1
|
Scarfì S, Almonti V, Mirata S, Passalacqua M, Vernazza S, Patel JP, Brook M, Hamilton A, Kah M, Gualtieri AF. In vitro cyto- and geno-toxicity of asbestiform erionite from New Zealand. ENVIRONMENTAL RESEARCH 2025; 265:120415. [PMID: 39579848 DOI: 10.1016/j.envres.2024.120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This work is an in vitro toxicity study of two asbestiform erionites from Kaipara and Gawler Downs in New Zealand. This study is the first, to the knowledge of the authors, to investigate the mechanisms that trigger adverse effects leading to carcinogenicity from New Zealand erionites. The effects induced by the erionite fibres from New Zealand were compared with those produced by positive (crocidolite) and negative (wollastonite) standards, and other erionite fibres described in the literature. The cytotoxicity/genotoxicity/inflammatory potential was determined by: (i) analysis of the cytotoxic potential by MTT tests on human cell lines mimicking primary cells making direct contact with fibres in the lungs, combined with apoptosis tests and cell membrane damage by fluorescence microscopy analyses; (ii) analysis of the genotoxic potential by quantification of DNA damage measuring double strand break foci by γ-H2AX nuclear staining in confocal microscopy analyses; (iii) analyses of the acute (24-72h) and early-chronic (7d) inflammatory effect by gene expression analyses of several cytokines, as well as of fibrotic and Epithelial to Mesenchymal transition (EMT) markers. The intensity of cell responses to these erionites are comparable to that of standard carcinogenic crocidolite, indicating that the two erionite fibres exhibit a significant acute toxic potential, with a particular alarming effect from the Gawler Downs sample from South Island. Our results confirm that the investigated erionites from New Zealand may represent an environmental hazard. However, further investigation is required to determine potential environmental exposure pathways by which erionite may become airborne and assess any environmental risks that may arise.
Collapse
Affiliation(s)
- Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Vanessa Almonti
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Mario Passalacqua
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy; Department Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy; Department Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Janki Prakash Patel
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| | - Martin Brook
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Ayrton Hamilton
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Melanie Kah
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| |
Collapse
|
2
|
Fan WW, Gualtieri AF, Dirks KN, Young PG, Salmond JA. Investigating the deposition of fibrous zeolite particles on leaf surfaces: A novel low-cost method for detecting the presence of airborne hazardous mineral fibers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135982. [PMID: 39357357 DOI: 10.1016/j.jhazmat.2024.135982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Naturally occurring fibrous minerals, such as erionite, can pose a significant threat to human health when disturbed and subsequently respired. Understanding the spatial abundance and characteristics of these hazardous fibrous minerals in ambient air is crucial for minimizing human exposure and assessing risk. Conventional detection methods for airborne hazardous mineral fibers, such as those developed for asbestos, are of limited utility in environmental settings where fiber concentrations are low and different fiber types may be present and can be costly especially when monitoring large areas over long periods of time. This study presents an innovative methodology for detecting and identifying the presence of airborne naturally occurring fibrous zeolites, using leaf surface deposition sampling, SEM-EDX analysis for the detection and assessment of elemental composition, and TEM-SAED with continuous rotation diffraction (MicroED) to determine their crystallographic unit cell parameters. In total, 309 fibrous zeolite particles (FZPs) were identified on a range of tree leaf surfaces across 80 % of the sampling sites located close to both active and disused zeolite quarries in the Taupo Volcanic Region, New Zealand. The FZPs displayed various morphologies including aggregates, bundles, and fibril-like structures. Of the FZPs detected, 92.2 % were < 5 µm in length. Tetrahedral Si:(Si+Al) ratio results indicated that 40 % of the FZPs were in the reference range for zeolite mordenite. TEM-SAED plus MicroED analysis resulted in 61 % of tested FZPs indexed to unit cell parameters that matched with mordenite. This research demonstrates the potential of leaf sampling as a cost-effective method for detecting airborne FZPs while the MicroED data can be utilized for distinguishing between different types of airborne fibrous zeolites in ambient air.
Collapse
Affiliation(s)
- Wenxia Wendy Fan
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Kim N Dirks
- Department of Civil and Environment Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Paul G Young
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jennifer A Salmond
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Pfau JC, McLaurin B, Buck BJ, Miller FW. Amphibole asbestos as an environmental trigger for systemic autoimmune diseases. Autoimmun Rev 2024; 23:103603. [PMID: 39154740 PMCID: PMC11438489 DOI: 10.1016/j.autrev.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
A growing body of evidence supports an association between systemic autoimmune disease and exposure to amphibole asbestos, a form of asbestos typically with straight, stiff, needle-like fibers that are easily inhaled. While the bulk of this evidence comes from the population exposed occupationally and environmentally to Libby Amphibole (LA) due to the mining of contaminated vermiculite in Montana, studies from Italy and Australia are broadening the evidence to other sites of amphibole exposures. What these investigations have done, that most historical studies have not, is to evaluate amphibole asbestos separately from chrysotile, the most common commercial asbestos in the United States. Here we review the current and historical evidence summarizing amphibole asbestos exposure as a risk factor for autoimmune disease. In both mice and humans, amphibole asbestos, but not chrysotile, drives production of both antinuclear autoantibodies (ANA) associated with lupus-like pathologies and pathogenic autoantibodies against mesothelial cells that appear to contribute to a severe and progressive pleural fibrosis. A growing public health concern has emerged with revelations that a) unregulated asbestos minerals can be just as pathogenic as commercial (regulated) asbestos, and b) bedrock and soil occurrences of asbestos are far more widespread than previously thought. While occupational exposures may be decreasing, environmental exposures are on the rise for many reasons, including those due to the creation of windborne asbestos-containing dusts from urban development and climate change, making this topic an urgent challenge for public and heath provider education, health screening and environmental regulations.
