1
|
Chen X, Lai J, Wu Z, Chen J, Yang B, Chen C, Ding C. Fat mass and obesity-mediated N 6 -methyladenosine modification modulates neuroinflammatory responses after traumatic brain injury. Neural Regen Res 2026; 21:730-741. [PMID: 39248160 DOI: 10.4103/nrr.nrr-d-23-01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/24/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00042/figure1/v/2025-05-05T160104Z/r/image-tiff The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury. The post-transcriptional modification of N 6 -methyladenosine is ubiquitous in the immune response of the central nervous system. The fat mass and obesity-related protein catalyzes the demethylation of N 6 -methyladenosine modifications on mRNA and is widely expressed in various tissues, participating in the regulation of multiple diseases' biological processes. However, the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear. In this study, we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model. After fat mass and obesity interference, BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b + /CD86 + cells and the secretion of pro-inflammatory cytokines. Fat mass and obesity-mediated N 6 -methyladenosine demethylation accelerated the degradation of ADAM17 mRNA, while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA. Therefore, down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia. These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N 6 -methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jinqing Lai
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Zhe Wu
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jianlong Chen
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Baoya Yang
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chunnuan Chen
- Department of Neurology, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, National Regional Medical Center, Binhai Campus, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Jungfleisch J, Gebauer F. RNA-binding proteins as therapeutic targets in cancer. RNA Biol 2025; 22:1-8. [PMID: 40016176 PMCID: PMC11869776 DOI: 10.1080/15476286.2025.2470511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
RNA-binding proteins (RBPs) have emerged as critical regulators of cancer progression, influencing virtually all hallmarks of cancer. Their ability to modulate gene expression patterns that promote or inhibit tumorigenesis has positioned RBPs as promising targets for novel anti-cancer therapies. This mini-review summarizes the current state of RBP-targeted cancer treatments, focusing on five examples, eIF4F, FTO, SF3B1, RBM39 and nucleolin. We highlight the diversity of current targeting approaches and discuss ongoing challenges including the complexity of RBP regulatory networks, potential off-target effects and the need for more specific targeting methods. By assessing the future potential of novel therapeutic avenues, we provide insights into the evolving landscape of cancer treatment and the critical role RBPs may play in next-generation therapeutics.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Tian H, Deng H, Liu X, Liu C, Zhang C, Leong KW, Fan X, Ruan J. A novel FTO-targeting nanodrug induces disulfidptosis and ameliorates the suppressive tumor immune environment to treat uveal melanoma. Biomaterials 2025; 319:123168. [PMID: 40015005 DOI: 10.1016/j.biomaterials.2025.123168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Uveal melanoma (UM) is the most prevalent primary ocular malignancy in adults, with high lethality and limited effective treatment options. Despite identified driver mutations in GNAQ, GNA11, and BAP1, therapeutic advancements have been minimal. This study highlights the pivotal role of N6-methyladenosine (m6A) modifications in UM pathogenesis and progression, focusing on the demethylase FTO as a therapeutic target. Elevated FTO expression in UM tissues correlates with decreased m6A levels, increased aggressiveness, and poor prognosis. The FTO inhibitor meclofenamic acid (MA) restored m6A levels, upregulated SLC7A11, and induced disulfidptosis, a unique form of cell death triggered by GSH depletion and NADPH consumption. To address MA's limitations in bioavailability and tumor targeting, we developed an MA-loaded nucleic acid nanodrug (SNAMA). SNAMA demonstrated effective tumor growth inhibition in orthotopic and metastatic UM models through GSH-responsive release and m6A-mediated disulfidptosis activation. Incorporating a PD-L1 aptamer into SNAMA further improved tumor targeting and immune modulation, enhancing therapeutic efficacy. This study identifies FTO as a critical target for UM therapy and introduces SNAMA-apt as a promising nanodrug. The findings offer a foundation for m6A-targeted approaches in UM and other malignancies, addressing bioavailability, targeting, and immune evasion challenges.
Collapse
Affiliation(s)
- Hao Tian
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hongpei Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Saluja S, Ganguly S, Singh J, Jain A, Sharma G, Chaudhary S, Pethusamy K, Chattopadhyay P, Chopra A, Singh A, Karmakar S, Bakhshi S, Palanichamy JK. Aberrant overexpression of m6A writer and reader genes in pediatric B-Cell Acute Lymphoblastic Leukemia (B-ALL). Transl Oncol 2025; 56:102403. [PMID: 40288000 PMCID: PMC12059321 DOI: 10.1016/j.tranon.2025.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND m6A modification, regulated by writers (METTL3, METTL14), erasers (ALKBH5, FTO), and readers (IGF2BPs), is implicated in various cancers, including leukemias. METHODS In our study, we examined a cohort of 227 pediatric B-ALL patients (152 primary and 75 relapsed) and assessed the expression profiles of m6A machinery genes, including both writers and erasers, as well as the IGF2BP RNA-binding proteins, which are known as m6A readers. We also quantified the absolute percentage of m6A (m6A%). The correlation between m6A machinery gene expression and patient prognosis was studied using univariate and multivariate analyses. RESULTS Our analysis revealed a significant upregulation of m6A writers (METTL3 and METTL14), erasers (FTO), and m6A readers (IGF2BPs 1 and 3) in B-ALL patients, both in the primary and relapsed groups. m6A% levels were markedly higher in B-ALL samples than in controls. Multivariate analysis revealed that the expression of IGF2BP3, METTL3, and FTO genes, independently predicted lower overall survival and event-free survival in primary B-ALL patients. CONCLUSIONS Despite the collective dysregulation of the m6A machinery, the writers and readers appear to have a more dominant phenotype, as evidenced by the significantly elevated m6A% levels. This is the first study to analyze and establish the role of m6A machinery gene expression and its correlation with survival outcomes in a large group of B-ALL patients. These findings could aid in the development of new therapeutics targeting the m6A machinery and help predict relapse in pediatric B-ALL patients.
Collapse
Affiliation(s)
- Sumedha Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital (Dr BRAIRCH), All India Institute of Medical Sciences, New Delhi
| | - Jay Singh
- Department of Laboratory Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital (Dr BRAIRCH), All India Institute of Medical Sciences, New Delhi
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | - Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | - Shilpi Chaudhary
- Department of Medical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital (Dr BRAIRCH), All India Institute of Medical Sciences, New Delhi
| | | | | | - Anita Chopra
- Department of Laboratory Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital (Dr BRAIRCH), All India Institute of Medical Sciences, New Delhi
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital (Dr BRAIRCH), All India Institute of Medical Sciences, New Delhi
| | | |
Collapse
|
5
|
Elsabbagh RA, Abdelhady G, Urlaub D, Sandusky M, Khorshid O, Gad MZ, Abou-Aisha K, Watzl C, Rady M. N 6-methyladenosine RNA base modification regulates NKG2D-dependent and cytotoxic genes expression in natural killer cells. BMC Med Genomics 2025; 18:91. [PMID: 40389988 PMCID: PMC12090489 DOI: 10.1186/s12920-025-02147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer in women. N6-methyladenosine (m6A) is the most prevalent internal modification in mammalian mRNAs and plays a crucial role in various biological processes. However, its function in Natural killer (NK) cells in BC remains unclear. NK cells are essential for cancer immunosurveillance. This study aims to assess m6A levels in transcripts involved in the NKG2D cytotoxicity signaling pathway in NK cells of BC patients compared to controls and find out its impact on mRNA levels. Additionally, it evaluates how deliberately altering m6A levels in NK cells affects mRNA and protein expression of NKG2D pathway genes and NK cell functionality. METHODS m6A methylation in transcripts of NKG2D-pathway-related genes in BC patients and controls was determined using methylated RNA immunoprecipitation-reverse transcription-PCR (MERIP-RT-PCR). To deliberately alter m6A levels in primary cultured human NK cells, the m6A demethylases, FTO and ALKBH5, were knocked out using the CRISPR-CAS9 system, and FTO was inhibited using Meclofenamic acid (MA). The impact of m6A alteration on corresponding mRNA and protein levels was assessed using RT-qPCR and Western blot analysis or flow cytometry, respectively. Additionally, NK cell functionality was evaluated through degranulation and 51Cr release cytotoxicity assays. RESULTS Transcripts of NKG2D, an activating receptor that detects stressed non-self tumour cells, had significantly higher m6A levels in the 3' untranslated region (3'UTR) accompanied by a marked reduction in their corresponding mRNA levels in BC patients compared to controls. Conversely, transcripts of ERK2 and PRF1 exhibited significantly lower m6A levels escorted with higher mRNA expression in BC patients relative to controls. The mRNA levels of PI3K, PAK1 and GZMH were also significantly elevated in BC patients. Furthermore, artificially increasing transcripts' m6A levels via MA in cultured primary NK cells reduced mRNA levels of NKG2D pathway genes and death receptor ligands but did not affect protein expression or NK cell functionality. CONCLUSION Transcripts with higher m6A levels in the 3'UTR region were less abundant, and vice versa. However, changes in mRNA levels of the target genes didn't impact their corresponding protein levels or NK cell functionality.
Collapse
Affiliation(s)
- Raghda A Elsabbagh
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Ghada Abdelhady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Doris Urlaub
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Ola Khorshid
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Khaled Abou-Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany.
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt.
