1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Liang X, Zhang C, Yin Q, Bai Y, Li J, Qiu M. Dimethylamino-based synthetic lipidoid nanoparticles for selective mRNA delivery to splenic antigen-presenting cells. J Control Release 2025; 382:113737. [PMID: 40233831 DOI: 10.1016/j.jconrel.2025.113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Targeted systemic mRNA delivery to extrahepatic tissues remains a formidable challenge, especially in the absence of targeting ligands on lipid nanoparticles. In this study, we introduce a series of dimethylamino-based ionizable lipidoids (DMA-Lipidoids) engineered for selective mRNA delivery to the spleen. Using a combinatorial approach, we synthesized 48 chemically distinct lipidoids by pairing four DMA-containing amine heads with 12 newly designed hyperbranched tails. Remarkably, lipidoids with tails H228, H226x, H246x, and H446x demonstrated exceptional spleen-targeting efficiency. To refine the lipidoid design, we constructed and screened a secondary library of 36 lipidoids containing DMA analogues. Through this two-round screening process, we identified lipidoids with both high potency and spleen selectivity. The lead candidate, DMA4-H228, achieved precise delivery of ovalbumin mRNA to antigen-presenting cells (APCs), driving interferon-α (IFN α) production and APC activation. This robust immune response effectively inhibited tumor growth. Overall, these innovative DMA-lipidoids demonstrate strong spleen-targeting capabilities, offering a transformative platform for mRNA vaccine development.
Collapse
Affiliation(s)
- Xue Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenchen Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Qimeng Yin
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuerong Bai
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jiahao Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Min Qiu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, Fudan University, Shanghai 201203, China; Center for mRNA Translational Research, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Shanghai, 201203, China.
| |
Collapse
|
3
|
Tang X, Zhang J, Sun Y, Xu Z, Huang T, Liu X, Song Y, Zhang Y, Deng Y. Autonomic lysosomal escape via sialic acid modification enhances mRNA lipid nanoparticles to eradicate tumors and build humoral immune memory. J Control Release 2025; 382:113647. [PMID: 40158813 DOI: 10.1016/j.jconrel.2025.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Lysosomes present a major barrier to efficient mRNA delivery. Existing strategies primarily depend on lysosomal disruption, which is inefficient and carries a risk of cytolysis. We propose an Autonomic Lysosomal Escape (ALE) strategy, in which sialic acid (SA) modification enables over 90 % of LNPs to successfully escape from lysosomes by inducing cells to spontaneously reduce lysosome generation. The SA modification enhances the transfection efficiency of LNPs administered via intravenous injection, intramuscular injection, and inhalation, demonstrating the broad applicability. The structure of cleavable PEG-lipids was optimized using a newly developed method, termed Systematic Evaluation of LNPs' Efficiency by Cumulative Tests (SELECT). The results showed that polyethylene glycol 2000-cholesterol hemisuccinate (Ps) is the optimal candidate for co-modification with SA. The resulting LNPs co-modified with SA and Ps (SAPs@LNPs) completely eradicated TC-1 tumors and induced humoral immune memory. Combining SA-modified doxorubicin liposomes (DOX-SL) further accelerates tumor elimination, while licensed PEGylated liposomal doxorubicin (Caelyx) impairs the efficacy of mRNA vaccines. This difference stems from DOX-SL's selective depletion of tumor-associated immune cells (TAICs) and the nonspecific cytotoxicity of Caelyx. These findings suggest that combining Caelyx with mRNA vaccines should be approached with caution. Our study also highlights the key roles of humoral immune memory and natural killer cell-driven antibody-dependent cellular cytotoxicity (ADCC) in tumor eradication, and incorporating them into the cancer immune cycle further refines this theory.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yuejia Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Tiancheng Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yu Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| |
Collapse
|
4
|
Bussin B, MacDuff MGG, Ngo W, Wu JLY, Lin ZP, Granda Farias A, Stordy B, Sepahi Z, Ahmed S, Moffat J, Chan WCW. Discovering nanoparticle corona ligands for liver macrophage capture. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01903-6. [PMID: 40374797 DOI: 10.1038/s41565-025-01903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/12/2025] [Indexed: 05/18/2025]
Abstract
Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.
Collapse
Affiliation(s)
- Bram Bussin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Marshall G G MacDuff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Gladstone Institutes, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Sepahi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ahmed
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- MD/PhD Program, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Saladino GM, Brodin B, Ciobanu M, Kilic NI, Toprak MS, Hertz HM. Design and Biodistribution of PEGylated Core-Shell X-ray Fluorescent Nanoparticle Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26338-26347. [PMID: 40265284 PMCID: PMC12067382 DOI: 10.1021/acsami.5c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Nanoparticle (NP) uptake by macrophages and their accumulation in undesired organs such as the liver and spleen constitute a major barrier to the effective delivery of NPs to targeted tissues for bioimaging and therapeutics. Surface functionalization with polyethylene glycol (PEG) has been demonstrated to be a promising strategy to limit NP sequestration, although its longitudinal stability under physiological conditions and impact on the NP biodistribution have not been investigated with an in vivo quantitative approach. X-ray fluorescence (XRF) imaging has been employed to noninvasively map the in vivo biodistribution of purposely designed molybdenum-based contrast agents, leading to submillimeter resolution, elemental specificity, and high penetration depth. In the present work, we design a stepwise layering approach for NP synthesis to investigate the role of chemisorbed and physisorbed PEG on silica-coated molybdenum-based contrast agents in affecting their in vivo biodistribution, using whole-body XRF imaging. Comparative quantitative in vivo studies indicated that physisorbed PEG (1.5 kDa) did not substantially affect the biodistribution, while the chemisorption route with mPEG-Si (6-9 PEG units) led to significant macroscopic variations in the biodistribution, leading to a reduction in NP uptake by the liver. Furthermore, the results highlighted the major role of the spleen in compensating for the limited sequestration by the liver, microscopically validated with a multiscale imaging approach with fluorophore doping of the silica shell. These findings demonstrated the promising role of XRF imaging for the rapid assessment of surface-functionalized contrast agents with whole-body in vivo quantitative pharmacokinetic studies, establishing the groundwork for developing strategies to identify and bypass undesired NP uptake.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
- Department
of Radiology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Bertha Brodin
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Mihai Ciobanu
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Nuzhet I. Kilic
- Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Muhammet S. Toprak
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Hans M. Hertz
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| |
Collapse
|
7
|
Wu JLY, Ji Q, Blackadar C, Nguyen LNM, Lin ZP, Sepahi Z, Stordy BP, Granda Farias A, Sindhwani S, Ngo W, Chan K, Habsid A, Moffat J, Chan WCW. The pathways for nanoparticle transport across tumour endothelium. NATURE NANOTECHNOLOGY 2025; 20:672-682. [PMID: 40097646 DOI: 10.1038/s41565-025-01877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2025] [Indexed: 03/19/2025]
Abstract
The active transport and retention principle is an alternative mechanism to the enhanced permeability and retention effect for explaining nanoparticle tumour delivery. It postulates that nanoparticles actively transport across tumour endothelial cells instead of passively moving through gaps between these cells. How nanoparticles transport across tumour endothelial cells remains unknown. Here we show that nanoparticles cross tumour endothelial cells predominantly using the non-receptor-based macropinocytosis pathway. We discovered that tumour endothelial cell membrane ruffles capture circulating nanoparticles, internalize them in intracellular vesicles and release them into the tumour interstitium. Tumour endothelial cells have a higher membrane ruffle density than healthy endothelium, which may partially explain the elevated nanoparticle tumour accumulation. Receptor-based endocytosis pathways such as clathrin-mediated endocytosis contribute to nanoparticle transport to a lesser extent. Nanoparticle size determines the degree of contribution for each pathway. Elucidating the nanoparticle transport mechanism is crucial for developing strategies to control nanoparticle tumour delivery.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Qin Ji
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Colin Blackadar
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Luan N M Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Sepahi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin P Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Granda Farias
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shrey Sindhwani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Adult Hematology and Medical Oncology Fellowship Program, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine Chan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Habsid
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Moffat
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Albers A, Kuberasivakumaran S, Fernández Z, Daniliuc CG, Li Y, Lee M, Geyer C, Hoffmann E, Faber C, Helfen A, Grashoff C, Masthoff M, Fernández G. Size-Controlled Self-Assembly for Bimodal In Vivo Imaging. Angew Chem Int Ed Engl 2025; 64:e202500144. [PMID: 40035710 DOI: 10.1002/anie.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/06/2025]
Abstract
Contrast agents (CAs) are essential in biomedical imaging to aid in the diagnosis and therapy monitoring of disease. However, they are typically restricted to one imaging modality and have fixed properties such as size, shape, toxicity profile, or photophysical characteristics, which hampers a comprehensive view of biological processes. Herein, rationally designed dye assemblies are introduced as a unique CA platform for simultaneous multimodal and multiscale biomedical imaging. To this end, a series of amphiphilic aza-BODIPY dyes are synthesized with varying hydrophobic domains (C1, C8, C12, and C16) that self-assemble in aqueous media into nanostructures of tunable size (50 nm-1 µm) and photophysical properties. While C1 exhibits oblique-type exciton coupling and negligible emission, C8-C16 bearing longer alkyl chains undergo J-type aggregation with NIR absorption and emission and excellent photoacoustic properties. Given these advantageous features, aza-BODIPY specific, semi-quantitative fluorescence reflectance and photoacoustic imaging both in vitro and in vivo are established. Additionally, in vitro cell viability as well as murine in vivo biodistribution analysis with ex vivo validation showed excellent biocompatibility and a size-dependent biodistribution of nanostructures to different organ beds. These results broaden the scope of aqueous self-assembly to multimodal imaging and highlight its great potential for rationalizing numerous biomedical questions.
