1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Yang Z, Niu R, Han J, Guo J, Lv Y. Hedgehog inhibitors exert anti-proliferation effects and synergistically interact with trastuzumab in HER2-positive gastric cancer models. Acta Oncol 2025; 64:715-728. [PMID: 40426308 DOI: 10.2340/1651-226x.2025.42219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant health concern with limited therapeutic options. While trastuzumab, a Human Epidermal Growth Factor Receptor 2 (HER2)-targeting antibody, has shown efficacy in HER2-positive GC, its therapeutic response is moderate. Hedgehog (Hh) signalling plays a critical role in the progression of GC. METHODS We evaluated the sensitivity of various GC cell lines to trastuzumab. The HER2-positive HGC-27 cell line was identified as the most sensitive. In addition, the effects of two Hedgehog inhibitors, vismodegib and cyclopamine, were assessed on cell growth by monitoring SMO expression. Both in vitro and in vivo assays were conducted to explore the combination of Hh inhibitors and trastuzumab. RESULTS Both vismodegib and cyclopamine exerted anti-proliferative effects, and synergistically enhanced the anti-tumour activity of trastuzumab in HER2-positive GC models. Mechanistically, Hh inhibitors inhibited the AKT/mTOR signalling pathway through Smoothened (SMO) depletion, contributing to their anti-growth effects. INTERPRETATION This study highlights the potential of combining Hh inhibitors with trastuzumab as a therapeutic strategy for HER2-positive GC by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zixin Yang
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Ren Niu
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jinzhu Han
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jie Guo
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yingqian Lv
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China.
| |
Collapse
|
3
|
Zhang D, Wang X, Li W, Wan D, Zhou Y, Ma C, Yang Z, Zhang Y, Li W, Li Z, Lin H, Jin Z, Wu W, Huang H. A Single-Cell Atlas-Inspired Hitchhiking Therapeutic Strategy for Acute Pancreatitis by Restricting ROS in Neutrophils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502200. [PMID: 40395143 DOI: 10.1002/adma.202502200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Neutrophils can undergo transcriptional and epigenetic reprogramming in disease, thus causing inflammation or modulating tissue repair and fibrosis. A thorough understanding of the neutrophil subpopulation composition and their polarization processes in acute pancreatitis (AP) is essential to open up design of treatments tailored to individual patients. Herein, this study distinct subgroups and two differentiation pathways associated with N1 and N2 polarization during AP by single-cell sequencing. Inspired by this, a hollow manganese dioxide (HMnO2)-based nanoreactor (Pyp@APHM) conjugated with neutrophil-binding Ly-6G antibody and loaded with porphyrin is developed for targeted and in situ modulation of neutrophil polarization. Pyp@APHM can enrich the AP site by hitchhiking on neutrophils and then degrade in response to a weakly acidic environment to simultaneously release manganese ions and porphyrin ligands, enabling in situ synthesis of manganese porphyrin antioxidants. Leveraging this strategy, Pyp@APHM can effectively eliminate reactive oxygen species (ROS) and broadly inhibit both N1 and N2 polarization, as well as enhance tissue oxygenation by generating O2, thereby further mitigating pancreatic inflammation. This study provides a comprehensive single-cell atlas of neutrophils in AP and proposes an innovative hitchhiking therapeutic strategy for AP by restricting ROS in neutrophils.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Dongling Wan
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Congjia Ma
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yang Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wenhao Li
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Han Lin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Li N, Tong H, Hou W, Liu Q, Xiang F, Zhu JW, Xu SL, He Z, Wang B. Neural-cancer crosstalk: Reciprocal molecular circuits driving gastric tumorigenesis and emerging therapeutic opportunities. Cancer Lett 2025; 616:217589. [PMID: 40015663 DOI: 10.1016/j.canlet.2025.217589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The nervous system plays an important role in regulating physiological functions of the stomach, and its abnormal activity often impairs gastric homeostasis. In response to constant exposure to oncogenic stimuli that leads to gastric tumorigenesis, the neural system becomes an essential component of the tumor microenvironment via perineural infiltration, de novo neurogenesis, and axonogenesis, thereby driving cancer initiation and progression. In this review, we highlight emerging discoveries related to neural-cancer crosstalk and discuss how the nervous system is remodeled by tumor cells including neural components and modulators (including neurotransmitters and neuropeptides). Moreover, we provide a systematic analysis of neural control of the cellular hallmarks of cancer. Finally, we propose how the molecular circuits of neural-cancer crosstalk could be exploited as potential targets for novel anti-cancer treatment, providing new insights into a new modality of neural-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Huyun Tong
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Wenqing Hou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jian-Wu Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China; Jinfeng Laboratory, Chongqing, 401329, PR China.