Collapse
Affiliation(s)
| | - Brett McLaurin
- Commonwealth University of Pennsylvania - Bloomsburg, Bloomsburg, PA, USA
| | | | - Frederick W Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Stevens ME, Paustenbach DJ, Lockhart NJ, Busboom DE, Deckard BM, Brew DW. The presence of erionite in North American geologies and the estimated mesothelioma potency by region. Inhal Toxicol 2024; 36:158-173. [PMID: 38583132 DOI: 10.1080/08958378.2024.2322496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE Erionite is a naturally occurring fibrous mineral found in soils in some geographical regions. Known for its potency for causing mesothelioma in the Cappadocia region of Turkey, the erionite fiber has attracted interest in the United States due to its presence in a band of rock that extends from Mexico to Montana. There are few toxicology studies of erionite, but all show it to have unusually high chronic toxicity. Despite its high potency compared to asbestos fibers, erionite has no occupational or environmental exposure limits. This paper takes what has been learned about the chemical and physical characteristics of the various forms of asbestos (chrysotile, amosite, anthophyllite, and crocidolite) and predicts the potency of North American erionite fibers. MATERIALS AND METHODS Based on the fiber potency model in Korchevskiy et al. (2019) and the available published information on erionite, the estimated mesothelioma potency factors (the proportion of mesothelioma mortality per unit cumulative exposure (f/cc-year)) for erionites in the western United States were determined. RESULTS AND DISCUSSION The model predicted potency factors ranged from 0.19 to 11.25 (average ∼3.5), depending on the region. For reference, crocidolite (the most potent commercial form of asbestos) is assigned a potency factor ∼0.5. CONCLUSION The model predicted mesothelioma potency of Turkish erionite (4.53) falls in this same range of potencies as erionite found in North America. Although it can vary by region, a reasonable ratio of average mesothelioma potency based on this model is 3,000:500:100:1 comparing North American erionite, crocidolite, amosite, and chrysotile (from most potent to least potent).
Collapse
|
5
|
Fitzgerald SM. Resolving asbestos and ultrafine particulate definitions with carcinogenicity. Lung Cancer 2024; 189:107478. [PMID: 38301599 DOI: 10.1016/j.lungcan.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
As asbestos fibers and other fine particles have been studied extensively to correlate physical and chemical properties with their potential for negative human health impact on inhalation, there remains no concise definitions for the individual particle types nor collective considerations of combined variabilities. Extensive studies relating negative health to asbestos morphology, chemistry, surface effects, and biodurability form general qualitative bins of what is more likely causative or less, but do not provide enough information to quantitatively dismiss particles with parameters outside any given range. Further, natural mineral species and accessory mineralization makes standardization of universally applicable reference materials nearly unobtainable. With modern advent of engineered nanoparticles, we are adding even more unknowns to the universe of the microscopic size fraction and its potential for human disease, and our paradigm is challenged.
Collapse
|
6
|
Wang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, et alWang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, Du K, Ji J, Shen Y, Chen J, Zhang Y, Ma S, Lu Y, Song Y, Liu A, Zhong W, Fang W. Chinese expert consensus on the diagnosis and treatment of malignant pleural mesothelioma. Thorac Cancer 2023; 14:2715-2731. [PMID: 37461124 PMCID: PMC10493492 DOI: 10.1111/1759-7714.15022] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high-risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy. Immunotherapy and electric field therapy have also been applied, leading to further improvements in patient survival. The Mesothelioma Group of the Yangtze River Delta Lung Cancer Cooperation Group (East China LUng caNcer Group, ECLUNG; Youth Committee) developed a national consensus on the clinical diagnosis and treatment of MPM based on existing clinical research evidence and the opinions of national experts. This consensus aims to promote the homogenization and standardization of MPM diagnosis and treatment in China, covering epidemiology, diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Jiandong Wang
- Department of PathologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunChina
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Ping Zhan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Hongbing Liu
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tangfeng Lv
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Jiancheng Li
- Department of Radiation OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Baogang Liu
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouChina
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingChina
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenChina
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingChina
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Wenpan Zhang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Qijie Jian
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Guocai Yang
- Department of Thoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanChina
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yuan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yanwen Yao
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Yinbin Zhang
- Department of Oncologythe Second Affiliated Hospital of Medical College, Xi'an Jiaotong UniversityXi'anChina
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Mingxiang Ye
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Dong Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Zhaofeng Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yue Hao
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Zhen Wang
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiChina
| | - Jianwei Yu
- Department of Respiratory MedicineAffiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Province Hospital of Chinese MedicineNanchangChina
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Lixin Wu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Leiguang Ye
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Gaoming Wang
- Department of Thoracic Surgery, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Feng Gao
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jianfei Huang
- Department of Clinical BiobankAffiliated Hospital of Nantong UniversityNantongChina
| | - Guifang Wang