Collapse
Affiliation(s)
- Antonia Albers
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | | | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Yongsheng Li
- Department of Chemistry, Fudan University, Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Christiane Geyer
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Emily Hoffmann
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Cornelius Faber
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Anne Helfen
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carsten Grashoff
- Universität Münster, Institut für Integrative Zellbiologie und Physiologie, Schlossplatz 5, 48149, Münster, Germany
| | - Max Masthoff
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
9
|
Zhang Q, Pathak JL, Wu H, Yan Y, Lin B, Xie Z, Helder MN, Jaspers RT, Xiao Y. Pollen-like mesoporous silica nanoparticles facilitate macrophage-mediated anti-inflammatory response via physical contact cues in the osteoimmune microenvironment. Acta Biomater 2025; 197:339-356. [PMID: 40064217 DOI: 10.1016/j.actbio.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Nanomaterial-mediated macrophage immune response plays a crucial role in bone regeneration microenvironment. Mesoporous silica nanoparticles are widely used as nano-drug carriers, imaging agents, and bioactivity regulators for potential tissue regeneration. It is known that surface topography features of nanomaterials play an important regulatory role in the immune response. In this study, it was found that the pollen-like surface morphology of mesoporous silica nanoparticles (PMSNs) inhibited the expression of pro-inflammatory markers at gene and protein levels in macrophages (RAW 264.7 cells) compared to the smooth surface morphology of mesoporous silica nanoparticles (MSNs). Scanning electron microscopy images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated on the membrane and prevented the M1 polarization of macrophages. PMSNs-induced macrophage anti-inflammatory responses were associated with up-regulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that macrophages phagocytosed both MSNs and PMSNs while inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages promoted osteogenic differentiation of mouse bone marrow-derived stromal cells (mBMSCs), evidenced by increased mineralization and osteogenic marker BMP2 expression via Alizarin Red S and LSCM assays compared to MSNs-induced conditioned medium. Moreover, a lipopolysaccharide (LPS)-induced osteolysis model in mouse cranial bone further demonstrated that PMSNs prevent bone resorption by mitigating LPS-induced inflammation. Our results revealed that PMSNs-mediated macrophage immunomodulation promotes bone regeneration via surface topology-related physical contact cues. STATEMENT OF SIGNIFICANCE: Nanomaterials have been widely used in bone regeneration. The immune response of macrophages induced by nanomaterials, plays a crucial role in bone regeneration. However, most nanomaterial immunomodulatory research focus on macrophage internalization or phagocytosis. The early contact between the cell membrane and nanomaterials is often easily overlooked. To clarify how early contact between nanomaterial-cell membrane regulates macrophage immune response. We developed MSN particles with special pollen-like surface morphology and studied the impact of nanoparticle morphology on the early contact between materials and macrophage cell membranes, as well as the subsequent impact on macrophage immune response and bone regeneration and related regulatory mechanisms. The results can provide new guidance for the design and development of osteoimmunomodulatory nanomaterials.
Collapse
Affiliation(s)
- Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Haitong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Yongyong Yan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Bingpeng Lin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhenhuan Xie
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HV Amsterdam, the Netherlands.
| | - Richard T Jaspers
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands.
| | - Yin Xiao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; School of Medicine and Dentistry & Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD 4000, Australia.
| |
Collapse
|
10
|
Bussin B, MacDuff MGG, Ngo W, Chan WCW. Cellular Glycocalyx Affects Nanoparticle Access to Cell Membranes and Uptake. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503004. [PMID: 40269604 DOI: 10.1002/adma.202503004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Understanding nanoparticle interactions with cells is fundamental to designing them for medical applications. Nanoparticles must interface with the cell surface to be bound and taken up. The glycocalyx is a carbohydrate layer coating the cell surface, rendering it negatively charged. Many researchers have noted that the glycocalyx affects nanoparticle uptake, but the mechanism remains unknown, Here, we investigate the interaction between the glycocalyx and nanoparticles at the cell surface in different cell types. The glycocalyx reduced the interactions between the nanoparticles and cells, thereby reducing cellular access, binding, and uptake. The magnitude of the effect is dependent on the nanoparticle charge. Fine-tuning the charge of nanoparticles can enhance the specificity of nanoparticle targeting. Understanding the role of the glycocalyx in nano-bio interactions will allow researchers to control the interactions of nanoparticles with the cell surface.
Collapse
Affiliation(s)
- Bram Bussin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 3K3, Canada
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Marshall G G MacDuff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 3K3, Canada
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Gladstone Institutes, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
11
|
Baek MJ, Hur W, Kashiwagi S, Choi HS. Design Considerations for Organ-Selective Nanoparticles. ACS NANO 2025; 19:14605-14626. [PMID: 40193849 DOI: 10.1021/acsnano.5c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nanoparticles (NPs) have been extensively researched for targeted diagnostic imaging and drug delivery, yet their clinical translation remains limited, with only a few achieving Food and Drug Administration approval. This limited success is primarily due to challenges in achieving precise organ- or tissue-specific targeting, which arise from off-target tissue accumulation and suboptimal clearance profiles. Herein we examine the critical role of physicochemical properties, including size, surface charge, shape, elasticity, hardness, and density, in governing the biodistribution, targetability, and clearance of NPs. We highlight recent advancements in engineering NPs for targeted imaging and drug delivery, showcasing both significant progress and the remaining challenges in the field of nanomedicine. Additionally, we discuss emerging tools and technologies that are being developed to address these challenges. Based on recent insights from materials science, biomedical engineering, computational biology, and clinical research, we propose key design considerations for next-generation nanomedicines with enhanced organ selectivity.
Collapse
Affiliation(s)
- Min-Jun Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
12
|
Qiu C, Zhang W, Zhao Y, Han T, Yang W, Liu Y, Jin P, Chen J, Shuai X, Ren J, Huang P. Reprogramming Glucose Metabolism of Macrophage for Acute Liver Failure Therapy with Itaconate Lipo-Nanodrug. Adv Healthc Mater 2025:e2500019. [PMID: 40249158 DOI: 10.1002/adhm.202500019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Acute liver failure (ALF) is a life-threatening disease featuring comprehensive inflammatory response and metabolic disorders in which macrophages exert central roles. A glucose metabolism mediator of macrophages, itaconate, has demonstrated potent anti-inflammatory efficacy in various diseases, implying that itaconate could work in treating ALF. However, systemic administration of itaconate may lead to immune disorder, making targeting the delivery of itaconate to the liver lesion area highly important. Herein, a liposomal nanodrug incorporating itaconate is developed, and its potential in treating acute liver failure in an ALF murine model established by LPS/D-GalN administration is tested. The nanodrug shows preferential liver accumulation to effectively alleviate LPS/D-GalN-induced hepatic histopathological injury by decreasing oxidative stress. Moreover, it reprograms the glucose metabolism of macrophages, resulting in macrophage repolarization toward the anti-inflammatory phenotype. Furthermore, western-blot and immunohistochemical assays verifies that the nanodrug may inhibit aerobic glycolysis of macrophages in an NRF2 and STING-dependent manner. These results underline the promise of the nanodrug for ALF treatment by reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Medical Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tian Han
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yajing Liu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Peile Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie Ren
- Department of Medical Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
13
|
Yang C, Tang S, Liu Q, Fan M, Zhang W, Liu Y, Chen X, Xu G, Chen X, Xu Z. Wireless charging LED mediated type I photodynamic therapy of breast cancer using NIR AIE photosensitizer. iScience 2025; 28:112196. [PMID: 40230527 PMCID: PMC11995052 DOI: 10.1016/j.isci.2025.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
Due to limited light penetration and dependence on oxygen, photodynamic therapy (PDT) is typically restricted to treating shallow tissues. Developing strategies to overcome these limitations and effectively using PDT for tumor treatment is a significant yet unresolved challenge. In this study, we present a smart approach combining a wireless-charged LED (wLED) with a type I aggregation-induced emission photosensitizer, MeOTTMN, to address both light penetration and tumor hypoxia issues simultaneously. MeOTTMN, characterized by twisted molecular architecture and strong intramolecular electron donor-acceptor interaction, produces high levels of hydroxyl and superoxide radicals and emits near-infrared light in its aggregated state, thus facilitating fluorescence imaging-guided PDT once formulated into nanoparticles. The inhibition of breast cancer xenografts provides compelling evidence of the treatment efficacy of type I PDT irradiated through an implantable wLED. This strategy provides a conceptual and practical paradigm to overcome key clinical limitations of PDT, expanding possibilities for clinical translation.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiqi Liu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yingyu Liu
- Maternal-Fetal Medicine Institute, Department of Obstetics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen 518133, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen 518133, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
14
|
Harkins L, Vilarinho S, Saltzman WM. Targeting Polymeric Nanoparticles to Specific Cell Populations in the Liver. Biochemistry 2025; 64:1685-1697. [PMID: 40127248 DOI: 10.1021/acs.biochem.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nanoparticles (NPs) are beneficial for delivery of drugs in a variety of settings, serving to protect their cargo and allow for sustained release. Polymeric NPs offer several advantages as therapeutics carriers due to their tunable characteristics like size and shape, ease of manufacturing, and biocompatibility. Despite this, there are no polymeric NPs that are approved for treatment of liver diseases. This is surprising since─when administered intravenously─the majority of NPs accumulate in cells in the liver. NP characteristics like size and surface charge can be altered to affect distribution to the liver, and even cellular distribution, but the conjugation of targeting ligands onto the NP surface for specific receptors on the cells is an important approach for enhancing cell specific delivery. Enhancing cell-specific targeting of conjugated NPs in the liver has two major hurdles: 1) avoiding accumulation of NPs in the liver resident macrophages known as Kupffer cells, which are optimized to phagocytose particulates, and 2) overcoming the transport barriers associated with architectural changes of the diseased liver. To identify the structures and mechanisms most important in NP design, NP administration during ex vivo perfusion (EVP)─achieved by anatomically isolating an organ by perfusing it outside the body─may be the most important and efficient approach. However, EVP is currently underutilized in the NP field, with limited research published on NPs delivered during liver EVP, and therefore representing an opportunity for future investigations.