- Faculty of Biotechnology, German International University, New Administrative Capital, Egypt.
| |
Collapse
|
6
|
Steponaitis G, Dragunaite R, Stakaitis R, Sharma A, Tamasauskas A, Skiriute D. m6A-lncRNA landscape highlights reduced levels of m6A modification in glioblastoma as compared to low-grade glioma. Mol Med 2025; 31:195. [PMID: 40382536 DOI: 10.1186/s10020-025-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Efforts to understand the interplay between m6A (N6-methyladenosine) modification and long non-coding RNAs (lncRNAs) in the pathogenesis of various diseases, including cancer, have recently attracted considerable attention. METHODS Herein, we profiled epitranscriptome-wide m6A modifications within lncRNAs at single m6A site resolution across different grades of gliomas (Glioblastomas (GB): n = 17, Low grade gliomas (LGG): n = 9) using direct RNA long-read sequencing. RESULTS Our analysis demonstrated that, 1) 98.5% of m6A-modified RRACH motifs were present within mRNA transcripts, while only 1.16% were conspicuous within lncRNAs. Importantly, LGGs exhibited a higher m6A abundance (23.73%) compared to the GB transcriptome (15.84%). 2) The m6A profiles of lncRNAs differed significantly between gliomas, with unsupervised cluster analysis revealing two clusters (C1, C2). LGG dispersed between C1 and C2 clusters while GB stayed mainly in C1. Clinical feature association analysis between m6A clusters showed the tendency of m6A to be associated with higher malignancy grade (p = 0.053), while significant association was observed with higher Ki-67 proliferation index (p = 0.04), and tumor location (p < 0.01). Specifically, brain tumors located in cerebellum (n = 3) were highly m6A modified on lncRNAs as compared to tumors in other locations (frontal lobe, n = 5, p = 0.003; frontotemporal lobe, n = 2, p = 0.08; occipital, n = 2, p = 0.038; parietal, n = 2, p = 0.007; temporal, n = 11, p < 0.001). Cox regression analysis showed that the status of lncRNAs m6A modifications had no significant value in predicting post-surgical survival time in our GB or LGG cohorts. The trend of higher lncRNA expression in m6A methylated group was observed for the majority of lncRNAs, while only MIR9-1HG (r = 0.439, p = 0.028) and ZFAS1 (r = 0.609, p < 0.05) m6A showed statistically significant positive correlations in gliomas. A high-resolution m6A study revealed that mRNA levels of m6A writers and erasers in gliomas do not reflect global m6A methylation. CONCLUSIONS Overall, we provide evidence that m6A lncRNAs are strongly modulated in gliomas, representing biologically distinct subgroups. Ten novel differentially methylated lncRNAs were identified in gliomas, which might exert regulatory role in glioma cells. These findings may provide a basis for further deeper research on the role of m6A lncRNAs in gliomas.
Collapse
Affiliation(s)
- Giedrius Steponaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rugile Dragunaite
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Stakaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Amit Sharma
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, Bonn, Germany
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Arimantas Tamasauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
7
|
Huang F, Wang Y, Zhang X, Gao W, Li J, Yang Y, Mo H, Prince E, Long Y, Hu J, Jiang C, Kang Y, Chen Z, Hu YC, Zeng C, Yang L, Chen CW, Chen J, Huang H, Weng H. m 6A/IGF2BP3-driven serine biosynthesis fuels AML stemness and metabolic vulnerability. Nat Commun 2025; 16:4214. [PMID: 40328743 PMCID: PMC12056023 DOI: 10.1038/s41467-025-58966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic reprogramming of amino acids represents a vulnerability in cancer cells, yet the mechanisms underlying serine metabolism in acute myeloid leukemia (AML) and leukemia stem/initiating cells (LSCs/LICs) remain unclear. Here, we identify RNA N6-methyladenosine (m6A) modification as a key regulator of serine biosynthesis in AML. Using a CRISPR/Cas9 screen, we find that depletion of m6A regulators IGF2BP3 or METTL14 sensitizes AML cells to serine and glycine (SG) deprivation. IGF2BP3 recognizies m6A on mRNAs of key serine synthesis pathway (SSP) genes (e.g., ATF4, PHGDH, PSAT1), stabilizing these transcripts and sustaining serine production to meet the high metabolic demand of AML cells and LSCs/LICs. IGF2BP3 silencing combined with dietary SG restriction potently inhibits AML in vitro and in vivo, while its deletion spares normal hematopoiesis. Our findings reveal the critical role of m6A modification in the serine metabolic vulnerability of AML and highlight the IGF2BP3/m6A/SSP axis as a promising therapeutic target.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Serine/biosynthesis
- Serine/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice
- Cell Line, Tumor
- Glycine/metabolism
- Methyltransferases/metabolism
- Methyltransferases/genetics
- CRISPR-Cas Systems
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Feng Huang
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | | | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Jingwen Li
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Emily Prince
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang Jiang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenhua Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengwu Zeng
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Lu Yang
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- The Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
8
|
Zhang D, Liu L, Li M, Hu X, Zhang X, Xia W, Wang Z, Song X, Huang Y, Dong Z, Yang CG. Development of 3-arylaminothiophenic-2-carboxylic acid derivatives as new FTO inhibitors showing potent antileukemia activities. Eur J Med Chem 2025; 289:117444. [PMID: 40022879 DOI: 10.1016/j.ejmech.2025.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Fat mass and obesity-associated protein (FTO) is the first discovered RNA N6-methyladenosine (m6A) demethylase. The highly expressed FTO protein is required to trigger oncogenic pathways in acute myeloid leukemia (AML), which makes FTO a promising antileukemia drug target. In this study, we identify 3-arylaminothiophenic-2-carboxylic acid derivatives as new FTO inhibitors with good antileukemia activity. We replaced the phenyl A-ring in FB23, the first-generation of FTO inhibitor, with five-membered heterocycles and synthesized a new class of FTO inhibitors. Compound 12o/F97 shows strong enzymatic inhibitory activity and potent antiproliferative activity. 12o/F97 selectively inhibits m6A demethylation by FTO rather than ALKBH5, and has minimal effect on m1A demethylation by ALKBH3. Additionally, 12o/F97 increases the protein levels of RARA and ASB2, while decreasing that of MYC in AML cell lines. Lastly, 12o/F97 exhibits antileukemia activity in a xenograft mice model without significant side-effects. The identification of 3-arylaminothiophenic-2-carboxylic acid derivatives as new FTO inhibitors not only expands the chemical space but also holds potential for antileukemia drug development.
Collapse
Affiliation(s)
- Deyan Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyang Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
9
|
Shang M, Qin J, Zhao B, Luo Q, Wang H, Yang C, Liu H, Ran J, Yang W. Recent Advance in Sensitive Detection of Demethylase FTO. Chembiochem 2025; 26:e202400995. [PMID: 39714929 DOI: 10.1002/cbic.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Methylation modification is a critical regulatory mechanism in epigenetics and plays a significant role in various biological processes. N6-methyladenosine (m6A) is the most common modification found in RNA. The fat mass and obesity-associated protein (FTO) facilitate the demethylation of m6A in RNA, and its abnormal expression is closely linked to the development of several diseases. As a result, FTO has the potential to serve as an important biomarker for clinical disease diagnosis. Despite its significance, there has been a lack of comprehensive reviews addressing advancements in detection methods for the demethylase FTO. This review provides an overview of the progress in FTO detection methods, ranging from traditional approaches to innovative techniques, with a particular emphasis on recently reported advancements. These novel detection methods can be categorized into strategies based on enzymes, functional nucleic acids (FNA), and conformational changes. We summarize the principles and applications of these detection methods and discuss the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Min Shang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Jingying Qin
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Bingyue Zhao
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Qian Luo
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Huimin Wang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Hanghang Liu
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Wei Yang
- College of Biological and Pharmaceutical Sciences, Key Laboratory of Natural Products, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| |
Collapse
|
10
|
Jiang S, Zhu L, Jiang S. Phosducin inhibits the cell proliferation and promotes the antitumor effect of temozolomide in glioma. Biochem Pharmacol 2025; 235:116841. [PMID: 40024352 DOI: 10.1016/j.bcp.2025.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most lethal form of brain cancer, characterized by rapid cell growth, substantial molecular heterogeneity, and a propensity for invasion into critical brain regions. Phosducin (PDC) is recognized for its involvement in sensory signal transmission, blood pressure regulation, and thyroid gland endocrine functions. However, the role of PDC in cell proliferation, drug sensitization, and its connection to RNA m6A modification in gliomas remains unclear. In this study, RNA sequencing analysis was performed on U251 glioma cells with knockdown and overexpression of fat mass and obesity-associated protein (FTO). The results revealed that FTO negatively regulates PDC expression. This finding was corroborated in U87, U251, and A172 glioma cells via qRT-PCR and western blot analysis. Additionally, MTT and EdU assays revealed that PDC overexpression inhibited cell proliferation, while PDC knockdown accelerated it. Moreover, the proliferation-enhancing effect of FTO overexpression was reduced by PDC overexpression, and the proliferation-inhibiting effect of FTO knockdown was reversed by PDC knockdown. These findings suggest that PDC serves as a functional target of FTO. Furthermore, PDC enhanced the antitumor efficacy of temozolomide (TMZ). In summary, this study demonstrates for the first time that PDC plays a crucial role in regulating cell proliferation and TMZ sensitivity in glioma cells, providing a potential therapeutic target to improve treatment outcomes for the patients with glioma.
Collapse
Affiliation(s)
- Shibin Jiang
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lifang Zhu
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Songshan Jiang
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
11
|
Dai X, Feng S, Li T. Cold atmospheric plasma control metabolic syndromes via targeting fat mass and obesity-associated protein. Pharmacol Res 2025; 215:107720. [PMID: 40174815 DOI: 10.1016/j.phrs.2025.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Both obesity and metabolic disorders are global medical problems. Driven by prolonged inflammation, obesity increases the risk of developing metabolic syndromes such as fatty liver, diabetes, cardiovascular diseases and cancers. The fat mass and obesity-associated protein (FTO) is an m6A demethylase, elevated activity of which is known to promote the pathogenesis of many metabolic disorders, leading to the establishment of various FTO inhibitors. By combing through intrinsic connections among obesity and the four primary metabolic problems, we attribute their shared pathological cause to prolonged inflammation. By reviewing the roles of FTO in promoting these disorders and the current status of existing FTO inhibitors in treating these syndromes, we underpinned the paramount potential of resolving these clinical issues by targeting FTO and the urgent need of establishing novel FTO inhibitors with maximized efficacy and minimized side effect. Cold atmospheric plasma (CAP) is the fourth state of matter with demonstrated efficacy in treating various diseases associated with chronic inflammation. By introducing the medical characteristics of CAP, we proposed it as a possible solution to unresolved issues of current FTO inhibitors given its anti-inflammation feature and demonstrated clinical safety. We also emphasized the need of intensive investigations in exploring the feasibility of using CAP in treating obesity and associated metabolic syndromes that might function through targeting FTO.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Tian Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| |
Collapse
|
12
|
Zuidhof HR, Müller C, Kortman G, Wardenaar R, Stepanova E, Loayza‐Puch F, Calkhoven CF. The m6A demethylase FTO promotes C/EBPβ-LIP translation to perform oncogenic functions in breast cancer cells. FEBS J 2025; 292:2688-2709. [PMID: 40022434 PMCID: PMC12103066 DOI: 10.1111/febs.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
N6-methyladenosine (m6A) is a prevalent posttranscriptional mRNA modification involved in the regulation of transcript turnover, translation, and other aspects of RNA fate. The modification is mediated by multicomponent methyltransferase complexes (so-called writers) and is reversed through the action of the m6A-demethylases fat mass and obesity-associated (FTO) and alkB homolog 5 (ALKBH5) (so-called erasers). FTO promotes cell proliferation, colony formation and metastasis in models of triple-negative breast cancer (TNBC). However, little is known about genome-wide or specific downstream regulation by FTO. Here, we examined changes in the genome-wide transcriptome and translatome following FTO knockdown in TNBC cells. Unexpectedly, FTO knockdown had a limited effect on the translatome, while transcriptome analysis revealed that genes related to extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) are regulated through yet unidentified mechanisms. Differential translation of CEBPB mRNA into the C/EBPβ transcription factor isoform C/EBPβ-LIP is known to act in a pro-oncogenic manner in TNBC cells through regulation of EMT genes. Here we show that FTO is required for efficient C/EBPβ-LIP expression, suggesting that FTO has oncogenic functions through regulation of C/EBPβ-LIP.
