates, local failure (LF), and overall survival (OS) in patients treated with 48 Gy in 4 fractions scheduled every other day versus daily with weekends and consecutive daily without weekends. METHODS AND MATERIALS Between January 2019 and June 2022, treatment records using 48 Gy in 4 fractions were extracted from a provincial cancer registry and grouped by delivery as every other day, daily with weekends, or consecutive daily without weekends. Toxicity events were recorded using National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0. The Kaplan-Meier method was used to compute OS and LF was calculated using cumulative incidence methods with death as a competing risk. Cox regression analyses and Fine-Gray modeling was used to assess for variables associated with OS and LF, respectively. RESULTS Of 404 patients meeting study criteria, 190, 111, and 103 received SABR every other day, daily with weekends, and consecutive daily without weekends, respectively. More patients receiving SABR daily with weekends were medically inoperable and more patients receiving SABR consecutive daily without weekends had tumors abutting the chest wall. Median follow-up time was 29.5 months (IQR, 19.2-38.4 months). Overall toxicity was low, with crude rates of acute and late grade ≥2 toxicity not being statistically different among the groups. No grade 4 or 5 toxicities were recorded. LF rates at 24 months were not different at 7.5% (95% CI, 3.7-11.3), 9.5% (95% CI, 3.9-15.1), and 11.0% (95% CI, 4.9-17.2) for the every other day, daily with weekends, and consecutive daily without weekends groups, respectively (P = .60). Schedules of daily with weekends and consecutive daily without weekends were not associated with LF. Similarly, no significant differences in median OS were found among the every other day, daily with weekends, and consecutive daily without weekends groups at 47.5 months (95% CI, 39.26-55.74), 52.7 months (95% CI, 34.7-70.7), and 49.0 months (95% CI, 31.6-66.4), respectively. Schedules of daily with weekends and consecutive daily without weekends were not associated with OS. CONCLUSIONS This population-based study demonstrated no statistically significant differences in grade ≥2 toxicity rates, LF, and OS for patients with stage I NSCLC treated with lung SABR using 48 Gy in 4 fractions delivered every other day, daily with weekends, and consecutive daily without weekends. Patient convenience and optimization of resources may be considered when choosing a lung SABR treatment delivery schedule.
Collapse
Affiliation(s)
- John Paul Abrina
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, British Columbia, Canada
| | - Sarah Baker
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Surrey, Surrey, British Columbia, Canada
| | - Ella Mae Cruz-Lim
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, British Columbia, Canada
| | - Nick Chng
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Physics, BC Cancer Prince George, Prince George, British Columbia, Canada
| | - Allison Ye
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Prince George, Prince George, British Columbia, Canada
| | - Shrinivas Rathod
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Abbotsford, Abbotsford, British Columbia, Canada
| | - Julianna Caon
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Victoria, Victoria, British Columbia, Canada
| | - Devin Schellenberg
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Surrey, Surrey, British Columbia, Canada
| | - Mitchell Liu
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Vancouver, Vancouver, British Columbia, Canada
| | - Benjamin Mou
- Division of Radiation Oncology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, British Columbia, Canada.
| |
Collapse
|
9
|
Durdux C, Alati A. [Stereotactic radiotherapy for lung cancer]. Bull Cancer 2025; 112:3S31-3S38. [PMID: 40155075 DOI: 10.1016/s0007-4551(25)00155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The treatment of early stage T1-T2N0M0 non-small cell lung cancers (NSCLC) was previously based on surgery. However, 20 to 25% of patients are inoperable due to their age, comorbidities or refuse surgery. Since 2018, stereotactic body radiation therapy (SBRT) has become the standard treatment for these patients. For operable patients, the comparison surgery - SBRT is difficult without a clear conclusion, the different phase III trials have not yet permitted to provide a formal answer in terms of local control and survival by default of inclusion. Dose and fractionation need to be selected according to tumor location. Tolerance is usually good, with few grade ≥3 toxicities; however, caution is advised for ultra-central tumors and in case of interstitial pneumonia. Post-therapeutic imaging monitoring is complex, sometimes with uncertainties between radiation-induced pneumonitis and relapse. This complexity may increase in ongoing trials combining SBRT and immunotherapy.
Collapse
Affiliation(s)
- Catherine Durdux
- Université Paris Cité; Service d'onco-radiothérapie, AP-HP, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France.
| | - Aurélia Alati
- Université Paris Cité; Service d'onco-radiothérapie, AP-HP, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|
10
|
Kaas J, Verbeek M, Li WWL, van der Heide SM, Verhagen AFTM, Monshouwer R, Touw HRW, Bussink J, van der Bijl E, Stobernack T. Climate impact of early-stage NSCLC treatment: A comparison between radiotherapy and surgery using Life Cycle Assessment. Radiother Oncol 2025; 202:110601. [PMID: 39481607 DOI: 10.1016/j.radonc.2024.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Healthcare systems contribute significantly to CO2 emissions, accounting for 7 % of emissions in the Netherlands. Understanding the environmental footprint of medical treatments can help identify opportunities for reducing climate impact. We evaluated the climate impact of stereotactic body radiotherapy (SBRT) and Video-Assisted Thoracic Surgery (VATS) when treating T1-2N0M0 Non-Small Cell Lung Cancer (NSCLC). MATERIALS AND METHODS We used life cycle assessment (LCA) to evaluate climate impact in emissions of kilograms of CO2 equivalent. Care trajectories were inventoried for both VATS and SBRT with the same entry and end point of the paths. We analyzed a range of factors contributing to climate impact, such as patient and staff travel, energy consumption, disposables and medication using direct measurements: questionnaires and waste audits, or retrospective record analysis. As is common in LCA, existing infrastructure was excluded from the analysis. Reductions that can be influenced by individual departments were also modeled. RESULTS Using LCA we calculated the impact of all categorized contributions for two treatments for NSCLC. In total, VATS generates approximately 547 kg CO2 equivalent (CO2e), whereas SBRT generates 172 kg CO2e per treatment. For SBRT, the largest contributors were energy use in the hospital (52 % of total), of which 22 % is from the linac, and patient travel (23 %). For VATS, major contributions were hospital energy use (52 %) and disposables (23 %). Climate impact could be reduced by 20 % (SBRT) by hypofractionation, reduced linac idle time and patient travel impact, and 13 % (VATS) with fast track recovery and a reduction of disposables. CONCLUSION When treating T1-2N0M0 NSCLC, surgery has a larger climate impact than SBRT. For both modalities reductions are possible.
Collapse
Affiliation(s)
- Jochem Kaas
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marit Verbeek
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wilson W L Li
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stefan M van der Heide
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ad F T M Verhagen
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - René Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hugo R W Touw
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Tim Stobernack
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Buchberger DS, Khurana R, Bolen M, Videtic GMM. The Treatment of Patients with Early-Stage Non-Small Cell Lung Cancer Who Are Not Candidates or Decline Surgical Resection: The Role of Radiation and Image-Guided Thermal Ablation. J Clin Med 2024; 13:7777. [PMID: 39768701 PMCID: PMC11727850 DOI: 10.3390/jcm13247777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The standard of care for early-stage NSCLC has historically been surgical resection. Given the association of lung cancer with smoking, a large number of early-stage patients also have active smoking-related medical comorbidities such as COPD precluding surgery. The current approach for treating such inoperable patients is frequently considered to be stereotactic body radiation therapy (SBRT). SBRT (also known as stereotactic ablative radiation therapy or SABR) is a curative modality that precisely delivers very high dose radiation in few (typically <5) sessions. That said, because of their minimal invasiveness and repeatable nature, image-guided thermal ablation therapies such as radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation (CA) have also been used to treat early-stage lung tumors. For those patients deemed to have "high operative risk" (i.e., those who cannot tolerate lobectomy, but are candidates for sublobar resection), the appropriateness of potential alternatives [e.g., SBRT; ablation] to surgery is an active area of investigation. In the absence of completed randomized phase III trials, the approach to comparing outcomes between surgery, SBRT, or ablative therapies by their efficacy or equivalence is complex. An overview of the role of SBRT and other non-surgical modalities in the management of early-stage lung cancer is the subject of the present review.
Collapse
Affiliation(s)
- David S. Buchberger
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Rishabh Khurana
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Michael Bolen
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Gregory M. M. Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
12
|
Wolf A, Loo BW, Mak RH, Liptay M, Pettiford B, Rocco G, Lanuti M, Merritt RE, Keshavarz H, Suh RD, Brunelli A, Criner GJ, Mazzone PJ, Walsh G, Wafford QE, Murthy S, Marshall MB, Tong B, Luketich J, Schuchert MJ, Varghese TK, D'Amico TA, Pennathur A, Swanson SJ. Systematic Review of Stereotactic Ablative Radiotherapy (SABR)/Stereotactic Body Radiation Therapy (SBRT) for Treatment of High-Risk Patients with Stage I Non-Small Cell Lung Cancer. Semin Thorac Cardiovasc Surg 2024; 37:89-98. [PMID: 39674443 DOI: 10.1053/j.semtcvs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/16/2024]
Abstract
Stereotactic ablative radiotherapy (SABR) has emerged as an alternative, non-surgical treatment for high-risk patients with stage I non-small cell lung cancer (NSCLC) with increased use over time. The American Association for Thoracic Surgery (AATS) Clinical Practice Standards Committee (CPSC) assembled an expert panel and conducted a systematic review of the literature evaluating the results of SABR, which is also referred to as stereotactic body radiation therapy (SBRT) or stereotactic radiosurgery (SRS), prior to developing treatment recommendations for high-risk patients with stage I NSCLC based on expert consensus. Publications detailing the findings of 16 prospective studies of SABR and 14 retrospective studies of SABR for the management of early-stage lung cancer in 54,697 patients were identified by systematic review of the literature with further review by members of our expert panel. Medical inoperability (93-95%) was the primary reason for utilizing SABR. The median rate of histologically confirmed cancer in treated patients was 67% (range 57-86%). In retrospective studies and prospective studies, the most common dosing regimens were 48-54Gy in 3-5 fractions and 44-66Gy in 3-5 fractions respectively. The median follow-up after SABR was 30 months (range 15-50). The complications, oncological results and quality of life after SABR in high-risk patients with early-stage NSCLC are summarized in this Expert Review article. Further prospective randomized trials are needed and are currently underway to compare outcomes after SABR with outcomes after sublobar resection to fully evaluate treatment options applicable this high-risk group of patients.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Thoracic Surgery, The Icahn School of Medicine at Mount Sinai and Mount Sinai Hospital, New York, New York
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Raymond H Mak
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Liptay
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Brian Pettiford
- Section of Cardiothoracic Surgery, Ochsner Health System, New Orleans, Louisiana
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert E Merritt
- Division of Thoracic Surgery, The Ohio State University-Wexner Medical Center, Columbus, Ohio
| | - Homa Keshavarz
- Department of Family Medicine, McMaster University, Ontario, Canada
| | - Robert D Suh
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alessandro Brunelli
- Department of Thoracic Surgery, St. James's University Hospital, Leeds, United Kingdom
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - Garrett Walsh
- Department of Thoracic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Q Eileen Wafford
- The American Association for Thoracic Surgery, Beverly, Massachusetts
| | - Sudish Murthy
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - M Blair Marshall
- Sarasota Memorial Hospital, Jellison Cancer Institute, Sarasota, Florida
| | - Betty Tong
- Department of Thoracic Surgery, Duke University Hospital, Durham, North Carolina
| | - James Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Matthew J Schuchert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Thomas K Varghese
- Division of Cardiothoracic Surgery, University of Utah, Huntsman Cancer Center, Salt Lake City, Utah
| | - Thomas A D'Amico
- Department of Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Scott J Swanson
- Division of Thoracic Surgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
13
|
Lin Y, Qureshi MM, Batra S, Truong MT, Mak KS. Consecutive Daily Versus Every Other Day Stereotactic Body Radiation Therapy Scheduling for Stage I Non-small Cell Lung Cancer. Adv Radiat Oncol 2024; 9:101625. [PMID: 39524524 PMCID: PMC11550745 DOI: 10.1016/j.adro.2024.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/12/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The optimal delivery schedule for stereotactic body radiation therapy (SBRT) in treating stage I non-small cell lung cancer (NSCLC) is unknown. This study used the National Cancer Database to examine daily versus every other day (QOD) SBRT scheduling, including trends over time and association with survival. Methods and Materials The National Cancer Database was used to retrospectively identify patients with stage I NSCLC treated with 3-, 4-, or 5-fraction of SBRT between 2004 and 2016. Survival analysis was performed using the Kaplan-Meier method and Cox regression modeling. Results Of 15,269 patients, 3927 (25.7%) received SBRT daily, and 11,342 (74.3%) received treatment QOD. The use of QOD treatment increased from 63.2% in 2007 to 78.3% in 2016, and 5-fraction SBRT increased from 3.7% in 2004 to 51.4% in 2016 (both P < .0001). QOD 5-fraction became the most prevalent scheduling from 2012 to 2016 (28.5% in 2012 to 41.6% in 2016). Factors significantly associated with daily SBRT scheduling included number of fractions, race, lower income, lower comorbidities, and treatment at academic/research programs (all P ≤ .01).Median survival for daily SBRT was 37.9 months versus 38.4 months for QOD (P = .4). On multivariable analysis, no difference was found in overall survival between daily versus QOD scheduling (adjusted hazard ratio [aHR], 0.99; 95% confidence interval [CI], 0.94-1.04; P = .55). Five-fraction SBRT was associated with worse survival versus 3 fractions (aHR, 1.09; 95% CI, 1.03-1.15; P = .002). With 3-fraction SBRT, QOD treatment was associated with improved survival versus daily treatment (aHR, 0.91; 95% CI, 0.84-0.98; P = .02). With 5-fraction SBRT, QOD treatment was associated with worse survival versus daily treatment (aHR, 1.11; 95% CI, 1.02-1.22; P = .02). Conclusions QOD SBRT schedules were more frequently used to treat stage I NSCLC than daily regimens by a factor of 3:1, and QOD 5-fraction SBRT became the most common dose schedule after 2012. Three-fraction QOD SBRT was associated with improved survival versus daily, whereas 5-fraction QOD SBRT was associated with worse survival versus daily.