Collapse
Affiliation(s)
- Lauren Harkins
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Silvia Vilarinho
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Department of Genetics and Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06520, United States
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Zhang J, Fang R, Song N, Jin Y, Zhang M, Wang J, Peng Q, Ren H, Zhang Y, Yang X. Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy. ACS Biomater Sci Eng 2025; 11:2146-2156. [PMID: 40066672 DOI: 10.1021/acsbiomaterials.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm. In the targeted phagocytosis of tumor cells, MA@E can effectively deplete the reduced glutathione (GSH) with increased hydroxyl radicals that combine with Mn2+ released from Mn-MIL-100 to trigger Fenton-like reactions, generating ROS that induces cell apoptosis. Exposure to near-infrared (NIR-II) irradiation results in a AuNRs-induced thermogenic effect that expedites the release of Mn2+ and promotes Fenton-like reactions, achieving increased production of •OH. In the murine tumor model, MA@E effectively removed the implanted tumor tissue within 2 days without any obvious toxic effects. This response is attributed to a synergism involving the photothermal capability of AuNRs and ROS chemodynamic treatment. The proposed MA@E provides a new approach to utilizing unstable nanomaterials in effective tumor therapy.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - Yubao Jin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - Meiqi Zhang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - Jun Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - Qixian Peng
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Xingyue Yang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China
| |
Collapse
|
16
|
Ding X, Liang S, Zhang T, Zhang M, Fang H, Tian J, Liu J, Peng Y, Zheng L, Wang B, Feng W. Surface Modification of Gold Nanoparticle Impacts Distinct Lipid Metabolism. Molecules 2025; 30:1727. [PMID: 40333646 PMCID: PMC12029855 DOI: 10.3390/molecules30081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Gold nanomaterials have garnered significant attention in biomedicine owing to their tunable size and morphology, facile surface modification capabilities, and distinctive optical properties. The surface functionalization of these nanoparticles can enhance their safety and efficacy in nanomedical applications. In this study, we examined the biological effects of gold nanoparticles (GNPs) with three distinct surface modifications (polyethylene glycol, chitosan, and polyethylenimine) in murine models, elucidating their mechanisms of action on hepatic tissue at both the transcriptomic and metabolomic levels. Our findings revealed that PEG-modified GNPs did not significantly alter any major metabolic pathway. In contrast, CS-GNPs markedly affected the metabolic pathways of retinol, arachidonic acid, linoleic acid, and glycerophospholipids (FDR < 0.05). Similarly, PEI-GNPs significantly influenced the metabolic pathways of retinol, arachidonic acid, linoleic acid, and sphingolipids (FDR < 0.05). Through a comprehensive analysis of the regulatory information within these pathways, we identified phosphatidylcholine compounds as potential biomarkers that may underlie the differential biological effects of the three functionalized GNPs. These findings provide valuable experimental data for evaluating the biological safety of functionalized GNPs.
Collapse
Affiliation(s)
- Xinyu Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Yuyuan Peng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| |
Collapse
|
17
|
Bin L, Huang L, Chen A, Yang Y, Zheng Y, Zhang H, Zhang Q, Zheng J, Qiu M, Li X, Tan Y. Inhibition of energy metabolism in macrophages to block MPS for enhancing the chemotherapy efficacy. Front Bioeng Biotechnol 2025; 13:1549101. [PMID: 40256779 PMCID: PMC12006136 DOI: 10.3389/fbioe.2025.1549101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Various biological barriers hinder the effective use of administered nanoparticles, with the mononuclear phagocyte system (MPS) being a major obstacle to their in vivo efficacy. Glucose metabolism is an important factor for macrophages to perform MPS clearance in vivo. In this study, energy metabolism-blocking nanoparticles PEG-S-S-PLA@RGD @Dox@BAY876 (RPDB NPs) were developed to change drug distribution in the body, improving the efficacy of chemotherapy. First, BAY876 showed an excellent inhibition effects on macrophage energy metabolism in vitro. This inhibitory behavior of energy metabolism reduced the aggregation of nanoparticles in macrophages. Similarly, the migration capacity of macrophages was also limited by reduced energy metabolism. Second, the fluorescence distribution in the mice also showed that the fluorescence intensity of RPDB NPs in the liver was about 40% of that of RPD NPs, suggesting that reducing energy metabolism helps to downregulate the uptake of mononuclear phagocytic cell (MPS), and change the distribution of the drug in vivo. Furthermore, anti-tumor effects of RPDB NPs were evaluated both in vivo and in vitro. In vivo, RPDB nanomicelles inhibited breast cancer by up to 68.3%, higher than other administration groups. Moreover, the pathological section of tumor exhibited a significantly greater increase in cell apoptosis in RPDB NPs group. Hence, inhibition of macrophage energy metabolism is a promising approach to eliminate MPS effects, while also opening up a new window for the effective inhibition of tumors development and metastasis.
Collapse
Affiliation(s)
- Li Bin
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
- Laboratory animal Center, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Linlin Huang
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Aiyu Chen
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Yinyi Yang
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Yanmei Zheng
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Hanwen Zhang
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Qinfang Zhang
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiahui Zheng
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Meiting Qiu
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Xiajin Li
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Yangbo Tan
- Department of Medical College, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
18
|
Leite JMDS, Oliveira ACDJ, Dourado D, Santana LMD, Medeiros TS, Nadvorny D, Silva MLR, Rolim-Neto PJ, Moreira DRM, Formiga FR, Soares MFDLR, Soares-Sobrinho JL. Rifampicin-loaded phthalated cashew gum nano-embedded microparticles intended for pulmonary administration. Int J Biol Macromol 2025; 303:140693. [PMID: 39914544 DOI: 10.1016/j.ijbiomac.2025.140693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Tuberculosis is a serious infectious disease commonly treated with rifampicin (RIF), which has low water solubility and high permeability. Polymeric nanoparticles (PNs) are used for controlled drug delivery to improve drug efficacy. However, PNs can be easily expelled via pulmonary administration. Nano-embedded microparticles (NEMs) are designed to bypass pulmonary barriers. Cashew gum, a versatile heteropolysaccharide, was modified into phthalated cashew gum (PCG), which targets alveolar macrophages, to increase hydrophobicity and improve drug encapsulation efficiency. In this study, the PCG was successfully obtained. Polymeric nanoparticle (PN)-PCG-RIF was fabricated, and its performance characteristics were investigated. PN-PCG-RIF exhibits mucoadhesive properties. An in vitro release study showed the release of 66.57 % of RIF after 6 h. An in vitro cytotoxicity study in A549 cells showed that PN-PCG-RIF is cytocompatible. The cellular uptake study demonstrated efficient cellular internalization in J774 macrophages, which was attributed to the PCG composition binding to the galactose-type lectin C receptor (MGL-2/CD301b). NEM-RIF was optimized by the Box Behnken designer with a particle size of 240.80 nm, PdI of 0.185, and redispersion index of 1.63. Scanning electron microscopy revealed NEMs-RIF in the form of spherical agglomerates. Collectively, RIF-NEMs were successfully developed from PN-PCG-RIF, having potential for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Lucas Marinho de Santana
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Daniela Nadvorny
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Pedro José Rolim-Neto
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Fábio Rocha Formiga
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil; Faculty of Medical Sciences, University of Pernambuco, 50100-130, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
19
|
Li Z, Xie X, Lu Z, Zhang Y, Kong Y, You J, Zhu JJ. Albumin Modulated Homodimer as an Efficient Photosensitizer for Long-Term Imaging-Guided Tumor Therapy Directed with Sunlight Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411736. [PMID: 40095450 DOI: 10.1002/smll.202411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The reactive oxygen species (ROS) amplification caused by inevitable plasma albumin encapsulation is still a challenge to circumvent the systemic adverse effects in the photodynamic therapy (PDT) process. Herein, a disulfide bond linked homodimer, Cy1280, which is modulated by albumin to accurately balance the fluorescence and ROS generation and exhibit a weak fluorescence and sealed PDT effect during blood circulation, is exploited. Cy1280 can be specifically internalized and dispersed at the tumor site via Organic Anion Transporter Proteins (OATPs) and thiol-disulfide exchange mediated synergistic uptake and activated after mild sunlight irradiation (100 ± 5 Klx) to sensitize neighboring oxygen in cellular mitochondria to execute direct protein dysfunction effect. The dynamic covalent chemistry (DCC) facilitates prolonged and sustained retention in tumors (>336 h) and demonstrates the efficacy of imaging-guided solid-tumor therapy in tumor-bearing BALB/C mice. This study resolves the inevitable stubborn impotent tumor penetration caused by bulky-sized nanoparticles and high interstitial pressure of tumor with synergistic uptake manner, the long-term circulation and sealed PDT manipulated with albumin also improve the whole body phototoxic symptom. The advantageous feature of Cy1280 provides a promising candidate for overcoming the off-target phototoxicity and inadequate accumulation challenges in clinical translation with photosensitizers (PSs).
