1
|
Sivakumar PM, Zarepour A, Akhter S, Perumal G, Khosravi A, Balasekar P, Zarrabi A. Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance. Int J Biol Macromol 2025; 294:139211. [PMID: 39732249 DOI: 10.1016/j.ijbiomac.2024.139211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK.
| | - Govindaraj Perumal
- Department of Biomedical Engineering, School of Dental Medicine, University of Connecticut (UConn) Health, Farmington, CT 06030, USA.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Premkumar Balasekar
- Department of Pharmacology, K.K. College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Gerugambakkam 600128, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
2
|
Malek S, Jaafari MR, Mahmoudi A, Mohammadi M, Malaekeh-Nikouei B. Smart release injectable hydrogel co-loaded with liposomal combretastatin A4 and doxorubicin nanogel for local combinational drug delivery: A preclinical study. Int J Pharm 2025; 671:125213. [PMID: 39814242 DOI: 10.1016/j.ijpharm.2025.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Surgical resection and postoperative adjuvant chemotherapy have enhanced the outlook for breast cancer patients. However, tumor relapse and serious side effects of chemotherapy continue to impact patients' quality of life. Designing injectable composite hydrogel made of biodegradable polymers providing sustained release of antiangiogenic and chemotherapeutic agents might play a vital role in elimination of cancer cells. In this regard, we developed dextran based composite hydrogel incorporating doxorubicin-loaded dual-sensitive pH-redox nanogels (DOX-DSNG) and combretastatin A4 (CA4) loaded liposomes which undergo rapid disassembly in cancer cells. CA4 prevents tubulin polymerization and thus inhibits angiogenesis by binding to vascular endothelial tubulin. The results showed that DOX-DSNGs were negatively charged and 144.8 ± 0.85 nm in size. Besides, the size of CA4 loaded liposomes were 102.35 ± 4.22 nm and were negatively charged. Encapsulation efficiency of DOX-DSNGs and CA4 loaded liposomes were 100 % and 89 %, respectively. After loading into the hydrogel structure, doxorubicin and CA4 were gradually released from the composite hydrogel for up to 21 days. DOX-DSNGs and CA4 loaded liposomes showed a dose-dependent cytotoxic effect against 4 T1 breast cancer cells. Thereafter, the anti-neoplastic effect and survival study of the composite hydrogel was evaluated in vivo in tumor-bearing mice. The composite hydrogel significantly reduced tumor volume (from 116 mm3 to 38 mm3) with negligible organ damage, while showed lower cardiotoxicity in 28 days. In conclusion, our results revealed that injectable composite dextran-based hydrogel incorporated with DOX-DSNG and CA4 loaded liposomes could be used as an efficient delivery platform for combination therapies in treatment of solid tumors.
Collapse
Affiliation(s)
- Saba Malek
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
4
|
Abbasi A, Zahiri M, Abnous K, Taghdisi SM, Aliabadi A, Ramezani M, Alibolandi M. Nucleolin-targeted doxorubicin and ICG co-loaded theranostic lipopolymersome for photothermal-chemotherapy of melanoma in vitro and in vivo. Eur J Pharm Biopharm 2024; 202:114411. [PMID: 39009192 DOI: 10.1016/j.ejpb.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Combination therapy using chemo-photothermal therapy (chemo-PTT) shows great efficacy toward tumor ablation in preclinical studies. Besides, lipopolymersomes as a hybrid nanocarriers, integrate advantages of liposomes and polymersomes in a single platform in order to provide tremendous biocompatibility, biodegradability, noteworthy loading efficacy for both hydrophobic and hydrophilic drugs with adjustable drug release and high stability. In this study, a multipurpose lipopolymersome was fabricated for guided chemotherapy-PTT and NIR-imaging of melanoma. A lipopolymerosomal hybrid nanovesicle consisting of equal molar ratio of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) diblock copolymer (molar ratio 1:1) was fabricated. The nanoparticulate system was prepared through film rehydration technique for encapsulation of doxorubicin (DOX) and indocyanine green (ICG) to form DOX-ICG-LP platform. At the next stage, AS1411 DNA aptamer was conjugated to the surface of lipopolymersome (Apt-DOX-ICG-LP) for selective delivery. The sizes of DOX-ICG-LP and Apt-DOX-ICG-LP were obtained through DLS analysis (61.0 ± 6 and 74 ± 5, respectively). Near Infrared-responsive release pattern of the prepared lipopolymersome was verified in vitro. The formulated platform showed efficient photothermal conversion, and superior stability with acceptable encapsulation efficiency. Consistent with the in vitro studies, NIR-responsive lipopolymersome exhibited significantly higher cellular toxicity for Chemo-PTT versus single anti-cancer treatment. Moreover, superlative tumor shrinkage with favorable survival profile were attained in B16F10 tumor-bearing mice received Apt-DOX-ICG-LP and irradiated with 808 nm laser compared to those treated with either DOX-ICG-LP or Apt-DOX-ICG-LP without laser irradiation. The diagnostic capability of Apt-DOX-ICG-LP was addressed using in vivo NIR imaging, 6 and 24 h post-intravenous administration. The results indicated desirable feature of an established targeted theranostic capability of Apt-DOX-ICG-LP for both diagnostics and dual chemo-PTT of melanoma.