Collapse
Affiliation(s)
- Hidde R. Zuidhof
- European Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen, University of GroningenThe Netherlands
| | - Christine Müller
- European Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen, University of GroningenThe Netherlands
| | - Gertrud Kortman
- European Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen, University of GroningenThe Netherlands
| | - René Wardenaar
- European Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen, University of GroningenThe Netherlands
| | - Ekaterina Stepanova
- Translational Control and MetabolismGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Fabricio Loayza‐Puch
- Translational Control and MetabolismGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Cornelis F. Calkhoven
- European Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen, University of GroningenThe Netherlands
| |
Collapse
|
13
|
He B, Hu Y, Wu Y, Wang C, Gao L, Gong C, Li Z, Gao N, Yang H, Xiao Y, Yang S. Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a "hit-and-run" paradigm. Cancer Commun (Lond) 2025; 45:608-631. [PMID: 39960839 PMCID: PMC12067399 DOI: 10.1002/cac2.70004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection contributes significantly to gastric cancer (GC) progression. The intrinsic mechanisms of H. pylori-host interactions and their role in promoting GC progression need further investigation. In this study, we explored the potential role of fat mass and obesity-associated protein (FTO) in mediating Cytotoxin-associated gene A (CagA)-induced GC progression. METHODS The effects of H. pylori infection on N6-methyladenosine (m6A) modification were evaluated in both human samples and GC cell lines. The function of FTO in the progression of GC was elucidated through in vitro and in vivo studies. A series of techniques, including methylated RNA immunoprecipitation sequencing, RNA sequencing, RNA binding protein immunoprecipitation, and chromatin immunoprecipitation assays, were utilized to investigate the mechanism by which FTO mediates the capacity of cagA-positive H. pylori to promote GC progression. Furthermore, the therapeutic potential of the FTO inhibitor meclofenamic acid (MA) in impeding GC progression was evaluated across GC cells, animal models, and human GC organoids. RESULTS Infection with cagA-positive H. pylori upregulated the expression of FTO, which was essential for CagA-mediated GC metastasis and significantly associated with a poor prognosis in GC patients. Mechanistically, CagA delivered by H. pylori enhanced FTO transcription via Jun proto-oncogene. Elevated FTO induced demethylation of m6A and inhibited the degradation of heparin-binding EGF-like growth factor (HBEGF), thereby facilitating the epithelial-mesenchymal transition (EMT) process in GC cells. Interestingly, eradication of H. pylori did not fully reverse the increases in FTO and HBEGF levels induced by cagA-positive H. pylori. However, treatment with a combination of antibiotics and MA substantially inhibited cagA-positive H. pylori-induced EMT and prevented GC metastasis. CONCLUSION Our study revealed that FTO mediates the "hit-and-run" mechanism of CagA-induced GC progression, which suggests that the therapeutic targeting of FTO could offer a promising approach to the prevention of CagA-induced cancer progression.
Collapse
Affiliation(s)
- Bing He
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Yiyang Hu
- Department of OncologyThe General Hospital of Western Theater CommandChengduSichuanP. R. China
| | - Yuyun Wu
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Chao Wang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Limin Gao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Chunli Gong
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Zhibin Li
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Nannan Gao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Huan Yang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqingP. R. China
| |
Collapse
|
14
|
Dong Y, Sun N, Qiang Y, Wang Y, Yuan Y, Li M. TNF-α inhibites non-small cell lung cancer cells proliferation by targeting THRIL in an FTO-YTHDF2-dependent manner. Arch Biochem Biophys 2025; 770:110438. [PMID: 40311994 DOI: 10.1016/j.abb.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Tumor necrosis factor-α (TNF-α) is a crucial cytokine involved in cancer progression, affecting the proliferation and survival of tumor cells. However, the exact mechanisms underlying its action remain poorly understood. Here we found that high concentration of TNF-α decreased TNF-α and heterogenous nuclear ribonucleoprotein L related immunoregulatory LncRNA (THRIL) expression, thereby inhibiting non-small cell lung cancer (NSCLC) cells proliferation while facilitating apoptosis. Clinically, the expression of THRIL was upregulated in NSCLC cells and tissues. THRIL knockdown resulted in decreased proliferation and increased apoptosis in NSCLC cells. Mechanistically, TNF-α diminished the m6A methylation of the THRIL transcript by enhancing the expression of FTO in A549 cells, which was subsequently recognized and degraded by YTHDF2. Furthermore, we identified that THRIL specifically interacted with HuR, forming a functional THRIL-HuR complex that enhanced TNF-α mRNA stability, thereby influencing endogenous TNF-α expression. Collectively, our findings reveal a novel regulatory feedback loop between TNF-α and THRIL, demonstrating that TNF-α inhibits the proliferation of NSCLC cells via the FTO/YTHDF2/THRIL axis. This highlights THRIL as a potential biomarker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yixin Dong
- Department of Pathogenbiology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Qiang
- Department of Pathogenbiology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuxin Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Yuan
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China.
| | - Miao Li
- Department of Pathogenbiology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Wen L, Fu J, Wang Z, Xie R, Tang S, Yu L, Zhou H. Regulatory mechanisms of m6A RNA methylation in esophageal cancer: a comprehensive review. Front Genet 2025; 16:1561799. [PMID: 40330012 PMCID: PMC12053326 DOI: 10.3389/fgene.2025.1561799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Esophageal cancer is an aggressively malignant neoplasm characterized by a high mortality rate. Frequently diagnosed at an advanced stage, it presents challenges for optimal therapeutic intervention due to its non-specific symptoms, resulting in lost opportunities for effective treatment, such as surgery, radiotherapy, chemotherapy and target therapy. The N6-methyladenosine (m6A) modification represents the most critical post-transcriptional modification of eukaryotic messenger RNA (mRNA). The reversible m6A modification is mediated by three regulatory factors: m6A methyltransferases, demethylating enzymes, and m6A recognition proteins. These components identify and bind to specific RNA methylation sites, thereby modulating essential biological functions such as RNA processing, nuclear export, stability, translation and degradation, which significantly influence tumorigenesis, invasion, and metastasis. Given the importance of m6A modification, this paper offers a comprehensive examination of the regulatory mechanisms, biological functions, and future therapeutic implications of m6A RNA methylation in the context of esophageal cancer.
Collapse
Affiliation(s)
- Long Wen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
| | - Jiang Fu
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixu Wang
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rangping Xie
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Qian X, Li X, Zheng Z, Liu L, Li J, Yang J, Lu B, Chen E, Zhang H, Ye B, Lu Y, Liu P. METTL3 orchestrates cancer progression by m 6A-dependent modulation of oncogenic lncRNAs. Int J Biol Macromol 2025; 310:143299. [PMID: 40253016 DOI: 10.1016/j.ijbiomac.2025.143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
RNA modifications, particularly N6-methyladenosine (m6A), play crucial roles in gene expression regulation. While extensively studied in the context of mRNA, the impact of m6A on long non-coding RNAs (lncRNAs) remains elusive. This research aimed to reveal the regulatory landscape of m6A in lncRNA expression. In a comprehensive analysis across 6219 samples spanning 12 cancer types, we unveiled METTL3 as the most potent regulator of lncRNA expression among the examined 19 m6A regulators. A total of 397 METTL3-mediated m6A-modified lncRNAs (mmlncRs) were unveiled across 12 cancer types, indicating a consistent mechanism of METTL3-mediated lncRNA regulation. Functional assays demonstrated that METTL3 knockout significantly impeded lung cancer cell proliferation and progression. Leveraging RNA-seq and MeRIP-seq, we identified C1RL-AS1 as a bona fide m6A target of METTL3 in lung cancer, revealing its oncogenic role. Mechanistically, METTL3 depletion disrupts m6A modification on C1RL-AS1, leading to its downregulated expression. YTHDF2 binds to C1RL-AS1, maintaining its stability in a m6A-dependent manner. This study provides a valuable resource for the exploration of mmlncRs as promising therapeutic targets in cancers, shedding light on the intricate regulatory networks orchestrated by METTL3.
Collapse
Affiliation(s)
- Xinyi Qian
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xufan Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhihong Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lian Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Bo Ye
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
17
|
Wei S, Tao HY, Duan Z, Wang Y. Environmental Exposure, Epitranscriptomic Perturbations, and Human Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6387-6399. [PMID: 40126397 PMCID: PMC11978485 DOI: 10.1021/acs.est.5c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epitranscriptomics is a rapidly evolving field, and it examines how chemical modifications on RNA regulate gene expression. Increasing lines of evidence support that exposure to various environmental agents can change substantially chemical modifications on RNA, thereby perturbing gene expression and contributing to disease development in humans. However, the molecular mechanisms through which environmental exposure impairs RNA modification-associated proteins ("reader", "writer", and "eraser" or RWE proteins) and alters the landscape of RNA modifications remain poorly understood. Here, we provide our perspectives on the current knowledge about how environmental exposure alters the epitranscriptome, where we focus on dynamic changes in RNA modifications and their regulatory proteins elicited by exposure to environmental agents. We discuss how these epitranscriptomic alterations may contribute to the development of human diseases, especially neurodegeneration and cancer. We also discuss the potential and technical challenges of harnessing RNA modifications as biomarkers for monitoring environmental exposure. Finally, we emphasize the need to integrate multiomics approaches to decipher the complex interplay between environmental exposure and the epitranscriptome and offer a forward-looking viewpoint on future research priorities that may inform public health interventions and environmental regulations.