| |
Collapse
|
5
|
Yong X, Mu D, Ni H, Wang X, Zhang T, Chang X, He S, Zhou D. Regulation of the CD8⁺ T cell and PDL1/PD1 axis in gastric cancer: Unraveling the molecular landscape. Crit Rev Oncol Hematol 2025; 212:104750. [PMID: 40306470 DOI: 10.1016/j.critrevonc.2025.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025] Open
Abstract
Gastric cancer (GC) remains a significant global health burden, mainly due to immune evasion mechanisms within its complex tumor microenvironment (TME). The interaction between CD8⁺ T cells and the PD1/PDL1 axis is central to these mechanisms. CD8⁺ T cells, key players in antitumor immunity, often exhibit impaired functionality in the GC TME, primarily due to PD1-mediated inhibitory signaling induced by PDL1 expressed on tumor and immune cells. Recent findings have elucidated intricate molecular interactions governing PD1 expression on CD8⁺ T cells and the modulation of PDL1 on tumor cells and immune cells by diverse signals such as cytokines, metabolic factors, and noncoding RNAs. While high PD1 expression typically indicates CD8⁺ T cell exhaustion and poor clinical outcomes, recent studies highlight scenarios where elevated PD1 levels correlate with preserved or enhanced T cell cytotoxic activity, suggesting nuanced regulatory pathways. Therapeutic strategies that disrupt PD1/PDL1 interactions, through checkpoint inhibitors or pharmacological modulation, have demonstrated potential in reactivating antitumor responses. However, resistance mechanisms, including altered antigen presentation, metabolic reprogramming, and immunosuppressive cell infiltration, continue to limit efficacy. Emerging combination therapies, biomarker-driven patient stratification, and novel targets like noncoding RNAs and exosomal PDL1 represent promising avenues to enhance treatment effectiveness. This review synthesizes current insights into the molecular regulation of CD8⁺ T cell functionality and the PD1/PDL1 axis, highlighting potential therapeutic strategies to restore antitumor immunity and improve patient outcomes in gastric cancer.
Collapse
Affiliation(s)
- Xin Yong
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Dong Mu
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Hua Ni
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Xue Wang
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Tongqin Zhang
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Xing Chang
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Sheng He
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Dejiang Zhou
- Department of Digestive Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| |
Collapse
|
6
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
7
|
Yang HC, Fu CF, Qiao LJ, Long GH, Yang LF, Yao B. Relationship between Helicobacter pylori infection and programmed death-ligand 1 in gastric cancer: A meta-analysis. World J Clin Oncol 2025; 16:102397. [PMID: 40290698 PMCID: PMC12019281 DOI: 10.5306/wjco.v16.i4.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies worldwide, and Helicobacter pylori (HP) infection is a well-established risk factor for its development. Programmed death-ligand 1 (PD-L1) expression is a crucial biomarker for predicting the efficacy of immune checkpoint inhibitors in cancer treatment. While HP infection and PD-L1 expression in GC may be linked, the relationship between them remains unclear, in part because there have been conflicting results reported from various studies. AIM To perform a meta-analysis to assess the relationship between HP and PD-L1 expression in patients with GC. METHODS A systematic literature review was conducted using PubMed, Embase, Cochrane Library, and Web of Science databases. Observational studies that examined the association between HP infection and PD-L1 expression in patients with GC were included. Odds ratios and 95% confidence intervals were calculated to estimate the association. Heterogeneity was assessed using Cochrane's Q test and I² statistic. A random-effects model was used due to significant heterogeneity across studies. RESULTS Fourteen studies involving a total of 3069 patients with GC were included. The pooled analysis showed a significant association between HP infection and increased PD-L1 expression in GC tissues (odd ratio = 1.69, 95% confidence interval: 1.24-2.29, P < 0.001, I 2 = 59%). Sensitivity analyses confirmed the robustness of these findings. Subgroup analyses did not show significant variation based on geographic region, sample size, or method of PD-L1 assessment. Publication bias was minimal, as shown by funnel plots and Egger's regression test. CONCLUSION HP infection is associated with increased PD-L1 expression in GC, suggesting that HP status may influence the response to programmed cell death protein 1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Hong-Chang Yang
- Department of Gastroenterology, Longgang Central Hospital of Shenzhen, Shenzhen 518100, Guangdong Province, China
| | - Cheng-Feng Fu
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Li-Jun Qiao
- Department of Basic Medical Sciences, Guizhou Health Vocational College, Tongren 554300, Guizhou Province, China
| | - Gen-He Long
- Department of School of Medicine, Guizhou Vocational and Technical College, Tongren 554300, Guizhou Province, China
| | - Li-Fen Yang
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Biao Yao
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| |
Collapse
|
8
|
Ahrentløv N, Kubrak O, Lassen M, Malita A, Koyama T, Frederiksen AS, Sigvardsen CM, John A, Madsen PEH, Halberg KV, Nagy S, Imig C, Richter EA, Texada MJ, Rewitz K. Protein-responsive gut hormone tachykinin directs food choice and impacts lifespan. Nat Metab 2025:10.1038/s42255-025-01267-0. [PMID: 40229448 DOI: 10.1038/s42255-025-01267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Animals select food based on hungers that reflect dynamic macronutrient needs, but the hormonal mechanisms underlying nutrient-specific appetite regulation remain poorly defined. Here, we identify tachykinin (Tk) as a protein-responsive gut hormone in Drosophila and female mice, regulated by conserved environmental and nutrient-sensing mechanisms. Protein intake activates Tk-expressing enteroendocrine cells (EECs), driving the release of gut Tk through mechanisms involving target of rapamycin (TOR) and transient receptor potential A1 (TrpA1). In flies, we delineate a pathway by which gut Tk controls selective appetite and sleep after protein ingestion, mediated by glucagon-like adipokinetic hormone (AKH) signalling to neurons and adipose tissue. This mechanism suppresses protein appetite, promotes sugar hunger and modulates wakefulness to align behaviour with nutritional needs. Inhibiting protein-responsive gut Tk prolongs lifespan through AKH, revealing a role for nutrient-dependent gut hormone signalling in longevity. Our results provide a framework for understanding EEC-derived nutrient-specific satiety signals and the role of gut hormones in regulating food choice, sleep and lifespan.