Collapse
Affiliation(s)
- Athena Abbasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mahshad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Aliabadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Meng J, Wang ZG, Zhao X, Wang Y, Chen DY, Liu DL, Ji CC, Wang TF, Zhang LM, Bai HX, Li BY, Liu Y, Wang L, Yu WG, Yin ZT. Silica nanoparticle design for colorectal cancer treatment: Recent progress and clinical potential. World J Clin Oncol 2024; 15:667-673. [PMID: 38946830 PMCID: PMC11212613 DOI: 10.5306/wjco.v15.i6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 06/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
Collapse
Affiliation(s)
- Jin Meng
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Gang Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Xiu Zhao
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Ying Wang
- Acupuncture and Tuina College, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - De-Yu Chen
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - De-Long Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Cheng-Chun Ji
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Tian-Fu Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Li-Mei Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian 116001, Liaoning Province, China
| | - Hai-Xia Bai
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Bo-Yang Li
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Yuan Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Lei Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Wei-Gang Yu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Tao Yin
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
6
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
7
|
Tarin M, Babaei M, Eshghi H, Matin MM, Saljooghi AS. Targeted delivery of elesclomol using a magnetic mesoporous platform improves prostate cancer treatment both in vitro and in vivo. Talanta 2024; 270:125539. [PMID: 38141466 DOI: 10.1016/j.talanta.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND To improve the anticancer properties of elesclomol (ELC), targeted theranostic nanoparticles (NPs; APT-PEG-Au-MMNPs@ELC) were designed to increase the selectivity of the drug delivery system (DDS). MATERIALS AND METHODS ELC was synthesized and entrapped in the open porous structure of magnetic mesoporous silica nanoparticles (MMNPs). The pore entrance of MMNPs was then blocked using gold gatekeepers. Finally, the external surfaces of the particles were grafted with functional polyethylene glycol (PEG) and EpCAM aptamer to generate biocompatible and targeted NPs. In the next step, the physicochemical properties of prepared NPs were fully evaluated and their anticancer potential was evaluated both in vitro and in vivo. RESULTS The targeted NPs were successfully synthesized with a final size diameter of 81.13 ± 7.41 nm. The results indicated a pH-dependent release pattern, which sustained for 72 h despite an initial rapid release. Upon exposure to APT-PEG-Au-MMNPs@ELC, higher cytotoxicity was observed in human prostate cancer cells (PC-3) as compared with control Chinese hamster ovary (CHO) cells, indicating higher specificity of targeted NPs against EpCAM-positive cancerous cells. Moreover, APT-PEG-Au-MMNPs@ELC could induce apoptosis in PC-3 cells. In vivo results on a PC-3 xenograft tumor model demonstrated that targeted NPs could significantly inhibit tumor growth and diminish severe side effects of ELC, compared to the free drug. CONCLUSION Collectively, APT-PEG-Au-MMNPs@ELC could be considered a promising theranostic platform for the targeted delivery of ELC to improve its therapeutic effects in prostate cancer.