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiunan Xie
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Zhihao Lu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yifan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yuerui Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jun-Jie Zhu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
20
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
21
|
Liu F, Kang Q, Xiao H, Liu Y, Tan S, Fan K, Peng J, Tan X, Wu G, Yang Q. Rationally designed NIR-II excitable and endoplasmic reticulum-targeted molecular phototheranostics for imaging-guided enhanced photoimmunotherapy of triple-negative breast cancer. J Nanobiotechnology 2025; 23:235. [PMID: 40119436 PMCID: PMC11929327 DOI: 10.1186/s12951-025-03282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by an extremely poor prognosis. Photoimmunotherapy has emerged as a promising strategy for the treatment of TNBC. This approach works by selectively destroying tumor cells, releasing tumor-associated antigens, activating the immune system, and effectively inhibiting tumor proliferation and metastasis. However, the majority of current phototheranostic approaches are hindered by limited tissue penetration in the first near-infrared (NIR-I) and ultraviolet-visible (UV-Vis) regions. Additionally, due to the lack of specific subcellular targets, it may be difficult to effectively treat deep-seated lesions with ambiguous and extensive boundaries caused by TNBC metastases. Consequently, the development of effective, deep-penetrating, organelle-targeted phototheranostics is essential for enhancing treatment outcomes in TNBC. This work proposes a novel molecular design strategy of NIR-II phototheranostics to realize planar rigid conjugation and alkyl chain functionalization. The di-hexaalkyl chains in a vertical configuration on the donor (4H-cyclopenta[2,1-b:3,4-b'] dithiophene) and shielding units (fluorene) are introduced to construct a S-D-A-D-S type NIR-II phototheranostics (IR-FCD). The planar and rigid structure of IR-FCD exhibits a robust intramolecular charge transfer capability, a lower band gap, enhanced photon absorption properties, and significant steric hindrance from vertically arranged alkyl chains to minimize non-radiative energy loss. By incorporating N-(but-3-yn-1-yl)-4-methylbenzenesulfonamide at the terminus of an elongated alkyl chain, followed by self-assembly into DSPE-S-S-PEG2000, NIR-II excitable phototheranostics (IR-FCD-Ts NPs) with endoplasmic reticulum (ER) targeting capability were successfully synthesized for imaging-guided photoimmunotherapy of TNBC. The IR-FCD-Ts NPs demonstrate exceptional optical characteristics, with maximum absorption at 1068 nm (extending to 1300 nm) and emission at 1273 nm (extending to 1700 nm), along with a high molar absorption coefficient of 2.76*104 L/mol·c at 1064 nm in aqueous solution. Under exposure to 1064 nm laser irradiation, IR-FCD-Ts NPs exhibit superior photothermal properties and have the potential for photodynamic therapy. By targeting ER, thereby inducing ER stress and significantly enhancing immunogenic cell death (ICD) in tumor cells, it triggers a strong antitumor immune response and inhibits the proliferation and metastasis of TNBC.
Collapse
Affiliation(s)
- Fen Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qiang Kang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Xiao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Yinying Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Sengyou Tan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Kun Fan
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jianchun Peng
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China.
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guilong Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China.
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China.
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Fernandes RS, de Assis Burle-Caldas G, Sergio SAR, Bráz AF, da Silva Leite NP, Pereira M, de Oliveira Silva J, Hojo-Souza NS, de Oliveira B, Fernandes APSM, da Fonseca FG, Gazzinelli RT, Dos Santos Ferreira D, Teixeira SMR. The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens. J Nanobiotechnology 2025; 23:221. [PMID: 40102899 PMCID: PMC11921523 DOI: 10.1186/s12951-025-03201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Lipid nanoparticles (LNP) are a safe and effective messenger RNA (mRNA) delivery system for vaccine applications, as shown by the COVID-19 mRNA vaccines. One of the main challenges faced during the development of these vaccines is the production of new and versatile LNP formulations capable of efficient encapsulation and delivery to cells in vivo. This study aimed to develop a new mRNA vaccine formulation that could potentially be used against existing diseases as well as those caused by pathogens that emerge every year. RESULTS Using firefly luciferase (Luc) as a reporter mRNA, we evaluated the physical-chemical properties, stability, and biodistribution of an LNP-mRNA formulation produced using a novel lipid composition and a microfluidic organic-aqueous precipitation method. Using mRNAs encoding a dengue virus or a Leishmania infantum antigen, we evaluated the immunogenicity of LNP-mRNA formulations and compared them with the immunization with the corresponding recombinant protein or plasmid-encoded antigens. For all tested LNP-mRNAs, mRNA encapsulation efficiency was higher than 85%, their diameter was around 100 nm, and their polydispersity index was less than 0.3. Following an intramuscular injection of 10 µg of the LNP-Luc formulation in mice, we detected luciferase activity in the injection site, as well as in the liver and spleen, as early as 6 h post-administration. LNPs containing mRNA encoding virus and parasite antigens were highly immunogenic, as shown by levels of antigen-specific IgG antibody as well as IFN-γ production by splenocytes of immunized animals that were similar to the levels that resulted from immunization with the corresponding recombinant protein or plasmid DNA. CONCLUSIONS Altogether, these results indicate that these novel LNP-mRNA formulations are highly immunogenic and may be used as novel vaccine candidates for different infectious diseases.
Collapse
Affiliation(s)
- Renata S Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Gabriela de Assis Burle-Caldas
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | | | - Ana Flávia Bráz
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Nathália Pereira da Silva Leite
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Milton Pereira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Juliana de Oliveira Silva
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Bianca de Oliveira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Ana Paula S Moura Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávio Guimarães da Fonseca
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Diego Dos Santos Ferreira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza M Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil.
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
23
|
Zhang Y, Wang H, Xu C, Ye X, Nan Y, Hu X, Fan J, Wang X, Ju D. Rubicon siRNA-encapsulated liver-targeting nanoliposome is a promising therapeutic for non-alcoholic fatty liver disease. Int J Pharm 2025; 672:125291. [PMID: 39880145 DOI: 10.1016/j.ijpharm.2025.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/01/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic liver disorder worldwide, and effective therapeutic strategies for its treatment remains limited. In this article, we introduced Glipo-siRubi, a hepatocytes-targeting RNA interference (RNAi) nanoliposome for suppression of Rubicon expression, aiming to achieve precise regulation of autophagy in NAFLD. Autophagy activation induced by Rubicon suppression resulted in reduced endoplasmic reticulum stress and intracellular lipid accumulation in vitro. Moreover, Glipo-siRubi administration exhibited remarkable therapeutic efficacy, characterized by decreased liver lipid accumulation, ameliorated histopathology and improved insulin sensitivity in mice with western diet, indicating its notable potential against NAFLD. By inducing autophagy activation, the hepatocytes-targeting Glipo-siRubi provided a promising method for NAFLD treatment, addressing the limitations of current approaches. Our study highlighted the significance of Rubicon-specific suppression in NAFLD treatment, offering a specific, safe, and efficient approach to mitigate NAFLD.
Collapse
Affiliation(s)
- Yuting Zhang
- Minhang Hospital Fudan University Shanghai China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Hanqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Xiaomiao Ye
- Minhang Hospital Fudan University Shanghai China.
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China; Shanghai Hailu Biological Technology Co., Ltd, Shanghai 201200 China.
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Dianwen Ju
- Minhang Hospital Fudan University Shanghai China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| |
Collapse
|
24
|
Xiong K, Luo G, Zeng W, Wen G, Wang C, Ding A, Qi M, Liu Y, Zhang J. Magnetic Microbubbles Combined with ICG-Loaded Liposomes for Synergistic Mild-Photothermal and Ferroptosis-Enhanced Photodynamic Therapy of Melanoma. Int J Nanomedicine 2025; 20:2901-2921. [PMID: 40093542 PMCID: PMC11908402 DOI: 10.2147/ijn.s503753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Background Melanoma poses a significant threat to human health due to the lack of effective treatment options. Previous studies have demonstrated that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) can enhance therapeutic efficacy. However, conventional PTT/PDT combination strategies face various challenges, including complex preparation processes, potential damage to healthy tissues, and insufficient generation of reactive oxygen species (ROS). This study aims to design a rational and efficient PTT/PDT therapeutic strategy for melanoma and to explore its underlying mechanisms. Methods We first synthesized two target materials, indocyanine green-targeted liposomes (ICG-Lips) and magnetic microbubbles (MMBs), using the thin-film hydration method, followed by characterization and performance evaluation of both materials. Subsequently, we evaluated the synergistic therapeutic effects and underlying mechanisms of ICG-Lips combined with MMBs in melanoma treatment through in vitro experiments using cellular models and in vivo experiments using animal models. Results Herein, we developed a multifunctional system comprising ICG-Lips and MMBs. ICG-Lips enhance targeted delivery through specific binding to the S100B protein on melanoma cells, while MMBs, via ultrasound (US)-induced cavitation effects, shorten the uptake time of ICG-Lips by melanoma cells and improve uptake efficiency. Furthermore, the combination of ICG-Lips and MMBs induces significant reactive oxygen species (ROS) generation. Under 808 nm laser irradiation, the accumulation of ICG-Lips in melanoma cells achieves mild photothermal therapy (mPTT) and PDT effects. The elevated temperature and excessive ROS generated during these processes result in glutathione (GSH) depletion, ultimately triggering ferroptosis. The occurrence of ferroptosis further amplifies PDT efficacy, creating a synergistic effect that effectively suppresses melanoma growth. Additionally, the combined therapeutic strategy of ICG-Lips and MMBs demonstrates excellent biosafety. Conclusion In summary, this study presents a novel and straightforward strategy that integrates mPTT, PDT, and ferroptosis synergistically to combat melanoma, thereby laying a solid foundation for improving melanoma treatment outcomes.