Collapse
Affiliation(s)
- Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie S Frederiksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alphy John
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation, Hellerup, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Zhu W, Sun J, Jing F, Xing Y, Luan M, Feng Z, Ma X, Wang Y, Jia Y. GLI2 inhibits cisplatin sensitivity in gastric cancer through DEC1/ZEB1 mediated EMT. Cell Death Dis 2025; 16:204. [PMID: 40133270 PMCID: PMC11937514 DOI: 10.1038/s41419-025-07564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Cisplatin (CDDP) based chemotherapy has emerged as the predominant therapeutic regimen for patients with advanced gastric cancer (GC). However, its efficacy is dampened by the development of chemoresistance, which results in poor prognosis of patients. GLI2, a key transcription factor in the Hedgehog (Hh) signaling pathway, is regarded as a target for cancer therapy. However, the significance of GLI2 for CDDP resistance in GC has not been well established. Here, we show that GLI2 expression was upregulated in EMT-type GC and associated with poor prognosis. GLI2 promotes proliferation, migration, and CDDP resistance of GC cells by inducing EMT. In terms of mechanism, GLI2 binds to the promoter region of DEC1 and enhances its expression, thereby co-transcriptionally regulating ZEB1 expression. Animal experiments have demonstrated that both GLI2 knockdown and GLI2 inhibitor significantly enhance CDDP sensitivity in GC. Our data not only identify a novel GLI2/DEC1/ZEB1/EMT pathway in GC CDDP resistance but also provide novel strategies to treat GC in the future.
Collapse
Affiliation(s)
- Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Jingguo Sun
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Fubo Jing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Dong Q, Yuan M, Hu J, Lin P, Yan Y, Wang Y, Wang Y. Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study. Int Immunopharmacol 2025; 147:113892. [PMID: 39740506 DOI: 10.1016/j.intimp.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking. In a hypoxic tumor microenvironment (TME), BC cells can enhance aerobic-glycolysis rates, upregulate expression of key lipid metabolism enzymes such as cluster of differentiation (CD) 36 and 5-lipoxygenase (5-LOX), accelerate glutamine (Gln) uptake, and elevate extracellular adenosine (eADO) levels, thereby fostering MDSC proliferation and amplifying immune suppression. Concurrently, alterations in the metabolic state of MDSCs also influence BC progression. To ensure adequate proliferative resources, MDSCs upregulate the pentose phosphate pathway and expedite glycolysis for energy supply while increasing the expression of fatty acid transport proteins (FATPs) such as CD36 and fatty acid transporter 2 (FATP2) to maintain intracellular lipid availability, thereby enhancing their adaptability within the TME. Furthermore, MDSCs undermine T-cell anti-tumor efficacy by depleting essential amino acids (AAs), such as arginine (Arg), tryptophan (Trp), and cysteine (Cys), required for T-cell function. This review elucidates how pharmacological agents such as metformin, liver X receptor (LXR) agonists, and 6-diazo-5-oxo-L-norleucine (DON) can augment anti-cancer treatment efficacy by targeting metabolic pathways in MDSCs. We systematically delineate the mechanisms governing interactions between BC cells and MDSCs from a metabolic standpoint while summarizing therapeutic strategies to modulate metabolism within MDSCs. Our review provides a framework for optimizing MDSC applications in BC immunotherapy.
Collapse
Affiliation(s)
- Yulin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Menghan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Zhao Z, Wu X, Zhang T, Zhou M, Liu S, Yang R, Li JP. Evaluation of Multispecific Drugs Based on Patient-Derived Immunocompetent Tumor Organoids. Chembiochem 2025; 26:e202400731. [PMID: 39800663 DOI: 10.1002/cbic.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Indexed: 01/24/2025]
Abstract
The evolution of antitumor drug development has transitioned from single-agent chemotherapy to targeted therapy, immunotherapy, and more recently, multispecific drugs. These innovative drugs target multiple cellular or molecular pathways simultaneously, offering a more comprehensive anticancer approach and addressing some of the limitations inherent in traditional monotherapies. However, preclinical assessment of multispecific drugs remains challenging, as conventional tumor models often lack the necessary complexity to accurately reflect the interactions between various cell types and targets. Patient-derived immunocompetent tumor organoids (PDITOs), which incorporate both tumor cells and immune cells, present a promising platform for the evaluation of these drugs. Beyond their use in drug evaluation, PDITOs can also be utilized in personalized drug screening and predicting patient-specific treatment outcomes, thus advancing both multispecific drug development and precision medicine. This perspective discusses the current landscape of multispecific drug development and the methodologies for constructing PDITOs. It also addresses the associated challenges and introduces the concept of employing these organoids to optimize the evaluation and rational design of multispecific drug therapies.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Tianyang Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Meng Zhou
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Siyang Liu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
12
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Matsuoka T, Yashiro M. Molecular Mechanism for Malignant Progression of Gastric Cancer Within the Tumor Microenvironment. Int J Mol Sci 2024; 25:11735. [PMID: 39519285 PMCID: PMC11546171 DOI: 10.3390/ijms252111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of GC, and progress in the development of effective anti-GC drugs has been insufficient. The tumor microenvironment (TME) regulates various functions of tumor cells, and interactions between the cellular and molecular components of the TME-e.g., inflammatory cells, fibroblasts, vasculature cells, and innate and adaptive immune cells-promote the aggressiveness of cancer cells and dissemination to distant organs. This review summarizes the roles of various TME cells and molecules in regulating the malignant progression and metastasis of GC. We also address the important roles of signaling pathways in mediating the interaction between cancer cells and the different components of the GC TME. Finally, we discuss the implications of these molecular mechanisms for developing novel and effective therapies targeting molecular and cellular components of the GC TME to control the malignant progression of GC.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
14
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Liu Y, Lankadasari M, Rosiene J, Johnson KE, Zhou J, Bapat S, Chow-Tsang LFL, Tian H, Mastrogiacomo B, He D, Connolly JG, Lengel HB, Caso R, Dunne EG, Fick CN, Rocco G, Sihag S, Isbell JM, Bott MJ, Li BT, Lito P, Brennan CW, Bilsky MH, Rekhtman N, Adusumilli PS, Mayo MW, Imielinski M, Jones DR. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep Med 2024; 5:101777. [PMID: 39413736 PMCID: PMC11513837 DOI: 10.1016/j.xcrm.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manendra Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology, New York University, New York, NY, USA