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Taghavi S, Tabasi H, Zahiri M, Abnous K, Mohammad Taghdisi S, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Surface engineering of hollow gold nanoparticle with mesenchymal stem cell membrane and MUC-1 aptamer for targeted theranostic application against metastatic breast cancer. Eur J Pharm Biopharm 2023; 187:76-86. [PMID: 37100090 DOI: 10.1016/j.ejpb.2023.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Mesenchymal stem cell membrane (MSCM)-coated biomimetic doxorubicin-loaded hollow gold nanoparticles were fabricated and decorated with MUC1 aptamer in order to provide smart theranostic platform. The prepared targeted nanoscale biomimetic platform was extensively characterized and evaluated in terms of selective delivery of DOX and CT-scan imaging. The fabricated system illustrated spherical morphology with 118 nm in diameter. Doxorubicin was loaded into the hollow gold nanoparticles through physical absorption technique with encapsulation efficiency and loading content of 77%±10 and 31%±4, respectively. The in vitro release profile demonstrated that the designed platform could respond to acidic environment, pH 5.5 and release 50% of the encapsulated doxorubicin during 48 h, while 14% of the encapsulated doxorubicin was released in physiological condition, pH 7.4 up to 48 h. The in vitro cytotoxicity experiments on 4T1 as MUC1 positive cell line illustrated that the targeted formulation could significantly increase mortality at 0.468 and 0.23 µg/ml of equivalent DOX concentration compared to non-targeted formulation while this cytotoxicity was not observed in CHO as MUC1 negative cell line. Furthermore, in vivo experiments showed high tumor accumulation of the targeted formulation even 24 h after intravenous injection which induced effective tumor growth suppression against 4T1 tumor bearing mice. On the other hand, existence of hollow gold in this platform provided CT scan imaging capability of the tumor tissue in 4T1 tumor bearing mice up to 24 h post-administration. The obtained results indicated that the designed paradigm are promising and safe theranostic system for fighting against metastatic breast cancer.
Collapse
Affiliation(s)
- Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
11
|
Biao L, Liu J, Hu X, Xiang W, Hou W, Li C, Wang J, Yao K, Tang J, Long Z, Long W, Liu J. Recent advances in aptamer-based therapeutic strategies for targeting cancer stem cells. Mater Today Bio 2023; 19:100605. [PMID: 36969696 PMCID: PMC10034522 DOI: 10.1016/j.mtbio.2023.100605] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be the main cause of chemotherapy resistance and tumor relapse. Various therapeutic strategies to eliminate CSCs have been developed recently. Aptamers, also called "chemical antibodies", can specifically bind with their molecular targets through special tertiary structures. The advantages of aptamers, such as lower immunogenicity and smaller size, make them superior to conventional antibodies. Therefore, aptamers have been used widely as targeting ligands for CSC-targeted therapeutic strategies in different tumor types. To date, various therapeutic cargoes have been conjugated to aptamers to kill CSCs, such as chemotherapy drugs, small interfering RNAs, and microRNAs. Aptamer-based targeted therapies for CSCs have made great progress in recent years, especially the development of multifunctional aptamer-based therapeutic strategies. Besides, cell-systematic evolution of ligands by exponential enrichment has been applied to screen new aptamers that might have a higher binding ability for CSCs. In this review, we focus on recent advances and introduce some new modalities of aptamer-drug conjugates against CSCs. Some considerations of the advantages and limitations of different aptamer-based targeted therapies for CSCs are also discussed.