- Department of Respiratory MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianguo Wei
- Department of PathologyShaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)ShaoxingChina
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bihui Li
- Department of OncologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of PharmacyJinan UniversityGuangzhouChina
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Lin Wu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Wenbin Huang
- Department of Pathologythe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinjian HospitalThird Military Medical UniversityChongqingChina
| | - Fengli Qu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Xixu Zhu
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kaiqi Du
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Jiansong Ji
- Department of RadiologyLishui Municipal Central HospitalLishuiChina
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Song
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
7
|
Giacobbe C, Moliterni A, Di Giuseppe D, Malferrari D, Wright JP, Mattioli M, Raneri S, Giannini C, Fornasini L, Mugnaioli E, Ballirano P, Gualtieri AF. The crystal structure of the killer fibre erionite from Tuzköy (Cappadocia, Turkey). IUCRJ 2023; 10:397-410. [PMID: 37199503 PMCID: PMC10324483 DOI: 10.1107/s2052252523003500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Erionite is a non-asbestos fibrous zeolite classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen and is considered today similar to or even more carcinogenic than the six regulated asbestos minerals. Exposure to fibrous erionite has been unequivocally linked to cases of malignant mesothelioma (MM) and this killer fibre is assumed to be directly responsible for more than 50% of all deaths in the population of the villages of Karain and Tuzköy in central Anatolia (Turkey). Erionite usually occurs in bundles of thin fibres and very rarely as single acicular or needle-like fibres. For this reason, a crystal structure of this fibre has not been attempted to date although an accurate characterization of its crystal structure is of paramount importance for our understanding of the toxicity and carcinogenicity. In this work, we report on a combined approach of microscopic (SEM, TEM, electron diffraction), spectroscopic (micro-Raman) and chemical techniques with synchrotron nano-single-crystal diffraction that allowed us to obtain the first reliable ab initio crystal structure of this killer zeolite. The refined structure showed regular T-O distances (in the range 1.61-1.65 Å) and extra-framework content in line with the chemical formula (K2.63Ca1.57Mg0.76Na0.13Ba0.01)[Si28.62Al7.35]O72·28.3H2O. The synchrotron nano-diffraction data combined with three-dimensional electron diffraction (3DED) allowed us to unequivocally rule out the presence of offretite. These results are of paramount importance for understanding the mechanisms by which erionite induces toxic damage and for confirming the physical similarities with asbestos fibres.
Collapse
Affiliation(s)
- Carlotta Giacobbe
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, Grenoble 38000, France
| | - Anna Moliterni
- Institute of Crystallography-CNR, Via Amendola 122/o, Bari 70126, Italy
| | - Dario Di Giuseppe
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, Modena 41125, Italy
| | - Daniele Malferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, Modena 41125, Italy
| | - Jonathan P. Wright
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, Grenoble 38000, France
| | - Michele Mattioli
- Dipartimento di Scienze Pure ed Applicate, Università degli Studi di Urbino Carlo Bo, Campus Scientifico Enrico Mattei, Urbino 61029, Italy
| | - Simona Raneri
- ICCOM-CNR, Institute of Chemistry of Organometallic Compounds, Italian National Research Council, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Cinzia Giannini
- Institute of Crystallography-CNR, Via Amendola 122/o, Bari 70126, Italy
| | - Laura Fornasini
- ICCOM-CNR, Institute of Chemistry of Organometallic Compounds, Italian National Research Council, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Enrico Mugnaioli
- Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, Pisa 56126, Italy
| | - Paolo Ballirano
- Dipartimento di Scienze della Terra, Sapienza - Università di Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Alessandro F. Gualtieri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, Modena 41125, Italy
| |
Collapse
|
8
|
Patel JP, Brook MS, Kah M, Hamilton A. Global geological occurrence and character of the carcinogenic zeolite mineral, erionite: A review. Front Chem 2022; 10:1066565. [PMID: 36465873 PMCID: PMC9715606 DOI: 10.3389/fchem.2022.1066565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/06/2024] Open
Abstract
As with the six regulated asbestos minerals (chrysotile, amosite, crocidolite, anthophyllite, tremolite, and actinolite), the zeolite mineral, erionite, can exhibit a fibrous morphology. When fibrous erionite is aerosolized and inhaled, it has been linked to cases of lung cancers, such as malignant mesothelioma. Importantly, fibrous erionite appears to be more carcinogenic than the six regulated asbestos minerals. The first health issues regarding erionite exposure were reported in Cappadocia (Turkey), and more recently, occupational exposure issues have emerged in the United States. Erionite is now classified as a Group 1 carcinogen. Thus, identifying the geological occurrence of erionite is a prudent step in determining possible exposure pathways, but a global review of the geological occurrence of erionite is currently lacking. Here, we provide a review of the >100 global locations where erionite has been reported, including: 1) geological setting of host rocks; 2) paragenetic sequence of erionite formation, including associated zeolite minerals; 3) fiber morphological properties and erionite mineral series (i.e., Ca, K, Na); and 4) a brief overview of the techniques that have been used to identify and characterize erionite. Accordingly, erionite has been found to commonly occur within two major rock types: felsic and mafic. Within felsic rocks (in particular, tuffaceous layers within lacustrine paleoenvironments), erionite is disseminated through the layer as a cementing matrix. In contrast, within mafic (i.e., basaltic) rocks, erionite is typically found within vesicles. Nevertheless, aside from detailed studies in Italy and the United States, there is a paucity of specific information on erionite geological provenance or fiber morphology. The latter issue is a significant drawback given its impact on erionite toxicity. Future erionite studies should aim to provide more detailed information, including variables such as rock type and lithological properties, quantitative geochemistry, and fiber morphology.