| | - Kofi E Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Juan Zhou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lai-Fong L Chow-Tsang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huasong Tian
- Department of Pathology, New York University, New York, NY, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry B Lengel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Caso
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
17
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
18
|
Wu M, Tao H, Xu T, Zheng X, Wen C, Wang G, Peng Y, Dai Y. Spatial proteomics: unveiling the multidimensional landscape of protein localization in human diseases. Proteome Sci 2024; 22:7. [PMID: 39304896 DOI: 10.1186/s12953-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Spatial proteomics is a multidimensional technique that studies the spatial distribution and function of proteins within cells or tissues across both spatial and temporal dimensions. This field multidimensionally reveals the complex structure of the human proteome, including the characteristics of protein spatial distribution, dynamic protein translocation, and protein interaction networks. Recently, as a crucial method for studying protein spatial localization, spatial proteomics has been applied in the clinical investigation of various diseases. This review summarizes the fundamental concepts and characteristics of tissue-level spatial proteomics, its research progress in common human diseases such as cancer, neurological disorders, cardiovascular diseases, autoimmune diseases, and anticipates its future development trends. The aim is to highlight the significant impact of spatial proteomics on understanding disease pathogenesis, advancing diagnostic methods, and developing potential therapeutic targets in clinical research.
Collapse
Affiliation(s)
- Mengyao Wu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science & Technology, Huainan, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China.
| | - Tiantian Xu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Yali Peng
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
19
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
21
|
Chen D, Xu L, Xuan M, Chu Q, Xue C. Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clin Transl Med 2024; 14:e1802. [PMID: 39245957 PMCID: PMC11381553 DOI: 10.1002/ctm2.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfei Chu
- Department of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Shen D, Xia Y, Fu Y, Cao Q, Chen W, Zhu Y, Guo K, Sun L. Hedgehog pathway and cancer: A new area (Review). Oncol Rep 2024; 52:116. [PMID: 38994763 PMCID: PMC11267502 DOI: 10.3892/or.2024.8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.
Collapse
Affiliation(s)
- Deyi Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaochang Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Kaibo Guo
- Department of Cancer Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
23
|
Hong Y, Chen Q, Wang Z, Zhang Y, Li B, Guo H, Huang C, Kong X, Mo P, Xiao N, Xu J, Ye Y, Yu C. Targeting Nuclear Receptor Coactivator SRC-1 Prevents Colorectal Cancer Immune Escape by Reducing Transcription and Protein Stability of PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310037. [PMID: 38953362 PMCID: PMC11434141 DOI: 10.1002/advs.202310037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.
Collapse
Affiliation(s)
- Yilin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Qiang Chen
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Zinan Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Yong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Bei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Hanshi Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, P. R. China
| | - Xu Kong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, P. R. China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
24
|
Yang R, Kwan W, Du Y, Yan R, Zang L, Li C, Zhu Z, Cheong IH, Kozlakidis Z, Yu Y. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Lett 2024; 598:217106. [PMID: 38992487 PMCID: PMC11364160 DOI: 10.1016/j.canlet.2024.217106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with aggressiveness and poor prognosis. It is of great significance to find sensitive drugs for DGC. In the current study, a total of 20 patient-derived organoids (PDOs) were analyzed for screening the therapeutic efficacy of small molecule kinases inhibitors on gastric cancers, especially the therapeutic difference between intestinal-type gastric cancer (IGCs) and DGCs. The IGCs are sensitive to multiple kinases inhibitors, while DGCs are resistant to most of these kinases inhibitors. It was found that DGCs showed drug-induced senescent phenotype after treatment by aurora kinases inhibitors (AURKi) Barasertib-HQPA and Danusertib. The cell diameter of cancer cells are increased with stronger staining of senescence-associated β-galactosidase (SA-β-GAL), and characteristic appearance of multinucleated giant cells. The senescent cancer cells secrete large amounts of chemokine MCP-1/CCL2, which recruit and induce macrophage to M2-type polarization in PDOs of DGC (DPDOs)-macrophage co-culture system. The up-regulation of local MCP-1/CCL2 can interact with MCP-1/CCL2 receptor (CCR2) expressed on macrophages and suppress their innate immunity to cancer cells. Overall, the special response of DGC to AURKi suggests that clinicians should select a sequential therapy with senescent cell clearance after AURKi treatment for DGC.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, 999078, Macau, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, CS 90627, 69366, LYON, CEDEX 07, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
25
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
26
|
Bennett NE, Parker DV, Mangano RS, Baum JE, Northcutt LA, Miller JS, Beadle EP, Rhoades JA. Pharmacologic Hedgehog inhibition modulates the cytokine profile of osteolytic breast cancer cells. J Bone Oncol 2024; 47:100625. [PMID: 39183755 PMCID: PMC11342115 DOI: 10.1016/j.jbo.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The establishment and progression of bone metastatic breast cancer is supported by immunosuppressive myeloid populations that enable tumor growth by dampening the innate and adaptive immune response. Much work remains to understand how to target these tumor-myeloid interactions to improve treatment outcomes. Noncanonical Hedgehog signaling is an essential component of bone metastatic tumor progression, and prior literature suggests a potential role for Hedgehog signaling and its downstream effector Gli2 in modulating immune responses. In this work, we sought to identify if inhibition of noncanonical Hedgehog signaling alters the cytokine profile of osteolytic breast cancer cells and the subsequent communication between the tumor cells and myeloid cells. Examination of large patient databases revealed significant relationships between Gli2 expression and expression of markers of myeloid maturation and activation as well as cytokine expression. We found that treatment with HPI-1 reduced tumor cell expression of numerous cytokine genes, including CSF1, CSF2, and CSF3, as well as CCL2 and IL6. Secreted CSF-1 (M-CSF) was also reduced by treatment. Changes in tumor-secreted factors resulted in polarization of THP-1 monocytes toward a proinflammatory phenotype, characterized by increased CD14 and CD40 surface marker expression. We therefore propose M-CSF as a novel target of Hedgehog inhibition with potential future applications in altering the immune microenvironment in addition to its known roles in reducing tumor-induced bone disease.