Collapse
Affiliation(s)
- Yue Lin
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Muhammad M. Qureshi
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Radiation Oncology, Boston Medical Center, Boston, Massachusetts
| | - Sonny Batra
- Veteran Affairs Boston Healthcare System, Boston, Massachusetts
| | - Minh-Tam Truong
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Radiation Oncology, Boston Medical Center, Boston, Massachusetts
- Veteran Affairs Boston Healthcare System, Boston, Massachusetts
| | - Kimberley S. Mak
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Radiation Oncology, Boston Medical Center, Boston, Massachusetts
- Veteran Affairs Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
14
|
Bai H, Wang XF, Xu YH, Zaorsky NG, Wang HH, Niu GM, Li JC, Dong Y, Li JY, Yu L, Chen MF, Lu XT, Yuan ZY, Yang JL, Meng MB. Brachial plexopathy following stereotactic body radiation therapy in apical lung malignancies: A dosimetric pooled analysis of individual patient data. Radiother Oncol 2024; 200:110529. [PMID: 39255923 DOI: 10.1016/j.radonc.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study is to establish dosimetric constraints for the brachial plexus at risk of developing grade ≥ 2 brachial plexopathy in the context of stereotactic body radiation therapy (SBRT). PATIENTS AND METHODS Individual patient data from 349 patients with 356 apical lung malignancies who underwent SBRT were extracted from 5 articles. The anatomical brachial plexus was delineated following the guidelines provided in the atlases developed by Hall, et al. and Kong, et al.. Patient characteristics, pertinent SBRT dosimetric parameters, and brachial plexopathy grades (according to CTCAE 4.0 or 5.0) were obtained. Normal tissue complication probability (NTCP) models were used to estimate the risk of developing grade ≥ 2 brachial plexopathy through maximum likelihood parameter fitting. RESULTS The prescription dose/fractionation schedules for SBRT ranged from 27 to 60 Gy in 1 to 8 fractions. During a follow-up period spanning from 6 to 113 months, 22 patients (6.3 %) developed grade ≥2 brachial plexopathy (4.3 % grade 2, 2.0 % grade 3); the median time to symptoms onset after SBRT was 8 months (ranged, 3-54 months). NTCP models estimated a 10 % risk of grade ≥2 brachial plexopathy with an anatomic brachial plexus maximum dose (Dmax) of 20.7 Gy, 34.2 Gy, and 42.7 Gy in one, three, and five fractions, respectively. Similarly, the NTCP model estimates the risks of grade ≥2 brachial plexopathy as 10 % for BED Dmax at 192.3 Gy and EQD2 Dmax at 115.4 Gy with an α/β ratio of 3, respectively. Symptom persisted after treatment in nearly half of patients diagnosed with grade ≥2 brachial plexopathy (11/22, 50 %). CONCLUSIONS This study establishes dosimetric constraints ranging from 20.7 to 42.7 Gy across 1-5 fractions, aimed at mitigating the risk of developing grade ≥2 brachial plexopathy following SBRT. These findings provide valuable guidance for future ablative SBRT in apical lung malignancies.
Collapse
Affiliation(s)
- Hui Bai
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yi-Han Xu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jia-Cheng Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jun-Yi Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Lu Yu
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mei-Feng Chen
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao-Tong Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
15
|
Masuoka Y, Tada T, Matsuda S, Hasegawa Y, Ishii K, Inokuchi H, Shibuya K. Risk-adapted stereotactic body radiation therapy delivered in four fractions in patients with non-small cell lung cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:588-595. [PMID: 39780923 PMCID: PMC11704765 DOI: 10.18999/nagjms.86.4.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 01/11/2025]
Abstract
Risk-adapted stereotactic body radiation therapy is preferred over conventional radiotherapy at the authors' institution based on the hypothesis that even with a lower than recommended dose, stereotactic body radiation therapy would yield better local control than conventional radiotherapy. This retrospective study was performed to verify the hypothesis. Data from 34 patients with non-small cell lung cancer, who underwent risk-adapted stereotactic body radiation therapy delivered in 4 fractions between 2012 and 2018, were analyzed. The 3-year local control rate for patients receiving 42-44 Gy, 40 Gy, and 32-38 Gy was 80.8%, 75.0%, and 66.7%, respectively. The 3-year overall survival rate was 63.5%, 63.5%, and 40.0%, respectively. Three patients experienced grade 3 toxicities, with no toxicities > grade 3 observed. The results support the use of risk-adapted stereotactic body radiation therapy, both with a relatively high dose and a low dose.
Collapse
Affiliation(s)
- Yutaka Masuoka
- Department of Radiology, Izumi City General Hospital, Izumi, Japan
| | - Takuhito Tada
- Department of Radiology, Izumi City General Hospital, Izumi, Japan
| | - Shogo Matsuda
- Department of Radiology, Izumi City General Hospital, Izumi, Japan
| | - Yoshikazu Hasegawa
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Kentaro Ishii
- Department of Radiation Oncology, Tane General Hospital, Osaka, Japan
| | - Haruo Inokuchi
- Department of Radiation Oncology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keiko Shibuya
- Department of Radiation Oncology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Burr JL, Johnson KC, Carmicheal JJ, Lin C, Ganti AK. Combination Immunotherapy With Radiotherapy in Non-Small Cell Lung Cancer: A Review of Evidence. Cancer Med 2024; 13:e70402. [PMID: 39526426 PMCID: PMC11551781 DOI: 10.1002/cam4.70402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Radiotherapy plays a fundamental role in the treatment of patients with all stages of non-small-cell lung cancer (NSCLC). The emergence of immune checkpoint inhibitors (ICIs) has transformed the standard of care in these patients. The use of ICIs is increasingly utilized in the definitive setting as an adjunct to chemoradiotherapy or surgery and remains a vital component in the treatment of metastatic disease. Despite improvements in patient survival, the use of immunotherapy as monotherapy has shown limited overall response rates with susceptibility to resistance. Radiotherapy has been identified as a viable option to enhance the response rate to ICI and improve outcomes in NSCLC. METHODS We queried the English PubMed database utilizing variably combined search items including "radiation," "chemoradiation," "immune checkpoint," "immunotherapy," "stereotactic body radiotherapy," and "non-small-cell lung". We additionally searched various acceptable alternative terms for similar keywords such as "radiotherapy" in place of "radiation." These results were subsequently curated for relevance and impact on current treatment paradigms. RESULTS In this review, we discuss preclinical and clinical studies relating to combinatorial use of immunotherapy and radiation in NSCLC. These studies are presented in the context of early-stage, operable stage III, unresectable stage III, and metastatic disease. The majority of the data illustrate promising results regarding the additive or synergistic effects of radiation and immunotherapy with a suggestion that the timing of these treatment modalities is crucial to optimizing outcomes. CONCLUSION While there is now evidence regarding the favorable interplay between radiation and immunotherapy in NSCLC, there remain multiple unanswered questions which are expected to be addressed in ongoing clinical trials.
Collapse
Affiliation(s)
- Justin L. Burr
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kurtis C. Johnson
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joseph J. Carmicheal
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chi Lin
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Apar Kishor Ganti
- Division of Hematology‐Oncology, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
17
|
van Rossum PSN, Wolfhagen N, van Bockel LW, Coremans IEM, van Es CA, van der Geest AM, De Jaeger KEA, Wachters B, Knol HP, Koppe FLA, Pomp J, Reymen BJT, Schinagl DAX, Spoelstra FOB, Tissing-Tan CJA, Peters M, van der Voort van Zijp NCMG, van der Wel AM, Wiegman EM, Wijsman R, Damhuis RAM, Belderbos JSA. Real-World Acute Toxicity and 90-Day Mortality in Patients With Stage I NSCLC Treated With Stereotactic Body Radiotherapy. J Thorac Oncol 2024; 19:1550-1563. [PMID: 39067700 DOI: 10.1016/j.jtho.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Stereotactic body radiotherapy (SBRT) has firmly established its role in stage I NSCLC. Clinical trial results may not fully apply to real-world scenarios. This study aimed to uncover the real-world incidence of acute toxicity and 90-day mortality in patients with SBRT-treated stage I NSCLC and develop prediction models for these outcomes. METHODS Prospective data from the Dutch Lung Cancer Audit for Radiotherapy (DLCA-R) were collected nationally. Patients with stage I NSCLC (cT1-2aN0M0) treated with SBRT in 2017 to 2021 were included. Acute toxicity was assessed, defined as grade greater than or equal to 2 radiation pneumonitis or grade greater than or equal to 3 non-hematologic toxicity less than or equal to 90 days after SBRT. Prediction models for acute toxicity and 90-day mortality were developed and internally validated. RESULTS Among 7279 patients, the mean age was 72.5 years, with 21.6% being above 80 years. Most were male (50.7%), had WHO scores 0 to 1 (73.3%), and had cT1a-b tumors (64.6%), predominantly in the upper lobes (65.2%). Acute toxicity was observed in 280 (3.8%) of patients and 90-day mortality in 122 (1.7%). Predictors for acute toxicity included WHO greater than or equal to 2, lower forced expiratory volume in 1 second and diffusion capacity for carbon monoxide, no pathology confirmation, middle or lower lobe tumor location, cT1c-cT2a stage, and higher mean lung dose (c-statistic 0.68). Male sex, WHO greater than or equal to 2, and acute toxicity predicted higher 90-day mortality (c-statistic 0.73). CONCLUSIONS This nationwide study revealed a low rate of acute toxicity and an acceptable 90-day mortality rate in patients with SBRT-treated stage I NSCLC. Notably, advanced age did not increase acute toxicity or mortality risk. Our predictive models, with satisfactory performance, offer valuable tools for identifying high-risk patients.