Collapse
|
12
|
Hasannia M, Lamei K, Abnous K, Taghdisi SM, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102645. [PMID: 36549556 DOI: 10.1016/j.nano.2022.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Lamei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
14
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
15
|
Ghasemzadeh T, Hasannia M, Abnous K, Taghdisi SM, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Preparation of targeted theranostic red blood cell membranes-based nanobubbles for treatment of colon adenocarcinoma. Expert Opin Drug Deliv 2023; 20:131-143. [PMID: 36427011 DOI: 10.1080/17425247.2022.2152792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Designing and fabrication of theranostic systems based on nanoscale gaseous vesicular systems, named nanobubbles (NBs), attracted enormous interest in recent years. Biomimetic vesicular platform (V-RBC-M) can improve the pharmacokinetics of the prepared platform due to augmented circulation half-life, desirable biodegradability and biocompatibility and reduced immunogenicity. METHODS V-RBC-M were used for the encapsulation of lipophilic camptothecin (CPT) in the bilayer of vesicles through top-down method, followed by filling the core of V-RBC-M with inert SF6 gas to fabricate NBs with ultrasonic contrast enhancement capability (SF6-NB-CPT). In the next step, targeted NBs were formed via decoration of MUC1 aptamer on the surface of NBs (Apt-SF6-NB-CPT). RESULTS The designed bio-NBs indicated high encapsulation efficiency and the sustained release of CPT at pH 7.4. In vitro study demonstrated higher cellular uptake and cytotoxicity of Apt-SF6-NB-CPT compared to SF6-NB-CPT in MUC1-overexpressing cells (C26). In vivo antitumor efficacy of the prepared NBs on C26 bearing BALB/c mice showed greater therapeutic efficacy and survival rate for Apt-SF6-NB-CPT. In this regard, SF6-NB-CPT showed 58% tumor growth suppression while Apt-SF6-NB-CPT system provided 95% tumor growth suppression. Furthermore, echogenic capability of SF6-NB-CPT was demonstrated through in vitro and in vivo ultrasonic imaging. CONCLUSIONS Our finding demonstrated that the prepared targeted NBs are a promising theranostic platform with effective therapeutic and diagnotic potentials.
Collapse
Affiliation(s)
- Tahoora Ghasemzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
CD44 and CD133 aptamer directed nanocarriers for cancer stem cells targeting. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2022; 14:2561. [PMID: 36559056 PMCID: PMC9781707 DOI: 10.3390/pharmaceutics14122561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery system is usually composed of a nanocarrier and a targeting component. The targeting component is called a "ligand". Aptamers have high target affinity and specificity, which are identified as attractive and promising ligands. Therefore, aptamers have potential application in the development of smart targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received extensive attention in the application of cancer therapy. This article reviews the application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest is focused on aptamers as smart ligands, aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
18
|
Sun Y, Li B, Cao Q, Liu T, Li J. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment. Stem Cell Res Ther 2022; 13:489. [PMID: 36182897 PMCID: PMC9526954 DOI: 10.1186/s13287-022-03180-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Nanomaterials are developing rapidly in the medical field, bringing new hope for treating various refractory diseases. Among them, polymer nanomaterials, with their excellent properties, have been used to treat various diseases, such as malignant tumors, diabetes, and nervous system diseases. Gastrointestinal cancer is among the cancers with the highest morbidity and mortality worldwide. Cancer stem cells are believed to play an important role in the occurrence and development of tumors. This article summarizes the characteristics of gastrointestinal cancer stem cells and reviews the latest research progress in treating gastrointestinal malignant tumors using polymer nanoparticles to target cancer stem cells. In addition, the review article highlights the potential of polymer nanoparticles in targeting gastrointestinal cancer stem cells.
Collapse
Affiliation(s)
- Yao Sun
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Bo Li
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
19
|
Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022; 17:1253-1279. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted drug-delivery systems are a growing research topic in tumor treatment. In recent years, mesoporous silica nanoparticles (MSNs) have been extensively studied and applied in noninvasive and biocompatible drug-delivery systems for tumor therapy due to their outstanding advantages, which include high surface area, large pore volume, tunable pore size, easy surface modification and stable framework. The advances in the application of MSNs for anticancer drug targeting are covered and highlighted in this review, and the challenges and prospects of MSN-based targeted drug-delivery systems are discussed. This review provides new insights for researchers interested in targeted drug-delivery systems against cancer.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guoxing Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Pharmacy, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianlong Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
20
