1
|
Gao B, Pan H, Zhou X, Yu L, Gao Y, Zhang T, Gao X, Hou J. RNA demethylase ALKBH5 regulates cell cycle progression in DNA damage response. Sci Rep 2025; 15:16059. [PMID: 40341728 PMCID: PMC12062394 DOI: 10.1038/s41598-025-01207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
RNA N6-methyladenosine (m6A) modification plays a crucial role in the DNA damage response, while the detailed mechanisms remain to be explored. In this study, we report the involvement of the m6A demethylase ALKBH5 in X-ray-induced DNA damage response. Depletion of ALKBH5 reduces X-ray-induced DNA damage, induces G2/M phase arrest and reduces cell apoptosis. RNA sequencing and m6A sequencing analysis reveal that ALKBH5 removes m6A modifications from its target mRNAs and suppresses their expression. A subset of mRNAs encoding cyclin dependent kinase inhibitors, such as CDKN1A and CDKN2B, show increased stability and expression upon ALKBH5 knockdown. Subsequently, the upregulation of CDKN1A and CDKN2B contributes to G2/M phase arrest to facilitate DNA repair. Our findings unveil the epigenetic regulation of cell cycle checkpoint by ALKBH5 in X-ray-induced DNA damage, offering potential targets for DNA damage-based therapy for cancers.
Collapse
Grants
- 82372727, 82073110, 82071729 the National Natural Science Foundation of China
- 82372727, 82073110, 82071729 the National Natural Science Foundation of China
- LZ23H160003 Natural Science Foundation of Zhejiang Province
- LTGY24H040005, LTGY24H040006, LTGY23H040004, LTGY23H040005 the Science Technology Department of Zhejiang Province, China
- WKJ-ZJ-2449, 2023KY368 the Health Commission of Zhejiang Province, China
Collapse
Affiliation(s)
- Bo Gao
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Haitao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Xiaoling Zhou
- Environmental Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lei Yu
- Environmental Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yunyi Gao
- Environmental Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.
| | - Xiangwei Gao
- Environmental Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jingyu Hou
- Environmental Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Shang M, Qin J, Zhao B, Luo Q, Wang H, Yang C, Liu H, Ran J, Yang W. Recent Advance in Sensitive Detection of Demethylase FTO. Chembiochem 2025; 26:e202400995. [PMID: 39714929 DOI: 10.1002/cbic.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Methylation modification is a critical regulatory mechanism in epigenetics and plays a significant role in various biological processes. N6-methyladenosine (m6A) is the most common modification found in RNA. The fat mass and obesity-associated protein (FTO) facilitate the demethylation of m6A in RNA, and its abnormal expression is closely linked to the development of several diseases. As a result, FTO has the potential to serve as an important biomarker for clinical disease diagnosis. Despite its significance, there has been a lack of comprehensive reviews addressing advancements in detection methods for the demethylase FTO. This review provides an overview of the progress in FTO detection methods, ranging from traditional approaches to innovative techniques, with a particular emphasis on recently reported advancements. These novel detection methods can be categorized into strategies based on enzymes, functional nucleic acids (FNA), and conformational changes. We summarize the principles and applications of these detection methods and discuss the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Min Shang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Jingying Qin
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Bingyue Zhao
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Qian Luo
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Huimin Wang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Hanghang Liu
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Wei Yang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| |
Collapse
|
3
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2025; 62:5484-5500. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Xue Q, Li H, Liu G, Xiong Y, Zhou G, Xu P, He J, Wang X, Miao C. Vaccarin treats lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119898. [PMID: 40311715 DOI: 10.1016/j.jep.2025.119898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Vaccarin, a natural small molecule extracted from Gypsophila vaccaria (L.) Sm., is an active flavonoid glycoside. BACKGROUND Lactation insufficiency refers to insufficient milk secretion in women after childbirth, which affects the feeding of infants and even their development. Our preliminary experiments showed that alkylation repair homolog protein 5 (ALKBH5) was abnormally overexpressed in mammary tissue of lactation deficiency model rats, which played an important role in regulating milk secretion, but the mechanism was not clear, and no research reports were reported in this aspect. PURPOSE The aim of this study was to investigate whether Vaccarin (Vac) treated lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway. METHODS The lactation insufficiency model rats and primary cultured rat mammary epithelial cells (RMECs) were used as experimental subjects. RT-qPCR, Western blot, RNA Immunoprecipitation, immunofluorescence and related methods were used to study the mechanism of Vac treatment for lactation insufficiency. RESULTS Vac effectively increased the milk production, significantly improved the thickness and density of mammary ducts and follicles, and promoted the prolactin (PRL) secretion and the prolactin receptor (PRLR) expression in lactation insufficiency model rats. Vac significantly promoted the expression of FASN, CSN2, and GLUT1. ALKBH5 was upregulated in the mammary gland of model mice, promoting SFRP2 expression and inhibiting the Wnt/β-catenin signaling pathway and the expression of FASN, CSN2 and GLUT1. Furthermore, Vac inhibited the expression of SFRP2 by targeting the ALKBH5, and subsequently activated the Wnt/β-catenin signaling pathway to promote milk secretion in the lactation insufficiency model rats. CONCLUSION Vac promoted milk secretion and improved lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Guosheng Liu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Youyi Xiong
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui Science and Technology University, Chuzhou City, Anhui Province, China
| | - Guoliang Zhou
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui Science and Technology University, Chuzhou City, Anhui Province, China
| | - Pengfei Xu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Anhui Public Health Clinical Center, Hefei City, Anhui Province, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei City, Anhui Province, China
| | - Xiaomei Wang
- Department of Nursing Management and Education, School of Nursing, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China.
| |
Collapse
|
5
|
Liu L, Ge D, Lin Y, Han Z, Zhao H, Cao L, Wu X, Ma G. Epigenetic regulation in oogenesis and fetal development: insights into m6A modifications. Front Immunol 2025; 16:1516473. [PMID: 40356909 PMCID: PMC12066277 DOI: 10.3389/fimmu.2025.1516473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The unique physiological structure of women has led to a variety of diseases that have attracted the attention of many people in recent years. Disturbances in the reproductive system microenvironment lead to the progression of various female tumours and pregnancy disorders. Numerous studies have shown that epigenetic modifications crucially influence both oogenesis and foetal development. m6A, a modification at the mRNA level, consists of three parts, namely, writers, erasers, and readers, which are involved in several biological functions, such as the nucleation and stabilisation of mRNAs, thereby regulating the development of reproductive system diseases. In this manuscript, we delineate the constituents of m6A, their biological roles, and advancements in understanding m6A within the maternal-foetal immunological context. In addition, we summarise the mechanism of m6A in gynaecological diseases and provide a new perspective for targeting m6A to delay the progression of reproductive system diseases in clinical practice.
Collapse
Affiliation(s)
- Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Clinical Medical College of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danxia Ge
- Department of Critical Care Medicine, Traditional Chinese Medicine Hospital of, Ningbo, Zhejiang, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqin Cao
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Wu
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhi Ma
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhou Y, Cao P, Zhu Q. The regulatory role of m6A in cancer metastasis. Front Cell Dev Biol 2025; 13:1539678. [PMID: 40356596 PMCID: PMC12066624 DOI: 10.3389/fcell.2025.1539678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Metastasis remains a primary cause of cancer-related mortality, with its intricate mechanisms continuing to be uncovered through advancing research. Among the various regulatory processes involved, RNA modification has emerged as a critical epitranscriptomic mechanism influencing cancer metastasis. N6-methyladenosine (m6A), recognized as one of the most prevalent and functionally significant RNA modifications, plays a central role in the regulation of RNA metabolism. In this review, we explore the multifaceted role of m6A in the different stages of cancer metastasis, including epithelial-mesenchymal transition, invasion, migration, and colonization. In addition to summarizing the current state of our understanding, we offer insights into how m6A modifications modulate key oncogenic pathways, highlighting the implications of recent discoveries for therapeutic interventions. Furthermore, we critically assess the limitations of previous studies and propose areas for future research, including the potential for targeting m6A as a novel approach in anti-metastatic therapies. Our analysis provides a comprehensive understanding of the regulatory landscape of m6A in metastasis, offering directions for continued exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Cao
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wu H, Lai GQ, Cheng R, Huang H, Wang J, Liu Z, Gao J, Zhou H, Li C, Yang CG, Liu H. Discovery of Covalent and Cell-Active ALKBH5 Inhibitors with Potent Antileukemia Effects In Vivo. Angew Chem Int Ed Engl 2025; 64:e202424928. [PMID: 39976119 DOI: 10.1002/anie.202424928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
The N6-methyladenosine (m6A) demethylase ALKBH5 is the only other identified m6A eraser except for FTO, and dysregulated ALKBH5 functions were closely associated with leukemogenesis. However, the development of ALKBH5 inhibitors is slow compared to FTO inhibitors. Inspired by a non-catalytic C200-covalent strategy, a series of maleimide derivatives were designed and synthesized as potent and covalent ALKBH5 inhibitors in this work. The analog 18 l exhibited excellent inhibitory effects on ALKBH5 (IC50=0.62 μM), and exerted a strong antiproliferative effect on NB4 cells with IC50 of 0.63 μM. The Kd value of 18 l binding to ALKBH5 was 804 nM, while no binding was observed with FTO. This result indicated that 18 l was a highly selective inhibitor of ALKBH5 rather than FTO. Additionally, proteomic experiments showed that 18 l directly targeted ALKBH5 in cells and altered m6A levels on mRNA, blocked the related downstream signal pathways, promoted differentiation, and induced apoptosis. Furthermore, 18 l exerted excellent in vivo antitumor activity with TGITV values of 66.3 % at 1 mg/kg in NB4 tumor xenograft models.