Collapse
Affiliation(s)
- Kaifen Xiong
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Wei Zeng
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Guanxi Wen
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Chong Wang
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, People’s Republic of China
- Department of Geriatrics, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Aijia Ding
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Qi
- Department of Plastic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Yingying Liu
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, People’s Republic of China
- Department of Geriatrics, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
25
|
Chu H, Xu Y, Shan Y, Sun M, Zhao W, Fang X, Shen N, Tang Z. Platelet hitchhiking vascular-disrupting agents for self-amplified tumor-targeting therapy. J Nanobiotechnology 2025; 23:197. [PMID: 40059143 PMCID: PMC11892306 DOI: 10.1186/s12951-025-03262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
The vascular-disrupting agent DMXAA (5,6-dimethylxanthone-4-acetic acid) exhibits potent anticancer activity by targeting tumor vasculature and activating immune responses via the cGAS-STING pathway. However, its clinical application is hindered by nonspecific targeting and significant cardiovascular toxicity. This study introduces a novel self-amplified tumor-targeting delivery system(P@NPPD)comprising azide-functionalized poly(ethylene glycol)-b-poly-[(N-2-hydroxyethyl)-aspartamide]-DMXAA (N3-PEG-b-PHEA-DMXAA, NPPD) conjugated to DBCO modified platelets. Among them, NPPD was synthesized by conjugating DMXAA to N3-PEG-b-poly-[(N-2-hydroxyethyl)-aspartamide] through esterification. This system enhances tumor-specific drug delivery while minimizing systemic toxicity. Leveraging the natural tumor-homing properties of platelets and the coagulation cascade, P@NPPD selectively targets exposed collagen at tumor sites, initiating a self-amplifying release of DMXAA. This approach achieved a 2.61-fold improvement in targeting efficiency and an 89.1% tumor suppression rate. In addition to improving drug accumulation at tumor sites, P@NPPD significantly activated local immune responses, enhancing therapeutic efficacy and safety. These findings underscore the potential of P@NPPD as a promising platform for cancer therapy.
Collapse
Affiliation(s)
- Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuezhan Shan
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Mengmeng Sun
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
26
|
Nie S, Yang B, Ma R, Zha L, Qin Y, Ou L, Chen X, Li L. Synthetic nanomaterials for spleen-specific mRNA delivery. Biomaterials 2025; 314:122859. [PMID: 39362024 DOI: 10.1016/j.biomaterials.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
In recent years, mRNA vaccine has achieved increasing interest owing to its high potency, safety, ease of production, and low-cost manufacturing. Currently approved mRNA vaccines are administered intramuscularly to transfect local antigen-presenting cells (APCs) to initiate low to moderate immune responses. Spleen, the largest secondary lymphoid organ in the body which contains a large number of APCs close to B and T lymphocytes, could be the ideal site for effective initiation of an enhanced immune response. Here, we provide an overview of the recent advances in the development of synthetic materials for spleen-specific mRNA delivery, and lipid nanoparticle-based approaches will be highlighted. We further discuss the main challenges for spleen-specific mRNA delivery to provide a reference for the development of next-generation synthetic nanomaterials with optimal properties.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Beiqi Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruiying Ma
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Cui J, Zhao G, Xie W, Yang Y, Fu X, Meng H, Liu H, Tan M, Chen D, Rong C, Wang Y, Wang Y, Zhang LW. Exacerbated hepatotoxicity in in vivo and in vitro non-alcoholic fatty liver models by biomineralized copper sulfide nanoparticles. BIOMATERIALS ADVANCES 2025; 168:214117. [PMID: 39580989 DOI: 10.1016/j.bioadv.2024.214117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.5 nm) BSA@Cu2-xS NPs. A NAFL rat model fed with high fat diet (HFD) was successfully established for a 14-day subacute toxicity study by daily repeated administration of BSA@Cu2-xS NPs. Our findings from serum biochemistry and histopathological examinations revealed that copper sulfide at both sizes NPs induced more pronounced liver damage in NAFL rats than rats fed with normal diet. Transcriptome sequencing analysis showed that LNPs activated inflammation and DNA damage repair pathways in the livers of NAFL rats, while SNPs displayed minimal inflammation. A three-dimensional spheroid model of NAFL developed in our in-house cell spheroid culture honeycomb chips demonstrated that LNPs, but not SNPs, triggered a distinct release of inflammatory factors and increased reactive oxygen species through Kupffer cells. These results highlight that NAFL condition exacerbated the hepatotoxicity of BSA@Cu2-xS NPs, with SNPs emerging as safer photothermal agents compared to LNPs, suggesting superior potential for clinical applications.
Collapse
Affiliation(s)
- Jinbin Cui
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Zhao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Xie
- The College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Yang Yang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Fu
- Suzhou Vivoid Biotechnology Co., Ltd, Suzhou 215124, China
| | - Hezhang Meng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - He Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengfei Tan
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Chen
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Rong
- Department of Pathology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
28
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
29
|
Sebatana R, Kudzai KD, Magura A, Mdlophane A, Zeevaart JR, Sathekge M, Kahts M, Mdanda S, Witika BA. An Insight to Nanoliposomes as Smart Radiopharmaceutical Delivery Tools for Imaging Atherosclerotic Plaques: Positron Emission Tomography Applications. Pharmaceutics 2025; 17:240. [PMID: 40006607 PMCID: PMC11858949 DOI: 10.3390/pharmaceutics17020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis is a chronic progressive disease which is known to cause acute cardiovascular events as well as cerebrovascular events with high mortality. Unlike many other diseases, atherosclerosis is often diagnosed only after an acute or fatal event. At present, the clinical problems of atherosclerosis mainly involve the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase. In recent years, the development of nanotechnology has come with various advantages including non-invasive imaging enhancement, which can be studied for the imaging of atherosclerosis. For targeted imaging and atherosclerosis treatment, nanoliposomes provide enhanced stability, drug administration, extended circulation, and less toxicity. This review discusses the current advances in the development of tailored liposomal nano-radiopharmaceutical-based techniques and their applications to atherosclerotic plaque diagnosis. This review further highlights liposomal nano-radiopharmaceutical localisation and biodistribution-key processes in the pathophysiology of atherosclerosis. Finally, this review discusses the direction and future of liposomal nano-radiopharmaceuticals as a potential clinical tool for the assessment and diagnosis of atherosclerotic plaque.
Collapse
Affiliation(s)
- Reabetswe Sebatana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
| | - Kahwenga D. Kudzai
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Allan Magura
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Amanda Mdlophane
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa) SOC Ltd., Pelindaba 0240, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Maryke Kahts
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Sipho Mdanda
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| |
Collapse
|
30
|
Elblová P, Andělová H, Lunova M, Anthi J, Henry SJW, Tu X, Dejneka A, Jirsa M, Stephanopoulos N, Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J Mater Chem B 2025; 13:2335-2351. [PMID: 39835937 PMCID: PMC11749194 DOI: 10.1039/d5tb00074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Hana Andělová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Judita Anthi
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
31
|
Garg S, Singla P, Kaur S, Canfarotta F, Velliou E, Dawson JA, Kapur N, Warren NJ, Amarnath S, Peeters M. Future Perspectives on the Automation and Biocompatibility of Molecularly Imprinted Polymers for Healthcare Applications. Macromolecules 2025; 58:1157-1168. [PMID: 39958488 PMCID: PMC11823616 DOI: 10.1021/acs.macromol.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025]
Abstract
Molecular recognition is of crucial importance in several healthcare applications, such as sensing, drug delivery, and therapeutics. Molecularly imprinted polymers (MIPs) present an interesting alternative to biological receptors (e.g., antibodies, enzymes) for this purpose since synthetic receptors overcome the limited robustness, flexibility, high-cost, and potential for inhibition that comes with natural recognition elements. However, off the shelf MIP products remain limited, which is likely due to the lack of a scalable production approach that can manufacture these materials in high yields and narrow and defined size distributions to have full control over their properties. In this Perspective, we will confer how breakthroughs in the automation of MIP design, manufacturing, and evaluation of performance will accelerate the (commercial) implementation of MIPs in healthcare technology. In addition, we will discuss how prediction of the in vivo behavior of MIPs with animal-free technologies (e.g., 3D tissue models) will be critical to assess their clinical potential.