Collapse
Affiliation(s)
- Songbo Wei
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Huan-Yu Tao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Zheng Duan
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
18
|
Tang Y, Liu X, Ye W, Wang X, Wei X, Du Y, Zhang Y, Gong Y. METTL3, an Independent Adverse Prognostic Factor for AML, Promotes the Development of AML by Modulating the PGC-1α-MAPK Pathway and PGC-1α-Antioxidant System Axis. Cancer Med 2025; 14:e70771. [PMID: 40171845 PMCID: PMC11962650 DOI: 10.1002/cam4.70771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND m6A represents a prevalent epigenetic modification of mammalian mRNAs. Studies have demonstrated that m6A RNA methylation-modifying enzymes play crucial roles in the onset and progression of AML. However, their clinical relevance remains undefined, and the mechanisms underlying their modulation of AML have yet to be elucidated. RESULTS The expression levels of the m6A RNA-modifying enzymes METTL3, METTL14, WTAP, FTO and ALKBH5 were elevated in AML patients. METTL3-positive AML is often accompanied by DNMT3A mutations and is also an independent poor prognostic factor for AML patients. Following METTL3 knockdown, we observed a decrease in the m6A level of the mitochondrial oxidative stress gene PGC-1α in K562 and MV4-11 cells. We analyzed the expression levels of PGC-1α and METTL3 mRNA in 105 patients with primary AML. The expression levels of PGC-1α and METTL3 mRNA were positively correlated. Similar to METTL3 knockdown, PGC-1α gene knockdown resulted in increased phosphorylation of the key signaling molecules P38, c-Jun and ERK1/2 in the MAPK signaling pathway, and decreased mRNA levels of SOD1, GPX1, catalase and UCP2 in the antioxidant system of K562 cells. Analysis of the TCGA and GSE13159 datasets, along with samples from West China Hospital, revealed that patients exhibiting high PGC-1α expression had a poor prognosis. CONCLUSION The m6A methylation-modifying enzyme METTL3 is an independent prognostic factor for poor prognosis in AML patients. PGC-1α is a downstream signaling molecule of METTL3, and METTL3 affects its expression by regulating the m6A level of PGC-1α. PGC-1α acts as an oncogene in AML by affecting the MAPK pathway and antioxidant system.
Collapse
Affiliation(s)
- Yuqian Tang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaoyan Liu
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of HematologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wu Ye
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaojia Wang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaoyu Wei
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yiwen Du
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ying Zhang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yuping Gong
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Zhu T, Tan JZA, Zhang L, Huang H, Das SS, Cheng F, Padmanabhan P, Jones MJK, Lee M, Lee A, Widagdo J, Anggono V. FTO suppresses DNA repair by inhibiting PARP1. Nat Commun 2025; 16:2925. [PMID: 40133293 PMCID: PMC11937437 DOI: 10.1038/s41467-025-58309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Maintaining genomic integrity and faithful transmission of genetic information is essential for the survival and proliferation of cells and organisms. DNA damage, which threatens the integrity of the genome, is rapidly sensed and repaired by mechanisms collectively known as the DNA damage response. The RNA demethylase FTO has been implicated in this process; however, the underlying mechanism by which FTO regulates DNA repair remains unclear. Here, we use an unbiased quantitative proteomic approach to identify the proximal interactome of endogenous FTO protein. Our results demonstrate a direct interaction with the DNA damage sensor protein PARP1, which dissociates upon ultraviolet stimulation. FTO inhibits PARP1 catalytic activity and controls its clustering in the nucleolus. Loss of FTO enhances PARP1 enzymatic activity and the rate of PARP1 recruitment to DNA damage sites, accelerating DNA repair and promoting cell survival. Interestingly, FTO regulates PARP1 function and DNA damage response independent of its catalytic activity. We conclude that FTO is an endogenous negative regulator of PARP1 and the DNA damage response in cells beyond its role as an RNA demethylase.
Collapse
Affiliation(s)
- Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - He Huang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sooraj S Das
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- NHMRC Centre for Research Excellence in Mechanisms in NeuroDegeneration - Alzheimer's Disease (MIND-AD CRE), Brisbane, Australia
| | - Mathew J K Jones
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
- School of Chemistry & Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
- NHMRC Centre for Research Excellence in Mechanisms in NeuroDegeneration - Alzheimer's Disease (MIND-AD CRE), Brisbane, Australia.
| |
Collapse
|
20
|
Fan Y, Hao Y, Ding Y, Wang X, Ge X. FTO deficiency facilitates epithelia dysfunction in oral lichen planus. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102463. [PMID: 39995976 PMCID: PMC11847738 DOI: 10.1016/j.omtn.2025.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The fat mass and obesity-associated protein (FTO) is identified as regulating mammalian development and diseases by removing methyl groups from RNAs. However, the roles of FTO in the context of oral lichen planus (OLP) remain unknown. Here, we demonstrated that the protein levels of FTO in the keratinocytes from OLP patients were down-regulated compared to those from healthy participants. At the molecular level, we explained that GSK-3β-induced phosphorylation promoted FTO protein degradation in diseased oral keratinocytes. Using a cell co-culture model, we further confirmed that FTO deficiency facilitated NF-κB activation and apoptosis in oral keratinocytes under inflammatory conditions. Vitamin D receptor (VDR), which plays a protective role in OLP, was mediated by FTO in an RNA N 6-methyladenosine (m6A) methylation-dependent way. FTO overexpression failed to suppress NF-κB and caspase-3 activities upon VDR ablation in oral keratinocytes, suggesting that FTO insufficiency damages oral epithelial by targeting VDR. Collectively, these data reveal that FTO deficiency facilitates epithelial dysfunction in OLP by decreasing VDR expression.
Collapse
Affiliation(s)
- Yufeng Fan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yukai Hao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan, China
- Department of Dermatology, Skin Disease Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Mao Z, Li M, Wang S. Targeting m 6A RNA Modification in Tumor Therapeutics. Curr Oncol 2025; 32:159. [PMID: 40136363 PMCID: PMC11941731 DOI: 10.3390/curroncol32030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalent eukaryotic RNA modification N6-methyladenosine (m6A), which is distributed in more than 50% of cases, has demonstrated significant implications in both normal development and disease progression, particularly in the context of cancer. This review aims to discuss the potential efficacy of targeting tumor cells through modulation of m6A RNA levels. Specifically, we discuss how the upregulation or downregulation of integral or specific targets is effective in treating different tumor types and patients. Additionally, we will cover the factors influencing the efficacy of m6A RNA targeting in tumor treatment. Our review will focus on the impact of targeting m6A mRNA on genes and cells and assess its potential as a therapeutic strategy for tumors. Despite the challenges involved, further research on m6A RNA in tumors and its integration with existing tumor therapy approaches is warranted.
Collapse
Affiliation(s)
- Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
22
|
Guirguis AA. RNA methylation: where to from here for hematologic malignancies? Exp Hematol 2025; 143:104694. [PMID: 39647657 DOI: 10.1016/j.exphem.2024.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
RNA methylation and the machinery that regulates or "reads" its expression has recently been implicated in the pathogenesis of acute myeloid leukemia (AML) and other hematologic malignancies. Modulation of these epigenetic marks has started to become a reality as several companies around the world seek to leverage this knowledge therapeutically in the clinic. Although the bases of observed activity in AML have been described by numerous groups, the exact context in which these therapies will ultimately be used remains to be properly determined. While context is likely to be of great importance here, a more "global" mechanism of action might allow for more widespread applicability to multiple disease subtypes. In other areas such as the myelodysplastic and other preleukemic syndromes, data remain sparse. Ongoing work is needed to determine whether therapeutic modulation of RNA modifications is a viable and biologically plausible approach in these cases. Regardless of the outcomes, this is an exciting era for "epitranscriptomics" as we navigate a pathway forward. Here, I describe the current knowledge around RNA methylation and hematologic malignancies at the end of 2024 including some of the relevant questions that are yet to be answered.
Collapse
Affiliation(s)
- Andrew Adel Guirguis
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; Department of Clinical Haematology, Austin Health, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Cai X, Li X, Zhang M, Dong Z, Weng Y, Yu W. RBM15 promotes lipogenesis and malignancy in gastric cancer by regulating N6-Methyladenosine modification of ACLY mRNA in an IGF2BP2-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159580. [PMID: 39549859 DOI: 10.1016/j.bbalip.2024.159580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
N6-methyladenosine (m6A) and lipid metabolism reprogramming play pivotal roles in cancer development. Nevertheless, the precise functions of m6A methyltransferase RNA Binding Motif Protein 15 (RBM15) and its interactions with ATP Citrate Lyase (ACLY) in gastric cancer (GC) have not been fully elucidated. In this study, we comprehensively investigate the biological roles and potential mechanisms of RBM15 and ACLY in GC. We employed a combination of fundamental experiments and bioinformatics analyses to unravel the enigmatic roles of RBM15 and ACLY. The expression of RBM15 was evaluated. The biological roles of RBM15 in GC cells were investigated through in vitro and in vivo studies. ACLY was selected as the candidate target of RBM15. Subsequently, to decipher the underlying mechanisms of the RBM15/ACLY axis, we conducted a series of experiments including methylated RNA immunoprecipitation qPCR, dual-luciferase reporter assays, and RNA immunoprecipitation qPCR. We observed a conspicuous upregulation of RBM15 in GC, and its heightened expression was associated with an unfavorable prognosis. Functionally, RBM15 fostered the proliferation and invasiveness of GC cells both in vitro and in vivo. Mechanistically, ACLY emerged as the downstream target of RBM15 and it was validated as an oncogene in GC cells. RBM15 mediated the activation of ACLY by regulating m6A modification in an IGF2BP2-dependent manner, thereby driving lipogenesis and exacerbating the malignant characteristics in GC. The activation of ACLY, facilitated by RBM15/IGF2BP2-mediated m6A modification, drives lipogenesis and promotes the progression of GC.