Collapse
Affiliation(s)
- Hengbo Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gan-Qiang Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ruixiang Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hui Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ju Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zeyu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
8
|
Zheng Q, Zhong X, Kang Q, Zhang Z, Ren D, Liu Y, Rui L. METTL14-Induced M 6A Methylation Increases G6pc Biosynthesis, Hepatic Glucose Production and Metabolic Disorders in Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417355. [PMID: 40278833 DOI: 10.1002/advs.202417355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Indexed: 04/26/2025]
Abstract
METTL14 dimerizes with METTL3 to install N6-methyladenosine (m6A) on mRNA (m6A writers). Subsequently, m6A readers bind to m6A-marked RNA to influence its metabolism. RNA m6A emerges to critically regulate multiple intracellular processes; however, there is a gap in our understanding of m6A in liver metabolism. Glucose-6-phosphatase catalytic subunit (G6pc) mediates hepatic glucose production (HGP) and serves as the gatekeeper for glycogenolysis and gluconeogenesis; however, G6pc regulation is not fully understood. Here, METTL14 is identified as a posttranscriptional regulator of G6pc. Liver METTL14, METTL3, and m6A-methylated G6pc mRNA are upregulated in mice with diet-induced obesity. Deletion of Mettl14 decreases, whereas overexpression of METTL14 increases, G6pc mRNA m6A in hepatocytes in vitro and in vivo. Five m6A sites are identified, and disruption of them (G6pcΔ 5A) blocks METTL14-induced m6A methylation of G6pcΔ 5A mRNA. METTL14 increases both stability and translation of G6pc but not G6pcΔ 5A mRNA. YTHDF1 and YTHDF3 but not YTHDF2 (m6A readers) bind to m6A-marked G6pc mRNA to increase its synthesis. Deletion of hepatic Mettl14 decreases gluconeogenesis in primary hepatocytes, liver slices, and mice. Hepatocyte-specific restoration of G6pc reverses defective HGP in Mettl14 knockout mice. These results unveil a METTL14/G6pc mRNA m6A/G6pc biosynthesis/HGP axis governing glucose metabolism in health and metabolic disease.
Collapse
Affiliation(s)
- Qiantao Zheng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Michigan, 48109, USA
| | - Xiao Zhong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qianqian Kang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Michigan, 48109, USA
| | - Zhiguo Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Michigan, 48109, USA
| | - Decheng Ren
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Yong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Michigan, 48109, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Sun X, Zhou Y, Zhu W, Chen H. Research progress on N6-methyladenosine and non-coding RNA in multiple myeloma. Discov Oncol 2025; 16:615. [PMID: 40281359 PMCID: PMC12031709 DOI: 10.1007/s12672-025-02386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
N6-methyladenosine (m6A) and non-coding RNA (ncRNA) play important roles in the occurrence, development, and prognosis of multiple myeloma (MM). They not only affect stemness, growth, and apoptosis of MM cells but also intervene in MM proliferation, migration, invasion, and even drug resistance. It is also a prognostic factor for poor MM survival. Therefore, in-depth research on the mechanisms of m6A and ncRNA in MM significant for diagnosis, treatment, and prognosis of MM.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
10
|
Lu Z, Chen J, Luo C. The m6A modification of LncRNA LINC00200 regulated by WTAP accelerates glioma tumorigenesis by regulating Wnt/β-catenin pathway. Cell Div 2025; 20:10. [PMID: 40269865 PMCID: PMC12020130 DOI: 10.1186/s13008-025-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Several studies have delineated that dysregulated N6-methyladenosine (m6A) regulators participate in glioma progression. The objective of this study is to investigate the mechanism of Wilms' tumor 1-associating protein (WTAP)-mediated m6A modification of long noncoding RNA (lncRNA) LINC00200 in glioma. METHODS The LINC00200 expression in glioma was analyzed by qRT-PCR. The expressions of WTAP and Wnt/β-catenin pathway associated proteins were determined via qRT-PCR or western blotting. The levels of WTAP-mediated m6A modification of LINC00200 was ascertained by MeRIP-qPCR. Functionally, the effects of LINC00200 knockdown and the interaction of WTAP with LINC00200 on the glioma cell characteristics were examined by CCK8, colony formation, and transwell migration/invasion assays. In vivo experiments were performed to verify the effect of LINC00200 on tumor growth. RESULTS LINC00200 was overexpressed in glioma, and high LINC00200 level was related to higher-grade tumor. Moreover, its knockdown inhibited the malignant properties and expression of molecules related to Wnt/β-catenin pathway in glioma cell lines. In vivo, LINC00200 knockdown attenuated tumor growth. WTAP was also overexpressed in glioma tissues and demonstrated a positive association with LINC00200 expression. Furthermore, the relative enrichment of LINC00200 m6A was enhanced/reduced in a WTAP-dependent manner. Meanwhile, silencing LINC00200 partially reversed the malignant effects of WTAP overexpression in glioma. CONCLUSION These results demonstrate that WTAP-mediated m6A modification of LINC00200 promotes glioma progression by modulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhiying Lu
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China
| | - Jing Chen
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China
| | - Chao Luo
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China.
| |
Collapse
|
11
|
Wen L, Fu J, Wang Z, Xie R, Tang S, Yu L, Zhou H. Regulatory mechanisms of m6A RNA methylation in esophageal cancer: a comprehensive review. Front Genet 2025; 16:1561799. [PMID: 40330012 PMCID: PMC12053326 DOI: 10.3389/fgene.2025.1561799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Esophageal cancer is an aggressively malignant neoplasm characterized by a high mortality rate. Frequently diagnosed at an advanced stage, it presents challenges for optimal therapeutic intervention due to its non-specific symptoms, resulting in lost opportunities for effective treatment, such as surgery, radiotherapy, chemotherapy and target therapy. The N6-methyladenosine (m6A) modification represents the most critical post-transcriptional modification of eukaryotic messenger RNA (mRNA). The reversible m6A modification is mediated by three regulatory factors: m6A methyltransferases, demethylating enzymes, and m6A recognition proteins. These components identify and bind to specific RNA methylation sites, thereby modulating essential biological functions such as RNA processing, nuclear export, stability, translation and degradation, which significantly influence tumorigenesis, invasion, and metastasis. Given the importance of m6A modification, this paper offers a comprehensive examination of the regulatory mechanisms, biological functions, and future therapeutic implications of m6A RNA methylation in the context of esophageal cancer.
Collapse
Affiliation(s)
- Long Wen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
| | - Jiang Fu
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixu Wang
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rangping Xie
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Qian X, Li X, Zheng Z, Liu L, Li J, Yang J, Lu B, Chen E, Zhang H, Ye B, Lu Y, Liu P. METTL3 orchestrates cancer progression by m 6A-dependent modulation of oncogenic lncRNAs. Int J Biol Macromol 2025; 310:143299. [PMID: 40253016 DOI: 10.1016/j.ijbiomac.2025.143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
RNA modifications, particularly N6-methyladenosine (m6A), play crucial roles in gene expression regulation. While extensively studied in the context of mRNA, the impact of m6A on long non-coding RNAs (lncRNAs) remains elusive. This research aimed to reveal the regulatory landscape of m6A in lncRNA expression. In a comprehensive analysis across 6219 samples spanning 12 cancer types, we unveiled METTL3 as the most potent regulator of lncRNA expression among the examined 19 m6A regulators. A total of 397 METTL3-mediated m6A-modified lncRNAs (mmlncRs) were unveiled across 12 cancer types, indicating a consistent mechanism of METTL3-mediated lncRNA regulation. Functional assays demonstrated that METTL3 knockout significantly impeded lung cancer cell proliferation and progression. Leveraging RNA-seq and MeRIP-seq, we identified C1RL-AS1 as a bona fide m6A target of METTL3 in lung cancer, revealing its oncogenic role. Mechanistically, METTL3 depletion disrupts m6A modification on C1RL-AS1, leading to its downregulated expression. YTHDF2 binds to C1RL-AS1, maintaining its stability in a m6A-dependent manner. This study provides a valuable resource for the exploration of mmlncRs as promising therapeutic targets in cancers, shedding light on the intricate regulatory networks orchestrated by METTL3.