Collapse
Affiliation(s)
- Natalie E. Bennett
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
| | - Dominique V. Parker
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Rachel S. Mangano
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Interdisciplinary Graduate Program in Biological and Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jennifer E. Baum
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Master’s Program in Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Logan A. Northcutt
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jade S. Miller
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Erik P. Beadle
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie A. Rhoades
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
27
|
Guo Z, Wang Y, Qin W, Heng Y, Chen X, Liu N, Li J, Wu H, Zhou Y, Zhang R, Song S, Wu Z. miR-122-3p targets UBE2I to regulate the immunosuppression of liver cancer and the intervention of Liujunzi formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118081. [PMID: 38570148 DOI: 10.1016/j.jep.2024.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liujunzi formula has been used to treat liver cancer in China for many years, but its underlying mechanism remains unclear. We previously found that decreased expression of miR-122-3p was associated with liver cancer. In this study, we aimed to explore the target of miR-122-3p and the effect of the Liujunzi formula on miR-122-3p and its downstream events in liver cancer. MATERIAL AND METHODS Bioinformatics pinpointed potential targets of miR-122-3p. The actual target was confirmed by miRNA mimic/inhibitor transfections and a dual-luciferase reporter assay. RNA-seq looked at downstream genes impacted by this target. Flow cytometry checked for changes in T cell apoptosis levels after exposing them to liver cancer cells. Gene expression was measured by RT-qPCR, western blotting, and immunofluorescence staining. RESULTS Cell experiments found the Liujunzi extract (LJZ) upregulated miR-122-3p and in a dose-dependent manner. Bioinformatics analysis found UBE2I was a potential target of miR-122-3p, which was validated through experiments using miRNA mimics/inhibitors and a dual-luciferase reporter assay. RNA-seq data implicated the NF-κB pathway as being downstream of the miR-122-3p/UBE2I axis, further confirmed by forcing overexpression of UBE2I. Bioinformatic evidence suggested a link between UBE2I and T cell infiltration in liver cancer. Given that the NF-κB pathway drives PD-L1 expression, which can inhibit T cell infiltration, we investigated whether PD-L1 is a downstream effector of miR-122-3p/UBE2I. This was corroborated through mining public databases, UBE2I overexpression studies, and tumor-T cell co-culture assays. In addition, we also confirmed that LJZ downregulates UBE2I and NF-κB/PD-L1 pathways through miR-122-3p. LJZ also suppressed SUMOylation in liver cancer cells and protected PD-1+ T cells from apoptosis induced by co-culture with tumor cells. Strikingly, a miR-122-3p inhibitor abrogated LJZ's effects on UBE2I and PD-L1, and UBE2I overexpression rescued the LJZ-mediated effects on NF-κB and PD-L1. CONCLUSIONS miR-122-3p targets UBE2I, thereby suppressing the NF-κB signaling cascade and downregulating PD-L1 expression, which potentiates anti-tumor immune responses. LJZ bolsters anti-tumor immunity by modulating the miR-122-3p/UBE2I/NF-κB/PD-L1 axis in liver cancer cells.