Collapse
Affiliation(s)
- Peter S N van Rossum
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands; Department of Radiation Oncology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Nienke Wolfhagen
- Dutch Institute for Clinical Auditing, Leiden, The Netherlands; Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corine A van Es
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Barbara Wachters
- Southwest Radiotherapy Institute, Vlissingen and Roosendaal, The Netherlands
| | - Hans P Knol
- Department of Radiation Oncology, Northwest Hospital Group, Alkmaar, The Netherlands
| | | | - Jacqueline Pomp
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart J T Reymen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Dominic A X Schinagl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Max Peters
- Radiotherapy Group, Institute for Radiation Oncology, Deventer, The Netherlands
| | | | | | - Erwin M Wiegman
- Department of Radiation Oncology, Isala Oncology Center, Zwolle, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald A M Damhuis
- Department of Research, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - José S A Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Li GJ, Tan H, Nusrat H, Chang J, Chen H, Poon I, Shahi J, Tsao M, Ung Y, Cheung P, Louie AV. Safety and Efficacy of Stereotactic Body Radiation Therapy for Ultra-central Thoracic Tumors: A Single Center Retrospective Review. Int J Radiat Oncol Biol Phys 2024; 120:359-369. [PMID: 38621607 DOI: 10.1016/j.ijrobp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We sought to evaluate the toxicity and efficacy of stereotactic body radiation therapy (SBRT) for ultracentral thoracic tumors at our institution. METHODS AND MATERIALS Patients with ultracentral lung tumors or nodes, defined as having the planning target volume (PTV) overlapping or abutting the central bronchial tree and/or esophagus, treated at our institution with SBRT between 2009 and 2019 were retrospectively reviewed. All SBRT plans were generated with the goal of creating homogenous dose distributions. The primary endpoint was incidence of SBRT-related grade ≥3 toxicity, defined using the Common Terminology Criteria for Adverse Events (V5.0). Secondary endpoints included local failure (LF), progression-free survival (PFS), and overall survival. Competing risk analysis was used to estimate incidence and identify predictors of severe toxicity and LF, while the Kaplan-Meier method was used to estimate PFS and OS. RESULTS A total of 154 patients receiving 162 ultracentral courses of SBRT were included. The most common prescription was 50 Gy in 5 fractions (42%), with doses ranging from 30 to 55 Gy in 5 fractions (BED10 range, 48-115 Gy). The incidence of severe toxicity was 9.4% at 3 years. The most common severe toxicity was pneumonitis (n = 4). There was 1 possible treatment-related death from pneumonitis/pneumonia. Predictors of severe toxicity included increased PTV size, decreased PTV V95%, lung V5 Gy, and lung V20 Gy. The incidence of LF was 14% at 3 years. Predictors of LF included younger age and greater volume of overlap between the PTV and esophagus. The median PFS was 8.8 months, while the median overall survival was 44.0 months. CONCLUSIONS In the largest case series of ultracentral thoracic SBRT to date, homogenously prescribed SBRT was associated with relatively low rates of severe toxicity and LF. Predictors of toxicity should be interpreted in the context of the heterogeneity in toxicities observed.
Collapse
Affiliation(s)
- George J Li
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hendrick Tan
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Humza Nusrat
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joe Chang
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ian Poon
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeevin Shahi
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - May Tsao
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Yee Ung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Gonzalez Y, Visak J, Overman L, Liao C, Yen A, Zhuang T, Cai B, Godley A, Zhang Y, Timmerman R, Iyengar P, Westover K, Parsons D, Lin M. Beyond conventional bounds: Surpassing system limits for stereotactic ablative (SAbR) lung radiotherapy using CBCT-based adaptive planning system. J Appl Clin Med Phys 2024; 25:e14375. [PMID: 38712917 PMCID: PMC11302803 DOI: 10.1002/acm2.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
PURPOSE Online adaptive radiotherapy relies on a high degree of automation to enable rapid planning procedures. The Varian Ethos intelligent optimization engine (IOE) was originally designed for conventional treatments so it is crucial to provide clear guidance for lung SAbR plans. This study investigates using the Ethos IOE together with adaptive-specific optimization tuning structures we designed and templated within Ethos to mitigate inter-planner variability in meeting RTOG metrics for both online-adaptive and offline SAbR plans. METHODS We developed a planning strategy to automate the generation of tuning structures and optimization. This was validated by retrospective analysis of 35 lung SAbR cases (total 105 fractions) treated on Ethos. The effectiveness of our planning strategy was evaluated by comparing plan quality with-and-without auto-generated tuning structures. Internal target volume (ITV) contour was compared between that drawn from CT simulation and from cone-beam CT (CBCT) at time of treatment to verify CBCT image quality and treatment effectiveness. Planning strategy robustness for lung SAbR was quantified by frequency of plans meeting reference plan RTOG constraints. RESULTS Our planning strategy creates a gradient within the ITV with maximum dose in the core and improves intermediate dose conformality on average by 2%. ITV size showed no significant difference between those contoured from CT simulation and first fraction, and also trended towards decreasing over course of treatment. Compared to non-adaptive plans, adaptive plans better meet reference plan goals (37% vs. 100% PTV coverage compliance, for scheduled and adapted plans) while improving plan quality (improved GI (gradient index) by 3.8%, CI (conformity index) by 1.7%). CONCLUSION We developed a robust and readily shareable planning strategy for the treatment of adaptive lung SAbR on the Ethos system. We validated that automatic online plan re-optimization along with the formulated adaptive tuning structures can ensure consistent plan quality. With the proposed planning strategy, highly ablative treatments are feasible on Ethos.
Collapse
Affiliation(s)
- Yesenia Gonzalez
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Justin Visak
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Luke Overman
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chien‐Yi Liao
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Allen Yen
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tingliang Zhuang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bin Cai
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Andrew Godley
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Yuanyuan Zhang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew York CityNew YorkUSA
| | - Robert Timmerman
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Puneeth Iyengar
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew York CityNew YorkUSA
| | - Kenneth Westover
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew York CityNew YorkUSA
| | - David Parsons
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mu‐Han Lin
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
20
|
Sarria GR, Wiegreffe S, Gkika E. [New Radiation Therapy Concepts in Non-Metastatic Lung Cancer]. Zentralbl Chir 2024; 149:S52-S61. [PMID: 39137762 DOI: 10.1055/a-2365-8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Radiotherapy plays a critical role in the management of non-metastatic lung cancer, offering curative potential and symptom relief. It serves as a primary treatment modality or adjuvant therapy post-surgery, enhancing local control and survival rates. Modern techniques like Stereotactic Body Radiotherapy (SBRT) enable precise tumor targeting, minimizing damage to healthy tissue and reducing treatment duration. The synergy between radiotherapy and systemic treatments, including immunotherapy, holds promise in improving outcomes. Immunotherapy augments the immune response against cancer cells, potentially enhancing radiotherapy's efficacy. Furthermore, radiotherapy's ability to modulate the tumor microenvironment complements the immunotherapy's mechanism of action. As a result, the combination of radiotherapy and immunotherapy may offer superior tumor control and survival benefits. Moreover, the integration of radiotherapy with surgery and chemotherapy in multidisciplinary approaches maximizes treatment efficacy while minimizing toxicity. Herein we present an overview on modern radiotherapy and potential developments in the close future.
Collapse
Affiliation(s)
- Gustavo R Sarria
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Shari Wiegreffe
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Eleni Gkika
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Bonn, Bonn, Deutschland
| |
Collapse
|
21
|
Chiou C, Wu Y, Huang P, Lan K, Chen Y, Kang Y, Chou L, Hu Y. The potential of integrating stereotactic ablative radiotherapy techniques with hyperfractionation for lung cancer. Thorac Cancer 2024; 15:1679-1687. [PMID: 38881388 PMCID: PMC11293925 DOI: 10.1111/1759-7714.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Limited literature exists on the feasibility and effectiveness of integrating stereotactic ablative radiotherapy (SABR) techniques with hyperfractionated regimens for patients with lung cancer. This study aims to assess whether the SABR technique with hyperfractionation can potentially reduce lung toxicity. METHODS We utilized the linear-quadratic model to find the optimal fraction to maximize the tumor biological equivalent dose (BED) to normal-tissue BED ratio. Validation was performed by comparing the SABR plans with 50 Gy/5 fractions and hyperfractionationed plans with 88.8 Gy/74 fractions with the same tumor BED and planning criteria for 10 patients with early-stage lung cancer. Mean lung BED, Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP), critical volume (CV) criteria (volume below BED of 22.92 and 25.65 Gy, and mean BED for lowest 1000 and 1500 cc) and the percentage of the lung receiving 20Gy or more (V20) were compared using the Wilcoxon signed-rank test. RESULTS The transition point occurs when the tumor-to-normal tissue ratio (TNR) of the physical dose equals the TNR of α/β in the BED dose-volume histogram of the lung. Compared with the hypofractionated regimen, the hyperfractionated regimen is superior in the dose range above but inferior below the transition point. The hyperfractionated regimen showed a lower mean lung BED (6.40 Gy vs. 7.73 Gy) and NTCP (3.50% vs. 4.21%), with inferior results concerning CV criteria and higher V20 (7.37% vs. 7.03%) in comparison with the hypofractionated regimen (p < 0.01 for all). CONCLUSIONS The hyperfractionated regimen has an advantage in the high-dose region of the lung but a disadvantage in the low-dose region. Further research is needed to determine the superiority between hypo- and hyperfractionation.