Collapse
Affiliation(s)
- Xianlei Cai
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Xueying Li
- Department of Gastroenterology, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Miaozun Zhang
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Zhebin Dong
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yihui Weng
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, China.
| |
Collapse
|
24
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
25
|
Yang X, Huang K, Wu XN, Zhang C, Sun Y, Gao Y, Zhou J, Tao L, Zhang H, Wu Y, Luo HB, Wang H. Discovery of a Novel Selective and Cell-Active N 6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor. J Med Chem 2025; 68:4133-4147. [PMID: 39925002 DOI: 10.1021/acs.jmedchem.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
N6-methyladenosine (m6A), the most abundant methylation on mRNA, plays pivotal roles in regulating mRNA biological functions, which affect cell functions. ALKBH5, an m6A demethylase, was found to be an oncogene in several cancer types, including triple-negative breast cancer (TNBC). Here, we report a novel and selective ALKBH5 covalent inhibitor, W23-1006, through virtual screening and structure optimization. It covalently bonds to the ALKBH5 C200 residue with an IC50 value of 3.848 μM, representing roughly 30- and 8-fold stronger inhibitory activity than that against FTO and ALKBH3, respectively. Cellular experiments demonstrated that W23-1006 could efficiently enhance the m6A level on fibronectin 1 (FN1) mRNA, leading to strong suppression of TNBC cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Collectively, our study developed a novel, selective, and cell-active ALKBH5 covalent inhibitor, W23-1006, which could be a potential therapeutic option for cancer, such as TNBC treatment.
Collapse
Affiliation(s)
- Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaitao Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Nian Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lijun Tao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Ding XY, Zhang HY, Chen JH, Yang MJ, Huang ZX, Lei YH, Sun QK, Bai JB, Lin DC, Lan JF, Ren LL, Chen ZY, Zhou WD, Chen QH. A novel mechanism of FTO modulating the progression of endometriosis through mediating the m6A methylation of GEF-H1 in a YTHDF1-dependent manner. Mol Med 2025; 31:78. [PMID: 40000966 PMCID: PMC11863856 DOI: 10.1186/s10020-025-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Endometriosis (EMs) is a condition characterized by the growth of endometrial tissue outside the uterine cavity. Although this condition is benign, it has cancer-like features. N6-methyladenosine (m6A) is a common RNA modification involved in diverse biological processes, but its role in EMs remains unclear. METHODS A human endometrial stromal cell line (HESCs), primary eutopic endometrial stromal cells (Eu-ESCs), primary ectopic endometrial stromal cells (Ec-ESCs), and clinical samples were used in this study. A colorimetric assay was used to measure methylation levels in clinical and mouse EMs samples. Functional assays (CCK-8, EdU, Transwell, and wound healing) were used to evaluate phenotypic changes. m6A immunoprecipitation sequencing (MeRIP-seq) identified downstream targets. Mechanistic studies were conducted via qRT‒PCR, Western blot, RNA immunoprecipitation (RIP), dual-luciferase reporter, and RNA stability assays. RESULTS We detected aberrantly low levels of m6A within endometriotic lesions, which was attributed to increased expression of the m6A eraser fat mass and obesity-associated protein (FTO). Notably, estrogen and inflammatory factors, which are recognized as pathogenic agents in EMs amplify FTO expression while suppressing m6A levels. In vitro experiments demonstrated that overexpression of FTO in endometrial stromal cells leads to a reduction in m6A levels and concomitantly promotes their proliferation, migration, and invasion. Furthermore, both genetic deletion of Fto and chemical inhibition of FTO impeded the growth of ectopic endometrial lesions in vivo. By utilizing m6A-seq, we identified GEF-H1 (a Rho guanine nucleotide exchange factor) as a pivotal downstream target of FTO. Specifically, diminished m6A methylation at a certain site within the 3'UTR of GEF-H1 promotes its expression in a YTH N6-methyladenosine RNA-binding protein F1 (YTHDF1)-dependent manner, thereby activating the RhoA pathway. Subsequent experiments revealed that GEF-H1 mediates the effects of FTO in promoting migration and invasion. CONCLUSIONS This study revealed that FTO decreases the m6A level of GEF-H1, thereby increasing its stability, which in turn activates the GEF-H1-RhoA pathway to promote the migration and invasion of endometrial stromal cells, thereby inducing EMs. Our findings suggest potential therapeutic avenues for targeting FTO to alleviate EMs progression.
Collapse
Affiliation(s)
- Xin-Yu Ding
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Hua-Ying Zhang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jia-Hao Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Meng-Jie Yang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361003, China
| | - Zhi-Xiong Huang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yi-Hong Lei
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China
| | - Qin-Kun Sun
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jian-Bin Bai
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dian-Chao Lin
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jian-Fa Lan
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Lu-Lu Ren
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Zheng-Yi Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei-Dong Zhou
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Qiong-Hua Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361003, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
27
|
Yang Y, Luo J, Wang Z, Liu K, Feng K, Wang F, Mei Y. Energy Stress-Induced circEPB41(2) Promotes Lipogenesis in Hepatocellular Carcinoma. Cancer Res 2025; 85:723-738. [PMID: 39636740 DOI: 10.1158/0008-5472.can-24-1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment plays a pivotal role in the metabolic reprogramming of cancer cells. A better understanding of the underlying mechanisms regulating cancer metabolism could help identify potential therapeutic targets. Here, we identified circEPB41(2) as a metabolically regulated circular RNA that mediates lipid metabolism in hepatocellular carcinoma (HCC). circEPB41(2) was induced in response to glucose deprivation via HNRNPA1-dependent alternative splicing. Upregulation of circEPB41(2) led to enhanced lipogenic gene expression that promoted lipogenesis. Mechanistically, circEPB41(2) cooperated with the N6-methyladenosine demethylase FTO to decrease the mRNA stability of the histone deacetylase sirtuin 6, thereby increasing histone H3 lysine 9 acetylation and histone H3 lysine 27 acetylation levels to activate lipogenic gene expression. Silencing of circEPB41(2) inhibited both in vitro proliferation of HCC cells and in vivo growth of tumor xenografts. Clinically, circEPB41(2) was elevated in HCC, and high circEPB41(2) expression was associated with poor patient prognosis. Overall, this study reveals that circEPB41(2) is an important regulator of lipid metabolic reprogramming and indicates that targeting the circEPB41(2)-FTO-sirtuin 6 axis could represent a promising anticancer strategy for treating HCC. Significance: circEPB41(2) is induced by glucose deprivation and mediates epigenetic alterations to drive lipogenesis and tumor growth in hepatocellular carcinoma, suggesting circEPB41(2) could be a potential therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Yang Yang
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Jingjing Luo
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Keyi Feng
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Fang Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yide Mei
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Liang X, Huang Y, Ren H, Liu Q, Chen L, Zhao J, Gao X, Lu J, Yang CG, Liu H. Discovery of Novel RNA Demethylase FTO Inhibitors Featuring an Acylhydrazone Scaffold with Potent Antileukemia Activity. J Med Chem 2025; 68:2742-2763. [PMID: 39818964 DOI: 10.1021/acs.jmedchem.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Fat mass obesity-associated protein (FTO) has been emerging as a potential therapeutic target for drug discovery in RNA epigenetics. In this work, a series of novel FTO inhibitors featuring an acylhydrazone scaffold were identified, and the optimized compounds 8t-v showed potent FTO inhibitory activities with IC50 values ranging from 7.1 to 9.4 μM. FTO inhibitor 8t, as the lead compound, exhibited potent antiproliferative capacities against MOLM13, NB4, and THP-1 with IC50 values of 0.35, 0.59, and 0.70 μM, respectively, and remarkably induced NB4 cell apoptosis. Compound 8t also inhibited the FTO demethylation, enhanced the abundance of m6A, stabilized FTO protein folding, and regulated the oncogenic FTO signaling pathway. Importantly, compound 8t significantly caused a tumor volume reduction and tumor weight loss with a tumor growth inhibition (TGI) value of 51% in NB4 xenograft mice. Overall, our work provided valuable lead compounds for FTO inhibitors featuring an acylhydrazone scaffold with potent antileukemia activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiangqian Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang China
| |
Collapse
|
29
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
30
|
Sa N, Liu X, Hao D, Lv Z, Zhou S, Yang L, Jiang S, Tian J, Xu W. FTO-mediated m 6A demethylation of SERPINE1 mRNA promotes tumor progression in hypopharyngeal squamous cell carcinoma. Transl Cancer Res 2025; 14:595-612. [PMID: 39974406 PMCID: PMC11833370 DOI: 10.21037/tcr-2024-2507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Background The fat mass and obesity-associated protein (FTO) is implicated in various diseases and acts as a demethylase for the most abundant modification of mRNA, namely N6-methyladenosine (m6A) modification. It is known that FTO may play an oncogenic role or a tumor-suppressor role in different malignancies. The aim of this study was to investigate the functional roles of FTO in regulating biological processes related to hypopharyngeal squamous cell carcinoma (HSCC). Methods Using immunohistochemistry, quantitative real-time polymerase chain reaction (RT-qPCR), and Western blot analysis, we compared the expression levels of FTO in HSCC tissues to adjacent non-cancerous tissues. Furthermore, we evaluated the prognosis of patients with hypopharyngeal cancer in relation to FTO expression levels. In vitro, the Cell Counting Kit-8 (CCK8), wound healing assay, migration and invasion assays were used to identify roles of FTO in HSCC cells FaDu. Tumor xenografts in nude mice were used to disclose the effect of FTO in vivo. Then, transcriptome RNA sequencing (RNA-seq) assays were applied to screen for possible target genes. To confirm the specific site for modulating the expression of the target gene, we used the SRAMP database and methylated RNA immunoprecipitation PCR (MeRIP-PCR). Results The results showed that FTO was highly expressed in hypopharyngeal cancer tissues and was correlated with clinicopathology of patients. FTO promoted the proliferation, invasion and migration of hypopharyngeal cancer cells in vitro through its demethylase action. In vivo experiments showed that FTO promoted the growth of subcutaneously implanted tumors of hypopharyngeal cancer cells and their metastasis. Moreover, we revealed that FTO affected the malignant biological behavior of hypopharyngeal cancer cells by regulating the m6A modification level of SERPINE1 mRNA. FTO promoted epithelial-mesenchymal transformation (EMT) of hypopharyngeal cancer cells through the SERPINE1 signaling axis. Conclusions Our study highlighted the functional significance of the FTO/SERPINE1 axis in tumorigenesis of HSCC. Targeting FTO holds promise as a new therapeutic strategy for HSCC.