Collapse
Affiliation(s)
- Xinyi Qian
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xufan Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhihong Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lian Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Bo Ye
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
13
|
Liu X, Qi Q, Xiong W, Zhang Y, Shen W, Xu X, Zhao Y, Li M, Zhou E, Tian T, Zhou X. Tailoring and reversing m6A editing with sequential RNA bioorthogonal chemistry. Nucleic Acids Res 2025; 53:gkaf283. [PMID: 40219967 PMCID: PMC11992675 DOI: 10.1093/nar/gkaf283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Many existing methods for post-transcriptional RNA modification rely on a single-step approach, limiting the ability to reversibly control m6A methylation at specific sites. Here, we address this challenge by developing a multi-step system that builds on the concept of sequential RNA bioorthogonal chemistry. Our strategy uses an azide-based reagent (NAI-N3) capable of both cleavage and ligation reactions, thereby allowing iterative and reversible modifications of RNA in living cells. By applying this approach in CRISPR (clustered regularly interspaced short palindromic repeats)-based frameworks, we demonstrate tailored editing of m6A marks at targeted RNA sites, overcoming the one-way restriction of conventional bioorthogonal methods. This sequential protocol not only broadens the scope for fine-tuned RNA regulation but also provides a versatile platform for exploring dynamic m6A function in genetic and epigenetic research.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yunting Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ming Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
14
|
Mu D, Shi Y, Sun R, Han B, Zhong K, Ye Y, Zhang J. The acidic microenvironment promotes pancreatic cancer progression via the lncRNA-LOC100507424/E2F1/FOXM1 axis. BMC Cancer 2025; 25:655. [PMID: 40211195 PMCID: PMC11984246 DOI: 10.1186/s12885-025-14073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Pancreatic cancer is highly aggressive and sensitive to acidic microenvironments, which promote cancer cell survival and invasion. Long non-coding RNAs (lncRNAs) play crucial roles in cancer biology, helping cells adapt to microenvironmental changes, but their functions in the acidic microenvironment of pancreatic cancer are understudied. This study investigated the role of lncRNA LOC100507424 in pancreatic cancer, previously linked to glioma stem cells. Clinical specimens and cell line models cultured under acidic conditions showed that LOC100507424 was upregulated in pancreatic cancer tissues and further increased in acidic environments. Functional assays demonstrated that knockdown of LOC100507424 inhibited cell proliferation, invasion and metastasis. Mechanistically, LOC100507424 transcriptionally regulated FOXM1 expression through its interaction with E2F1. In vivo studies confirmed that LOC100507424 promoted tumor growth in nude mice. These findings highlight the significance of lncRNAs in the acidic microenvironment of pancreatic cancer and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Deyang Mu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, P.R. China
- General Surgery, Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Oncology Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Shi
- Department of Obstetrics and Gynecology, Zhejiang Provincial People's Hospital, People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Runxuan Sun
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, P.R. China
| | - Bing Han
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, P.R. China.
| | - Jungang Zhang
- General Surgery, Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Oncology Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
15
|
Li P, Xiang Y, Wei J, Xu X, Wang J, Yu H, Li X, Lin H, Fu X. Follicle-stimulating hormone promotes EndMT in endothelial cells by upregulating ALKBH5 expression. Cell Mol Biol Lett 2025; 30:41. [PMID: 40186131 PMCID: PMC11969750 DOI: 10.1186/s11658-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The incidence of atherosclerosis markedly rises following menopause. Our previous findings demonstrated that elevated follicle-stimulating hormone (FSH) levels in postmenopausal women accelerate atherosclerosis progression. Plaque instability, the fundamental pathological factor in acute coronary syndrome, primarily results from vascular embolism due to plaque rupture. Recent evidence highlights that endothelial-to-mesenchymal transition (EndMT) exacerbates plaque instability, although the link between FSH and EndMT has not been fully established. This investigation sought to explore the possible influence of FSH in modulating EndMT. METHODS In this study, apolipoprotein E-deficient (ApoE-/-) mice served as an atherosclerosis model, while human umbilical vascular endothelial cells (HUVECs) were used as cellular models. Protein levels were assessed through immunochemical techniques, gene expression was quantified via RT-qPCR, and nucleic acid-protein interactions were evaluated using immunoprecipitation. The m6A modification status was determined by MeRIP, and cellular behaviors were analyzed through standard biochemical assays. RESULTS Our results indicate that FSH induces EndMT both in vitro and in vivo. Additional investigation suggested that FSH upregulates the transcription factor Forkhead box protein M1 (FOXM1) at both protein and mRNA levels by enhancing the expression of AlkB homolog 5, RNA demethylase (ALKBH5). FSH reduces m6A modifications on FOXM1 through ALKBH5, leading to increased nascent transcript levels and mRNA stability of FOXM1. Dual-luciferase reporter assays highlighted cAMP-response element binding protein (CREB)'s essential function in facilitating the FSH-induced upregulation of ALKBH5. CONCLUSIONS These findings suggest that FSH promotes ALKBH5 expression, facilitates N6-methyladenosine (m6A) demethylation on FOXM1, and consequently, induces EndMT. This study elucidates the impact of FSH on plaque instability and provides insights into potential strategies to prevent acute coronary syndrome in postmenopausal women.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jinzhi Wei
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xingyan Xu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jiale Wang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Haowei Yu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Huiping Lin
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Xiaodong Fu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China.
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Li K, Pei Y, Dong X, Wu Y, Lou X, Li Y, Liang S, Wu Y, Xu D, Li B, Cui W. ALKBH5-mediated m6A regulates the alternative splicing events of SRSF10 in ovarian cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00898-5. [PMID: 40175608 DOI: 10.1038/s41417-025-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/23/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
N6-methyladenosine (m6A) methylation was found to be involved in the tumorigenesis and development of ovarian cancer. Until now, it is not clear to identify the mechanism by m6A demethylase ALKBH5 affects RNA splicing in ovarian cancer. In this study, we examined ALKBH5 protein expression and m6A levels by immunohistochemistry and analyzed their correlation with clinical features and prognosis in patients with ovarian cancer. We identified the elevated expression of ALKBH5 and a general reduction in the level of m6A in ovarian cancer patients. In the ovarian cancer cell line A2780, ALKBH5 depletion was found using the siRNA strategy or the CRISPR/Cas9 knockout (KO) method, which significantly reduced the level of m6A and inhibited cell viability, proliferation, and migration. The MeRIP-seq and RNA-seq showed that ALKBH5-regulated m6A RNA modification mainly affects RNA splicing function in ovarian cancer cells. SRSF10 is a key target gene involved in alternative splicing regulation through ALKBH5-m6A. ALKBH5 knockdown resulted in increased retention of SRSF10 exon 5 and decreased expression of transcript SRSF10-211. In conclusion, the alternative splicing regulation effect by ALKBH5-mediated m6A suggests a novel promising approach for m6A modification in OC and provides novel insights into the mechanisms involved in ovarian cancer therapy.
Collapse
Affiliation(s)
- Kexin Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Pei
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Xin Dong
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoying Lou
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Liang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danfei Xu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Practice of Laboratory Medicine in Qinghai Province, Beijing, China.
| |
Collapse
|
17
|
Zhang J, Li G, Wu R, Shi L, Tian C, Jiang H, Che H, Jiang Y, Jin Z, Yu R, Liu X, Zhang X. The m6A RNA demethylase FTO promotes radioresistance and stemness maintenance of glioma stem cells. Cell Signal 2025; 132:111782. [PMID: 40185350 DOI: 10.1016/j.cellsig.2025.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/09/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Glioblastoma (GBM) was the most common and deadliest malignant brain tumor in adults, with a poor prognosis. Effective targeted drugs are still lacking, and the presence of glioblastoma stem cells (GSC) is a major factor contributing to radiotherapy resistance. Screening for targeted drugs that can sensitize GBM to radiotherapy is crucial. FTO is considered an attractive potential target for tumor therapy, as it mediates m6A demethylation to regulate the stability of target genes. In this study, we evaluated the role of FTO inhibition in promoting the sensitivity of GSC cells to radiotherapy through tumor sphere formation assays, cell apoptosis assays, and in situ GSC tumor models. We preliminarily explored the molecular mechanisms by transcriptome sequencing and m6A methylation sequencing to investigate how inhibiting FTO increases radiotherapy sensitivity. The results showed that downregulation of FTO expression or FTO inhibitor FB23-2 combined with radiotherapy significantly inhibited GSC cell proliferation and self-renewal and increased apoptosis. FB23-2 combined with radiotherapy effectively inhibited intracranial tumor growth in mice and prolonged the survival of tumor-bearing mice. Furthermore, FTO inhibition sustained the increase of γH2AX expression induced by radiotherapy while decreasing Rad51 expression. Importantly, we found that inhibiting FTO could increase m6A methylation modification of VEGFA, thereby downregulating both mRNA and protein expression of VEGFA. Our findings provide a new therapeutic strategy for enhancing GBM radiotherapy sensitivity and lay the theoretical and experimental groundwork for clinical trials targeting FTO.