Collapse
Affiliation(s)
- Saweta Garg
- University
of Manchester, School of Engineering, Engineering A Building, Booth East
Street, Manchester, M13
9QS, United Kingdom
- Newcastle
University, Newcastle
upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom
| | - Pankaj Singla
- University
of Manchester, School of Engineering, Engineering A Building, Booth East
Street, Manchester, M13
9QS, United Kingdom
| | - Sarbjeet Kaur
- Newcastle
University, Newcastle
upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom
| | - Francesco Canfarotta
- MIP
Discovery, Colworth Park, Sharnbrook, MK44 1LQ, Bedfordshire, United Kingdom
| | - Eirini Velliou
- University
College London, Centre for 3D Models
of Health and Disease, Charles Bell House, London, W1W 7TY, United Kingdom
| | - James A. Dawson
- Newcastle
University, Newcastle
upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom
| | - Nikil Kapur
- University
of Leeds, School of Mechanical Engineering, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Nicholas J. Warren
- School of
Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Shoba Amarnath
- Newcastle
University, Newcastle
upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom
| | - Marloes Peeters
- University
of Manchester, School of Engineering, Engineering A Building, Booth East
Street, Manchester, M13
9QS, United Kingdom
| |
Collapse
|
32
|
Tian Y, Lv H, Ju Y, Hao J, Cui J. Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6125-6133. [PMID: 39824773 DOI: 10.1021/acsami.4c20890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.g., immunoglobulin, complement proteins) and maximize the blood circulation time. The influence of preexisting PEG antibodies in mice on the pharmacokinetics of zwitterionic PEG NPs is negligible, which demonstrates the resistance of anti-PEG antibodies and inhibition of the accelerated blood clearance phenomenon. This research highlights the importance of the surface chemistry of PEGylated NPs in the design of delivery systems and reveals their translational potential for cancer therapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huiyuan Lv
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
33
|
Narasipura EA, Ma Y, Tiwade PB, VanKeulen-Miller R, Fung V, Fenton OS. A Chemoinformatic-Guided Synthesis of a Spleen-Expressing mRNA Lipid Nanoparticle Platform. Bioconjug Chem 2025; 36:54-65. [PMID: 39704424 DOI: 10.1021/acs.bioconjchem.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
mRNA lipid nanoparticles (LNPs) are a powerful technology that are actively being investigated for their ability to prevent, treat, and study disease. However, a major limitation remains: achieving extrahepatic mRNA expression. The development of new carriers could enable the expression of mRNA in non-liver targets, thus expanding the utility of mRNA-based medicines. In this study, we use a combination of chemoinformatic-guided material synthesis and design of experiment optimization for the development of a spleen-expressing lipid nanoparticle (SE-LNP). We begin with the synthesis of a novel cholesterol derivative followed by SE-LNP formulation and design of experiment-guided optimization to identify three lead SE-LNPs. We then evaluate their in vitro delivery mechanism, in vivo biodistribution, and protein expression in mice, ultimately achieving spleen-preferential expression. The goal of this paper is thus to create LNPs that preferentially express mRNA in the spleen upon intravenous delivery, demonstrating the potential of LNPs to modulate gene expression in extrahepatic tissues for disease treatment.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Cai Y, Xu T, Zhu B, Chen J, Jiang L, Shan X, Rong R, Li Y, Yu Y, Gao X, Zhu HH, Zhang L, Zhang P, Li Y. Conformation Influences Biological Fates of Peptide-Based Nanofilaments by Modulating Protein Adsorption and Interfilament Entanglement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409130. [PMID: 39610201 DOI: 10.1002/adma.202409130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Filamentous structures exert biological functions mediated by multivalent interactions with their counterparts in sharp contrast with spherical ones. The physicochemical properties and unique behaviors of nanofilaments that are associated with multivalent interaction with protein are poorly understood. Here, peptide-based nanofilaments containing different homotetrapeptidic inserts are reported and their protein adsorption and biological fates are tested. By altering the homotetrapeptides, different peptidic conformations are imposed within the nanofilaments, which result in notable differences in the density of the intermolecular hydrogen bond, determining the amount of adsorbed proteins. The adsorbed proteins can further induce interfilament entanglement of different degrees and patterns, which influences biodistribution and phagocytosis. The nanofilaments with tetrahydroxyproline segment exhibit diminish interfilament entanglement, phagocytosis, and improve circulation, biodistribution, and antitumor efficacy. These findings can deepen the understanding of nanofilament-protein interactions and filament-filament interactions as in the case of amyloid-β plaque, and facilitate the rational design of nanofilaments through peptide conformation control for chemical engineering and anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, 264000, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Tiantian Xu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Junfan Chen
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, 264000, China
| | - Yao Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian, 361005, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, 264000, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
35
|
Wu Y, Park J, Le QV, Byun J, Choi J, Xu E, Lee J, Oh YK. NET formation-mediated in situ protein delivery to the inflamed central nervous system. Nat Commun 2024; 15:10747. [PMID: 39737919 PMCID: PMC11686318 DOI: 10.1038/s41467-024-54817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery. These nanoparticles protect interferon-β from reactive oxygen species and preferentially accumulate in neutrophils over other immune cells. Upon encountering inflammation, neutrophils release the nanoparticles during NET formation. In the female mouse model of experimental autoimmune encephalomyelitis, intravenous administration of aLy6G-IFNβ@TLP reduce disease progression and restore motor function. Although this study focuses on IFNβ and autoimmune encephalomyelitis, the concept of hitchhiking neutrophils for CNS delivery and employing NET formation for inflamed site-specific nanoparticle release can be further applied for delivery of other protein drugs in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Junho Byun
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Zhang Y, Mou Z, Song W, He X, Yi Q, Wang Z, Mao X, Wang W, Xu Y, Shen Y, Ma P, Yu K. Sparstolonin B potentiates the antitumor activity of nanovesicle-loaded drugs by suppressing the phagocytosis of macrophages in vivo. J Nanobiotechnology 2024; 22:759. [PMID: 39696573 DOI: 10.1186/s12951-024-03001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and extruded nanovesicles (ENVs) are promising nanovesicles (NVs) for drug delivery. However, the application of these NVs is strongly hindered by their short half-life in the circulation. Macrophages (Mφs) in the liver and spleen contribute to the rapid depletion of NVs, but the underlying mechanism is unclear. METHODS By collecting the supernatant of PANC-1 cells and squeezing PANC-1 cells, EVs and ENVs derived from PANC-1 cells were prepared via ultracentrifugation. NVs were subsequently identified via western blot, particle size measurement, and electron microscopy. The distribution of NVs in mouse bodies was observed with a live animal imaging system. Liver Mφs were extracted and isolated after NVs were administered, and transcriptome profiling was applied to determine differentially expressed genes (DEGs). siRNAs targeting interested genes were designed and synthesized. In vitro experiments, Mφs were transfected with siRNA or treated with the corresponding inhibitor, after which NV uptake was recorded. Doxorubicin (DOX) was encapsulated in ENVs using an ultrasound method. PANC-1 cell-derived tumors were established in nude mice in vivo, inhibitor pretreatment or no treatment was administered before intravenous injection of ENVs-DOX, and the therapeutic efficacy of ENVs-DOX was evaluated. RESULTS NVs derived from PANC-1 cells were first prepared and identified. After intravenous injection, most NVs were engulfed by Mφs in the liver and spleen. Seven genes of interest were selected via transcriptome sequencing and validated via RT‒PCR. These results confirmed that the TLR2 signaling pathway is responsible for phagocytosis. siTLR2 and its inhibitor sparstolonin B (SpB) significantly inhibited the internalization of NVs by Mφs and downregulated the activity of the TLR2 pathway. The accumulation of ENVs-DOX in the liver was inhibited in vivo by pretreatment with SpB 40 min before intravenous injection, ultimately delaying tumor progression. CONCLUSION The TLR2 pathway plays a crucial role in the sequestration of NVs by Mφs. A novel antiphagocytic strategy in which pretreatment of mice with SpB inhibits the clearance of NVs and prolongs their half-life in vivo, thereby improving delivery efficiency, was identified.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuo Mou
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Teaching Office, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qin Yi
- The First Clinical College, Wuhan University, Wuhan, China
| | - Zhekai Wang
- The First Clinical College, Wuhan University, Wuhan, China
| | - Xietong Mao
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangtao Xu
- The First Clinical College, Wuhan University, Wuhan, China
| | - Yang Shen
- The First Clinical College, Wuhan University, Wuhan, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Wu B, Wang Z, Liu J, Li N, Wang X, Bai H, Wang C, Shi J, Zhang S, Song J, Li Y, Nie G. Dual rectification of metabolism abnormality in pancreatic cancer by a programmed nanomedicine. Nat Commun 2024; 15:10526. [PMID: 39627234 PMCID: PMC11615375 DOI: 10.1038/s41467-024-54963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy characterized by dysregulated energy and stromal metabolism. It is strongly supported by activated pancreatic stellate cells (PSC) which drive excessive desmoplasia and tumor growth via metabolic crosstalk. Herein, a programmed nanosystem is designed to dual rectify the metabolism abnormalities of the PDAC cells, which overexpress glucose transporter 1(GLUT1) and CD71, and the PSC for oncotherapy. The nanosystem is based on a tumor microenvironment-responsive liposome encapsulating an NF-κB inhibitor (TPCA-1) and a CD71 aptamer-linked Glut1 siRNA. TPCA-1 reverses the activated PSC to quiescence, which hampers metabolic support of the PSC to PDAC cells and bolsters the PDAC cell-targeting delivery of the siRNA. Aerobic glycolysis and the following enhancement of oxidative phosphorylation are restrained by the nano-modulation so as to amplify anti-PDAC efficacy in an orthotopic xenograft mouse model, which implies more personalized PDAC treatment based on different energy metabolic profiles.