Collapse
Affiliation(s)
- Na Sa
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xuliang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shengli Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Linxue Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Jiajun Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Han H, Li Y, Lin Z, Ma X, Huang W, Lu C, Ma R, Han R. Exosomal miR-130a-3p confers cisplatin resistance in esophageal cancer by regulating ferroptosis via the suppression of METTL14-mediated m6A RNA methylation of FSP1. Int Immunopharmacol 2025; 146:113804. [PMID: 39689599 DOI: 10.1016/j.intimp.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Exosomal microRNA (miRNA)s have been proven to affect recipient cell chemoresistance in several cancers. This research attempted to uncover the role of exosomal miRNA and the regulatory mechanism in cisplatin resistance of esophageal cancer (EC). Cisplatin-resistant EC cells (KYSE-150-CisR and TE-1-CisR) were established by the parental cells (KYSE-150 and TE-1) treated with a gradual increase of cisplatin concentration. Exosomes from both cisplatin-resistant EC cells and the parental one were obtained with ultracentrifugation (CisR-exo and CisS-exo), and identified by transmission electron microscopy and nanoparticle tracking analysis. The effect of CisR-exo on the cisplatin resistance of EC was assessed by in vitro (and in vivo functional experiments.Intracellular reactive oxygen species and iron were determined by the corresponding kits. The m6A dot blot assay and methylated RIP-qPCR was conducted to analyze the m6A modification level. Dual-luciferase reporter assay was performed to confirm the intermolecular interaction. Increased levels of miR-130a-3p were observed in both KYSE-150CisR and TE-1CisR cells, as well as their derived CisR-exos when compared with the parental cells and CisS-exos. Exosomal miR-130a-3p from cisplatin-resistant EC cells conferred cisplatin resistance to EC in vitro and in vivo, which might be mediated by the suppression of ferroptosis. Mechanically, KYSE-150CisR derived exosomal miR-130a-3p interacted with METTL14 to inhibit FSP1 (a ferroptosis suppressor) m6A modification of recipient cells. Overexpressing METTL14 restrained the cisplatin resistance disseminated by CisR-exos in KYSE-150 cells. Cisplatin-resistant EC cell-isolated exosomal miR-130a-3p suppressed the m6A modification of FSP1 to modulate ferroptosis, enhancing cisplatin resistance.
Collapse
Affiliation(s)
- Hu Han
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Yan Li
- Medical Department, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Zhiyi Lin
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Xiaoping Ma
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Wukui Huang
- Department of Interventional Diagnosis and Treatment, Affiliated Cancer Hospital, Xinjiang Medical University, Urumqi 830054, China.
| | - Cengceng Lu
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Rongyan Ma
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Rui Han
- Medical Department, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| |
Collapse
|
33
|
Chen Z, Yan D, Guo S, Song Y, Zhang X, Gu W, Dong H, Huang L. METTL3/miR-192-5p/SCD1 Axis Regulates Lipid Metabolism to Affect T Cell Differentiation in Asthma. Mediators Inflamm 2025; 2025:4955849. [PMID: 39867638 PMCID: PMC11769594 DOI: 10.1155/mi/4955849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Background: This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Methods and Results: Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism. HE staining was performed to assess the pathological changes of the lung tissues. ELISA was performed to detect cytokine levels. The results of quantitative real-time polymerase chain reaction (qRT-PCR) and western blot showed that miR-192-5p expression was decreased, while SCD1 expression was increased in CD4+T cells isolated from the peripheral blood of children with asthma. The dual luciferase reporter assay determined the direct interaction between miR-192-5p and SCD1. MiR-192-5p inhibitor reduced ASCL3 and PPARα, increased FASN and SREBP1c mRNA expression and protein levels in mouse spleen CD4+T cells, and elevated Th2 and Th17 cells, but these effects were reversed by the SCD1 inhibitor. Oleic acid (OA) reduced Th1 cells and increased Th2 and Th17 cells in mouse spleen CD4+T cells treated with an SCD1 inhibitor. Additionally, pri-miR-192-5p expression was increased in CD4+T cells isolated from the peripheral blood of asthmatic children, and the deletion of METTL3 upregulated pri-miR-192-5p expression in an m6A-dependent manner. MiR-192-5p mimic and inhibitor both reversed miR-192-5p and SCD1 expression affected by overexpression or deletion of METTL3, both in vivo and in vitro. Furthermore, METTL3 overexpression attenuated lung inflammation, elevated Th1 cells, and reduced Th2 and Th17 cells in CD4+T cells isolated from the peripheral blood of asthmatic mice. These effects were reversed by the miR-192-5p inhibitor. Conclusion: These results suggest that METTL3/miR-192-5p/SCD1 axis regulates lipid metabolism and affects T cell differentiation, thus affecting asthma progression. This study may provide novel insights into the pathogenesis of asthma and a new treatment strategy.
Collapse
Affiliation(s)
- Zhengrong Chen
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Dingwei Yan
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Suyu Guo
- Department of Pediatric Pulmonology, Xuzhou Children's Hospital, Xuzhou Medical University, No 18 Sudi Road, Xuzhou 221000, China
| | - Yiyi Song
- Suzhou Medical College, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Xinxing Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Wenjing Gu
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Heting Dong
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Li Huang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| |
Collapse
|
34
|
Cheng Y, Shang Y, Zhang S, Fan S. The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review. Cancer Biol Med 2025; 21:j.issn.2095-3941.2024.0415. [PMID: 39831771 PMCID: PMC11745087 DOI: 10.20892/j.issn.2095-3941.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N6-methyladenosine (m6A), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes. The interplay between m6A modification and radiobiology of cancerous and non-cancerous tissues merits in-depth investigation. This review summarizes the roles of m6A in the biological effects induced by ionizing radiation and ultraviolet (UV) radiation. It begins with an overview of m6A modification and its detection methods, followed by a detailed examination of how m6A dynamically regulates the sensitivity of cancerous tissues to RT, the injury response in non-cancerous tissues, and the toxicological effects of UV exposure. Notably, this review underscores the importance of novel regulatory mechanisms of m6A and their potential clinical applications in identifying epigenetically modulated radiation-associated biomarkers for cancer therapy and estimation of radiation dosages. In conclusion, enzyme-mediated m6A-modification triggers alterations in target gene expression by affecting the metabolism of the modified RNAs, thus modulating progression and radiosensitivity in cancerous tissues, as well as radiation effects on normal tissues. Several promising avenues for future research are further discussed. This review highlights the importance of m6A modification in the context of radiation biology. Targeting epi-transcriptomic molecules might potentially provide a novel strategy for enhancing the radiosensitivity of cancerous tissues and mitigating radiation-induced injury to normal tissues.
Collapse
Affiliation(s)
- Yajia Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yue Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shuqin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
35
|
Zhang K, Zhang F, Wang J. FTO effects the proliferation, invasion, and glycolytic metabolism of colon cancer by regulating PKM2. J Cancer Res Clin Oncol 2025; 151:36. [PMID: 39820532 PMCID: PMC11739181 DOI: 10.1007/s00432-024-06073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. The Fat mass and obesity-associated protein (FTO), a genetic variant associated with obesity, significantly impact the energetic metabolism of mechanical tumors. However, research on the function of FTO in CRC is scarce. METHODS Bioinformatics analysis of TCGA and UALCAN databases was conducted to examine FTO expression in CRC. Immunohistochemistry was used to assess FTO and PKM2 protein expression in clinical specimens. In vitro experiments utilized five human colon cancer cell lines and a normal colon epithelial cell line, with Western blotting and RT-PCR for protein and mRNA quantification, respectively, and lentiviral transfection to modulate FTO expression. Cellular behaviors such as proliferation, migration, invasion, and apoptosis were evaluated using various assays. Immunofluorescence and Seahorse Xfe96 metabolic analysis were employed to study PKM2 expression changes and glycolytic stress. The effects of PKM2 inhibition by shikonin on cell viability and glycolytic activity were assessed using CCK-8 assay and Seahorse analysis. RESULTS An upregulation of FTO was observed in colon cancer through data mining and analysis of pathological specimens. Besides, we discovered that the impact of FTO on colon cancer glycolysis has significant implications for colon proliferation, invasion, and metastasis. The protein expression of PKM2 and the intensity of fluorescence staining in the nucleus of PKM2 were detected to be increased in colon carcinoma cells with over-expression of FTO. CONCLUSION FTO plays a significant role in CRC progression by regulating PKM2 and promoting glycolysis.