Collapse
Affiliation(s)
- Zhenhui Guo
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yiqi Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanting Qin
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yin Heng
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510080, China
| | - Xi Chen
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Na Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinzhe Li
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haitao Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ying Zhou
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ren Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shanshan Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Zheli Wu
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Luo S, Li S, Liu C, Yu D, Sun L, Zhang S, Zhao N, Zhang M, Nie J, Zhao Y, Li C, Zhang Y, Zhang Q, Meng H, Li X, Shi J, Zheng T. Stage-specificity of STING activation in intrahepatic cholangiocarcinoma determines the efficacy of its agonism. Cancer Lett 2024; 594:216992. [PMID: 38797231 DOI: 10.1016/j.canlet.2024.216992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive cancer with an extremely poor prognosis, and new treatment options are needed. Recently, immunotherapy has emerged as an efficient treatment against malignant tumors, but less effective in iCCA. Activation of stimulator of interferon genes (STING) signaling could reignite immunologically inert tumors, but the expression and role of STING in iCCA remains to be determined. Here, we show STING is expressed in iCCA, and patients with high expression of STING in early-stage iCCA have a longer overall survival than those have low expression. Increased immune cell infiltration in early-stage iCCA corresponds to elevated STING expression. In mice iCCA models, treatment with the STING agonist MSA-2 show stage-specific inhibitory effects on tumors, with beneficial effects in early-stage tumors but not with advanced-stage cancer. This discrepancy was associated with greater programmed cell death ligand 1 (PD-L1) expression in advanced-stage tumors. Combination therapy targeting PD-L1 and MSA-2 strikingly reduced tumor burden in such tumors compared to either monotherapy. Cumulatively, these data demonstrate that STING agonism monotherapy improves the immune landscape of the tumor microenvironment in early-stage iCCA, while combination therapy ameliorates advanced-stage iCCA.
Collapse
Affiliation(s)
- Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shun Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Dongyu Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Linlin Sun
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Na Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Meng Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Chunyue Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Yan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Qian Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, PR China.
| | - Jiaqi Shi
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| |
Collapse
|
29
|
Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024; 10:627-642. [PMID: 38600020 PMCID: PMC11292672 DOI: 10.1016/j.trecan.2024.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors. Understanding the underlying molecular mechanisms and targeting the immunosuppressive TME will enhance immunotherapy efficacy and patient outcomes. This review summarizes recent advances in GC TME research and explores the role of the immune-suppressive system as a context-specific determinant. We also provide insights into potential treatments beyond checkpoint inhibition.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Sun J, Zhu W, Luan M, Xing Y, Feng Z, Zhu J, Ma X, Wang Y, Jia Y. Positive GLI1/INHBA feedback loop drives tumor progression in gastric cancer. Cancer Sci 2024; 115:2301-2317. [PMID: 38676428 PMCID: PMC11247559 DOI: 10.1111/cas.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
32
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
34
|
Liu YY, Wu DK, Chen JB, Tang YM, Jiang F. Advances in the study of gastric organoids as disease models. World J Gastrointest Oncol 2024; 16:1725-1736. [PMID: 38764838 PMCID: PMC11099456 DOI: 10.4251/wjgo.v16.i5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Yi-Yang Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - De-Kun Wu
- Teaching Experiment and Training Center, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Ji-Bing Chen
- Central Laboratory, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - You-Ming Tang
- Department of Digestive Disease, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Feng Jiang
- AIDS Research Center, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
35
|
Luo Y, Li Z, Zhu H, Lu J, Lei Z, Su C, Liu F, Zhang H, Huang Q, Han S, Rao D, Wang T, Chen X, Cao H, Zhang Z, Huang W, Liang H. Transcription factor EHF drives cholangiocarcinoma development through transcriptional activation of glioma-associated oncogene homolog 1 and chemokine CCL2. MedComm (Beijing) 2024; 5:e535. [PMID: 38741887 PMCID: PMC11089446 DOI: 10.1002/mco2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhi Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei UniversityWuhanChina
- Key Laboratory of Breeding Biotechnology and Sustainable AquacultureInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - He Zhu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junli Lu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Lei
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chen Su
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Furong Liu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongwei Zhang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qibo Huang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dean Rao
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tiantian Wang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Chen
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanChina
| | - Hong Cao
- Key Laboratory of Breeding Biotechnology and Sustainable AquacultureInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Zhiwei Zhang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Wenjie Huang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanChina
| | - Huifang Liang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| |
Collapse
|
36
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
37