Collapse
|
9
|
Talbot N, Dirks KN, Fan W, Patel H, Costello SB, Brook M, Davy P. Reanalysis of historic elemental speciation filters to investigate the presence of fibrous mineral particles using microscopy techniques. Front Chem 2022; 10:1032624. [DOI: 10.3389/fchem.2022.1032624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
A case is presented for the value of archiving air quality filters to allow for retrospective analysis of emerging contaminants, that is filter constituents not considered to be harmful (and thus not identified or quantified specifically) at the time of collection but subsequently considered to be of interest. As an example, filters from a 20-year historical archive consisting of 16,000 filters from three sites across Auckland are re-examined for the presence of elongated mineral fibres known to be present in rock across the city. Originally collected for the purpose of the source apportionment of particulate matter, 10 filters from each of the three sites were chosen for reanalysis based on their high silica and aluminium content, and thus considered more likely to contain fibre-like particles (FLP). These filters were analysed using various microscopic methods, including phase contrast microscopy (PCM), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The results show that although the commonly used fibrous polytetrafluoroethylene (PTFE) material of the filters may hamper the visual identification of any fibre-like particles under a certain length, their key components are able to be identified using a combination of PCM and SEM when they are of a suitable dimension and have settled in a certain orientation on the filter. In this case, the use of EDS confirmed the silicon content of the fibres and also revealed elemental spectra. Although the exact identification of the mineral fibre is uncertain, the EDS scan is consistent with hazardous zeolites such as erionite, known to be present in the rock found in Auckland. This study highlights the value in maintaining filter archives for the purpose of investigating the historical evolution of emerging atmospheric pollutants.
Collapse
|
10
|
Berry TA, Belluso E, Vigliaturo R, Gieré R, Emmett EA, Testa JR, Steinhorn G, Wallis SL. Asbestos and Other Hazardous Fibrous Minerals: Potential Exposure Pathways and Associated Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4031. [PMID: 35409711 PMCID: PMC8998304 DOI: 10.3390/ijerph19074031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
There are six elongate mineral particles (EMPs) corresponding to specific dimensional and morphological criteria, known as asbestos. Responsible for health issues including asbestosis, and malignant mesothelioma, asbestos has been well researched. Despite this, significant exposure continues to occur throughout the world, potentially affecting 125 million people in the workplace and causing thousands of deaths annually from exposure in homes. However, there are other EMPS, such as fibrous/asbestiform erionite, that are classified as carcinogens and have been linked to cancers in areas where it has been incorporated into local building materials or released into the environment through earthmoving activities. Erionite is a more potent carcinogen than asbestos but as it is seldom used for commercial purposes, exposure pathways have been less well studied. Despite the apparent similarities between asbestos and fibrous erionite, their health risks and exposure pathways are quite different. This article examines the hazards presented by EMPs with a particular focus on fibrous erionite. It includes a discussion of the global locations of erionite and similar hazardous minerals, a comparison of the multiple exposure pathways for asbestos and fibrous erionite, a brief discussion of the confusing nomenclature associated with EMPs, and considerations of increasing global mesothelioma cases.
Collapse
Affiliation(s)
- Terri-Ann Berry
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| | - Elena Belluso
- Department of Earth Sciences and Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10124 Turin, Italy; (E.B.); (R.V.)
| | - Ruggero Vigliaturo
- Department of Earth Sciences and Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10124 Turin, Italy; (E.B.); (R.V.)
| | - Reto Gieré
- Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Edward A. Emmett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Gregor Steinhorn
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| | - Shannon L. Wallis
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| |
Collapse
|
11
|
Luna J, Bobo A, Cabrera-Rodriguez JJ, Pagola M, Martín-Martín M, Ruiz MÁG, Montijano M, Rodríguez A, Pelari-Mici L, Corbacho A, Moreno M, Couñago F. GOECP/SEOR clinical guidelines on radiotherapy for malignant pleural mesothelioma. World J Clin Oncol 2021; 12:581-608. [PMID: 34513595 PMCID: PMC8394157 DOI: 10.5306/wjco.v12.i8.581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare tumor with poor prognosis and rising incidence. Palliative care is common in MPM as radical treatment with curative intent is often not possible due to metastasis or extensive locoregional involvement. Numerous therapeutic advances have been made in recent years, including the use of less aggressive surgical techniques associated with lower morbidity and mortality (e.g., pleurectomy/decortication), technological advancements in the field of radiotherapy (intensity-modulated radiotherapy, image-guided radiotherapy, stereotactic body radiotherapy, proton therapy), and developments in systemic therapies (chemotherapy and immunotherapy). These improvements have had as yet only a modest effect on local control and survival. Advances in the management of MPM and standardization of care are hampered by the evidence to date, limited by high heterogeneity among studies and small sample sizes. In this clinical guideline prepared by the oncological group for the study of lung cancer of the Spanish Society of Radiation Oncology, we review clinical, histologic, and therapeutic aspects of MPM, with a particular focus on all aspects relating to radiotherapy, including the current evidence base, associations with chemotherapy and surgery, treatment volumes and planning, technological advances, and reradiation.