Collapse
Affiliation(s)
- Kongyan Zhang
- Department of Geriatrics, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
36
|
Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y, Shang L, Cao F, Li F. The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions. EXCLI JOURNAL 2025; 24:113-150. [PMID: 39967906 PMCID: PMC11830918 DOI: 10.17179/excli2024-7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
N(6)-methyladenosine (m6A) modification is the most abundant and prevalent internal modification in eukaryotic mRNAs. The role of m6A modification in cancer has become a hot research topic in recent years and has been widely explored. m6A modifications have been shown to regulate cancer occurrence and progression by modulating different target molecules. This paper reviews the recent research progress of m6A modifications in cancer and provides an outlook on future research directions, especially the development of molecularly targeted drugs. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Fang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Zhao L, Wei X, Chen F, Chen B, Li R. m 6A demethylase CpALKBH regulates CpZap1 mRNA stability to modulate the development and virulence of chestnut blight fungus. mBio 2025; 16:e0184424. [PMID: 39611846 PMCID: PMC11708048 DOI: 10.1128/mbio.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
As the most abundant eukaryotic mRNA modification, N6-methyladenosine (m6A) plays a crucial role in regulating multiple biological processes. This methylation is regulated by methyltransferases and demethylases. However, the regulatory role and mode of action of m6A demethylases in fungi remain poorly understood. In this study, we demonstrate that CpALKBH is a demethylase in Cryphonectria parasitica that removes m6A modification from single-stranded RNA in vitro. The deletion of CpALKBH resulted in a significant increase in the m6A methylation levels, along with decreases in the growth rate, sporulation, and virulence in C. parasitica. Additionally, CpZap1-a transcription factor-was identified as a downstream target of CpALKBH demethylase based on RNA sequencing analysis. We confirmed that CpALKBH demethylase regulates CpZap1 mRNA stability in an m6A-dependent manner. Furthermore, through MazF assay, we found that methylation of CpZap1 at position 1935A is regulated by both CpALKBH demethylase and CpMTA1 methyltransferase. CpZap1 significantly influences the fungal phenotype and virulence, thereby restoring the abnormal phenotype observed in ∆CpALKBH mutants. Collectively, our findings highlight the essential role of CpALKBH as an m6A demethylase in the development and virulence of C. parasitica, while also elucidating the molecular mechanisms through which m6A modification impacts CpZap1 mRNA stability. IMPORTANCE N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Methyltransferases and demethylases regulate the m6A modification, but the regulatory role of m6A demethylases in fungi remains poorly understood. Here, we demonstrated that CpALKBH functions as a demethylase in Cryphonectria parasitica. The deletion of CpALKBH leads to a significant increase in m6A levels and a reduction in fungal growth, sporulation, and virulence. We identified CpZap1 as a downstream target of CpALKBH, with CpALKBH regulating CpZap1 mRNA stability in an m6A-dependent manner. Additionally, our findings indicate that methylation at position 1935A of CpZap1 is regulated by both the CpALKBH demethylase and the CpMTA1 methyltransferase. Given its critical role in fungal development and virulence, overexpression of CpZap1 can rescue abnormal phenotypes of ∆CpALKBH mutant. Overall, these findings contribute to improving our understanding of the role of m6A demethylase in fungi.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
38
|
Jin G, Song Y, Fang S, Yan M, Yang Z, Shao Y, Zhao K, Liu M, Wang Z, Guo Z, Dong Z. hnRNPU-mediated pathogenic alternative splicing drives gastric cancer progression. J Exp Clin Cancer Res 2025; 44:8. [PMID: 39773744 PMCID: PMC11705778 DOI: 10.1186/s13046-024-03264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alternative splicing (AS) is a process that facilitates the differential inclusion of exonic sequences from precursor messenger RNAs, significantly enhancing the diversity of the transcriptome and proteome. In cancer, pathogenic AS events are closely related to cancer progression. This study aims to investigate the role and regulatory mechanisms of AS in gastric cancer (GC). METHODS We analyzed AS events in various tumor samples and identified hnRNPU as a key splicing factor in GC. The effects of hnRNPU on cancer progression were assessed through in vitro and in vivo experiments. Gene knockout models and the FTO inhibitor (meclofenamic acid) were used to validate the interaction between hnRNPU and FTO and their impact on AS. RESULTS We found that hnRNPU serves as a key splicing factor in GC, and its high expression is associated with poor clinical prognosis. Genetic depletion of hnRNPU significantly reduced GC progression. Mechanistically, the m6A demethylase FTO interacts with hnRNPU transcripts, decreasing the m6A modification levels of hnRNPU, which leads to exon 14 skipping of the MET gene, thereby promoting GC progression. The FTO inhibitor meclofenamic acid effectively inhibited GC cell growth both in vitro and in vivo. CONCLUSION The FTO/hnRNPU axis induces aberrant exon skipping of MET, thereby promoting GC cell growth. Targeting the FTO/hnRNPU axis may interfere with abnormal AS events and provide a potential diagnostic and therapeutic strategy for GC.
Collapse
Affiliation(s)
- Guoguo Jin
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanming Song
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Shaobo Fang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
- Department of Medical Imaging, Zhengzhou University People's Hospital& Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Mingyang Yan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhaojie Yang
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Yang Shao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Kexin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Meng Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhenwei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
39
|
Wang PX, Zhu L, Xiang M, Zhang R, Zheng X, Zheng Z, Li K. FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy. Gastroenterol Res Pract 2025; 2025:5587859. [PMID: 39811145 PMCID: PMC11730018 DOI: 10.1155/grp/5587859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/07/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Objective: Despite N6-methyladenosine (m6A) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an m6A demethylase, on hepatic ischemia-reperfusion injury (IRI). Methods: Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo. Hematoxylin-eosin staining was performed to observe IRI. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to observe the cell apoptosis. Reverse transcription polymerase chain reaction (RT-PCR) was used to observe the expression of FTO. The protein levels of FTO, apoptosis, or autophagy-associated signaling proteins were detected by western blot. Reactive oxygen species (ROS) levels were determined by flow cytometry, and immunohistochemistry was used to detect the FTO and LC3-II expression. For in vitro experiments, cultured hepatocytes were subjected to hypoxia/reoxygenation (H/R) stimulation. Monodansylcadaverine (MDC) staining was used to visualize autophagic vesicles. Results: In the present study, we showed that FTO was involved in hepatic IRI, apoptosis, and autophagy. Specifically, the expression level of FTO was significantly reduced in the hepatic IRI. Besides, increasing FTO expression (AAV-FTO) ameliorated the hepatic IRI in animal models, accompanied by decreased apoptosis and autophagy. Furthermore, the FTO inhibitor (FB23-2) aggravated autophagy in hepatocytes upon H/R-induced damage. Conclusion: FTO could act as a protective effector during hepatic IRI, associated with decreased apoptosis and autophagy. FTO-mediated m6A demethylation modification may be an important therapeutic target for hepatic IRI.
Collapse
Affiliation(s)
- Pi-Xiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Xiang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rixin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Li K, Liang Y, Li X, Yang M, Wang M, Li F, Qi X, Zhou J, Fu W, Li L. Rapid and direct detection of m 6A methylation by DNAzyme-based and smartphone-assisted electrochemical biosensor. Biosens Bioelectron 2025; 267:116788. [PMID: 39316869 DOI: 10.1016/j.bios.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
m6A methylation detection is crucial for understanding RNA functions, revealing disease mechanisms, guiding drug development and advancing epigenetics research. Nevertheless, high-throughput sequencing and liquid chromatography-based traditional methods still face challenges to rapid and direct detection of m6A methylation. Here we report a DNAzyme-based and smartphone-assisted electrochemical biosensor for rapid detection of m6A. We initially identified m6A methylation-sensitive DNAzyme mutants through site mutation screening. These mutants were then combined with tetrahedral DNA to modify the electrodes, creating a 3D sensing interface. The detection of m6A was accomplished by using DNAzyme to capture and cleave the m6A sequence. The electrochemical biosensor detected the m6A sequence at nanomolar concentrations with a low detection limit of 0.69 nM and a wide detection range from 10 to 104 nM within 60 min. As a proof of concept, the 3'-UTR sequence of rice was selected as the m6A analyte. Combined with a smartphone, our biosensor shows good specificity, sensitivity, and easy-to-perform features, which indicates great prospects in the field of RNA modification detection and epigenetic analysis.
Collapse
Affiliation(s)
- Kai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Liang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengrui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Fu
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China.
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
41
|
Feng XM, Zhang Y, Chen N, Ma LL, Gong M, Yan YX. The role of m 6A modification in cardiovascular disease: A systematic review and integrative analysis. Int Immunopharmacol 2024; 143:113603. [PMID: 39536485 DOI: 10.1016/j.intimp.2024.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS This study focused on the recent advancements in understanding the association between N6-methyladenosine (m6A) modification and cardiovascular disease (CVD). METHODS The potential mechanisms of m6A related to CVD were summarized by literature review. Associations between m6A levels and CVD were explored across 8 electronic databases: PubMed, Embase, Web of Science, Cochrane Library, Sinomed, Wan Fang, CNKI, and Vip. Standard mean difference (SMD) and 95 % confidence interval (95 % CI) were calculated to assess the total effect in integrated analysis. RESULTS The systematic review summarized previous studies on the association between m6A modification and CVD, highlighting the potential role of m6A in CVD progression. A total of 11 studies were included for integrative analysis. The mean m6A levels were significantly higher in CVD than those in normal controls (SMD = 1.86, 95 % CI: 0.16-3.56, P < 0.01). CONCLUSIONS This systematic review provided new targets for early detection and treatment for CVD. And the integrated analysis showed that increased level of m6A was associated with CVD.
Collapse
Affiliation(s)
- Xu-Man Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ning Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
42
|
Liu S. The RNA N 6-Methyladenosine MethylomeCoordinates Long Non-Coding RNAs to MediateCancer Drug Resistance by Activating PI3KSignaling. RESEARCH SQUARE 2024:rs.3.rs-5663230. [PMID: 39764125 PMCID: PMC11702776 DOI: 10.21203/rs.3.rs-5663230/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Long non-coding RNAs (lncRNAs) and RNA N6-methyladenosine (m6A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m6A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m6A, and more lncRNAs tend to have higher m6A content in CML cells resistant to tyrosine kinase inhibitors (TKIs). We demonstrate broad clinical relevance of our findings, showing that upregulation of top-ranked lncRNAs (e.g., SENCR, PROX1-AS1, LN892) in TKI resistant cell lines occurs in CML patients at the diagnostic stage, blast crisis phase or not-responding to TKIs compared to chronic phase or TKI responders, respectively. Higher lncRNAs predict drug resistance and shorter survival duration. Knockdown of SENCR, PROX1-AS1 or LN892 restores TKI sensitivity. Mechanistically, upregulation of PROX1-AS1, SENCR and LN892 results from FTO-dependent m6A hypomethylation that stabilizes lncRNA transcripts, and empowers resistant cell growth through overexpression of PI3K signaling mediators (e.g., ITGA2, F2R, COL6A1). Treatment with PI3K inhibitor alpelisib eradicates resistant cells in vitro and in vivo with prolonged survival of leukemic mice through downregulation of F2R, ITGA2 and COL6A1. Thus, the lncRNA-m6A-PI3K cascade represents a new non-genetic predictor for drug resistance and poorer prognosis in cancer, and a pan-cancer mechanism underlying TKI resistance.
Collapse
Affiliation(s)
- Shujun Liu
- The Metrohealth System, Case Western Reser
| |
Collapse
|
43
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
44
|
Shi Y, Lei Y, Chen M, Ma H, Shen T, Zhang Y, Huang X, Ling W, Liu SY, Pan Y, Dai Z, Xu Y. A Demethylation-Switchable Aptamer Design Enables Lag-Free Monitoring of m 6A Demethylase FTO with Energy Self-Sufficient and Structurally Integrated Features. J Am Chem Soc 2024; 146:34638-34650. [PMID: 39628311 DOI: 10.1021/jacs.4c12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA N6-methyladenosine (m6A) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific m6A (DSA-m6A) for lag-free monitoring of the m6A demethylase FTO activity in living cells. As a proof of concept, a DNA aptamer against adenosine triphosphate (ATP) is selected to construct the DSA-m6A model, as the "universal energy currency" role of ATP could guarantee the equally fast and spontaneous conformation change of DSA-m6A sensor upon demethylation and ATP binding in living organisms, thus enabling sensitive monitoring of FTO activity with neither time delay nor recourse to extra supply of substances. This ATP-driven DSA-m6A design facilitates biomedical research, including live-cell imaging, inhibitor screening, single-cell tracking of dynamic FTO nuclear translocation upon starvation stimuli, FTO characterization in a biomimetic heterotypic three-dimensional (3D) multicellular spheroid model, as well as the first report on the in vivo imaging of FTO activity. This strategy provides a simple yet versatile toolbox for clinical diagnosis, drug discovery, therapeutic evaluation, and biological study of RNA demethylation.