Collapse
Affiliation(s)
- Chi‐Chuan Chiou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yuan‐Hung Wu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Therapeutic and Research Center of Pancreatic CancerTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Pin‐I Huang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Keng‐Li Lan
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- Institute of Traditional Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Yi‐Wei Chen
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Mei Kang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Lin‐Shan Chou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Wen Hu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Institute of Public Health, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| |
Collapse
|
22
|
Cheng SH, Lee SY, Lee HH. Harnessing the Power of Radiotherapy for Lung Cancer: A Narrative Review of the Evolving Role of Magnetic Resonance Imaging Guidance. Cancers (Basel) 2024; 16:2710. [PMID: 39123438 PMCID: PMC11311467 DOI: 10.3390/cancers16152710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Compared with computed tomography (CT), magnetic resonance imaging (MRI) traditionally plays a very limited role in lung cancer management, although there is plenty of room for improvement in the current CT-based workflow, for example, in structures such as the brachial plexus and chest wall invasion, which are difficult to visualize with CT alone. Furthermore, in the treatment of high-risk tumors such as ultracentral lung cancer, treatment-associated toxicity currently still outweighs its benefits. The advent of MR-Linac, an MRI-guided radiotherapy (RT) that combines MRI with a linear accelerator, could potentially address these limitations. Compared with CT-based technologies, MR-Linac could offer superior soft tissue visualization, daily adaptive capability, real-time target tracking, and an early assessment of treatment response. Clinically, it could be especially advantageous in the treatment of central/ultracentral lung cancer, early-stage lung cancer, and locally advanced lung cancer. Increasing demands for stereotactic body radiotherapy (SBRT) for lung cancer have led to MR-Linac adoption in some cancer centers. In this review, a broad overview of the latest research on imaging-guided radiotherapy (IGRT) with MR-Linac for lung cancer management is provided, and development pertaining to artificial intelligence is also highlighted. New avenues of research are also discussed.
Collapse
Affiliation(s)
- Sarah Hsin Cheng
- Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shao-Yun Lee
- Department of Medical Education, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsin-Hua Lee
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Alfaifi S, Pareek V, Kim J, Rathod S, Hunter W, Leylek A, Ahmed N, Venkataraman S, Venugopal N, Chowdhury A, Dubey A, Kakumanu S, Bashir B. Moving towards single fraction peripheral lung stereotactic body radiation therapy: patient care during and after the global COVID-19 pandemic. Lung Cancer Manag 2024:2367369. [PMID: 39883102 DOI: 10.1080/17581966.2024.2367369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2024] [Indexed: 01/31/2025] Open
Abstract
Aim/objectives: Single-fraction stereotactic body radiation therapy (SF-SBRT) for peripheral lung tumors was reviewed. Materials & methods: Medically inoperable peripheral lung tumors eligible for SF-SBRT 34 Gray were treated. Patient characteristics, treatment and toxicity parameters were retrospectively collected, and toxicities were evaluated. Results: A total of 26 patients were assessed with median age of 74 years. Ninety-six percent had early-stage cancer and 35% were treated as per the SABR-BRIDGE protocol. Twenty-six peripheral lesions were treated (median maximal dimension 1.7 cm). Sixty-five percent had grade ≤2 toxicities with radiation pneumonitis (42.3%) and chest wall pain (35%). Radiation pneumonitis and chest wall pain rates were higher in patients with tumor diameters more than 1.5 cm. Conclusion: SF-SBRT is practical and effective treatment technique.
Collapse
Affiliation(s)
- Salem Alfaifi
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Vibhay Pareek
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Julian Kim
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Shrinivas Rathod
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - William Hunter
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmet Leylek
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Naseer Ahmed
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Niranjan Venugopal
- Department of Medical Physics, University of Manitoba, Winnipeg, MB, Canada
| | - Amitava Chowdhury
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Arbind Dubey
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Saranya Kakumanu
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Bashir Bashir
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
25
|
De Bruycker A, Schneiders F, Gulstene S, Moghanaki D, Louie A, Palma D, Senan S. Evaluation of chest CT-scans following lung stereotactic ablative radiotherapy: Challenges and new insights. Lung Cancer 2024; 193:107848. [PMID: 38908164 DOI: 10.1016/j.lungcan.2024.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Stereotactic ablative radiotherapy (SABR) is increasingly used for the treatment of early-stage non-small cell lung cancer (ES-NSCLC) and for pulmonary metastases. In patients with ES-NSCLC, SABR is highly successful with reported 5-year local control rates of approximately 90%. However, the assessment of local control following lung SABR can be challenging as radiological changes arising from radiation-induced lung injury (RILI) can be observed in up to 90% of patients. These so-called 'benign' radiological changes evolve with time and are often asymptomatic. Several radiological and metabolic features have been explored to help distinguish RILI from local recurrences (LR). These include the Response Evaluation Criteria for Solid Tumors (RECIST), high-risk features (HRF's) and maximum standardized uptake value (SUVmax) on FDG-PET-CT. However, use of some of these approaches have poor predictive values and low specificity for recurrence. A proposed new workflow for the evaluation of post-lung SABR radiological changes will be reviewed which uses the presence of so-called 'actionable radiological features' to trigger changes to imaging schedules and identifies the need for a multidisciplinary board review. Furthermore, this critical review of post-lung SABR imaging will highlight current challenges, new insights, and unknowns in this field.
Collapse
Affiliation(s)
| | - Famke Schneiders
- Department of Radiation Oncology, Amsterdam UMC, Location VUmc, the Netherlands
| | - Stephanie Gulstene
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Drew Moghanaki
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, USA
| | - Alexander Louie
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam UMC, Location VUmc, the Netherlands
| |
Collapse
|
26
|
Lau B, Wu YF, Cui S, Fu J, Jackson S, Pham D, Dubrowski P, Eswarappa S, Skinner L, Shirato H, Taguchi H, Gensheimer MF, Gee H, Chin AL, Diehn M, Loo BW, Moiseenko V, Vitzthum LK. Chest wall pain after single-fraction thoracic stereotactic ablative Radiotherapy: Dosimetric analysis from the iSABR trial. Radiother Oncol 2024; 196:110317. [PMID: 38679202 DOI: 10.1016/j.radonc.2024.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND PURPOSE Concerns over chest wall toxicity has led to debates on treating tumors adjacent to the chest wall with single-fraction stereotactic ablative radiotherapy (SABR). We performed a secondary analysis of patients treated on the prospective iSABR trial to determine the incidence and grade of chest wall pain and modeled dose-response to guide radiation planning and estimate risk. MATERIALS AND METHODS This analysis included 99 tumors in 92 patients that were treated with 25 Gy in one fraction on the iSABR trial which individualized dose by tumor size and location. Toxicity events were prospectively collected and graded based on the CTCAE version 4. Dose-response modeling was performed using a logistic model with maximum likelihood method utilized for parameter fitting. RESULTS There were 22 grade 1 or higher chest wall pain events, including five grade 2 events and zero grade 3 or higher events. The volume receiving at least 11 Gy (V11Gy) and the minimum dose to the hottest 2 cc (D2cc) were most highly correlated with toxicity. When dichotomized by an estimated incidence of ≥ 20 % toxicity, the D2cc > 17 Gy (36.6 % vs. 3.7 %, p < 0.01) and V11Gy > 28 cc (40.0 % vs. 8.1 %, p < 0.01) constraints were predictive of chest wall pain, including among a subset of patients with tumors abutting or adjacent to the chest wall. CONCLUSION For small, peripheral tumors, single-fraction SABR is associated with modest rates of low-grade chest wall pain. Proximity to the chest wall may not contraindicate single fractionation when using highly conformal, image-guided techniques with sharp dose gradients.
Collapse
Affiliation(s)
- Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yufan F Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sunan Cui
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Jie Fu
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Scott Jackson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Pham
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Piotr Dubrowski
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaila Eswarappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Michael F Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Harriet Gee
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Alexander L Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of San Diego School of Medicine, San Diego, CA, USA
| | - Lucas K Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA.
| |
Collapse
|
27
|
Liu F, Farris MK, Ververs JD, Hughes RT, Munley MT. Histology-driven hypofractionated radiation therapy schemes for early-stage lung adenocarcinoma and squamous cell carcinoma. Radiother Oncol 2024; 195:110257. [PMID: 38548113 PMCID: PMC11098686 DOI: 10.1016/j.radonc.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE Histology was found to be an important prognostic factor for local tumor control probability (TCP) after stereotactic body radiotherapy (SBRT) of early-stage non-small-cell lung cancer (NSCLC). A histology-driven SBRT approach has not been explored in routine clinical practice and histology-dependent fractionation schemes remain unknown. Here, we analyzed pooled histologic TCP data as a function of biologically effective dose (BED) to determine histology-driven fractionation schemes for SBRT and hypofractionated radiotherapy of two predominant early-stage NSCLC histologic subtypes adenocarcinoma (ADC) and squamous cell carcinoma (SCC). MATERIAL AND METHODS The least-χ2 method was used to fit the collected histologic TCP data of 8510 early-stage NSCLC patients to determine parameters for a well-developed radiobiological model per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative. RESULTS A fit to the histologic TCP data yielded independent radiobiological parameter sets for radiotherapy of early-stage lung ADC and SCC. TCP increases steeply with BED and reaches an asymptotic maximal plateau, allowing us to determine model-independent optimal fractionation schemes of least doses in 1-30 fractions to achieve maximal tumor control for early-stage lung ADC and SCC, e.g., 30, 44, 48, and 51 Gy for ADC, and 32, 48, 54, and 58 Gy for SCC in 1, 3, 4, and 5 fractions, respectively. CONCLUSION We presented the first determination of histology-dependent radiobiological parameters and model-independent histology-driven optimal SBRT and hypofractionated radiation therapy schemes for early-stage lung ADC and SCC. SCC requires substantially higher radiation doses to maximize tumor control than ADC, plausibly attributed to tumor genetic diversity and microenvironment. The determined optimal SBRT schemes agree well with clinical practice for early-stage lung ADC. These proposed optimal fractionation schemes provide first insights for histology-based personalized radiotherapy of two predominant early-stage NSCLC subtypes ADC and SCC, which require further validation with large-scale histologic TCP data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Michael K Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Ryan T Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
28
|
Ashworth A, Kong W, Owen T, Hanna TP, Brundage M. The management of stage I Non-Small cell lung cancer (NSCLC) in Ontario: A Population-Based study of patterns of care and Stereotactic Ablative Body radiotherapy (SABR) utilization from 2010 to 2019. Radiother Oncol 2024; 194:110153. [PMID: 38364940 DOI: 10.1016/j.radonc.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Stereotactic Ablative Body Radiotherapy (SABR) is the standard of care for medically inoperable patients with Stage I NSCLC. The adoption of SABR and its association with cancer outcomes requires characterization. AIM We described the management of biopsy-proven Stage I NSCLC with SABR, surgery, non-SABR curative radiotherapy (RT) and observation in Ontario, Canada, between 2010 and 2019. Temporal and geographic trends in practice and survival outcomes were analyzed. METHODS This was a retrospective population-based cohort study conducted by linking electronic radiotherapy (RT) records to a population-based cancer registry. RESULTS A total of 12,065 patients were identified, 61.7 % underwent surgery, 17.9 % received SABR, 8.6 % received non-SABR curative RT and 11.7 % were observed. Between 2010 and 2019, the utilization of surgery decreased (63.8 % to 49.9 %, p < 0.0001), while SABR use increased (7.5 % to 24.4 %, p < 0.0001), non-SABR curative RT use increased (6.7 % to 9.6 %, p < 0.0014) and patients observed decreased (14.4 % to 12.0 %, p < 0.0001). Substantial variation in practice exists across Ontario. Two- yr CSS improved for the entire cohort (81.9 % to 85.0 %, p < 0.0001). While there was improvement in 2 yr CSS for surgical patients (92.1 %% to 95.7 %, p < 0.001), survival for patients who received SABR, Non-SABR curative RT and observation remained stable. CONCLUSION There has been an increase in SABR utilization and a reduction in surgical utilization with a corresponding increased survival of stage I patients in Ontario between 2010 and 2019. Substantial differences in practice patterns exist across health regions, suggesting the need for strategies to improve access to SABR in many jurisdictions.