Collapse
Affiliation(s)
- Javier Luna
- Department of Radiation Oncology, Institute of Oncohealth, Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Andrea Bobo
- Department of Radiation Oncology, Institution of Ruber Internacional Hospital, Madrid 28034, Spain
| | | | - María Pagola
- Department of Radiation Oncology, Institution of Onkologikoa/Hospital Universitario Donostia, San Sebastián 20014, Spain
| | - Margarita Martín-Martín
- Department of Radiation Oncology, Institution of Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - María Ángeles González Ruiz
- Department of Radiation Oncology, Institution of Hospital Universitario Virgen de la Macarena, Sevilla 41009, Spain
| | - Miguel Montijano
- Department of Radiation Oncology, Institution of Genesis care Spain, Madrid 28005, Spain
| | - Aurora Rodríguez
- Department of Radiation Oncology, Institution of Ruber Internacional Hospital, Madrid 28034, Spain
| | - Lira Pelari-Mici
- Department of Radiation Oncology, Institution of Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Almudena Corbacho
- Department of Radiation Oncology, Institution of Hospital de Mérida, Mérida 06800, Spain
| | - Marta Moreno
- Department of Oncology, Institution of University Navarra, Clinical University, Pamplona 31008, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Institution of Hospital Universitario Quirónsalud and Hospital LaLuz, European University of Madrid, Madrid 28028, Spain
| |
Collapse
|
12
|
Opitz I, Scherpereel A, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell DA, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Putora PM, Cardillo G. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:1-24. [PMID: 32448904 DOI: 10.1093/ejcts/ezaa158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pretherapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasize that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France.,Department of Pulmonary and Thoracic Oncology, University Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- Department of Biopathology, National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - Mir Ali Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hospital Vercelli/Gruppo Italiano, Vercelli, Italy
| | - Jean-Claude Pairon
- INSERM U955, GEIC2O, Université Paris-Est Créteil, Service de Pathologies professionnelles et de l'Environnement, Institut Santé -Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
13
|
Scherpereel A, Opitz I, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell D, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Cardillo G, Putora PM. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J 2020; 55:13993003.00953-2019. [PMID: 32451346 DOI: 10.1183/13993003.00953-2019] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pre-therapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, Univ. Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France .,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France
| | - Isabelle Opitz
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Dept of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Dept of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Dept of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Dept of Biopathology, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Dept of Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Mir Ali Hoda
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hosp. Vercelli/Gruppo Italiano Mesotelioma, Italy
| | - Jean-Claude Pairon
- INSERM U955, Equipe 4, Université Paris-Est Créteil, and Service de Pathologies professionnelles et de l'Environnement, Institut Santé-Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Dept Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paul Martin Putora
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland.,Dept of Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Beaucham C, King B, Feldmann K, Harper M, Dozier A. Assessing occupational erionite and respirable crystalline silica exposure among outdoor workers in Wyoming, South Dakota, and Montana. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:455-465. [PMID: 29580185 DOI: 10.1080/15459624.2018.1447116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Erionite is a naturally occurring fibrous mineral found in many parts of the world, including the western United States. Inhalational exposure to erionite fibers in some localities is associated with health effects similar to those caused by asbestos exposure, including malignant mesothelioma. Therefore, there is concern regarding occupational exposures in the western United States. Currently, there are no standard sampling and analytical methods for airborne erionite fibers, as well as no established occupational exposure limits. Due to the potential adverse health effects, characterizing and minimizing exposures is prudent. Crystalline silica also occurs naturally in areas where erionite is found, principally as the mineral quartz. Work activities involving rocks containing quartz and soils derived from those rocks can lead to exposure to respirable crystalline silica (RCS). The typically dry and dusty environment of the western United States can increase the likelihood of exposures to aerosolized rocks and soils, but inhalation exposure is also possible in more humid conditions. In this case study, we describe several outdoor occupational environments with potential exposures to erionite and RCS. We describe our method for evaluating those exposures and demonstrate: (1) the occurrence of occupational exposures to airborne erionite and RCS, (2) that the chemical make-up of the erionite mineral can be determined, and (3) that effective dust control practices are needed to reduce employee exposures to these minerals.