Collapse
MESH Headings
- Animals
- Humans
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice
- Nanomedicine/methods
- Liposomes/metabolism
- Pancreatic Stellate Cells/metabolism
- Pancreatic Stellate Cells/pathology
- Tumor Microenvironment
- Glucose Transporter Type 1/metabolism
- Glucose Transporter Type 1/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- NF-kappa B/metabolism
- Xenograft Model Antitumor Assays
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Oxidative Phosphorylation
- Glycolysis
- Mice, Nude
- Aptamers, Nucleotide/metabolism
Collapse
Affiliation(s)
- Bowen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- Henan Institute of Advanced Technology, Henan, PR China
| | - Zhiqin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Jingyuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Naishi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - HaoChen Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Saiyang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Guangjun Nie
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- Henan Institute of Advanced Technology, Henan, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
38
|
Wang R, Xiao Y, Zhang Z, Huang X, Zhu W, Ma X, Feng F, Liu W, Han L, Qu W. Simplified Gambogic Acid Prodrug Nanoparticles to Improve Efficiency and Reduce Toxicity for Clinical Translation Potential. Adv Healthc Mater 2024; 13:e2401950. [PMID: 39276002 DOI: 10.1002/adhm.202401950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Poor in vivo characteristics of gambogic acid (GA) and difficulties in industrial manufacturing of its nanocarriers have hindered its clinical translation. Therefore, a reproducible nano-drug delivery system must be developed to realize simpler manufacture and address inherent defects of GA, such as short circulation and severe side effects, in order to facilitate its clinical application. Herein, a drug self-assembled nanoparticles (NPs) consisting of a hydrophobic prodrug based on GA and oleyl alcohol (OA), as well as vitamin E-polyethylene glycol succinate (TPGS) as a shield to improve the stability of the NPs is reported. The preparation method is simple enough to stably facilitate large-scale manufacturing. The self-assembled NPs exhibit a remarkably high drug-loading capacity, and their prolonged circulation enables the NPs to demonstrate superior antitumor efficacy in both cellular and animal models. The flexible hydrophobic long chain wraps GA groups, which mitigates vascular irritation and reduces hemolysis rates. Consequently, the prodrug nano-system addresses GA-related concerns regarding stability, efficacy, and safety, offering a simple, stable, and secure nano-platform for similar candidate drugs.
Collapse
Affiliation(s)
- Ruyi Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxiao Xiao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Ma
- State Drug Administration-Key laboratory of Quality control of Chinese Medicinal Materials and Decoction Pieces, Gansu Institute for Drug Control, Lanzhou, 730070, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Zhejiang Center for Safety Study of Drug Substances, Industrial Technology Innovation Platform, Hangzhou, 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
39
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
40
|
Song D, Zhao Y, Wang Z, Xu Q. Tuning Lipid Nanoparticles for RNA Delivery to Extrahepatic Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401445. [PMID: 39233550 PMCID: PMC11530311 DOI: 10.1002/adma.202401445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Indexed: 09/06/2024]
Abstract
RNA therapeutics have been successfully transitioned into clinical applications. Lipid nanoparticles (LNPs) are widely employed as nonviral delivery vehicles for RNA therapeutics in commercial vaccine and gene therapy products. However, the bottleneck in expanding the clinical applications of LNP-based RNA therapeutics lies in the tendency of these nanoparticles to preferentially accumulate in the liver. This challenge underscores the need to design LNPs capable of delivering RNA to organs beyond the liver. In this perspective, recent progress is discussed in developing strategies for designing LNPs to deliver RNA to extrahepatic organs. Organ-selective targeting capability is achieved by either altering the composition of the LNP formulation or chemically modifying the ionizable lipid component. Both approaches result in changes in the physicochemical properties of the LNPs, which subsequently alters the composition of the biomolecular corona that adsorbs onto its surface following administration. The biomolecular corona is a known mechanism that mediates organ-selective LNP delivery. Furthermore, this perspective aims to provide an outlook on shaping the next-generation LNP delivery platforms. Potential efforts include targeting specific cell types, improving the safety profile of LNPs, and developing strategies to overcome physiological barriers against organ-specific delivery.
Collapse
Affiliation(s)
| | | | - Zeyu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA 02155
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA 02155
| |
Collapse
|
41
|
Yoshihara N, Lopes M, Santos I, Kopke B, Almeida C, Araújo J, Fechine PBA, Santos-Oliveira R, Sant'Anna C. Graphitic carbon nitride as a novel anticancer agent: potential mechanisms and efficacy in prostate cancer and glioblastoma treatment. Biomater Sci 2024; 12:5547-5561. [PMID: 39292186 DOI: 10.1039/d4bm01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Carbon-derived compounds are gaining traction in the scientific community because of their unique properties, such as conductivity and strength, and promising innovations in technology and medicine. Graphitic nitride carbon (g-C3N4) stands out among these compounds because of its potential in antitumor therapies. This study aimed to assess g-C3N4's antitumor potential and cytotoxic mechanisms. Prostate cancer (DU-145) and glioblastoma (U87) cell lines were used to evaluate antitumor effects, whereas RAW 264.7 and HFF-1 non-tumor cells were used for selectivity evaluation. The synthesized g-C3N4 particles underwent comprehensive characterization, including the assessment of particle size, morphology, and oxygen content, employing various techniques, such as X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and atomic force microscopy. The results indicated that g-C3N4 significantly affected tumor cell proliferation and viability, exhibiting high cytotoxicity within 48 h. In non-tumor cells, minimal effects on proliferation were observed, except for damage to the cell membranes of RAW 264.7 cells. Moreover, g-C3N4 changed the cell morphology and ultrastructure, affecting cell migration in U87 cells and potentially enhancing migration in RAW 264.7 cells. Biochemical assays in Balb/C mice revealed alterations in alanine aminotransferase, aspartate aminotransferase, and amylase levels. In conclusion, g-C3N4 demonstrated promising antitumor effects with minimal toxicity to non-tumor cells, suggesting its potential in neoplasm treatment.
Collapse
Affiliation(s)
- Natalia Yoshihara
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Michelle Lopes
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Isabel Santos
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Beatriz Kopke
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Clara Almeida
- National Institute of Metrology, Quality and Technology, Laboratory of Microscopy Dimat, Duque de Caxias-RJ, 24250020, Brazil
| | - Joyce Araújo
- National Institute of Metrology, Quality and Technology, Laboratory of Microscopy Dimat, Duque de Caxias-RJ, 24250020, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza-CE, 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New, Brazil
- Radiopharmaceuticals, Rio de Janeiro-RJ, 21941906, Brazil
- Rio de Janeiro State University, Laboratory of Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, Brazil
| | - Celso Sant'Anna
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| |
Collapse
|
42
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
43
|
Saladino GM, Chao PH, Brodin B, Li SD, Hertz HM. Liposome biodistribution mapping with in vivo X-ray fluorescence imaging. NANOSCALE 2024; 16:17404-17411. [PMID: 39212620 DOI: 10.1039/d4nr02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid-based nanoparticles are organic nanostructures constituted of phospholipids and cholesterol, displaying high in vivo biocompatibility. They have been demonstrated as effective nanocarriers for drug delivery and targeting. Mapping liposome distribution is crucial as it enables a precise understanding of delivery kinetics, tissue targeting efficiency, and potential off-target effects. Recently, ruthenium-encapsulated liposomes have shown potential for targeted drug delivery, photodynamic therapy, and optical fluorescence imaging. In the present work, we design Ru(bpy)3-encapsulated liposomes (Ru-Lipo) empowering optical and X-ray fluorescence (XRF) properties for dual mode imaging and demonstrate the passivation role of liposomes over the free Ru(bpy)3 compound. We employ whole-body XRF imaging to map the in vivo biodistribution of Ru-Lipo in mice, enabling tumor detection and longitudinal studies with elemental specificity and resolution down to the sub-millimeter scale. Quantitative XRF computed tomography on extracted organs permits targeting efficiency evaluations. These findings highlight the promising role of XRF imaging in pharmacokinetic studies and theranostic applications for the rapid optimization of drug delivery and assessment of targeting efficiency.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Bertha Brodin
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Hans Martin Hertz
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| |
Collapse
|
44
|
Gu Z, Yin J, Da Silva CG, Liu Q, Cruz LJ, Ossendorp F, Snaar-Jagalska E. Therapeutic liposomal combination to enhance chemotherapy response and immune activation of tumor microenvironment. J Control Release 2024; 373:38-54. [PMID: 38986909 DOI: 10.1016/j.jconrel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Multiple oxaliplatin-resistance mechanisms have been proposed such as increase of anti-inflammatory M2 macrophages and lack of cytotoxic T-cells. Thereby oxaliplatin chemotherapy promotes an immunosuppressive tumor microenvironment and inhibits anti-tumor efficacy. It has been shown that toll-like receptor (TLR) agonists are capable of triggering broad inflammatory responses, which may potentially reduce oxaliplatin-resistance and improve the efficacy of chemotherapy. In this study, we established colorectal tumor-bearing zebrafish and mice, and investigated the effects of TLR agonists and oxaliplatin in macrophage function and anti-tumor T cell immunity as well as tumor growth control in vivo. To increase the potential of this strategy as well minimize side effects, neutral liposomes carrying oxaliplatin and cationic liposomes co-loaded with TLR agonists Poly I:C and R848 were employed for maximum immune activation. Both of two liposomal systems exhibited good physicochemical properties and excellent biological activities in vitro. The combination strategy delivered by liposomes showed more pronounced tumor regression and correlated with decreased M2 macrophage numbers in both zebrafish and mice. Increasing numbers of dendritic cells, DC maturation and T cell infiltration mediated via immunogenic cell death were observed in treated mice. Our study offers valuable insights into the potential of liposomal combination therapy to improve cancer treatment by reprogramming the tumor microenvironment and enhancing immune responses.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Jie Yin
- Institution of Biology Leiden, Leiden University, the Netherlands
| | - Candido G Da Silva
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis J Cruz
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, the Netherlands.