Collapse
Affiliation(s)
- Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang 453003, Henan, China
| | - Guoxi Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Runqiu Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cong Tian
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyan Jiang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyu Che
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongang Jiang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyong Jin
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
18
|
Kapadia B, Roychowdhury A, Kayastha F, Lee WS, Nanaji N, Windle J, Gartenhaus R. m6A eraser ALKBH5/treRNA1/DDX46 axis regulates BCR expression. Neoplasia 2025; 62:101144. [PMID: 39987653 PMCID: PMC11905846 DOI: 10.1016/j.neo.2025.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Epitranscriptomic modifications, particularly N6-methyladenosine (m6A), have emerged as critical regulators of RNA stability, localization, and translation, shaping immune responses and tumor progression. In B-cell biology, m6A modifications influence germinal center formation and antigen-driven differentiation, underscoring their importance in immune regulation. Among m6A regulators, ALKBH5 (RNA demethylase) is pivotal in removing methylation marks and modulating gene expression in diverse cellular contexts. Despite advancements in understanding m6A dynamics, the mechanistic interplay between m6A demethylation and B-cell receptor (BCR) signaling pathways still needs to be explored. This study reveals a novel regulatory axis involving ALKBH5, treRNA1 (Translation Regulatory Long Non-Coding RNA 1), and DDX46 (RNA helicase). Upon activation signals, ALKBH5 and treRNA1 translocate to the nucleus, forming a functional complex with DDX46 to orchestrate the removal of m6A modifications on key transcripts, including those involved in BCR signaling. This demethylation enhances transcript stability and facilitates cytoplasmic export through interaction with the RNA-binding protein HuR, promoting efficient translation. Disruption of this axis, via loss of ALKBH5, DDX46, or treRNA1, led to impaired transcript processing and diminished BCR-related gene expression, highlighting the critical role of m6A demethylation in maintaining RNA dynamics. These findings uncover a previously unrecognized epitranscriptomic mechanism driven by the ALKBH5-treRNA1-DDX46 complex, with significant implications for B-cell functionality, immune regulation, and oncogenic pathways. Targeting this axis offers a promising avenue for developing therapeutic strategies in cancer and immune-related disorders where m6A dysregulation plays a central role.
Collapse
Affiliation(s)
- Bandish Kapadia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Section of Hematology and Oncology, Medicine Service, Richmond VA Cancer Center, Richmond Veteran Affairs Medical Center, Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | - Anirban Roychowdhury
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Section of Hematology and Oncology, Medicine Service, Richmond VA Cancer Center, Richmond Veteran Affairs Medical Center, Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Forum Kayastha
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Section of Hematology and Oncology, Medicine Service, Richmond VA Cancer Center, Richmond Veteran Affairs Medical Center, Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Won Sok Lee
- Department of Pathology, Richmond Veteran Affairs Medical Center, Richmond, VA, USA
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD, USA
| | - Jolene Windle
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Ronald Gartenhaus
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Section of Hematology and Oncology, Medicine Service, Richmond VA Cancer Center, Richmond Veteran Affairs Medical Center, Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
19
|
Zhou X, Liu W, Liang Z, Liang J, Zhang T, Gao W, Yang Z. Key epigenetic enzymes modulated by natural compounds contributes to tumorigenicity. Int J Biol Macromol 2025; 301:140391. [PMID: 39880237 DOI: 10.1016/j.ijbiomac.2025.140391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Dysregulation of epigenetic regulation is observed in numerous tumor cells. The therapeutic effects of natural products on tumors were investigated through a comprehensive analysis of active ingredients derived from various structured natural products. The analysis focuses on regulating key enzymes involved in epigenetic control. To study the modulation of these enzymes for tumor treatment, the structural characteristics of natural products that impact tumorigenesis were identified. The presence of specific patterns suggests that compounds sharing structural similarities can potentially induce therapeutic effects on identical tumors through modulation of distinct modifying enzymes. Structurally analogous natural products can likewise achieve therapeutic effects across diverse tumor types via their interaction with a common epigenetic enzyme. There exist numerous flavonoids with the capability to modulate METTL3, thereby influencing the development of various tumors. The normalization process was implemented to account for a common phenomenon, wherein structurally distinct compounds effectively target the same tumor by modulating a shared key enzyme. By summarizing, valuable insights into the role of compound-epigenetic enzymes in tumor development have been obtained. This discovery establishes a crucial scientific foundation for the prevention and treatment of tumor development through the utilization of structurally similar natural active ingredients.
Collapse
Affiliation(s)
- Xiaoyue Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiali Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenyi Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai 200137, China.
| |
Collapse
|
20
|
Xu X, Zhu H, Hugh-White R, Livingstone J, Eng S, Zeltser N, Wang Y, Pajdzik K, Chen S, Houlahan KE, Luo W, Liu S, Xu X, Sheng M, Guo WY, Arbet J, Song Y, Wang M, Zeng Y, Wang S, Zhu G, Gao T, Chen W, Ci X, Xu W, Xu K, Orain M, Picard V, Hovington H, Bergeron A, Lacombe L, Têtu B, Fradet Y, Lupien M, Wei GH, Koritzinsky M, Bristow RG, Fleshner NE, Wu X, Shao Y, He C, Berlin A, van der Kwast T, Leong H, Boutros PC, He HH. The landscape of N 6-methyladenosine in localized primary prostate cancer. Nat Genet 2025; 57:934-948. [PMID: 40128621 PMCID: PMC11985349 DOI: 10.1038/s41588-025-02128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/13/2025] [Indexed: 03/26/2025]
Abstract
N6-methyladenosine (m6A), the most abundant internal RNA modification in humans, regulates most aspects of RNA processing. Prostate cancer is characterized by widespread transcriptomic dysregulation; therefore, we characterized the m6A landscape of 162 localized prostate tumors with matched DNA, RNA and protein profiling. m6A abundance varied dramatically across tumors, with global patterns emerging via complex germline-somatic cooperative regulation. Individual germline polymorphisms regulated m6A abundance, cooperating with somatic mutation of cancer driver genes and m6A regulators. The resulting complex patterns were associated with prognostic clinical features and established the biomarker potential of global and locus-specific m6A patterns. Tumor hypoxia dysregulates m6A profiles, bridging prior genomic and proteomic observations. Specific m6A sites, such as those in VCAN, drive disease aggression, associating with poor outcomes, tumor growth and metastasis. m6A dysregulation is thus associated with key events in the natural history of prostate cancer: germline risk, microenvironmental dysregulation, somatic mutation and metastasis.
Collapse
Affiliation(s)
- Xin Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Helen Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Rupert Hugh-White
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie Livingstone
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefan Eng
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicole Zeltser
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yujuan Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kinga Pajdzik
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Sujun Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- West China School of Public Health, West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wenqin Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shun Liu
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Xi Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Minzhi Sheng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Wang Yuan Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jaron Arbet
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuxi Song
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shiyan Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- West China School of Public Health, West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Tingxiao Gao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Respiratory and Critical Care Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xinpei Ci
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michele Orain
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Valerie Picard
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Helene Hovington
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Alain Bergeron
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Louis Lacombe
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Bernard Têtu
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Yves Fradet
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Common Mechanism Research for Major Disease, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Neil E Fleshner
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xue Wu
- Geneseeq Research Institute, Geneseeq Technology lnc., Toronto, Ontario, Canada
| | - Yang Shao
- Geneseeq Research Institute, Geneseeq Technology lnc., Toronto, Ontario, Canada
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Alejandro Berlin
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | | | - Hon Leong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Vector Institute, Toronto, Ontario, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H. Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review). Int J Oncol 2025; 66:29. [PMID: 40017127 PMCID: PMC11900940 DOI: 10.3892/ijo.2025.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non‑coding RNAs (lncRNAs) are key players in the regulation of gene expression by mediating epigenetic and epitranscriptomic modification. Dysregulation of lncRNAs is implicated in tumor initiation, progression and metastasis. lncRNAs modulate chromatin structure and gene transcription by recruiting epigenetic regulators, including DNA‑ or histone‑modifying enzymes. Additionally, lncRNAs mediate chromatin remodeling and enhancer‑promoter long‑range chromatin interactions to control oncogene expression by recruiting chromatin organization‑associated proteins, thereby promoting carcinogenesis. Furthermore, lncRNAs aberrantly induce oncogene expression by mediating epitranscriptomic modifications, including RNA methylation and RNA editing. The present study aimed to summarize the regulatory mechanisms of lncRNAs in cancer to unravel the complex interplay between lncRNAs and epigenetic/epitranscriptomic regulators in carcinogenesis. The present review aimed to provide a novel perspective on the epigenetic and epitranscriptomic roles of lncRNAs in carcinogenesis to facilitate identification of potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunfei Dai
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Haoyue Qianjiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ruishuang Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Huimin Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Aiqin Shi
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China
| | - Huacheng Luo
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
22
|
Tan L, Kong W, Zhou K, Wang S, Liang J, Hou Y, Dou H. FoxO1 Deficiency in Monocytic Myeloid-Derived Suppressor Cells Exacerbates B Cell Dysfunction in Systemic Lupus Erythematosus. Arthritis Rheumatol 2025; 77:423-438. [PMID: 39492682 PMCID: PMC11936497 DOI: 10.1002/art.43046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) contribute to the pathogenesis of systemic lupus erythematosus (SLE), in part due to promoting the survival of plasma cells. FoxO1 expression in monocytic MDSCs (M-MDSCs) exhibits a negative correlation with the SLE Disease Activity Index score. This study aimed to investigate the hypothesis that M-MDSC-specific FoxO1 deficiency enhances aberrant B cell function in aggressive SLE. METHODS We used GEO data sets and clinical cohorts to verify the clinical significance of FoxO1 expression and circulating M-MDSCs. Using Cre-LoxP technology, we generated myeloid FoxO1 deficiency mice (mFoxO1-/-) to establish murine lupus-prone models. The transcriptional stage was assessed by integrating chromatin immunoprecipitation (ChIP)-sequencing with transcriptomic analysis, luciferase reporter assay, and ChIP-quantitative polymerase chain reaction. Methylated RNA immunoprecipitation sequencing, RNA sequencing, and CRISPR-dCas9 were used to identify N6-adenosine methylation (m6A) modification. In vitro B cell coculture experiments, capmatinib intragastric administration, m6A-modulated MDSCs adoptive transfer, and sample validation of patients with SLE were performed to determine the role of FoxO1 on M-MDSCs dysregulation during B cell autoreacted with SLE. RESULTS We present evidence that low FoxO1 is predominantly expressed in M-MDSCs in both patients with SLE and lupus mice, and mice with myeloid FoxO1 deficiency (mFoxO1-/-) are more prone to B cell dysfunction. Mechanically, FoxO1 inhibits mesenchymal-epithelial transition factor protein (Met) transcription by binding to the promoter region. M-MDSCs FoxO1 deficiency blocks the Met/cyclooxygenase2/prostaglandin E2 secretion pathway, promoting B cell proliferation and hyperactivation. The Met antagonist capmatinib effectively mitigates lupus exacerbation. Furthermore, alkB homolog 5 (ALKBH5) targeting catalyzes m6A modification on FoxO1 messenger RNA in coding sequences and 3' untranslated regions. The up-regulation of FoxO1 mediated by ALKBH5 overexpression in M-MDSCs improves lupus progression. Finally, these correlations were confirmed in untreated patients with SLE. CONCLUSION Our findings indicate that effective inhibition of B cells mediated by the ALKBH5/FoxO1/Met axis in M-MDSCs could offer a novel therapeutic approach to manage SLE.