Collapse
Affiliation(s)
- Catherine Beaucham
- a National Institute for Occupational Safety and Health , Cincinnati , Ohio
| | - Bradley King
- b National Institute for Occupational Safety and Health , Denver , Colorado
| | - Karl Feldmann
- a National Institute for Occupational Safety and Health , Cincinnati , Ohio
| | - Martin Harper
- c Zefon International, Inc. , Ocala , Florida
- d Department of Environmental Engineering Sciences , University of Florida , Gainesville , Florida
| | - Alan Dozier
- a National Institute for Occupational Safety and Health , Cincinnati , Ohio
| |
Collapse
|
15
|
Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. MINERALS 2018. [DOI: 10.3390/min8020069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Different Erionite Species Bind Iron into the Structure: A Potential Explanation for Fibrous Erionite Toxicity. MINERALS 2018. [DOI: 10.3390/min8020036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Exposure to naturally occurring mineral fibers due to off-road vehicle use: A review. Int J Hyg Environ Health 2017; 220:1230-1241. [DOI: 10.1016/j.ijheh.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022]
|
18
|
Ban CJ, Shi HZ, Zhang YH. Improvement of Malignant Pleural Mesothelioma Prognosis: Early Diagnosis and Multimodality Treatment. Chin Med J (Engl) 2017; 130:1-3. [PMID: 28051015 PMCID: PMC5221096 DOI: 10.4103/0366-6999.196585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Cheng-Jun Ban
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020; Beijing Institute of Respiratory Medicine, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020; Beijing Institute of Respiratory Medicine, Beijing 100020, China
| | - Yu-Hui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020; Beijing Institute of Respiratory Medicine, Beijing 100020, China
| |
Collapse
|
19
|
Giordani M, Mattioli M, Ballirano P, Pacella A, Cenni M, Boscardin M, Valentini L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:81-103. [PMID: 28339348 DOI: 10.1080/10937404.2016.1263586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Erionite is a zeolite representing a well-known health hazard. In fact, exposure of humans to its fibers has been unequivocally associated with occurrence of malignant mesothelioma. For this reason, a multi-methodological approach, based upon field investigation, morphological characterization, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) chemical analysis, and structure refinement through X-ray powder diffraction (XRPD), was applied to different samples of potentially carcinogenic erionite from Northern Italy. The studied crystals have a chemical composition ranging from erionite-Ca to erionite-Na and display variable morphologies, varying from prismatic, through acicular and fibrous, to extremely fibrous asbestiform habits. The fibrous samples were characterized by an unusual preferred partition of aluminum (Al) at tetrahedral site T1 instead of tetrahedral site T2. Further, a mismatch between the a-parameter of erionite-Ca and levyne-Ca that are intergrown in the asbestiform sample was detected. This misfit was coupled to a relevant micro-strain to maintain structure coherency at the boundary. Erionite occurs in 65% of the investigated sites, with an estimated quantity of 10 to 40 vol% of the associated minerals. The presence of this mineral is of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks. The discovery of fibrous and asbestiform erionite in Northern Italy suggests the need for a detailed risk assessment in all Italian areas showing the same potential hazard, with specific studies such as a quantification of the potentially respirable airborne fibers and targeted epidemiological surveillance.
Collapse
Affiliation(s)
- Matteo Giordani
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Paolo Ballirano
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
- c Laboratorio Fibre e Particolato Inorganico , Sapienza Università di Roma , Roma , Italy
| | - Alessandro Pacella
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
| | - Marco Cenni
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Matteo Boscardin
- d Museo di Archeologia e Scienze Naturali "G. Zannato" , Montecchio Maggiore , VI , Italy
| | - Laura Valentini
- e Dipartimento di Scienze Biomolecolari , Università di Urbino Carlo Bo , Urbino , Italy
| |
Collapse
|
20
|
Tomasson K, Gudmundsson G, Briem H, Rafnsson V. Malignant mesothelioma incidence by nation-wide cancer registry: a population-based study. J Occup Med Toxicol 2016; 11:37. [PMID: 27462362 PMCID: PMC4960893 DOI: 10.1186/s12995-016-0127-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/18/2016] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Malignant mesothelioma caused by asbestos exposure has a long latency period. A ban on asbestos use may not be apparent in decreased incidence in the population until after several decades. The aim was to evaluate changes in the incidence of malignant mesothelioma, and the possible impact of the asbestos ban implemented in Iceland in 1983. METHODS This is a population study on aggregate level; the source of data was the Icelandic Cancer Registry, the National Cause-of-Death Registry, and the National Register. Volume of asbestos import was obtained from Customs Tariff. The import figures reflect fairly accurately the amount used, as there are no mines in the country. RESULTS Asbestos import peaked in 1980 at 15.0 kg/capita/year, diminishing to 0.3 kg/capita/year ten years after the ban in 1983, and to zero in the most recent years. Seventy-nine per cent of the cases of malignant mesothelioma were men, and 72 % were of pleural origin. Mesothelioma incidence increased steadily from 1965 to 2014, when it reached 21.4 per million among men, and 5.6 among women. Mortality in 2014 was 22.2 per million among men, and 4.8 among women. CONCLUSION Malignant mesothelioma incidence and mortality increased in the population during the period, despite the ban on asbestos use from 1983. This is in agreement with the long latency time for malignant mesothelioma. In line with the previously high per capita volume of asbestos import, many buildings, equipment, and structures contain asbestos, so there is an on-going risk of asbestos exposure during maintenance, renovations and replacements. It is thus difficult to predict when the incidence of malignant mesothelioma will decrease in the future. During the last ten-year period, the incidence in Iceland was higher than the recently reported incidence in neighbouring countries.