| | | |
Collapse
|
45
|
Saber N, Senti ME, Schiffelers RM. Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver. Hum Gene Ther 2024; 35:617-627. [PMID: 39139067 DOI: 10.1089/hum.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced drug delivery system for nucleic acid therapeutics, exemplified by the success of the COVID-19 mRNA vaccines. However, their clinical use is currently limited to hepatic diseases and vaccines due to their tendency to accumulate in the liver upon intravenous administration. To fully leverage their potential, it is essential to understand and address their liver tropism, while also developing strategies to enhance delivery to tissues beyond the liver. Ensuring that these therapeutics reach their target cells while avoiding off-target cells is essential for both their efficacy and safety. There are three potential targeting strategies-passive, active, and endogenous-which can be used individually or in combination to target nonhepatic tissues. In this review, we delve into the recent advancements in LNP engineering for delivering nucleic acid beyond the liver.
Collapse
Affiliation(s)
- Nadine Saber
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
46
|
Chibaya L, DeMarco KD, Lusi CF, Kane GI, Brassil ML, Parikh CN, Murphy KC, Chowdury SR, Li J, Ma B, Naylor TE, Cerrutti J, Mori H, Diaz-Infante M, Peura J, Pitarresi JR, Zhu LJ, Fitzgerald KA, Atukorale PU, Ruscetti M. Nanoparticle delivery of innate immune agonists combined with senescence-inducing agents promotes T cell control of pancreatic cancer. Sci Transl Med 2024; 16:eadj9366. [PMID: 39196958 PMCID: PMC11811823 DOI: 10.1126/scitranslmed.adj9366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 08/30/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has quickly risen to become the third leading cause of cancer-related death in the United States. This is in part because of its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here, we investigated an immunotherapy approach combining delivery of stimulator of interferon genes (STING) and Toll-like receptor 4 (TLR4) innate immune agonists by lipid-based nanoparticle (NP) coencapsulation with senescence-inducing RAS-targeted therapies, which can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other proinflammatory signaling pathways, increased antigen presentation by tumor cells and antigen-presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell-driven and type I interferon-mediated tumor regression and long-term survival in preclinical PDAC models dependent on both tumor and host STING activation. STING and TLR4-mediated type I interferon signaling was also associated with enhanced natural killer and CD8+ T cell immunity in human PDAC samples. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can orchestrate a coordinated type I interferon-driven innate and adaptive immune response with durable antitumor efficacy against PDAC.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Kelly D. DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Christina F. Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Griffin I. Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Meghan L. Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Chaitanya N. Parikh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Katherine C. Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Shreya R. Chowdury
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Junhui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Boyang Ma
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Tiana E. Naylor
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Julia Cerrutti
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Haruka Mori
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Miranda Diaz-Infante
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jessica Peura
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jason R. Pitarresi
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Prabhani U. Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
47
|
Zhang L, Li Y, Liu X, He X, Zhang J, Zhou J, Qiao Y, Wu H, Sun F, Zhou Q. Optimal development of apoptotic cells-mimicking liposomes targeting macrophages. J Nanobiotechnology 2024; 22:501. [PMID: 39169328 PMCID: PMC11337832 DOI: 10.1186/s12951-024-02755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Macrophages are multifunctional innate immune cells that play indispensable roles in homeostasis, tissue repair, and immune regulation. However, dysregulated activation of macrophages is implicated in the pathogenesis of various human disorders, making them a potential target for treatment. Through the expression of pattern recognition and scavenger receptors, macrophages exhibit selective uptake of pathogens and apoptotic cells. Consequently, the utilization of drug carriers that mimic pathogenic or apoptotic signals shows potential for targeted delivery to macrophages. In this study, a series of mannosylated or/and phosphatidylserine (PS) -presenting liposomes were developed to target macrophages via the design of experiment (DoE) strategy and the trial-and-error (TaE) approach. The optimal molar ratio for the liposome formulation was DOPC: DSPS: Chol: PEG-PE = 20:60:20:2 based on the results of cellular uptake and cytotoxicity evaluation on RAW 264.7 and THP-1 in vitro. Results from in vivo distribution showed that, in the DSS-induced colitis model and collagen II-induced rheumatoid arthritis model, PS-presenting liposomes (PS-Lipo) showed the highest accumulation in intestine and paws respectively, which holds promising potential for macrophage target therapy since macrophages are abundant at inflammatory sites and contribute to the progression of corresponding diseases. Organs such as the heart, liver, spleen, lung, and kidney did not exhibit histological alterations such as inflammation or necrosis when exposed to PC-presenting liposomes (PC-Lipo) or PS-Lipo. In addition, liposomes demonstrated hemobiocompatibility and no toxicity to liver or kidney for circulation and did not induce metabolic injury in the animals. Thus, the well-designed PS-Lipo demonstrated the most potential for macrophage target therapy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School,Institute of Stomatology,Nanjing University, Nanjing, 210002, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xing Liu
- Department of Infectious Disease and Liver Disease, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiaolu He
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jun Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Youbei Qiao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Hong Wu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Fangfang Sun
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School,Institute of Stomatology,Nanjing University, Nanjing, 210002, China.
| | - Qing Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
48
|
Bui DT, Nagasaki Y. Developing poly(ethylene glycol)- b-poly(β-hydroxybutyrate)-based self-assembling prodrug for the management of cisplatin-induced acute kidney injury. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2382084. [PMID: 39166178 PMCID: PMC11334744 DOI: 10.1080/14686996.2024.2382084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Although β-hydroxybutyrate (BHB), one of the endogenous body ketones, possesses high bioactivities, it is rapidly consumed, metabolized, and eliminated from the body. In this study, we designed new self-assembling nanoparticles that sustainably released BHB to improve bioavailability and evaluated their efficacy in in vivo experiments using rodent animal models. Since poly(β-hydroxybutyrate) [poly(BHB)] is regarded as a polymeric prodrug that is hydrolyzed by endogenous enzymes and releases BHB in a sustained manner, our idea was to engineer hydrophobic poly(BHB) in one of the segments in the amphiphilic block copolymer, of which self-assembles in water to form nanoparticles of tens of nanometers in size (abbreviated as NanoBHB). Here, methoxy-poly(ethylene glycol) was employed as the hydrophilic segment of the block copolymer to stabilize the nanoparticles in aqueous environments, thus enabling NanoBHBs to be administrable both orally and through injection. Experimental results showed that NanoBHB has low toxicity and releases free BHB for an extended period in vitro and in vivo. Moreover, NanoBHB exhibits superior nephroprotective effects in cisplatin-induced acute kidney injury mouse models compared to low-molecular-weight (LMW) sodium BHB, suggesting the potential of NanoBHB as a sustainable release formulation to supply BHB for medicinal applications.
Collapse
Affiliation(s)
- Duc Tri Bui
- Degree Program of Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
- Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Ibaraki, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
49
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [PMID: 39082637 DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
50
|
Huo CM, Zuo YC, Chen Y, Chen L, Zhu JY, Xue W. Natural lignin nanoparticles target tumor by saturating the phagocytic capacity of Kupffer cells in the liver. Int J Biol Macromol 2024; 274:133186. [PMID: 38885858 DOI: 10.1016/j.ijbiomac.2024.133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Ligand-receptor recognition serves as the fundamental driving force for active targeting, yet it is still constrained by off-target effects. Herein, we demonstrate that circumventing or blocking the mononuclear phagocyte system (MPS) are both viable strategies to address off-target effects. Naturally derived lignin nanoparticles (LNPs) show great potential to block MPS due to its good stability, low toxicity, and degradability. We further demonstrate the impact of LNPs dosage on in vivo tumor targeting and antitumor efficacy. Our results show that a high dose of LNPs (300 mg/kg) leads to significant accumulation at the tumor site for a duration of 14 days after intravenous administration. In contrast, the low-dose counterparts (e.g., 50, 150 mg/kg) result in almost all LNPs accumulating in the liver. This discovery indicates that the liver is the primary site of LNP capture, leaving only the surplus LNPs the chance to reach the tumor. In addition, although cell membrane-engineered LNPs can rapidly penetrate tumors, they are still prone to capture by the liver during subsequent circulation in the bloodstream. Excitingly, comparable therapeutic efficacy is obtained for the above two strategies. Our findings may offer valuable insights into the targeted delivery of drugs for disease treatment.
Collapse
Affiliation(s)
- Cong-Min Huo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yu-Cheng Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yu Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jing-Yi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|