Collapse
Affiliation(s)
- Liping Tan
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Wei Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Kangxing Zhou
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Shuangan Wang
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Jun Liang
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Yayi Hou
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Huan Dou
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| |
Collapse
|
23
|
Zheng Y, Wang K, Mao W, Zhang G, Han X, Li H, Wang Y. Abnormal expression of CDC25C in NSCLC is influenced by transcriptional and RNA N6‑methyladenosine‑mediated post‑transcriptional regulation. Int J Oncol 2025; 66:27. [PMID: 39981934 PMCID: PMC11900934 DOI: 10.3892/ijo.2025.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
Non‑small cell lung cancer (NSCLC) exhibits a high incidence and mortality rate worldwide. Elevated cytokinesis cyclin 25 homologous protein C (CDC25C) expression is correlated with a poor prognosis in patients with NSCLC. Transcriptional regulation and post‑transcriptional modification are critical mechanisms governing gene expression, with aberrations in these processes increasingly recognized as pivotal contributors to cancer pathogenesis. The present study elucidated that the transcriptional activator, signal transducer and activator of transcription 3, directly interacts with the CDC25C promoter, thereby modulating its expression. Moreover, multi‑omics analysis was employed to identify the genes involved in the N6‑methyladenosine (m6A) methylation‑mediated post‑transcriptional regulation of CDC25C. The findings indicated that downregulation of alkB homolog 5 RNA demethylase in NSCLC leads to a marked increase in the m6A modification of CDC25C mRNA. It was also shown that YTH N6‑methyladenosine RNA binding protein (YTHDF) 3 and YTHDF2 compete to bind to CDC25C mRNA, thereby promoting or inhibiting its expression. Thus, the present study revealed that dysregulated expression of the CDC25C gene in NSCLC is influenced by multifaceted regulatory layers encompassing both transcriptional and post‑transcriptional mechanisms.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Gene Expression Regulation, Neoplastic
- cdc25 Phosphatases/genetics
- cdc25 Phosphatases/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Cell Line, Tumor
- RNA Processing, Post-Transcriptional
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/metabolism
- Male
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Female
- Methylation
- Prognosis
Collapse
Affiliation(s)
- Yuxin Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Kefeng Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Wenli Mao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Guojun Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaomin Han
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Hualin Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yukun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
24
|
Ranga S, Yadav R, Chauhan M, Chhabra R, Ahuja P, Balhara N. Modifications of RNA in cancer: a comprehensive review. Mol Biol Rep 2025; 52:321. [PMID: 40095076 DOI: 10.1007/s11033-025-10419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
RNA modifications play essential roles in post-transcriptional gene regulation and have emerged as significant contributors to cancer biology. Major chemical modifications of RNA include N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (ψ), and N7-methylguanosine (m7G). Their dynamic regulation highlights their roles in gene expression modulation, RNA stability, and translation. Advanced high-throughput detection methods, ranging from liquid chromatography-mass spectrometry and high-performance liquid chromatography to next-generation sequencing (NGS) and nanopore direct RNA sequencing, have enabled detailed studies of RNA modifications in cancer cells. Aberrant RNA modifications are associated with the dysregulation of tumor suppressor genes and oncogenes, influencing cancer progression, therapy resistance, and immune evasion. Emerging research suggests the therapeutic potential of targeting RNA-modifying enzymes and their inhibitors in cancer treatment. This review compiles and analyzes the latest findings on RNA modifications, presenting an in-depth discussion of the diverse chemical alterations that occur in RNA and their profound implications in cancer biology. It integrates fundamental principles with cutting-edge research, offering a holistic perspective on how RNA modifications influence gene expression, tumor progression, and therapeutic resistance. It emphasizes the need for further studies to elucidate the complex roles of RNA modifications in cancer, as well as the potential for multimodality therapeutic strategies that exploit the dynamic and reversible nature of these epitranscriptomic marks. It also attempts to highlight the challenges, gaps, and limitations of RNA modifications in cancer that should be tackled before their functional implications. Understanding the interplay between RNA modifications, cancer pathways, and their inhibitors will be crucial for developing promising RNA-based therapeutic approaches to cancer and personalized medicine strategies.
Collapse
Affiliation(s)
- Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Meenakshi Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Panjab, Bathinda, Panjab, 151401, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
25
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
26
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
27
|
Mao Z, Li M, Wang S. Targeting m 6A RNA Modification in Tumor Therapeutics. Curr Oncol 2025; 32:159. [PMID: 40136363 PMCID: PMC11941731 DOI: 10.3390/curroncol32030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalent eukaryotic RNA modification N6-methyladenosine (m6A), which is distributed in more than 50% of cases, has demonstrated significant implications in both normal development and disease progression, particularly in the context of cancer. This review aims to discuss the potential efficacy of targeting tumor cells through modulation of m6A RNA levels. Specifically, we discuss how the upregulation or downregulation of integral or specific targets is effective in treating different tumor types and patients. Additionally, we will cover the factors influencing the efficacy of m6A RNA targeting in tumor treatment. Our review will focus on the impact of targeting m6A mRNA on genes and cells and assess its potential as a therapeutic strategy for tumors. Despite the challenges involved, further research on m6A RNA in tumors and its integration with existing tumor therapy approaches is warranted.
Collapse
Affiliation(s)
- Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
28
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 PMCID: PMC11881328 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
30
|
Zhang Y, Xie S, Li W, Gu J, Zhang X, Ni B, Wang Z, Yang R, Song H, Zhong Y, Huang P, Zhou J, Cao Y, Guo J, Liu Y, Qi S, Wang H. TDP-43/ALKBH5-mediated m 6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition. MedComm (Beijing) 2025; 6:e70108. [PMID: 39974663 PMCID: PMC11836349 DOI: 10.1002/mco2.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/05/2024] [Accepted: 12/21/2024] [Indexed: 02/21/2025] Open
Abstract
Glioblastoma (GBM) exhibits significant intratumor heterogeneity (ITH), indicating the presence of tumor cells with diverse growth rates. Here, we aimed to identify fast-growing cells in GBM and elucidate the underlying mechanisms. Precisely targeting these cells could offer an improved treatment option. Our results found that targeting ALKBH5 expression impaired GBM proliferation and tumor stemness. Nuclear but not overall expression of ALKBH5 differs between monoclonal cells derived from the same patient with different proliferation rates. Mechanistically, ALKBH5 interacted with TAR DNA-binding protein 43 (TDP-43) in fast-growing cells. Furthermore, TDP-43 facilitated the nuclear localization of ALKBH5 and its binding to cell division cycle 25A (CDC25A) pre-mRNA. The TDP-43/ALKBH5 complex regulates CDC25A mRNA splicing via N6-methyladenosine (m6A) demethylation to maintain the expression of its oncogenic isoform (CDC25A-1), ultimately promoting the G1/S phase transition and growth of GBM cells. TRAD01 selectively targeted the interaction between TDP-43 and ALKBH5, leading to significant antitumor effects both in vitro and in vivo. Our study identified a novel epigenetic mechanism by which TDP-43/ALKBH5 contributes to GBM growth via m6A modification and alternative splicing. Therefore, targeting the TDP-43/ALKBH5 axis might be a promising therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Sidi Xie
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Weizhao Li
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Junwei Gu
- The First People's Hospital of Xiushui CountyJiujiangChina
| | - Xi‐an Zhang
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Bowen Ni
- Department of Neurosurgery & Medical Research Center, Shunde HospitalSouthern Medical UniversityShundeChina
| | - Ziyu Wang
- Department of Neurosurgery & Medical Research Center, Shunde HospitalSouthern Medical UniversityShundeChina
| | - Runwei Yang
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Haimin Song
- Department of NeurosurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yaxuan Zhong
- School of the First Clinical MedicineGannan Medical UniversityGanzhouChina
| | - Peiting Huang
- Department of Neurology, Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinyao Zhou
- Department of NeurosurgeryDongguan Tungwah HospitalDongguanChina
| | - Yongfu Cao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Guo
- Epilepsy CenterGuangdong Sanjiu Brain HospitalGuangzhouChina
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde HospitalSouthern Medical UniversityShundeChina
| | - Songtao Qi
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Hai Wang
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
31
|
Yang X, Huang K, Wu XN, Zhang C, Sun Y, Gao Y, Zhou J, Tao L, Zhang H, Wu Y, Luo HB, Wang H. Discovery of a Novel Selective and Cell-Active N 6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor. J Med Chem 2025; 68:4133-4147. [PMID: 39925002 DOI: 10.1021/acs.jmedchem.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
N6-methyladenosine (m6A), the most abundant methylation on mRNA, plays pivotal roles in regulating mRNA biological functions, which affect cell functions. ALKBH5, an m6A demethylase, was found to be an oncogene in several cancer types, including triple-negative breast cancer (TNBC). Here, we report a novel and selective ALKBH5 covalent inhibitor, W23-1006, through virtual screening and structure optimization. It covalently bonds to the ALKBH5 C200 residue with an IC50 value of 3.848 μM, representing roughly 30- and 8-fold stronger inhibitory activity than that against FTO and ALKBH3, respectively. Cellular experiments demonstrated that W23-1006 could efficiently enhance the m6A level on fibronectin 1 (FN1) mRNA, leading to strong suppression of TNBC cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Collectively, our study developed a novel, selective, and cell-active ALKBH5 covalent inhibitor, W23-1006, which could be a potential therapeutic option for cancer, such as TNBC treatment.