Collapse
Affiliation(s)
- Kristinn Tomasson
- Department of Occupational Medicine, Administration of Occupational Safety and Health, Reykjavik, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland ; Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Fossvogur, 108 Reykjavik, Iceland
| | - Haraldur Briem
- Centre for Health Security and Communicable Disease Control, Directorate of Health, Reykjavik, Iceland
| | - Vilhjalmur Rafnsson
- Department of Preventive Medicine, University of Iceland, Stapi/ Hringbraut, Reykjavik, Iceland
| |
Collapse
|
21
|
Giordani M, Mattioli M, Dogan M, Dogan AU. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:808-824. [PMID: 27434646 DOI: 10.1080/15287394.2016.1182453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure of humans to erionite fibers of suitable morphology and dimension has been unambiguously linked to the occurrence of malignant mesothelioma. For this reason, a morphological, morphometrical, mineralogical, and chemical investigation was performed on two representative samples of potential carcinogenic, fibrous erionite from Lessini Mounts, northeastern (NE) Italy, which has not apparently been examined previously. The first sample is erionite-Ca with an extremely fibrous, hair-like and flexible appearance, and growth in intimate association with levyne. The second sample is erionite-Ca with prismatic to acicular crystals and rigid behavior, enriched in K(+) and Ca(2+) extra-framework cations. Although erionite is a nominally Fe-free phase, iron (Fe) was detected in low amounts in all the analyzed crystals. In both the investigated samples, erionite is present as individual fibers of respirable size. Considering that the toxicity and carcinogenic potential of erionite is associated with its size parameters, together with its in vivo durability and high surface area, most of the investigated fibers may also be potentially carcinogenic. The presence of erionite in extensively quarried and largely employed volcanic rocks, suggesting the need for detailed health-based studies in the region.
Collapse
Affiliation(s)
- Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Meral Dogan
- b Geological Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
| | - Ahmet Umran Dogan
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
- d Chemical and Biochemical Engineering Department , University of Iowa , Iowa City , Iowa , USA
| |
Collapse
|
22
|
Mattioli M, Giordani M, Dogan M, Cangiotti M, Avella G, Giorgi R, Dogan AU, Ottaviani MF. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:140-148. [PMID: 26707973 DOI: 10.1016/j.jhazmat.2015.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.
Collapse
Affiliation(s)
- Michele Mattioli
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Matteo Giordani
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Meral Dogan
- Geological Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 USA
| | - Michela Cangiotti
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Giuseppe Avella
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Rodorico Giorgi
- Department of Chemistry, University of Florence, 50019 Firenze, Italy
| | - A Umran Dogan
- Chemical and Biochemical Engineering Department & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 USA
| | | |
Collapse
|
23
|
The Presence of Asbestos in the Natural Environment is Likely Related to Mesothelioma in Young Individuals and Women from Southern Nevada. J Thorac Oncol 2016; 10:731-737. [PMID: 25668121 DOI: 10.1097/jto.0000000000000506] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhalation of asbestos and other mineral fibers is known causes of malignant mesothelioma (MM) and lung cancers. In a setting of occupational exposure to asbestos, MM occurs four to eight times more frequently in men than in women, at the median age of 74 years, whereas an environmental exposure to asbestos causes the same number of MMs in men and women, at younger ages. METHODS We studied the geology of Nevada to identify mineral fibers in the environment. We compared MM mortality in different Nevada counties, per sex and age group, for the 1999 to 2010 period. RESULTS We identified the presence of carcinogenic minerals in Nevada, including actinolite asbestos, erionite, winchite, magnesioriebeckite, and richterite. We discovered that, compared with the United States and other Nevada counties, Clark and Nye counties, in southern Nevada, had a significantly higher proportion of MM that occurred in young individuals (<55 years) and in women. CONCLUSIONS The elevated percentage of women and individuals younger than 55 years old, combined with a sex ratio of 1:1 in this age group and the presence of naturally occurring asbestos, suggests that environmental exposure to mineral fibers in southern Nevada may be contributing to some of these mesotheliomas. Further research to assess environmental exposures should allow the development of strategies to minimize exposure, as the development of rural areas continues in Nevada, and to prevent MM and other asbestos-related diseases.
Collapse
|
24
|
Baumann F, Carbone M. Environmental risk of mesothelioma in the United States: An emerging concern-epidemiological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:231-249. [PMID: 27705543 DOI: 10.1080/10937404.2016.1195322] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite predictions of decline in mesothelioma following the ban of asbestos in most industrial countries, the incidence is still increasing globally, particularly in women. Because occupational exposure to asbestos is the main cause of mesothelioma, it occurs four- to eightfold more frequently in men than women, at a median age of 74 years. When mesothelioma is due to an environmental exposure, the M:F sex ratio is 1:1 and the median age at diagnosis is ~60 years. Studying environmental risk of mesothelioma is challenging because of the long latency period and small numbers, and because this type of exposure is involuntary and unknown. Individual-based methods cannot be used, and new approaches need to be found. To better understand the most recent trends of mesothelioma in the United States, all mesothelioma deaths reported to the Centers for Disease Control and Prevention (CDC) during 1999-2010 were analyzed. Among all mesothelioma deaths in the United States, the 1920s birth cohort significantly predominated, and the proportion of younger cohorts constantly decreased with time, suggesting a decline in occupational exposure in these cohorts. The M:F mesothelioma sex ratio fell with time, suggesting an increased proportion of environmental cases. Environmental exposures occur in specific geographic areas. At the large scale of a state, mesotheliomas related to environmental exposure are diluted among occupational cases. The spatial analysis at a smaller scale, such as county, enables detection of areas with higher proportions of female and young mesothelioma cases, thus indicating possible environmental exposure, where geological and environmental investigations need to be carried out.