Collapse
Affiliation(s)
- Allison Ashworth
- Department of Oncology, Queen's University, Kingston, Canada; Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada.
| | - Weidong Kong
- Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada
| | - Timothy Owen
- Department of Oncology, Queen's University, Kingston, Canada
| | - Timothy P Hanna
- Department of Oncology, Queen's University, Kingston, Canada; Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada
| | - Michael Brundage
- Department of Oncology, Queen's University, Kingston, Canada; Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada
| |
Collapse
|
29
|
Misa J, Knight JA, Pokhrel D. Feasibility of a Single-Fraction Stereotactic Dose of 30 Gy to Solitary Lung Lesions on Halcyon. Cureus 2024; 16:e59535. [PMID: 38826981 PMCID: PMC11144037 DOI: 10.7759/cureus.59535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose We sought to explore the feasibility of using the current co-planar Halcyon ring delivery system (RDS) with a novel multileaf collimator (MLC) aperture shape controller in delivering a single high dose of 30 Gy to solitary lung lesions via stereotactic body radiotherapy (SBRT). Materials and methods Thirteen non-small-cell lung cancer (NSCLC) patients previously treated with a single dose of 30 Gy to lung lesions via SBRT on the TrueBeam (6MV-FFF) using non-coplanar volumetric modulated arc therapy (VMAT) arcs were anonymized and replanned onto the Halcyon RDS (6MV-FFF) following RTOG-0915 single-fraction criteria. The Halcyon plans utilized a novel dynamic conformal arc (DCA)-based MLC-fitting approach before VMAT optimization with a user-defined aperture shape controller option. The clinical TrueBeam and Halcyon plans were compared via their protocol compliance, target conformity, gradient index, and dose to organs-at-risk (OAR). Treatment delivery efficacy and accuracy were assessed through end-to-end quality assurance (QA) tests on Halcyon and independent dose verification via in-house Monte Carlo (MC) second-check validation. Results All Halcyon lung SBRT plans met RTOG-0915 protocol's requirements for target coverage, conformity, and gradient indices, and maximum dose 2 cm away from the target (D2cm) while being statistically insignificant (p > 0.05) when compared to clinical TrueBeam plans. Additionally, Halcyon provided a similar dose to OAR except for the ribs, where Halcyon demonstrated a lower maximum dose (15.22 Gy vs 17.01 Gy, p < 0.001). However, Halcyon plans required a higher total monitor unit (8892 MU vs 7413 MU, p < 0.001), resulting in a higher beam modulation factor (2.96 MU/cGy vs 2.47 MU/cGy, p < 0.001) and an increase in beam-on time by a factor of 2.1 (11.11 min vs 5.3 min, p < 0.005). End-to-end QA measurements demonstrate that Halcyon plans were clinically acceptable with an average gamma passing rate of 99.8% for 2%/2mm criteria and independent MC 2nd checks within ±2.86%. Conclusion Our end-to-end testing and validation study demonstrates that by utilizing a DCA-based MLC aperture shape controller before VMAT optimization, Halcyon can be used for delivering a single dose of lung SBRT treatment. However, future improvements of Halcyon RDS are recommended to allow higher output rates, rotational couch corrections, and an integrated intrafraction motion management system that will further enhance Halcyon's capability for site-specific single dosage of SBRT.
Collapse
Affiliation(s)
- Joshua Misa
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| | - James A Knight
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| | - Damodar Pokhrel
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| |
Collapse
|
30
|
Resova K, Knybel L, Parackova T, Rybar M, Cwiertka K, Cvek J. Survival analysis after stereotactic ablative radiotherapy for early stage non-small cell lung cancer: a single-institution cohort study. Radiat Oncol 2024; 19:50. [PMID: 38637844 PMCID: PMC11027404 DOI: 10.1186/s13014-024-02439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small cell lung cancer (ES-NSCLC), but which patients benefit from stereotactic radiotherapy is unclear. The aim of this study was to analyze prognostic factors for early mortality. METHODS From August 2010 to 2022, 617 patients with medically inoperable, peripheral or central ES-NSCLC were treated with SABR at our institution. We retrospectively evaluated the data from 172 consecutive patients treated from 2018 to 2020 to analyze the prognostic factors associated with overall survival (OS). The biological effective dose was > 100 Gy10 in all patients, and 60 Gy was applied in 3-5 fractions for a gross tumor volume (GTV) + 3 mm margin when the tumor diameter was < 1 cm; 30-33 Gy was delivered in one fraction. Real-time tumor tracking or an internal target volume approach was applied in 96% and 4% of cases, respectively. In uni- and multivariate analysis, a Cox model was used for the following variables: ventilation parameter FEV1, histology, age, T stage, central vs. peripheral site, gender, pretreatment PET, biologically effective dose (BED), and age-adjusted Charlson comorbidity index (AACCI). RESULTS The median OS was 35.3 months. In univariate analysis, no correlation was found between OS and ventilation parameters, histology, PET, or centrality. Tumor diameter, biological effective dose, gender, and AACCI met the criteria for inclusion in the multivariate analysis. The multivariate model showed that males (HR 1.51, 95% CI 1.01-2.28; p = 0.05) and AACCI > 5 (HR 1.56, 95% CI 1.06-2.31; p = 0.026) were significant negative prognostic factors of OS. However, the analysis of OS showed that the significant effect of AACCI > 5 was achieved only after 3 years (3-year OS 37% vs. 56%, p = 0.021), whereas the OS in one year was similar (1-year OS 83% vs. 86%, p = 0.58). CONCLUSION SABR of ES-NSCLC with precise image guidance is feasible for all medically inoperable patients with reasonable performance status. Early deaths were rare in our real-life cohort, and OS is clearly higher than would have been expected after best supportive care.
Collapse
Affiliation(s)
- Kamila Resova
- Dept. of Oncology, University Hospital Ostrava, 17. listopadu 1790, 708 52, Ostrava, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Lukas Knybel
- Dept. of Oncology, University Hospital Ostrava, 17. listopadu 1790, 708 52, Ostrava, Czech Republic.
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - Tereza Parackova
- Dept. of Oncology, University Hospital Ostrava, 17. listopadu 1790, 708 52, Ostrava, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Marian Rybar
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Karel Cwiertka
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakub Cvek
- Dept. of Oncology, University Hospital Ostrava, 17. listopadu 1790, 708 52, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
31
|
Saga R, Matsuya Y, Obara H, Komai F, Yoshino H, Aoki M, Hosokawa Y. Generality Assessment of a Model Considering Heterogeneous Cancer Cells for Predicting Tumor Control Probability for Stereotactic Body Radiation Therapy Against Non-Small Cell Lung Cancer. Adv Radiat Oncol 2024; 9:101437. [PMID: 38778820 PMCID: PMC11110032 DOI: 10.1016/j.adro.2023.101437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 05/25/2024] Open
Abstract
The generality of a model for predicting tumor control probability from in vitro clonogenic survival considering of cancer stem-like cells, the so-called integrated microdosimetric-kinetic model, is presented by comparing the model to public data on stereotactic body radiation therapy for non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, Tokai, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hideki Obara
- Department of Radiology, Division of Medical Technology, Hirosaki University School of Medicine and Hospital, Hirosaki, Japan
| | - Fumio Komai
- Department of Radiology, Division of Medical Technology, Hirosaki University School of Medicine and Hospital, Hirosaki, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
32
|
Wu C, Cao B, He G, Li Y, Wang W. Stereotactic ablative brachytherapy versus percutaneous microwave ablation for early-stage non-small cell lung cancer: a multicenter retrospective study. BMC Cancer 2024; 24:304. [PMID: 38448897 PMCID: PMC10916219 DOI: 10.1186/s12885-024-12055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND To analyze the efficacy of stereotactic ablative brachytherapy (SABT) and percutaneous microwave ablation (MWA) for the treatment of early-stage non-small cell lung cancer (NSCLC). METHODS Patients with early-stage (T1-T2aN0M0) NSCLC who underwent CT-guided SABT or MWA between October 2014 and March 2017 at four medical centers were retrospectively analyzed. Survival, treatment response, and procedure-related complications were assessed. RESULTS A total of 83 patients were included in this study. The median follow-up time was 55.2 months (range 7.2-76.8 months). The 1-, 3-, and 5-year overall survival (OS) rates were 96.4%, 82.3%, and 68.4% for the SABT group (n = 28), and 96.4%, 79.7%, and 63.2% for MWA group (n = 55), respectively. The 1-, 3-, and 5-year disease-free survival (DFS) rates were 92.9%, 74.6%, and 54.1% for SABT, and 92.7%, 70.5%, and 50.5% for MWA, respectively. There were no significant differences between SABT and MWA in terms of OS (p = 0.631) or DFS (p = 0.836). The recurrence rate was also similar between the two groups (p = 0.809). No procedure-related deaths occurred. Pneumothorax was the most common adverse event in the two groups, with no significant difference. No radiation pneumonia was found in the SABT group. CONCLUSIONS SABT provided similar efficacy to MWA for the treatment of stage I NSCLC. SABT may be a treatment option for unresectable early-stage NSCLC. However, future prospective randomized studies are required to verify these results.
Collapse
Affiliation(s)
- Chuanwang Wu
- Department of Interventional Medicine,The Second Hospital of Shandong University, Institute of Tumor Intervention,Cheeloo college of medicine, Shandong University, Jinan City, Shandong Province, China
- Department of Fifth Internal Medicine, People's Hospital of Shizhong District, No.156 Jiefang Road, Zaozhuang City, Shandong Province, China
| | - Binglong Cao
- Department of Oncology, Qufu Hospital of Traditional Chinese Medicine, No.129 Canggeng Road, Qufu City, Shandong Province, China
| | - Guanghui He
- Department of Interventional Medicine, Weifang Second People's Hospital, Weifang city, Shandong Province, China
| | - Yuliang Li
- Department of Interventional Medicine,The Second Hospital of Shandong University, Institute of Tumor Intervention,Cheeloo college of medicine, Shandong University, Jinan City, Shandong Province, China
| | - Wujie Wang
- Department of Interventional Medicine,The Second Hospital of Shandong University, Institute of Tumor Intervention,Cheeloo college of medicine, Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
33
|
Liu F, Ververs JD, Farris MK, Blackstock AW, Munley MT. Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:829-838. [PMID: 37734445 DOI: 10.1016/j.ijrobp.2023.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/04/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE A series of radiobiological models were developed to study tumor control probability (TCP) for stereotactic body radiation therapy (SBRT) of early-stage non-small cell lung cancer (NSCLC) per the Hypofractionated Treatment Effects in the Clinic (HyTEC) working group. This study was conducted to further validate 3 representative models with the recent clinical TCP data ranging from conventional radiation therapy to SBRT of early-stage NSCLC and to determine systematic optimal fractionation regimens in 1 to 30 fractions for radiation therapy of early-stage NSCLC that were found to be model-independent. METHODS AND MATERIALS Recent clinical 1-, 2-, 3-, and 5-year actuarial or Kaplan-Meier TCP data of 9808 patients from 56 published papers were collected for radiation therapy of 2 to 4 Gy per fraction and SBRT of early-stage NSCLC. This data set nearly triples the original HyTEC sample, which was used to further validate the HyTEC model parameters determined from a fit to the clinical TCP data. RESULTS TCP data from the expanded data set are well described by the HyTEC models with α/β ratios of about 20 Gy. TCP increases sharply with biologically effective dose and reaches an asymptotic maximal plateau, which allows us to determine optimal fractionation schemes for radiation therapy of early-stage NSCLC. CONCLUSIONS The HyTEC radiobiological models with α/β ratios of about 20 Gy determined from the fits to the clinical TCP data for SBRT of early-stage NSCLC describe the recent TCP data well for both radiation therapy of 2 to 4 Gy per fraction and SBRT dose and fractionation schemes of early-stage NSCLC. A steep dose response exists between TCP and biologically effective dose, and TCP reaches an asymptotic maximum. This feature results in model-independent optimal fractionation regimens determined whenever safe for SBRT and hypofractionated radiation therapy of early-stage NSCLC in 1 to 30 fractions to achieve asymptotic maximal tumor control, and T2 tumors require slightly higher optimal doses than T1 tumors. The proposed optimal fractionation schemes are consistent with clinical practice for SBRT of early-stage NSCLC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina.