Collapse
Affiliation(s)
- Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaitao Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Nian Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lijun Tao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
32
|
Xie H, Zhang K, Yin H, Zhang S, Pan S, Wu R, Han Y, Xu Y, Jiang W, You B. Acetyltransferase NAT10 inhibits T-cell immunity and promotes nasopharyngeal carcinoma progression through DDX5/HMGB1 axis. J Immunother Cancer 2025; 13:e010301. [PMID: 39939141 PMCID: PMC11822433 DOI: 10.1136/jitc-2024-010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunosuppression significantly contributes to treatment failure in nasopharyngeal carcinoma (NPC). Messenger RNA (mRNA) modifications such as methylation and acetylation play crucial roles in immunosuppression. However, N4-acetylcytidine (ac4C), the only acetylation modification event has rarely been studied in NPC. METHODS First, clinical tissue samples and nude mouse models were used to explore the expression of N-acetyltransferase 10 (NAT10) in NPC and its influence on it. Second, The Cancer Genome Atlas immune database and transgenic mouse peripheral blood immune cell panel were used to verify the immune cells mainly affected by NAT10. Then, NAT10 ac4C acetylation modification and expression of significantly upregulated transcription factors were explored by acetylated RNA immunoprecipitation sequence binding to RNA sequencing. Then, the downstream regulatory genes of CCAAT enhancer binding protein γ (CEBPG), dead box helicase 5 (DDX5) and helicase-like transcription factors (HLTF) were analyzed by luciferase report and chromatin Immunoprecipitation. Finally, the effect of inhibition of NAT10 on anti-programmed cell death protein 1 (PD-1) treatment sensitivity was verified by animal models. RESULTS In this study, we aimed to explore the role of NAT10, the enzyme responsible for ac4C modification, in NPC progression and patient prognosis. Elevated NAT10 promoted NPC progression and correlated with poor prognosis in patients with NPC. NAT10-mediated ac4C modification of CEBPG, DDX5, and HLTF mRNA improved their stability and translation efficiency, with the NAT10/ac4C/DDX5 axis upregulating high mobility group box 1 (HMGB1) and inhibiting CD4+ and CD8+ T cells. Inhibition of NAT10 increased the sensitivity to PD-1 therapy. Additionally, HLTF was found to transcriptionally regulate NAT10, indicating the formation of an HLTF-NAT10 positive feedback loop. CONCLUSIONS Our study elucidates the mechanism by which the NAT10/DDX5/HMGB1 axis promotes the immunosuppression of NPC by promoting T-cell dysfunction. In addition, NAT10 knockdown can enhance anti-PD-1 treatment sensitivity as a combination therapy for NPC.
Collapse
Affiliation(s)
- Haijing Xie
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Kaiwen Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | | | - Siyu Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Si Pan
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Rui Wu
- Nantong University, Nantong, Jiangsu, China
| | - Yumo Han
- Nantong University, Nantong, Jiangsu, China
| | - Yi Xu
- Nantong University, Nantong, Jiangsu, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Bo You
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
33
|
Santamarina-Ojeda P, Fernández AF, Fraga MF. Epitranscriptomics in the Glioma Context: A Brief Overview. Cancers (Basel) 2025; 17:578. [PMID: 40002173 PMCID: PMC11853273 DOI: 10.3390/cancers17040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Epitranscriptomics, the study of chemical modifications in RNA, has emerged as a crucial field in cellular regulation, adding another layer to the established landscape of DNA- and histone-based epigenetics. A wide range of RNA modifications, including N6-methyladenosine, pseudouridine, and inosine, have been identified across nearly all RNA species, influencing essential processes such as transcription, splicing, RNA stability, and translation. In the context of brain tumors, particularly gliomas, specific epitranscriptomic signatures have been reported to play a role in tumorigenesis. Despite growing evidence, the biological implications of various RNA modifications remain poorly understood. This review offers an examination of the main RNA modifications, the interplay between modified and unmodified molecules, how they could contribute to glioma-like phenotypes, and the therapeutic impact of targeting these mechanisms.
Collapse
Affiliation(s)
- Pablo Santamarina-Ojeda
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Agustín F. Fernández
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mario F. Fraga
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
34
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 PMCID: PMC11852398 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
35
|
Yuan Y, Tang Y, Fang Z, Wen J, Wicha MS, Luo M. Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness. Cells 2025; 14:227. [PMID: 39937018 PMCID: PMC11817775 DOI: 10.3390/cells14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein-protein interactions. Epithelial-mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Yun Tang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China;
| | - Max S. Wicha
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Luo
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
37
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
38
|
Zhu S, Wang P, Hu J. m6A-modified lncRNA GAS5 promotes M1-polarization of microglia in alcohol use disorder. Brain Res Bull 2025; 221:111215. [PMID: 39828042 DOI: 10.1016/j.brainresbull.2025.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Long noncoding RNA (lncRNA) are essential for modulating the onset and progression of alcohol use disorder (AUD). In this study, we investigated the molecular pathways through which lncRNA may contribute to AUD development. We assessed the expression levels of long noncoding RNA GAS5 (lncRNA GAS5) and microRNA-136-5p (miR-136-5p) in AUD tissue samples and cell lines using reverse transcription-quantitative polymerase chain reaction. Detection of GAS5 N6-methyladenosine (m6A) modifications, facilitated by alkylation repair homolog 5 (ALKBH5), was performed using RNA immunoprecipitation and RNA pull-down assays. The effect of GAS5 on the functionality of SH-SY5Y cells was evaluated using CCK-8 and Transwell assays. Our findings showed high levels of GAS5 expression in both AUD tissues and cell lines. Overexpression of GAS5 decreased the migratory capability of SH-SY5Y cells, whereas silencing GAS5 increased this ability. Bioinformatics analyses predicted a relationship between expression levels of miR-136-5p and GAS5, which was subsequently confirmed using dual-luciferase reporter assays. Additionally, we discovered that GAS5 acts as a sponge for miR-136-5p, leading to the upregulation of ATF2. Elevated levels of ATF2 are associated with M1 microglial polarization. In summary, m6A-modified GAS5 may influence the M1 polarization of microglia via the miR-136-5p/ATF2 pathway. Statistical evaluations were performed using GraphPad Prism V8.0, employing the student's t-test for comparisons between two groups, assuming a normal distribution and equal variances. When variances were unequal, but normality was maintained, the corrected Student's t-test was applied. The non-parametric Wilcoxon rank-sum test was used to analyze non-normally distributed data, and one-way ANOVA was used to compare three or more groups. Independent replication was ensured in the studies, with each experiment repeated at least three times and statistical significance was set at P < 0.05.