Collapse
Affiliation(s)
- Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yutian Lei
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Taorong Shen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wanxuan Ling
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
45
|
Tarullo M, Fernandez Rodriguez G, Iaiza A, Venezia S, Macone A, Incocciati A, Masciarelli S, Marchioni M, Giorgis M, Lolli ML, Fornaseri F, Proietti L, Grebien F, Rosignoli S, Paiardini A, Rotili D, Mai A, Bochenkova E, Caflisch A, Fazi F, Fatica A. Off-Target Inhibition of Human Dihydroorotate Dehydrogenase ( hDHODH) Highlights Challenges in the Development of Fat Mass and Obesity-Associated Protein (FTO) Inhibitors. ACS Pharmacol Transl Sci 2024; 7:4096-4111. [PMID: 39698280 PMCID: PMC11651170 DOI: 10.1021/acsptsci.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
FTO, an N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (hDHODH). Notably, structural similarities between the catalytic pockets of FTO and hDHODH enabled FB23-2 to inhibit both enzymes. In contrast, the hDHODH-inactive FB23-2 analog, ZLD115, required FTO for its antiproliferative activity. Similarly, the FTO inhibitor CS2 (brequinar), known as one of the most potent hDHODH inhibitors, exhibited FTO-independent antileukemic effects. Uridine supplementation fully rescued leukemia cells from FB23-2 and CS2-induced growth inhibition, but not ZLD115, confirming the inhibition of pyrimidine synthesis as the primary mechanism of action underlying their antileukemic activity. These findings underscore the importance of considering off-target effects on hDHODH in the development of FTO inhibitors to optimize their therapeutic potential and minimize unintended consequences.
Collapse
Affiliation(s)
- Marco Tarullo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Alessia Iaiza
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Venezia
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Incocciati
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Masciarelli
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Marcella Marchioni
- Institute
of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, 00185 Rome, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Federico Fornaseri
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Ludovica Proietti
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
| | - Florian Grebien
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
- St.
Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Serena Rosignoli
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Science, Roma Tre University, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, 00185 Rome, Italy
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Francesco Fazi
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Alessandro Fatica
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
46
|
Meng S, Yang G, Yu E, Li J. Bibliometric analysis and visualization of the research on the relationship between RNA methylation and immune cell infiltration in tumors. Front Immunol 2024; 15:1477828. [PMID: 39726589 PMCID: PMC11669668 DOI: 10.3389/fimmu.2024.1477828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background This research endeavors to delve into the research hotspots and trends concerning RNA methylation and tumor immune cells through the application of bibliometric analysis and visualization techniques. Methods A comprehensive search in WoSCC (2014-2023) for RNA methylation and tumor immune cell articles/reviews was conducted. Bibliometric analysis and visualization employed CiteSpace, Bibliometric, and VOSviewer tools. Results A total of 3295 articles were included in the analysis, with a continuously increasing number of publications linking RNA methylation to tumoral immune cells. Chinese authors and research institutions have demonstrated a sustained growth trend in both the number of publications and author influence. SUN YAT SEN UNIVERSITY, a Chinese institution, has published the highest number of articles in this field, while also demonstrating extensive international and inter-institutional collaborations. Meanwhile, HARVARD UNIVERSITY has also achieved impressive results. For instance, Frontiers in Immunology has published the largest number of articles in this category. Nature Communications has published articles that are most influential in this field, playing a pivotal role in disseminating research findings. The sustained vitality of this field is attributed to its solid research foundation, including the groundbreaking work published by Professor Chiappinelli KB in Cell and the widely cited paper by Professor Han DL in Nature. Analysis of research trend topics reveals that m5C, immunotherapy, and the immune microenvironment are current research focuses. Conclusion Future investigative efforts at the juncture of RNA methylation and tumor immune cells are anticipated to concentrate on domains including m5C, n7-methylguanosine, cuproptosis, prognosis assessment, immunotherapeutic strategies, and the tumor microenvironment.
Collapse
Affiliation(s)
- Sibo Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanghui Yang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Enhao Yu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Jiaxin Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
47
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
48
|
Zhang Y, Wang XY, Liu MH, Li W, Ren C, Li CC, Ma Y, Zhang CY. Assembly of Dandelion-Like Nanoprobe for Sensitive Detection of N6-Methyladenosine Demethylase by Single-Molecule Counting. Anal Chem 2024; 96:19519-19526. [PMID: 39601655 DOI: 10.1021/acs.analchem.4c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N6-methyladenosine (m6A) demethylase is essential for enzymatically removing methyl groups from m6A modifications and is significantly implicated in the pathogenesis and advancement of various cancers, which makes it a promising biomarker for cancer detection and research. As a proof of concept, we select the fat mass and obesity-associated protein (FTO) as the target m6A demethylase and develop a dandelion-like nanoprobe-based sensing platform by employing biobar-code amplification (BCA) for signal amplification. We construct two meticulously designed three-dimensional structures: reporter-loaded gold nanoparticles (Reporter@Au NPs) and substrate-loaded magnetic microparticles (Substrate@MMPs), which can self-assemble to form dandelion-like nanoprobes via complementary base pairing. In the presence of FTO, the m6A-containing substrates are demethylated, triggering the MazF-assisted cleavage reaction and thereby releasing the Reporter@Au NPs. Furthermore, upon digestion by exonucleases, the Reporter@Au NPs may liberate a significant quantity of Cy3 signals. Remarkably, the combined effects of Au NPs' superior enrichment capacity, MMPs' exceptional magnetic separation efficiency, and the precision of the single-molecule detection platform endow the FTO sensor with exceptional sensitivity and specificity with a detection limit of 7.46 × 10-16 M. Additionally, this method offers a versatile platform for the detection of m6A demethylase and the screening of corresponding inhibitors, thereby advancing clinical diagnosis and drug development.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Xin-Yan Wang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Ming-Hao Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Wenfei Li
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin 300070, China
| | - Chen-Chen Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
49
|
Wang Z, Du X, Zhang P, Zhao M, Zhang T, Liu J, Wang X, Chang D, Liu X, Bian S, Zhang X, Zhang R. Single-cell transcriptome profiling of m 6A regulator-mediated methylation modification patterns in elderly acute myeloid leukemia patients. MOLECULAR BIOMEDICINE 2024; 5:66. [PMID: 39641872 PMCID: PMC11624184 DOI: 10.1186/s43556-024-00234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Millions of people worldwide die of acute myeloid leukaemia (AML) each year. Although N6-methyladenosine (m6A) modification has been reported to regulate the pathogenicity of AML, the mechanisms by which m6A induces dysfunctional hematopoietic differentiation in elderly AML patients remain elusive. This study elucidates the mechanisms of the m6A landscape and the specific roles of m6A regulators in hematopoietic cells of elderly AML patients. Notably, fat mass and obesity-associated protein (FTO) was found to be upregulated in hematopoietic stem cells (HSCs), myeloid cells, and T-cells, where it inhibits their differentiation via the WNT signaling pathway. Additionally, elevated YT521-B homology domain family proteins 2 (YTHDF2) expression in erythrocytes was observed to negatively regulate differentiation through oxidative phosphorylation, resulting in leukocyte activation. Moreover, IGF2BP2 was significantly upregulated in myeloid cells, contributing to an aberrant chromosomal region and disrupted oxidative phosphorylation. m6A regulators were shown to induce abnormal cell-cell communication within hematopoietic cells, mediating ligand-receptor interactions across various cell types through the HMGB1-mediated pathway, thereby promoting AML progression. External validation was conducted using an independent single-cell RNA sequencing (scRNA-Seq) dataset. The THP-1 and MV411 cell lines were utilized to corroborate the m6A regulator profile; in vitro experiments involving short hairpin RNA (shRNA) targeting FTO demonstrated inhibition of cell proliferation, migration, and oxidative phosphorylation, alongside induction of cell cycle arrest and apoptosis. In summary, these findings suggest that the upregulation of m6A regulators in HSCs, erythrocytes, myeloid cells, and T-cells may contribute to the malignant differentiation observed in AML patients. This research provides novel insights into the pathogenesis of AML in elderly patients and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xin Du
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Peidong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Meiling Zhao
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Tianbo Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jiang Liu
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaolan Wang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Doudou Chang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaxia Liu
- Department of Hematology, Linfen Central Hospital, Linfen, 041000, China
| | - Sicheng Bian
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xialin Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Ruijuan Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
50
|
Zhou Y, Ćorović M, Hoch-Kraft P, Meiser N, Mesitov M, Körtel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlík A, Busch A, Dieterich C, Vaňáčová Š, Hengesbach M, Zarnack K, König J. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 2024; 84:4576-4593.e12. [PMID: 39577428 DOI: 10.1016/j.molcel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
N6-Methyladenosine (m6A) is the predominant internal RNA modification in eukaryotic messenger RNAs (mRNAs) and plays a crucial role in mRNA stability. Here, using human cells, we reveal that m6A sites in the coding sequence (CDS) trigger CDS-m6A decay (CMD), a pathway that is distinct from previously reported m6A-dependent degradation mechanisms. Importantly, CDS m6A sites act considerably faster and more efficiently than those in the 3' untranslated region, which to date have been considered the main effectors. Mechanistically, CMD depends on translation, whereby m6A deposition in the CDS triggers ribosome pausing and transcript destabilization. The subsequent decay involves the translocation of the CMD target transcripts to processing bodies (P-bodies) and recruitment of the m6A reader protein YT521-B homology domain family protein 2 (YTHDF2). Our findings highlight CMD as a previously unknown pathway, which is particularly important for controlling the expression of developmental regulators and retrogenes.
Collapse
Affiliation(s)
- You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Miona Ćorović
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany
| | | | - Nadine Körtel
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Hannah Back
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kritika Katti
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany; Institute for Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julian König
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|