Collapse
Affiliation(s)
| | - Michele Carbone
- b Cancer Center , University of Hawaii , Honolulu , Hawaii , USA
| |
Collapse
|
25
|
Carlin DJ, Larson TC, Pfau JC, Gavett SH, Shukla A, Miller A, Hines R. Current Research and Opportunities to Address Environmental Asbestos Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A194-7. [PMID: 26230287 PMCID: PMC4529018 DOI: 10.1289/ehp.1409662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Asbestos-related diseases continue to result in approximately 120,000 deaths every year in the United States and worldwide. Although extensive research has been conducted on health effects of occupational exposures to asbestos, many issues related to environmental asbestos exposures remain unresolved. For example, environmental asbestos exposures associated with a former mine in Libby, Montana, have resulted in high rates of nonoccupational asbestos-related disease. Additionally, other areas with naturally occurring asbestos deposits near communities in the United States and overseas are undergoing investigations to assess exposures and potential health risks. Some of the latest public health, epidemiological, and basic research findings were presented at a workshop on asbestos at the 2014 annual meeting of the Society of Toxicology in Phoenix, Arizona. The following focus areas were discussed: a) mechanisms resulting in fibrosis and/or tumor development; b) relative toxicity of different forms of asbestos and other hazardous elongated mineral particles (EMPs); c) proper dose metrics (e.g., mass, fiber number, or surface area of fibers) when interpreting asbestos toxicity; d) asbestos exposure to susceptible populations; and e) using toxicological findings for risk assessment and remediation efforts. The workshop also featured asbestos research supported by the National Institute of Environmental Health Sciences, the Agency for Toxic Substances and Disease Registry, and the U.S. Environmental Protection Agency. Better protection of individuals from asbestos-related health effects will require stimulation of new multidisciplinary research to further our understanding of what constitutes hazardous exposures and risk factors associated with toxicity of asbestos and other hazardous EMPs (e.g., nanomaterials).
Collapse
Affiliation(s)
- Danielle J Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gunduz S, Mutlu H, Goksu SS, Arslan D, Tatli AM, Uysal M, Coskun HS, Bozcuk H, Ozdogan M, Savas B. Oral cyclophosphamide and etoposide in treatment of malignant pleural mesothelioma. Asian Pac J Cancer Prev 2014; 15:8843-6. [PMID: 25374217 DOI: 10.7314/apjcp.2014.15.20.8843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is almost always fatal and few treatment options are available. The aim of this study was to evaluate the efficacy of oral cyclophosphamide and etoposide for patients who underwent standard treatment for advanced MM. MATERIALS AND METHODS This study included 22 malignant pleural mesothelioma patients who were treated with oral cyclophosphamide and etoposide (EE). RESULTS The average follow-up period of the patients was 39.1 months. Under the treatment of oral EE, median progression- free survival was 7.7 months [95%CI HR (4.3-11.1)] and median overall survival was 28.1 months [95%CI HR (5.8-50.3)]. The treatment response rates were as follows: 4 patients (27.3%) had a partial response (PR), 12 (54.5%) had stable disease (SD), and progressive disease (PD) was observed in 6 (35.9%). CONCLUSIONS Oral EE can be administered effectively to patients with inoperable malignant mesothelioma who had previously received standard treatments.
Collapse
Affiliation(s)
- Seyda Gunduz
- Department of Medical Oncology, Antalya Education and Research Hospital, Antalya, Turkey E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Despite a body of evidence supporting an association between asbestos exposure and autoantibodies indicative of systemic autoimmunity, such as antinuclear antibodies (ANA), a strong epidemiological link has never been made to specific autoimmune diseases. This is in contrast with another silicate dust, crystalline silica, for which there is considerable evidence linking exposure to diseases such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Instead, the asbestos literature is heavily focused on cancer, including mesothelioma and pulmonary carcinoma. Possible contributing factors to the absence of a stronger epidemiological association between asbestos and autoimmune disease include (a) a lack of statistical power due to relatively small or diffuse exposure cohorts, (b) exposure misclassification, (c) latency of clinical disease, (d) mild or subclinical entities that remain undetected or masked by other pathologies, or (e) effects that are specific to certain fiber types, so that analyses on mixed exposures do not reach statistical significance. This review summarizes epidemiological, animal model, and in vitro data related to asbestos exposures and autoimmunity. These combined data help build toward a better understanding of the fiber-associated factors contributing to immune dysfunction that may raise the risk of autoimmunity and the possible contribution to asbestos-related pulmonary disease.
Collapse
|
28
|
Zebedeo CN, Davis C, Peña C, Ng KW, Pfau JC. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice. Toxicol Appl Pharmacol 2014; 275:257-64. [PMID: 24518925 DOI: 10.1016/j.taap.2014.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. OBJECTIVES We performed this study to determine whether erionite evokes autoimmune reactions in mice. METHODS Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. RESULTS Erionite and tremolite caused increased cytokine production belonging to the TH17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. CONCLUSIONS These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities.
Collapse
Affiliation(s)
| | - Chad Davis
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | | | - Kok Wei Ng
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Jean C Pfau
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA.
| |
Collapse
|