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Michael K Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - A William Blackstock
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
34
|
Laeseke P, Ng C, Naghi A, Wright GWJ, Laxmanan B, Ghosh SK, Amos TB, Kalsekar I, Pritchett M. Response to letter: Microwave ablation for Early-Stage Non-Small cell Lung Cancer: Don't Put the Cart before the stereotactic Horse. Lung Cancer 2024; 189:107504. [PMID: 38368724 DOI: 10.1016/j.lungcan.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Paul Laeseke
- Radiology, University of Wisconsin, Madison, WI, United States.
| | - Calvin Ng
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | | | | | - Balaji Laxmanan
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ, United States.
| | - Sudip K Ghosh
- Health Economics and Market Access, Johnson & Johnson, Cincinnati, OH, United States.
| | - Tony B Amos
- Interventional Oncology at Johnson & Johnson, New Brunswick, NJ, United States.
| | - Iftekhar Kalsekar
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ, United States.
| | - Michael Pritchett
- Pulmonary and Critical Care Medicine, FirstHealth Moore Regional Hospital, and Pinehurst Medical Clinic, Pinehurst, NC, United States.
| |
Collapse
|
35
|
Csiki E, Simon M, Papp J, Barabás M, Mikáczó J, Gál K, Sipos D, Kovács Á. Stereotactic body radiotherapy in lung cancer: a contemporary review. Pathol Oncol Res 2024; 30:1611709. [PMID: 38476352 PMCID: PMC10928908 DOI: 10.3389/pore.2024.1611709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The treatment of early stage non-small cell lung cancer (NSCLC) has improved enormously in the last two decades. Although surgery is not the only choice, lobectomy is still the gold standard treatment type for operable patients. For inoperable patients stereotactic body radiotherapy (SBRT) should be offered, reaching very high local control and overall survival rates. With SBRT we can precisely irradiate small, well-defined lesions with high doses. To select the appropriate fractionation schedule it is important to determine the size, localization and extent of the lung tumor. The introduction of novel and further developed planning (contouring guidelines, diagnostic image application, planning systems) and delivery techniques (motion management, image guided radiotherapy) led to lower rates of side effects and more conformal target volume coverage. The purpose of this study is to summarize the current developments, randomised studies, guidelines about lung SBRT, with emphasis on the possibility of increasing local control and overall rates in "fit," operable patients as well, so SBRT would be eligible in place of surgery.
Collapse
Affiliation(s)
- Emese Csiki
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Papp
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Barabás
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mikáczó
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Gál
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Sipos
- Faculty of Health Sciences, University of Pécs, Pecs, Hungary
| | - Árpád Kovács
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Schrand TV, Iovoli AJ, Almeida ND, Yu H, Malik N, Farrugia M, Singh AK. Differences between Survival Rates and Patterns of Failure of Patients with Lung Adenocarcinoma and Squamous Cell Carcinoma Who Received Single-Fraction Stereotactic Body Radiotherapy. Cancers (Basel) 2024; 16:755. [PMID: 38398146 PMCID: PMC10886818 DOI: 10.3390/cancers16040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
We investigated the survival and patterns of failure in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) in early stage non-small cell lung cancer (NSCLC) treated with single-fraction stereotactic body radiation therapy (SF-SBRT) of 27-34 Gray. A single-institution retrospective review of patients with biopsy-proven early stage ADC or SCC undergoing definitive SF-SBRT between September 2008 and February 2023 was performed. The primary outcomes were overall survival (OS) and disease-free survival (DFS). The secondary outcomes included local failure (LF), nodal failure (NF), and distant failure (DF). Of 292 eligible patients 174 had adenocarcinoma and 118 had squamous cell carcinoma. There was no significant change in any outcome except distant failure. Patients with ADC were significantly more likely to experience distant failure than patients with SCC (p = 0.0081). In conclusion, while SF-SBRT produced similar LF, NF, DFS, and OS, the higher rate of distant failure in ADC patients suggests that ongoing trials of SBRT and systemic therapy combinations should report their outcomes by histology.
Collapse
Affiliation(s)
- Tyler V. Schrand
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Austin J. Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Neil D. Almeida
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nadia Malik
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Mark Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| |
Collapse
|
37
|
Starling MTM, Thibodeau S, de Sousa CFPM, Restini FCF, Viani GA, Gouveia AG, Mendez LC, Marta GN, Moraes FY. Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings. Cancers (Basel) 2024; 16:539. [PMID: 38339290 PMCID: PMC10854666 DOI: 10.3390/cancers16030539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The global cancer burden, especially in low- and middle-income countries (LMICs), worsens existing disparities, amplified by the rising costs of advanced treatments. The shortage of radiation therapy (RT) services is a significant issue in LMICs. Extended conventional treatment regimens pose significant challenges, especially in resource-limited settings. Hypofractionated radiotherapy (HRT) and ultra-hypofractionated/stereotactic body radiation therapy (SBRT) offer promising alternatives by shortening treatment durations. This approach optimizes the utilization of radiotherapy machines, making them more effective in meeting the growing demand for cancer care. Adopting HRT/SBRT holds significant potential, especially in LMICs. This review provides the latest clinical evidence and guideline recommendations for the application of HRT/SBRT in the treatment of breast, prostate, and lung cancers. It emphasizes the critical importance of rigorous training, technology, stringent quality assurance, and safety protocols to ensure precise and secure treatments. Additionally, it addresses practical considerations for implementing these treatments in LMICs, highlighting the need for comprehensive support and collaboration to enhance patient access to advanced cancer care.
Collapse
Affiliation(s)
| | - Stephane Thibodeau
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | | | - Gustavo A. Viani
- Department of Medical Imagings, Ribeirão Preto Medical School, Hematology and Oncology of University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, Brazil
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre 90619-900, Brazil
| | - Andre G. Gouveia
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre 90619-900, Brazil
- Division of Radiation Oncology, Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Lucas C. Mendez
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Gustavo Nader Marta
- Radiation Oncology Department, Hospital Sirio Libanês, Sao Paulo 01308-050, Brazil
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre 90619-900, Brazil
| | - Fabio Ynoe Moraes
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen’s University, Kingston, ON K7L 3N6, Canada
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre 90619-900, Brazil
| |
Collapse
|
38
|
Wang J, Li B, Zhang L, Wang Z, Shen J. Safety and local efficacy of computed tomography-guided microwave ablation for treating early-stage non-small cell lung cancer adjacent to bronchovascular bundles. Eur Radiol 2024; 34:236-246. [PMID: 37505251 DOI: 10.1007/s00330-023-09997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To retrospectively evaluate the safety and efficacy of computed tomography (CT)-guided percutaneous microwave ablation in treating early-stage non-small cell lung cancer (NSCLC) adjacent to bronchovascular bundles. METHODS Two hundred and thirty-one patients with early-stage NSCLC who underwent CT-guided microwave ablation of the tumor were included for analysis. Among these, 66 lesions were located adjacent to the bronchovascular bundle. Achievement of the specific ablation range (defined as the ablation zone encompassing the tumor and the adjacent vessel) was assessed after ablation. Complications and tumor progression after treatment were examined and compared between the bronchovascular bundle and non-bronchovascular bundle groups. RESULTS A total of 231 patients were included. Overall, 1-, 2-, and 3-year local progression-free survival (LPFS) was 77.4%, 70.5%, and 63.8%, respectively. Bronchovascular bundle proximity, pure-solid tumor, tumor size, and ablation margin < 5 mm were independent risk factors for local progression in multivariate analysis. In the bronchovascular bundle group, the 1-, 2- and 3-year LPFS rates were 63.0%, 50.7%, and 43.4%, respectively; vessel proximity and specific ablation range failure were independent risk factors for local progression. Overall survival in the entire cohort was 93.0% at 1 year, 76.1% at 2 years, and 55.0% at 3 years. The incidence of postoperative complications did not significantly differ between the two groups (p > 0.05). The most common complication was pneumothorax. Severe hemoptysis did not occur. CONCLUSION Tumor location near the bronchovascular bundles was a significant risk factor for local progression after microwave ablation. Achieving a specific ablation range may increase LPFS for these lesions. CLINICAL RELEVANCE STATEMENT Achieving the specific ablation range may improve local efficacy for early-stage non-small cell lung cancer located adjacent to the bronchovascular bundle. KEY POINTS • Local efficacy of percutaneous microwave ablation in treating early-stage non-small cell lung cancer was affected by bronchovascular bundle proximity. • Achieving the specific ablation range may improve local efficacy for lesions located adjacent to the bronchovascular bundle.
Collapse
Affiliation(s)
- Jun Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Pudong, Shanghai, 200127, China
| | - Bo Li
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Pudong, Shanghai, 200127, China
| | - Liang Zhang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Pudong, Shanghai, 200127, China
| | - Zhi Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Pudong, Shanghai, 200127, China
| | - Jialin Shen
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Pudong, Shanghai, 200127, China.
| |
Collapse
|
39
|
Ali N, Zhou J, Eaton BR, Switchenko JM, Cao Y, Stokes WA, Patel PR, Langen KM, Slopsema R, Bradley JD, McDonald MW. Initial experience and patient tolerance of proton stereotactic body radiotherapy. JOURNAL OF RADIOSURGERY AND SBRT 2024; 9:121-128. [PMID: 39087059 PMCID: PMC11288653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 08/02/2024]
Abstract
Purpose To review our initial experience with proton-based SBRT to evaluate the planning outcomes and initial patient tolerance of treatment. Patients and methods From Sep. 2019 to Dec. 2020, 52 patients were treated with proton SBRT to 62 lesions. Fractionation varied by indication and site with a median of 5 fractions and median fractional dose of 8 Gy. Planning outcomes, including plan heterogeneity, conformity, and PTV volume receiving 100% of the prescription dose (PTV V100%) were evaluated. Acute toxicities were prospectively recorded, and patient reported outcomes were assessed prior to and at completion of treatment using the MD Anderson Symptom Inventory (MDASI) and EQ-5D5L visual analogue score (VAS). Results All treated patients completed their course of proton-based SBRT. The mean conformity index was 1.05 (range 0.51-1.48). R50% values were comparable to ideal photon parameters. PTV V100% was 89.9% on average (40.44% - 99.76%). 5 patients (10%) required plan modification due to setup or tumor changes. No patients developed a new grade 3 or greater toxicity during treatment. Comparing pretreatment to end of treatment timepoints, there was a significant improvement in the mean VAS (65 to 75, p = 0.014), with no significant change in the mean MDASI symptom (1.7, 1.8; p = 0.79) or interference (2.3, 2.4; p = 0.452) scores. Conclusion Proton-based SBRT can achieve dosimetric goals required by major clinical photon trials. It was well-tolerated with no decrement in patient reported outcomes and a mean 10-point improvement in VAS at the conclusion of SBRT. Further follow-up is necessary for tumor control and late effects analysis.