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Duan Y, Kong P, Huang M, Yan Y, Dou Y, Huang B, Guo J, Kang W, Zhu C, Wang Y, Zhou D, Cai Q, Xu D. STAT3-mediated up-regulation of DAB2 via SRC-YAP1 signaling axis promotes Helicobacter pylori-driven gastric tumorigenesis. Biomark Res 2024; 12:33. [PMID: 38481347 PMCID: PMC10935867 DOI: 10.1186/s40364-024-00577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Helicobacter pylori (H pylori) infection is the primary cause of gastric cancer (GC). The role of Disabled-2 (DAB2) in GC remains largely unclear. This study aimed to investigate the role of DAB2 in H pylori-mediated gastric tumorigenesis. METHODS We screened various datasets of GC to analyze DAB2 expression and cell signaling pathways. DAB2 expression was assessed in human GC tissue microarrays. H pylori infection in vivo and in vitro models were further explored. Immunostaining, immunofluorescence, chromatin immunoprecipitation, co-immunoprecipitation, Western blot, quantitative polymerase chain reaction, and luciferase reporter assays were performed in the current study. RESULTS The bioinformatic analysis verified that DAB2 was 1 of the 8 genes contributed to tumorigenesis and associated with poor prognosis in GC. The median overall survival and disease-free survival rates in DAB2high group were significantly less than those in DAB2low group. These findings demonstrated that H pylori transcriptionally activated DAB2 expression via signal transducer and activator of transcription 3 (STAT3)-dependent pathway. By bioinformatics analysis and knockdown or overexpression of DAB2, we found that DAB2 upregulated Yes-associated protein 1 (YAP1) transcriptional activity. Mechanistically, DAB2 served as a scaffold protein for integrin beta 3 (ITGB3) and SRC proto-oncogene non-receptor tyrosine kinase (SRC), facilitated the phosphorylation of SRC, promoted the small GTPase ras homolog family member A (RHOA) activation and phosphorylation of YAP1, and ultimately enhanced the YAP1 transcriptional activity. CONCLUSIONS Altogether, these findings indicated that DAB2 is a key mediator in STAT3-regulated translation of YAP1 and plays crucial roles in H pylori-mediated GC development. DAB2 might serve as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengfei Kong
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingzhu Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yonghao Yan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Guo
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Caixia Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
40
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
41
|
Gu Z, Wu Q, Shang B, Zhang K, Zhang W. Organoid co-culture models of the tumor microenvironment promote precision medicine. CANCER INNOVATION 2024; 3:e101. [PMID: 38948532 PMCID: PMC11212345 DOI: 10.1002/cai2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
In recent years, the three-dimensional (3D) culture system has emerged as a promising preclinical model for tumor research owing to its ability to replicate the tissue structure and molecular characteristics of solid tumors in vivo. This system offers several advantages, including high throughput, efficiency, and retention of tumor heterogeneity. Traditional Matrigel-submerged organoid cultures primarily support the long-term proliferation of epithelial cells. One solution for the exploration of the tumor microenvironment is a reconstitution approach involving the introduction of exogenous cell types, either in dual, triple or even multiple combinations. Another solution is a holistic approach including patient-derived tumor fragments, air-liquid interface, suspension 3D culture, and microfluidic tumor-on-chip models. Organoid co-culture models have also gained popularity for studying the tumor microenvironment, evaluating tumor immunotherapy, identifying predictive biomarkers, screening for effective drugs, and modeling infections. By leveraging these 3D culture systems, it is hoped to advance the clinical application of therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bingqing Shang
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Zhang
- Department of Immunology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
42
|
Spirina LV, Avgustinovich AV, Bakina OV, Afanas'ev SG, Volkov MY, Vtorushin SV, Kovaleva IV, Klyushina TS, Munkuev IO. Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness. Curr Issues Mol Biol 2024; 46:1281-1290. [PMID: 38392199 PMCID: PMC10887746 DOI: 10.3390/cimb46020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Heterogeneity of gastric cancer (GC) is the main trigger of the disease's relapse. The aim of this study was to investigate the connections between targeted genes, cancer clinical features, and the effectiveness of FLOT chemotherapy. Twenty-one patients with gastric cancers (GCs) were included in this study. Tumor-targeted sequencing was conducted, and real-time PCR was used to assess the expression of molecular markers in tumors. Seven patients with stabilization had mutations that were related to their response to therapy and were relevant to the tumor phenotype. Two patients had two mutations. The number of patients with TP53 mutations increased in HER2-positive tumor status. PD-L1-positive cancers had mutations in KRAS, TP53, PIK3CA, PTEN, and ERBB, which resulted in an increase in PD-1 expression. TP53 mutation and PTEN mutation are associated with changes in factors associated with neoangiogenesis. In concusion, patients who did not have aggressive growth markers that were verified by molecular features had the best response to treatment, including complete morphologic regression.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Olga V Bakina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Pr. Akademicheskii, Tomsk 634055, Russia
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Sergey V Vtorushin
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Irina V Kovaleva
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Tatyana S Klyushina
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| | - Igor O Munkuev
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| |
Collapse
|
43
|
Wang S, Huang X, Zhang G, Chen Z, Guan H, Zhou W. Tumor suppressor miR-361-3p inhibits prostate cancer progression through Gli1 and AKT/mTOR signaling pathway. Cell Signal 2024; 114:110998. [PMID: 38048859 DOI: 10.1016/j.cellsig.2023.110998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The primary challenge in prostate cancer (PCa) is tumor metastasis, which seriously affects the survival time of patients. Growing evidence suggests that microRNAs play a crucial regulatory role in various malignancies and that the tumor suppressor miR-361-3p is responsible for regulating migration, proliferation, and invasion in different cancer types. However, the underlying regulatory mechanism of miR-361-3p in PCa remains unknown. METHODS The expression of miR-361-3p in PCa cells was analyzed using quantitative real time-polymerase chain reaction. The clinical utility of miR-361-3p in PCa was evaluated using in vitro assays. The mechanism of action of miR-361-3p was investigated using western blotting, luciferase reporter assays, immunofluorescence, and rescue studies. RESULTS The function, invasiveness, migration, and proliferation of PCa cells, as well as epithelial-mesenchymal transition (EMT), were aided by the downregulation of miR-361-3p, whereas its overexpression exerted the opposite effect. Repression of glioma-associated oncogene homolog 1 (Gli1) expression by miR-361-3p led to activation of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway, triggering EMT and promoting PCa metastasis. CONCLUSIONS Downregulation of miR-361-3p along the Gli1 axis promoted tumor malignancy. Collectively, the results of this study imply that miR-361-3p has the potential to be both a biomarker and therapeutic target in PCa.