Collapse
Affiliation(s)
- Shuang Zhu
- Mental Health Center, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Peng Wang
- Binzhou People's Hospital of Breast Surgery, Shandong, China
| | - Jian Hu
- Mental Health Center, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
39
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
40
|
Sa N, Liu X, Hao D, Lv Z, Zhou S, Yang L, Jiang S, Tian J, Xu W. FTO-mediated m 6A demethylation of SERPINE1 mRNA promotes tumor progression in hypopharyngeal squamous cell carcinoma. Transl Cancer Res 2025; 14:595-612. [PMID: 39974406 PMCID: PMC11833370 DOI: 10.21037/tcr-2024-2507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Background The fat mass and obesity-associated protein (FTO) is implicated in various diseases and acts as a demethylase for the most abundant modification of mRNA, namely N6-methyladenosine (m6A) modification. It is known that FTO may play an oncogenic role or a tumor-suppressor role in different malignancies. The aim of this study was to investigate the functional roles of FTO in regulating biological processes related to hypopharyngeal squamous cell carcinoma (HSCC). Methods Using immunohistochemistry, quantitative real-time polymerase chain reaction (RT-qPCR), and Western blot analysis, we compared the expression levels of FTO in HSCC tissues to adjacent non-cancerous tissues. Furthermore, we evaluated the prognosis of patients with hypopharyngeal cancer in relation to FTO expression levels. In vitro, the Cell Counting Kit-8 (CCK8), wound healing assay, migration and invasion assays were used to identify roles of FTO in HSCC cells FaDu. Tumor xenografts in nude mice were used to disclose the effect of FTO in vivo. Then, transcriptome RNA sequencing (RNA-seq) assays were applied to screen for possible target genes. To confirm the specific site for modulating the expression of the target gene, we used the SRAMP database and methylated RNA immunoprecipitation PCR (MeRIP-PCR). Results The results showed that FTO was highly expressed in hypopharyngeal cancer tissues and was correlated with clinicopathology of patients. FTO promoted the proliferation, invasion and migration of hypopharyngeal cancer cells in vitro through its demethylase action. In vivo experiments showed that FTO promoted the growth of subcutaneously implanted tumors of hypopharyngeal cancer cells and their metastasis. Moreover, we revealed that FTO affected the malignant biological behavior of hypopharyngeal cancer cells by regulating the m6A modification level of SERPINE1 mRNA. FTO promoted epithelial-mesenchymal transformation (EMT) of hypopharyngeal cancer cells through the SERPINE1 signaling axis. Conclusions Our study highlighted the functional significance of the FTO/SERPINE1 axis in tumorigenesis of HSCC. Targeting FTO holds promise as a new therapeutic strategy for HSCC.
Collapse
Affiliation(s)
- Na Sa
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xuliang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shengli Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Linxue Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Jiajun Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Fang M, Ye L, Zhu Y, Huang L, Xu S. M6A Demethylase ALKBH5 in Human Diseases: From Structure to Mechanisms. Biomolecules 2025; 15:157. [PMID: 40001461 PMCID: PMC11853652 DOI: 10.3390/biom15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most abundant, dynamically reversible, and evolutionarily conserved internal chemical modification in eukaryotic RNA. It is emerging as critical for regulating gene expression at the post-transcriptional level by affecting RNA metabolism through, for example, pre-mRNA processing, mRNA decay, and translation. ALKBH5 has recently been identified as an endogenous m6A demethylase implicated in a multitude of biological processes. This review provides an overview of the structural and functional characteristics of ALKBH5 and the involvement of ALKBH5 in diverse human diseases, including metabolic, immune, reproductive, and nervous system disorders, as well as the development of inhibitors. In summation, this review highlights the current understanding of the structure, functions, and detailed mechanisms of ALKBH5 in various physiological and pathological processes and provides valuable insights for clinical applications and foundational research within related fields.
Collapse
Affiliation(s)
| | | | | | | | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Songshan Lake, Dongguan 523808, China; (M.F.); (L.Y.); (Y.Z.); (L.H.)
| |
Collapse
|
42
|
Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y, Shang L, Cao F, Li F. The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions. EXCLI JOURNAL 2025; 24:113-150. [PMID: 39967906 PMCID: PMC11830918 DOI: 10.17179/excli2024-7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
N(6)-methyladenosine (m6A) modification is the most abundant and prevalent internal modification in eukaryotic mRNAs. The role of m6A modification in cancer has become a hot research topic in recent years and has been widely explored. m6A modifications have been shown to regulate cancer occurrence and progression by modulating different target molecules. This paper reviews the recent research progress of m6A modifications in cancer and provides an outlook on future research directions, especially the development of molecularly targeted drugs. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Fang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Zhou X, Xia Q, Wang B, Li J, Liu B, Wang S, Huang M, Zhong R, Cheng SY, Wang X, Jiang X, Huang T. USP14 modulates stem-like properties, tumorigenicity, and radiotherapy resistance in glioblastoma stem cells through stabilization of MST4-phosphorylated ALKBH5. Theranostics 2025; 15:2293-2314. [PMID: 39990235 PMCID: PMC11840735 DOI: 10.7150/thno.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Glioblastoma (GBM) is the most aggressive type of primary brain cancer and contains self-renewing GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. However, molecular determinants governing therapeutic resistance of GSCs are poorly understood. Methods: We performed genome-wide analysis of deubiquitylating enzymes (DUBs) in patient-derived GSCs and used gene-specific shRNAs to identify an important DUB gene contributing to GSC survival and radioresistance. Subsequently, we employed mass spectrometry and immunoprecipitation to show the interaction between USP14 and ALKBH5, and identified the upstream kinase MST4, which is essential for the deubiquitylation and stabilization of ALKBH5. Additionally, we performed integrated transcriptome and m6A-seq analyses to uncover the key downstream pathways of ALKBH5 that influence GSC radioresistance. Results: Our study demonstrates the essential role of the deubiquitinase USP14 in maintaining the stemness, tumorigenic potential, and radioresistance of GSCs. USP14 stabilizes the m6A demethylase ALKBH5 by preventing its K48-linked ubiquitination and degradation through HECW2. The phosphorylation of ALKBH5 at serine 64 and 69 by MST4 increases its interaction with USP14, promoting ALKBH5 deubiquitylation. Furthermore, ALKBH5 directly interacts with the USP14 transcript in a manner dependent on YTHDF2, establishing a positive feedback loop that sustains the overexpression of both proteins in GSCs. The MST4-USP14-ALKBH5 signaling pathway is crucial for enhancing stem cell-like traits, facilitating homologous recombination repair of DNA double-strand breaks, and promoting radioresistance and tumorigenicity in GSCs. This signaling cascade is further stimulated in GSCs following exposure to ionizing radiation (IR). Inhibiting USP14 with the small molecule IU1 disrupts ALKBH5 deubiquitylation and increases the effectiveness of IR therapy on GSC-derived brain tumor xenografts. Conclusion: Our results identify the MST4-USP14-ALKBH5 signaling pathway as a promising therapeutic target for treating GBM.
Collapse
Affiliation(s)
- Xiao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiaoxi Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Botao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Sisi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Ronghui Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611, USA
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tianzhi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
44
|
Xie X, Li H, Luo B, Fan X, Li Y, Zhang Y, Cui X, Yin W, Liu B, Xu H, Cheng H, Li W, Yu H, Wu F. ALKBH5 controlled autophagy of peripheral blood mononuclear cells by regulating NRG1 mRNA stability in ankylosing spondylitis. Int Immunopharmacol 2025; 144:113670. [PMID: 39580857 DOI: 10.1016/j.intimp.2024.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease which is characterized by pathological osteogenesis. N6-methyladenosine (m6A) RNA modification is pivotal in immunity and inflammation. In this study, the peripheral blood mononuclear cells (PBMCs) were isolated from healthy or AS patients blood samples in Fuyang People's Hospital, which was utilized to clarify the role of m6A modification in AS pathogenesis. The results showed that the autophagy levels showed a decreasing trend; meanwhile, the m6A demethylase ALKBH5 expression was downregulation in AS-PBMCs. The RNA-seq analysis identified 201 significantly altered genes including NRG1, FOS, CAMKK2, NLRC4, and DAPK1; and NRG1 mRNA expression levels showed significant improvement in AS. After ALKBH5 knockdown, the autophagy levels significantly decreased through increasing NRG1 m6A modification and enhancing its mRNA stability, while ALKBH5 overexpression promoted autophagy by reduceing NRG1 mRNA stability. Additionally, the results found that the "reader" IGF2BP3 substantially enhanced NRG1 expression and mRNA stability in AS patients PBMCs. Silencing ALKBH5 increased IGF2BP3 binding to the m6A-enriched NRG1 transcript, and enhancing NRG1 mRNA stability and protein expression. However, ALKBH5 modification site mutation may increase IGF2BP3 binding to NRG1 mRNA. These finding suggested that ALKBH5 downregulation inhibited AS-PBMCs autophagy leves through regulating post-transcriptional m6A modification to upregulate NRG1 protein expression, which provided novel and effective approaches for AS clinical therapy.
Collapse
Affiliation(s)
- Xin Xie
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Haili Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Bin Luo
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Xiaolong Fan
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yuanyuan Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yadi Zhang
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Xilong Cui
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Wen Yin
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Bo Liu
- Department of Orthopedics, No. 2 Pepople's Hospital of Fuyang City, 1088 Yinghe West Road, Fuyang, Anhui 236015, PR China
| | - Haiyan Xu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Huimin Cheng
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Wenyong Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China.