Collapse
Affiliation(s)
- Naba Ali
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jun Zhou
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bree R. Eaton
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeffrey M. Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yichun Cao
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - William A. Stokes
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Pretesh R. Patel
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Katja M. Langen
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Roelf Slopsema
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Mark W. McDonald
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
40
|
Tate MK, Hernandez M, Chang JY, Lin SH, Liao Z, Koshy SM, Skinner HD, Chun SG. Metformin in Conjunction With Stereotactic Radiotherapy for Early-stage Non-small Cell Lung Cancer: Long-term Results of a Prospective Phase II Clinical Trial. Anticancer Res 2024; 44:133-137. [PMID: 38159979 PMCID: PMC11663441 DOI: 10.21873/anticanres.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND/AIM Non-small cell lung cancer (NSCLC) is increasingly detected in early stages and there is interest in improving outcomes with stereotactic body radiotherapy (SBRT). As metformin affects NSCLC signaling pathways, it might alter the metabolism of NSCLC treated with SBRT. This study investigated the long-term outcomes of a phase II clinical trial evaluating metformin in conjunction with SBRT for early-stage NSCLC. PATIENTS AND METHODS The trial evaluated patients with American Joint Commission on Cancer (AJCC) 7th edition Stage I-II, cT1-T2N0M0 NSCLC who were randomized 6:1 to receive metformin versus placebo in conjunction with SBRT. The outcomes analyzed included local failure (LF), progression-free survival (PFS), overall survival (OS), and Common Terminology Criteria for Adverse Events (CTCAE) version 4 toxicities. RESULTS There were 14 patients randomized to the metformin arm and one to the placebo. Median follow-up was four years. In the metformin group, the median PFS was 4.65 years [95% confidence interval (CI)=0.31-5.93] and median survival was 4.97 years (95%CI=3.05-4.61). Five year PFS was 27.8% (95%CI=5.3-57.3%) and OS was 46.0% (95%CI=16.0-71.9%). The one patient randomized to placebo was alive and without progression at five years. There were no LFs in the primary SBRT treatment volumes and no CTCAE version 4 Grade ≥3 adverse events. CONCLUSION Outcomes of SBRT and metformin for early-stage NSCLC were similar to historic controls. These findings along with the results of the NRG-LU001 and OCOG randomized trials do not support the therapeutic use of metformin for NSCLC.
Collapse
Affiliation(s)
- Molly K Tate
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Mike Hernandez
- Department of Biostatistics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Suja M Koshy
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A
| | - Heath D Skinner
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburg Medical Center, Pittsburg, PA, U.S.A
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, U.S.A.;
| |
Collapse
|
41
|
Hardcastle N, Josipovic M, Clementel E, Hernandez V, Smyth G, Gober M, Wilke L, Eaton D, Josset S, Lazarakis S, Saez J, Vieillevigne L, Jornet N, Mancosu P. Recommendation on the technical and dosimetric data to be included in stereotactic body radiation therapy clinical trial publications based on a systematic review. Radiother Oncol 2024; 190:110042. [PMID: 38043902 DOI: 10.1016/j.radonc.2023.110042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The results of phase II and III trials on Stereotactic Body Radiation Therapy (SBRT) increased adoption of SBRT worldwide. The ability to replicate clinical trial outcomes in routine practice depends on the capability to reproduce technical and dosimetric procedures used in the clinical trial. In this systematic review, we evaluated if peer-reviewed publications of clinical trials in SBRT reported sufficient technical data to ensure safe and robust implementation in real world clinics. Twenty papers were selected for inclusion, and data was extracted by a working group of medical physicists created following the ESTRO 2021 physics workshop. A large variability in technical and dosimetric data were observed, with frequent lack of required information for reproducing trial procedures. None of the evaluated studies were judged completely reproducible from a technical perspective. A list of recommendations has been provided by the group, based on the analysis and consensus process, to ensure an adequate reproducibility of technical parameters in primary SBRT clinical trials. Future publications should consider these recommendations to assist transferability of the clinical trial in real world practice.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre & Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia
| | - Mirjana Josipovic
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Enrico Clementel
- European Organisation for the Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, 43204 Tarragona, Spain
| | - Gregory Smyth
- The London Radiotherapy Centre, HCA Healthcare UK, London, UK
| | - Manuela Gober
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Stéphanie Josset
- Department of Medical Physics, Institut de Cancerologie de l'Ouest, 44805 Saint-Herblain, France
| | - Smaro Lazarakis
- Physical Sciences, Peter MacCallum Cancer Centre & Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Laure Vieillevigne
- Department of Medical Physics, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse, F-31059 Toulouse, France
| | - Núria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Pietro Mancosu
- Medical Physics Unit, Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano-Milano, Italy
| |
Collapse
|
42
|
Niu GM, Gao MM, Wang XF, Dong Y, Zhang YF, Wang HH, Guan Y, Cheng ZY, Zhao SZ, Song YC, Tao Z, Zhao LJ, Meng MB, Spring Kong FM, Yuan ZY. Dosimetric analysis of brachial plexopathy after stereotactic body radiotherapy: Significance of organ delineation. Radiother Oncol 2024; 190:110023. [PMID: 37995850 DOI: 10.1016/j.radonc.2023.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Examine the significance of contouring the brachial plexus (BP) for toxicity estimation and select metrics for predicting radiation-induced brachial plexopathy (RIBP) after stereotactic body radiotherapy. MATERIALS AND METHODS Patients with planning target volume (PTV) ≤ 2 cm from the BP were eligible. The BP was contoured primarily according to the RTOG 1106 atlas, while subclavian-axillary veins (SAV) were contoured according to RTOG 0236. Apical PTVs were classified as anterior (PTV-A) or posterior (PTV-B) PTVs. Variables predicting grade 2 or higher RIBP (RIBP2) were selected through least absolute shrinkage and selection operator regression and logistic regression. RESULTS Among 137 patients with 140 BPs (median follow-up, 32.1 months), 11 experienced RIBP2. For patients with RIBP2, the maximum physical dose to the BP (BP-Dmax) was 46.5 Gy (median; range, 35.7 to 60.7 Gy). Of these patients, 54.5 % (6/11) satisfied the RTOG limits when using SAV delineation; among them, 83.3 % (5/6) had PTV-B. For patients with PTV-B, the maximum physical dose to SAV (SAV-Dmax) was 11.2 Gy (median) lower than BP-Dmax. Maximum and 0.3 cc biologically effective doses to the BP based on the linear-quadratic-linear model (BP-BEDmax LQL and BP-BED0.3cc LQL, α/β = 3) were selected as predictive variables with thresholds of 118 and 73 Gy, respectively. CONCLUSION Contouring SAV may significantly underestimate the RIBP2 risk in dosimetry, especially for patients with PTV-B. BP contouring indicated BP-BED0.3cc LQL and BP-BEDmax LQL as potential predictors of RIBP2.
Collapse
Affiliation(s)
- Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Miao-Miao Gao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yi-Fan Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Nankai University School of Medicine, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong Guan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze-Yuan Cheng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Zhou Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong-Chun Song
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhen Tao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Lu-Jun Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, HKU Shenzhen Hospital, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Shenzhen, Hong Kong, China.
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
43
|
Wu TC, Smith LM, Woolf D, Faivre-Finn C, Lee P. Exploring the Advantages and Challenges of MR-Guided Radiotherapy in Non-Small-Cell Lung Cancer: Who are the Optimal Candidates? Semin Radiat Oncol 2024; 34:56-63. [PMID: 38105094 DOI: 10.1016/j.semradonc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The landscape of lung radiotherapy (RT) has rapidly evolved over the past decade with modern RT and surgical techniques, systemic therapies, and expanding indications for RT. To date, 2 MRI-guided RT (MRgRT) units, 1 using a 0.35T magnet and 1 using a 1.5T magnet, are available for commercial use with more systems in the pipeline. MRgRT offers distinct advantages such as real-time target tracking, margin reduction, and on-table treatment adaptation, which may help overcome many of the common challenges associated with thoracic RT. Nonetheless, the use of MRI for image guidance and the current MRgRT units also have intrinsic limitations. In this review article, we will discuss clinical experiences to date, advantages, challenges, and future directions of MRgRT to the lung.
Collapse
Affiliation(s)
- Trudy C Wu
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Lauren M Smith
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - David Woolf
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.; Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.; Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Los Angeles, CA..
| |
Collapse
|
44
|
Darréon J, Debnath SBC, Benkreira M, Fau P, Mailleux H, Ferré M, Benkemouche A, Tallet A, Annede P, Petit C, Salem N. A novel lung SBRT treatment planning: Inverse VMAT plan with leaf motion limitation to ensure the irradiation reproducibility of a moving target. Med Dosim 2023; 49:159-164. [PMID: 38061915 DOI: 10.1016/j.meddos.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 05/08/2024]
Abstract
This study exposed the implementation of a novel technique (VMATLSL) for the planning of moving targets in lung stereotactic body radiation therapy (SBRT). This new technique has been compared to static conformal radiotherapy (3D-CRT), volumetric-modulated arc therapy (VMAT), and dynamic conformal arc (DCA). The rationale of this study was to lower geometric complexity (54.9% lower than full VMAT) and hence ensure the reproducibility of the treatment delivery by reducing the risk for interplay errors induced by respiratory motion. Dosimetry metrics were studied with a cohort of 30 patients. Our results showed that leaf speed limitation provided conformal number (CN) close to the VMAT (median CN of VMATLSL is 0.78 vs 0.82 for full VMAT) and was a significant improvement on 3D-CRT and DCA with segment-weight optimized (respectively 0.55 and 0.57). This novel technique is an alternative to VMAT or DCA for lung SBRT treatments, combining independence from the patient's breathing pattern, from the size and amplitude of the lesion, free from interplay effect, and with dosimetry metrics close to the best that could be achieved with full VMAT.