Collapse
Affiliation(s)
- Shaocheng Wang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China
| | - Xiaoyu Huang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China
| | - Guangyu Zhang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China
| | - Zhijun Chen
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China
| | - Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China.
| | - Wensheng Zhou
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province 233099, China.
| |
Collapse
|
44
|
Chen S, Zhou B, Huang W, Li Q, Yu Y, Kuang X, Huang H, Wang W, Xie P. The deubiquitinating enzyme USP44 suppresses hepatocellular carcinoma progression by inhibiting Hedgehog signaling and PDL1 expression. Cell Death Dis 2023; 14:830. [PMID: 38097536 PMCID: PMC10721641 DOI: 10.1038/s41419-023-06358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignancies in the world. Research into the key genes that maintain the malignant behavior of cancer cells is crucial for the treatment of HCC. Here, we identified ubiquitin-specific peptidase 44 (USP44), a member of the deubiquitinase family, as a novel regulator of HCC progression. The tumor suppressive function of USP44 was evaluated in a series of in vitro and in vivo experiments. Through quantitative proteomics examination, we demonstrated that USP44 inhibits HCC PDL1 expression by downregulating the Hedgehog (Hh) signaling pathway. Mechanistically, we found that USP44 directly interacts with Itch, an E3 ligase involved in Hh signaling, and promotes the deubiquitination and stabilization of Itch. These events result in the proteasomal degradation of Gli1 and subsequent inactivation of Hh signaling, which ultimately suppresses PDL1 expression and the progression of HCC. Furthermore, the HCC tissue microarray was analyzed by immunohistochemistry to evaluate the pathological relevance of the USP44/Itch/Gli1/PDL1 axis. Finally, the Gli1 inhibitor GANT61 was found to act in synergy with anti-PDL1 therapy. Overall, USP44 can act as a suppressive gene in HCC by modulating Hh signaling, and co-inhibition of Gli1 and PDL1 might be an effective novel combination strategy for treating HCC patients.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Binghai Zhou
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Ye Yu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiuqing Kuang
- Department of Physical Examination, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Huabin Huang
- Department of Medical Imaging, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
45
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
46
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
47
|
Liu Y, Zhang L, Lei X, Yin X, Liu S. Development of an immunogenic cell death prognostic signature for predicting clinical outcome and immune infiltration characterization in stomach adenocarcinoma. Aging (Albany NY) 2023; 15:11389-11411. [PMID: 37862109 PMCID: PMC10637829 DOI: 10.18632/aging.205132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remain unclear. The MSigDB database collecting ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients. Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remains unclear. The MSigDB database collected ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients.
Collapse
Affiliation(s)
- Ye Liu
- Department of Intensive Care Unit, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Lijia Zhang
- Ethics Committee Office, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xue Lei
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xinyu Yin
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Songjiang Liu
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
48
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
49
|
García-Pérez BE, Pérez-Torres C, Baltierra-Uribe SL, Castillo-Cruz J, Castrejón-Jiménez NS. Autophagy as a Target for Non-Immune Intrinsic Functions of Programmed Cell Death-Ligand 1 in Cancer. Int J Mol Sci 2023; 24:15016. [PMID: 37834467 PMCID: PMC10573536 DOI: 10.3390/ijms241915016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a catabolic process that is essential to the maintenance of homeostasis through the cellular recycling of damaged organelles or misfolded proteins, which sustains energy balance. Additionally, autophagy plays a dual role in modulating the development and progression of cancer and inducing a survival strategy in tumoral cells. Programmed cell death-ligand 1 (PD-L1) modulates the immune response and is responsible for maintaining self-tolerance. Because tumor cells exploit the PD-L1-PD-1 interaction to subvert the immune response, immunotherapy has been developed based on the use of PD-L1-blocking antibodies. Recent evidence has suggested a bidirectional regulation between autophagy and PD-L1 molecule expression in tumor cells. Moreover, the research into the intrinsic properties of PD-L1 has highlighted new functions that are advantageous to tumor cells. The relationship between autophagy and PD-L1 is complex and still not fully understood; its effects can be context-dependent and might differ between tumoral cells. This review refines our understanding of the non-immune intrinsic functions of PD-L1 and its potential influence on autophagy, how these could allow the survival of tumor cells, and what this means for the efficacy of anti-PD-L1 therapeutic strategies.
Collapse
Affiliation(s)
- Blanca Estela García-Pérez
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Christian Pérez-Torres
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Shantal Lizbeth Baltierra-Uribe
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Juan Castillo-Cruz
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departmento de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1. Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| |
Collapse
|
50
|
Mao D, Zhou Z, Chen H, Liu X, Li D, Chen X, He Y, Liu M, Zhang C. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett 2023; 572:216351. [PMID: 37591356 DOI: 10.1016/j.canlet.2023.216351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Immune escape is a major challenge in tumour immunotherapy. Pleckstrin-2(PLEK2) plays a critical role in tumour progression, but its role in immune escape in gastric cancer (GC) remains uncharacterized. RNA sequencing was used to explore the differentially expressed genes in a GC cell line that was resistant to the antitumor effect of Natural killer (NK) cells. Apoptosis and the expression of IFN-γ and TNF-α were detected by flow cytometry (FCM). PLEK2 expression was examined by Western blotting and immunohistochemistry (IHC). PLEK2 was upregulated in MGC803R cells that were resistant to the antitumor effect of NK cells. PLEK2 knockout increased the sensitivity of GC cells to NK cell killing. PLEK2 expression was negatively correlated with MICA and positively correlated with MT1-MMP expression both in vitro and in vivo. PLEK2 promoted Sp1 phosphorylation through the PI3K-AKT pathway, thereby upregulating MT1-MMP expression, which ultimately led to MICA shedding. In mouse xenograft models, PLEK2 knockout inhibited intraperitoneal metastasis of GC cells and promoted NK cell infiltration. In summary, PLEK2 suppressed NK cell immune surveillance by promoting MICA shedding, which serves as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Deli Mao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xinran Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Dongsheng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|