| | - Fengrui Wu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| |
Collapse
|
45
|
Zhuang Y, Cai Q, Hu X, Huang H. ALKBH5, an m6A demethylase, attenuates tumor growth and inhibits metastasis in papillary thyroid carcinoma. Sci Rep 2025; 15:1514. [PMID: 39789120 PMCID: PMC11718269 DOI: 10.1038/s41598-024-84352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC). Here, we compared cancer tissues and paracancerous tissues from PTC patients, along with cultured cells expressing ALKBH5 (overexpression, silent gene expression, normal stable expression). Our primary objective was to investigate the impact of ALKBH5 on PTC. Selected 30 cases of PTC tissues and their adjacent noncancerous tissues to compare the protein expression levels of ALKBH5 between the two groups using immunohistochemical analysis. qRT-PCR and western blot were used to detect the expression of ALKBH5 in normal thyroid follicular epithelial cells (Nthy-ori3-1) and 4 PTC cell lines (human PTC cell lines K1, BCPAP, IHH4, and TPC1). Appropriate cell lines were screened for subsequent experiments. Immunofluorescence staining was used to localize the high accumulation of ALKBH5 in cells. Construct the ALKBH5 knockdown vector and ALKBH5 overexpression vector separately, and construct the overexpression ALKBH5-mut vector with m6A domain mutation. The impact of different levels of ALKBH5 in the three cell lines on RNA m6A methylation levels was compared using qRT-PCR and western blot methods. Furthermore, cell viability was assessed using the CCK-8 assay, while the impact on cell proliferation was examined using plate colony formation assay. Cell invasion was evaluated using the Transwell assay. Immunohistochemical staining results showed that the expression of ALKBH5 protein in PTC cancer tissue was significantly lower than in adjacent non-cancerous tissue (P < 0.05). Lymph node metastasis in PTC patients may have been linked to ALKBH5 protein levels in their cancerous tissues (P = 0.034). The expression of ALKBH5 in PTC cell lines BCPAP, IHH4, and TPC1 was significantly lower than Nthy-ori3-1 (P < 0.05). IHH4 and TPC1 cell lines were selected for subsequent experiments. Immunofluorescence single staining results showed a high accumulation of ALKBH5 protein in the cell nucleus. Cell viability results suggested that compared to the overexpression-negative control group, cell proliferation, and invasion were significantly decreased in the ALKBH5 overexpression group (P < 0.05) and the mut-ALKBH5 overexpression group (P < 0.05). Additionally, compared to the ALKBH5 overexpression group, cell proliferation and invasion were significantly more decreased in the mut-ALKBH5 overexpression group (P < 0.05). However, compared to the interference-negative control group, cell proliferation and invasion were significantly increased in the ALKBH5 interference group (P < 0.05). The presented findings suggested that m6A demethylase ALKBH5 inhibits tumor growth and metastasis in PTC. Moreover, effective inhibition of m6A modification of ALKBH5 might constitute a potential treatment strategy for PTC.
Collapse
Affiliation(s)
- Yong Zhuang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China
| | - Qingyan Cai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China
| | - Xin Hu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
46
|
Zhao L, Wei X, Chen F, Chen B, Li R. m 6A demethylase CpALKBH regulates CpZap1 mRNA stability to modulate the development and virulence of chestnut blight fungus. mBio 2025; 16:e0184424. [PMID: 39611846 PMCID: PMC11708048 DOI: 10.1128/mbio.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
As the most abundant eukaryotic mRNA modification, N6-methyladenosine (m6A) plays a crucial role in regulating multiple biological processes. This methylation is regulated by methyltransferases and demethylases. However, the regulatory role and mode of action of m6A demethylases in fungi remain poorly understood. In this study, we demonstrate that CpALKBH is a demethylase in Cryphonectria parasitica that removes m6A modification from single-stranded RNA in vitro. The deletion of CpALKBH resulted in a significant increase in the m6A methylation levels, along with decreases in the growth rate, sporulation, and virulence in C. parasitica. Additionally, CpZap1-a transcription factor-was identified as a downstream target of CpALKBH demethylase based on RNA sequencing analysis. We confirmed that CpALKBH demethylase regulates CpZap1 mRNA stability in an m6A-dependent manner. Furthermore, through MazF assay, we found that methylation of CpZap1 at position 1935A is regulated by both CpALKBH demethylase and CpMTA1 methyltransferase. CpZap1 significantly influences the fungal phenotype and virulence, thereby restoring the abnormal phenotype observed in ∆CpALKBH mutants. Collectively, our findings highlight the essential role of CpALKBH as an m6A demethylase in the development and virulence of C. parasitica, while also elucidating the molecular mechanisms through which m6A modification impacts CpZap1 mRNA stability. IMPORTANCE N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Methyltransferases and demethylases regulate the m6A modification, but the regulatory role of m6A demethylases in fungi remains poorly understood. Here, we demonstrated that CpALKBH functions as a demethylase in Cryphonectria parasitica. The deletion of CpALKBH leads to a significant increase in m6A levels and a reduction in fungal growth, sporulation, and virulence. We identified CpZap1 as a downstream target of CpALKBH, with CpALKBH regulating CpZap1 mRNA stability in an m6A-dependent manner. Additionally, our findings indicate that methylation at position 1935A of CpZap1 is regulated by both the CpALKBH demethylase and the CpMTA1 methyltransferase. Given its critical role in fungal development and virulence, overexpression of CpZap1 can rescue abnormal phenotypes of ∆CpALKBH mutant. Overall, these findings contribute to improving our understanding of the role of m6A demethylase in fungi.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
47
|
Song W, Zhang H, Ni J, Hu H, Mao W, Wang K, Peng B. ALKBH5 promotes malignant proliferation of renal clear cell carcinoma by activating the MAPK pathway through binding to HNRNPDL. Int Immunopharmacol 2025; 145:113776. [PMID: 39657539 DOI: 10.1016/j.intimp.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
It is well established that ALKBH5 plays a crucial role in the malignant progression of various types of tumors. However, its role in clear cell renal cell carcinoma (ccRCC) and the underlying regulatory mechanisms remain unclear. In this study, we employed a range of techniques, including protein blotting, real-time quantitative PCR, silver staining, mass spectrometry, co-immunoprecipitation (Co-IP), GST-pull down, and immunofluorescence, to investigate the functions of ALKBH5 in ccRCC and elucidate the specific mechanisms involved. Our results demonstrated that ALKBH5 expression was significantly upregulated in ccRCC. In vitro experiments revealed that ALKBH5 promoted tumor proliferation, invasion, migration, and stemness. In vivo, ALKBH5 was shown to enhance tumor growth and lung metastasis. Mechanistically, our studies suggest that ALKBH5 accelerates the malignant progression of ccRCC by binding to heterogeneous nuclear ribonucleoprotein D-like (HNRNPDL), facilitating the nuclear translocation of MEK, ERK, and p38, and activating downstream targets such as c-Myc and PCNA.
Collapse
Affiliation(s)
- Wei Song
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China
| | - Jinliang Ni
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Huiqing Hu
- Department of Ultrasound, The Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China.
| |
Collapse
|
48
|
Su N, Yu X, Duan M, Shi N. Recent advances in methylation modifications of microRNA. Genes Dis 2025; 12:101201. [PMID: 39524539 PMCID: PMC11550756 DOI: 10.1016/j.gendis.2023.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
microRNAs (miRNAs) are short single-stranded non-coding RNAs between 21 and 25 nt in length in eukaryotic organisms, which control post-transcriptional gene expression. Through complementary base pairing, miRNAs generally bind to their target messenger RNAs and repress protein production by destabilizing the messenger RNA and translational silencing. They regulate almost all life activities, such as cell proliferation, differentiation, apoptosis, tumorigenesis, and host-pathogen interactions. Methylation modification is the most common RNA modification in eukaryotes. miRNA methylation exists in different types, mainly N6-methyladenosine, 5-methylcytosine, and 7-methylguanine, which can change the expression level and biological mode of action of miRNAs and improve the activity of regulating gene expression in a very fine-tuned way with flexibility. In this review, we will summarize the recent findings concerning methylation modifications of miRNA, focusing on their biogenesis and the potential role of miRNA fate and functions.
Collapse
Affiliation(s)
| | | | | | - Ning Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
49
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:79-103. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
50
|
Liang H, Zhang C, Hu M, Hu F, Wang S, Wei W, Hu W. ALKBH5-Mediated m 6A Modification of XBP1 Facilitates NSCLC Progression Through the IL-6-JAK-STAT3 Pathway. Mol Carcinog 2025; 64:57-71. [PMID: 39387829 DOI: 10.1002/mc.23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
The X-box-binding protein 1 (XBP1) is an important transcription factor during endoplasmic reticulum stress response, which was reported as an oncogene in non-small cell lung cancer (NSCLC) tumorigenesis and development. However, the regulatory mechanism of XBP1 expression in NSCLC progression was less reported. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression. This study aimed to investigate the regulatory role of the m6A modification in XBP1 expression in NSCLC. We identified XBP1 as a downstream target of ALKBH5-mediated m6A modification in A549 and PC9 cells. Knockdown of ALKBH5 increased the m6A modification and the stability of XBP1 mRNA, while overexpression of ALKBH5 had the opposite effect. Furthermore, IGF2BP3 was confirmed to be a reader of XBP1 m6A methylation and to enhance the stability of XBP1 mRNA. Additionally, IGF2BP3 knockdown significantly reversed the increase in XBP1 stability mediated by ALKBH5 depletion. In vivo and in vitro experiments demonstrated that ALKBH5/IGF2BP3 promotes the proliferation, migration, and invasion of NSCLC cells by upregulating XBP1 expression. In addition, we also showed that XBP1 promoted NSCLC cell proliferation, migration, and invasion by activating IL-6-JAK-STAT3 signaling. Our research suggested that ALKBH5-mediated m6A modification of XBP1 facilitates NSCLC progression through the IL-6-JAK-STAT3 pathway.
Collapse
Affiliation(s)
- Hengxing Liang
- Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, China
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunmin Zhang
- Institute of Foreign Languages, Central South University, Changsha, China
| | - Minxin Hu
- Xiangya Medical College, Central South University, Changsha, China
| | - Fang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Saihui Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wei
- Hunan Science & Well Biotechnology Co., Ltd, Changsha, China
| | - Wen Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|