Collapse
Affiliation(s)
- Julien Darréon
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France.
| | | | - Mohamed Benkreira
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Pierre Fau
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Hugues Mailleux
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Marjorie Ferré
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Ahcene Benkemouche
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Agnès Tallet
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| | - Pierre Annede
- Centre de radiothérapie Saint Louis, Croix Rouge Française, Toulon, 83100, France
| | - Claire Petit
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| | - Naji Salem
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| |
Collapse
|
45
|
Iovoli AJ, Prasad S, Ma SJ, Fekrmandi F, Malik NK, Fung-Kee-Fung S, Farrugia MK, Singh AK. Long-Term Survival and Failure Outcomes of Single-Fraction Stereotactic Body Radiation Therapy in Early Stage NSCLC. JTO Clin Res Rep 2023; 4:100598. [PMID: 38124792 PMCID: PMC10730364 DOI: 10.1016/j.jtocrr.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION This study aims to report our 13-year institutional experience with single-fraction stereotactic body radiation therapy (SF-SBRT) for early stage NSCLC. METHODS A single-institutional retrospective review of patients with biopsy-proven peripheral cT1-2N0M0 NSCLC undergoing definitive SF-SBRT between September 2008 and May 2022 was performed. All patients were treated to 27 Gy with heterogeneity corrections or 30 Gy without. Primary outcomes were overall survival and progression-free survival. Secondary outcomes included local failure, nodal failure, distant failure, and second primary lung cancer. RESULTS Among 263 eligible patients, the median age was 76 years (interquartile range [IQR]: 70-81 y) and median follow-up time was 27.2 months (IQR: 14.25-44.9 mo). Median tumor size was 1.9 cm (IQR: 1.4-2.6 cm), and 224 (85%) tumors were T1. There were 92 patients (35%) alive at the time of analysis with a median follow-up of 34.0 months (IQR: 16.6-50.0 mo). Two- and five-year overall survival was 65% and 26%, respectively. A total of 74 patients (28%) developed disease progression. Rates of five-year local failure, nodal failure, distant failure, and second primary lung cancer were 12.7%, 14.7%, 23.5%, and 12.0%, respectively. CONCLUSIONS Consistent with multiple prospective randomized trials, in a large real-world retrospective cohort, SF-SBRT for peripheral early stage NSCLC was an effective treatment approach.
Collapse
Affiliation(s)
- Austin J. Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharan Prasad
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nadia K. Malik
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Simon Fung-Kee-Fung
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark K. Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
46
|
Gensheimer MF, Gee H, Shirato H, Taguchi H, Snyder JM, Chin AL, Vitzthum LK, Maxim PG, Wakelee HA, Neal J, Das M, Chang DT, Kidd E, Hancock SL, Shultz DB, Horst KC, Le QT, Wong S, Brown E, Nguyen N, Liang R, Loo BW, Diehn M. Individualized Stereotactic Ablative Radiotherapy for Lung Tumors: The iSABR Phase 2 Nonrandomized Controlled Trial. JAMA Oncol 2023; 9:1525-1534. [PMID: 37707820 PMCID: PMC10502697 DOI: 10.1001/jamaoncol.2023.3495] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/11/2023] [Indexed: 09/15/2023]
Abstract
Importance Stereotactic ablative radiotherapy (SABR) is used for treating lung tumors but can cause toxic effects, including life-threatening damage to central structures. Retrospective data suggested that small tumors up to 10 cm3 in volume can be well controlled with a biologically effective dose less than 100 Gy. Objective To assess whether individualizing lung SABR dose and fractionation by tumor size, location, and histological characteristics may be associated with local tumor control. Design, Setting, and Participants This nonrandomized controlled trial (the iSABR trial, so named for individualized SABR) was a phase 2 multicenter trial enrolling participants from November 15, 2011, to December 5, 2018, at academic medical centers in the US and Japan. Data were analyzed from December 9, 2020, to May 10, 2023. Patients were enrolled in 3 groups according to cancer type: initial diagnosis of non-small cell lung cancer (NSCLC) with an American Joint Committee on Cancer 7th edition T1-3N0M0 tumor (group 1), a T1-3N0M0 new primary NSCLC with a history of prior NSCLC or multiple NSCLCs (group 2), or lung metastases from NSCLC or another solid tumor (group 3). Intervention Up to 4 tumors were treated with once-daily SABR. The dose ranged from 25 Gy in 1 fraction for peripheral tumors with a volume of 0 to 10 cm3 to 60 Gy in 8 fractions for central tumors with a volume greater than 30 cm3. Main outcome Per-group freedom from local recurrence (same-lobe recurrence) at 1 year, with censoring at time of distant recurrence, death, or loss to follow-up. Results In total, 217 unique patients (median [IQR] age, 72 [64-80] years; 129 [59%] male; 150 [69%] current or former smokers) were enrolled (some multiple times). There were 240 treatment courses: 79 in group 1, 82 in group 2, and 79 in group 3. A total of 285 tumors (211 [74%] peripheral and 74 [26%] central) were treated. The most common dose was 25 Gy in 1 fraction (158 tumors). The median (range) follow-up period was 33 (2-109) months, and the median overall survival was 59 (95% CI, 49-82) months. Freedom from local recurrence at 1 year was 97% (90% CI, 91%-99%) for group 1, 94% (90% CI, 87%-97%) for group 2, and 96% (90% CI, 89%-98%) for group 3. Freedom from local recurrence at 5 years ranged from 83% to 93% in the 3 groups. The proportion of patients with grade 3 to 5 toxic effects was low, at 5% (including a single patient [1%] with grade 5 toxic effects). Conclusions and Relevance The results of this nonrandomized controlled trial suggest that individualized SABR (iSABR) used to treat lung tumors may allow minimization of treatment dose and is associated with excellent local control. Individualized dosing should be considered for use in future trials. Trial Registration ClinicalTrials.gov Identifier: NCT01463423.
Collapse
Affiliation(s)
- Michael F. Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Harriet Gee
- Sydney West Radiation Oncology Network, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Hiroki Shirato
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - John M. Snyder
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alexander L. Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Lucas K. Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Peter G. Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, California
| | - Heather A. Wakelee
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joel Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Elizabeth Kidd
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Steven L. Hancock
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - David B. Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen C. Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Samantha Wong
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Eleanor Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Ngan Nguyen
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Rachel Liang
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
47
|
Chow R, McMillan MT, Simone CB. Microwave Ablation for Early-Stage Non-Small Cell Lung Cancer: Don't Put the Cart Before the Stereotactic Horse. Lung Cancer 2023; 185:107382. [PMID: 37757574 DOI: 10.1016/j.lungcan.2023.107382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Ronald Chow
- New York Proton Center, New York, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles B Simone
- New York Proton Center, New York, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
48
|
Cantrell JN, Acharya P, Vesely SK, Gunter TC. Pathologic Nodal Staging Before SBRT for Early-stage NSCLC Does Not Impact Overall Survival: A Propensity Score-matched NCDB Analysis. Am J Clin Oncol 2023; 46:503-511. [PMID: 37679872 PMCID: PMC10874178 DOI: 10.1097/coc.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Stereotactic body radiation therapy (SBRT) for early-stage non-small cell carcinoma of the lung (NSCLC) is increasingly utilized. We sought to assess overall survival (OS) for early-stage NSCLC patients receiving SBRT depending on staging method. METHODS Early-stage NSCLC patients treated with definitive SBRT were identified in the National Cancer Database (NCDB), and OS was determined based on method of staging. Patient, disease, and treatment characteristics were also analyzed. RESULTS A total of 12,106 patients were included; 865 (7%) received invasive staging (nodal sampling, NS) and 11,241 (93%) had no nodal sampling (NNS). From this larger dataset, a propensity score matching (1:1 without replacement) was performed, which yielded 839 patients for each group (NNS and NS). With a median follow-up time of 3.12 years, median survival for all patients included in the matched dataset was 2.75 years (95% CI: 2.55-2.93 y), with 2- and 5-year OS estimated at 63.9% and 25.7%, respectively. In a multivariable analysis on matched data, there was no difference in mortality risk between the NNS and NS groups (hazard ratio=1.08, 95% CI: 0.94-1.24, P =0.25). Negative prognostic factors identified in the multivariable analysis of the matched data included: age more than 65, male sex, Charlson-Deyo Score ≥1, and tumor size ≥3 cm. CONCLUSIONS SBRT use in early-stage NSCLC steadily increased over the study period. Most patients proceeded to SBRT without nodal staging, conflicting with National Comprehensive Cancer Network (NCCN) guidelines which recommend pathologic mediastinal lymph node evaluation for all early-stage NSCLC cases, except stage IA. Our findings suggest similar OS in patients with early-stage NSCLC treated with SBRT irrespective of nodal staging. Furthermore, we highlight patient-related, disease-related, and treatment-related prognostic factors to consider when planning therapy for these patients.
Collapse
Affiliation(s)
- J. Nathan Cantrell
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Pawan Acharya
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sara K. Vesely
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tyler C. Gunter
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
49
|
Anetai Y, Doi K, Takegawa H, Koike Y, Nishio T, Nakamura M. Extracting the gradient component of the gamma index using the Lie derivative method. Phys Med Biol 2023; 68:195028. [PMID: 37703904 DOI: 10.1088/1361-6560/acf990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective. The gamma index (γ) has been extensively investigated in the medical physics and applied in clinical practice. However,γhas a significant limitation when used to evaluate the dose-gradient region, leading to inconveniences, particularly in stereotactic radiotherapy (SRT). This study proposes a novel evaluation method combined withγto extract clinically problematic dose-gradient regions caused by irradiation including certain errors.Approach. A flow-vector field in the dose distribution is obtained when the dose is considered a scalar potential. Using the Lie derivative from differential geometry, we definedL,S, andUto evaluate the intensity, vorticity, and flow amount of deviation between two dose distributions, respectively. These metrics multiplied byγ(γL,γS,γU), along with the threshold valueσ, were verified in the ideal SRT case and in a clinical case of irradiation near the brainstem region using radiochromic films. Moreover, Moran's gradient index (MGI), Bakai's χ factor, and the structural similarity index (SSIM) were investigated for comparisons.Main results. A highL-metric value mainly extracted high-dose-gradient induced deviations, which was supported by highSandUmetrics observed as a robust deviation and an influence of the dose-gradient, respectively. TheS-metric also denotes the measured similarity between the compared dose distributions. In theγdistribution,γLsensitively detected the dose-gradient region in the film measurement, despite the presence of noise. The thresholdσsuccessfully extracted the gradient-error region whereγ> 1 analysis underestimated, andσ= 0.1 (plan) andσ= 0.001 (film measurement) were obtained according to the compared resolutions. However, the MGI, χ, and SSIM failed to detect the clinically interested region.Significance. Although further studies are required to clarify the error details, this study demonstrated that the Lie derivative method provided a novel perspective for the identifying gradient-induced error regions and enabled enhanced and clinically significant evaluations ofγ.
Collapse
Affiliation(s)
- Yusuke Anetai
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata-shi, Osaka, 573-1010, Japan
| | - Kentaro Doi
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita-she, Osaka, 565-0871, Japan
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata-shi, Osaka, 573-1010, Japan
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata-shi, Osaka, 573-1010, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita-she, Osaka, 565-0871, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
50
|
Zarębska I, Harat M. An optimal dose-fractionation for stereotactic body radiotherapy in peripherally, centrally and ultracentrally located early-stage non-small lung cancer. Thorac Cancer 2023; 14:2813-2820. [PMID: 37691151 PMCID: PMC10542466 DOI: 10.1111/1759-7714.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), is commonly used in inoperable patients with early-stage non-small lung cancer (NSCLC). This treatment has good outcomes and low toxicity in peripherally located tumors. However, in lesions which are located close to structures such as the bronchial tree or mediastinum the risk of severe toxicity increases. This review summarizes the evidence of dose-fractionation in SBRT of NSCLC patients in various locations.
Collapse
Affiliation(s)
- Izabela Zarębska
- Department of Neurooncology and RadiosurgeryFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
- Department of RadiotherapyFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
| | - Maciej Harat
- Department of Neurooncology and RadiosurgeryFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
- Center of Medical SciencesUniversity of Science and TechnologyBydgoszczPoland
| |
Collapse
|