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M. Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
21
|
Falsafi M, Hassanzadeh Goji N, Sh Saljooghi A, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of a targeted, dual pH and redox-responsive nanoscale coordination polymer theranostic against metastatic breast cancer in vitro and in vivo. Expert Opin Drug Deliv 2022; 19:743-754. [PMID: 35616345 DOI: 10.1080/17425247.2022.2083602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nanoscale coordination polymers (nCP) have exhibited a great potential in designing of the theranostic platforms in the latest years. However, they have low selectivity for cancerous tissues and require to be modified for becoming effective cancer therapeutics. In this study, a novel nanoscale pH and redox-responsive coordination polymer with high selectivity was synthesized. METHODS The nCP was synthesized by iron(III) chloride and dithiodiglycolic acid. After loading the prepared nCP with doxorubicin (DOX), nCP was coated with an amphiphilic copolymer composed of α-tocopheryl succinate-polyethylene glycol (VEP). Next, AS1411 aptamer was decorated on the VEP shell of the DOX-loaded nCP (Apt-VEP-nCP@DOX) to provide a guided drug delivery platform. RESULTS The prepared platform demonstrated high DOX loading capacity and pH and redox-responsive DOX release. Apt-VEP-nCP@DOX displayed greater DOX internalization and toxicity towards breast cancer cells of 4T1 and MCF7 compared with that of non-targeted VEP-nCP@DOX. Also, the intravenous injection of Apt-VEP-nCP@DOX (a single dose) considerably suppressed the 4T1 tumor growth in vivo. Moreover, Apt-VEP-nCP@DOX showed outstanding magnetic resonance (MR) imaging capability for 4T1 adenocarcinoma diagnosis in ectopic 4T1 tumor model in mice. CONCLUSIONS The developed innovative intelligent Apt-VEP-nCP@DOX could serve as a safe and biocompatible theranostic platform appropriate for further translational purposes against breast cancer.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Liu X, Zhang X, Chen J, Zhang C, Feng S, Zhang W. Tunable synthesis of dendritic fibrous nano silica using 1-pentanol-water microemulsion at low oil to water ratio. NANOTECHNOLOGY 2022; 33:325601. [PMID: 35487193 DOI: 10.1088/1361-6528/ac6bb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Dendritic fibrous nanosilica (DFNS) is a suitable nano-carrier for loading pesticides with radially oriented pores and a large surface area. The microemulsion method is standard method to prepare DFNS, and 1-pentanol is taken to replace cyclohexane as an oil solvent due to its high stability and nontoxic property. The results showed that the volume ratio of 1-pentanol (oil) to water (O/W) and the molar ratio of hexadecyltrimethylammonium bromide (CTAB) to tetraethylorthosilicate (TEOS) had effected on morphology and adsorption properties of DFNS in the water-CTAB-1-pentanol-ethanol-trimethylbenzene (TMB) microemulsion system. DFNS with bicontinuous concentric lamellar morphologies can be synthesized in this microemulsion at the meager O/W volume ratio (0.025-0.045). It features a tight mesoporous structure with a thin dendritic fibrous in 0.03 to 0.04 O/W volume ratio. The particle sizes, surface areas, and porosity of DFNS were positively correlated with the addition of the silica precursor TEOS. The size of DFNS increased from 123 to about 220 nm with the CTAB/TEOS molar ratio decreasing from 0.119 to 0.050. When the molar ratio of CTAB to TEOS = 0.119, DFNS has a smaller particle size (123 nm) with a larger surface area and abundant honeycomb mesopores; the low O/W volume ratio strategy provides theoretical support for the industrialization development of DFNS and nano-pesticides, which plays a profound role in promoting the sustainable development of pesticide reduction, efficiency and green agriculture.
Collapse
Affiliation(s)
- Xuexue Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiang Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changhao Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Songke Feng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weiguo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
23
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
24
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
25
|
Design and synthesis of targeted star-shaped micelle for guided delivery of camptothecin: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112529. [PMID: 34857308 DOI: 10.1016/j.msec.2021.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
This study aimed to synthesize a star-shaped micelle using 3-azido-2,2-bis(azidomethyl)propan-1-ol (pentaerythritol triazide) core, as an initiator for the synthesis of three-arm polylactic acid (PLA) block. Then, the ends of the PLA arms were converted to PLA triazide followed by conjugation to the three alkyne-PEG-maleamide through click reaction. The maleamide ends were available for coupling with sulfhydryl-modified DNA aptamer against epithelial cell adhesion molecule in order to offer targeted delivery of encapsulated drug, camptothecin to the site of action. The successful synthesis of the star-shaped polymers was confirmed via1HNMR. Hydrophobic anti-cancer drug, camptothecin was encapsulated into the micelles core implementing solvent switching method providing loading content (LC%) and encapsulation efficiency (EE%) of 3.7 ± 0.4 and 73.7 ± 8.2, respectively. The size of both non-targeted and aptamer-targeted micelles was determined to be 154 and 192 nm, respectively with polydispersity index below 0.3. In vitro drug release evaluation at 37 °C, pH 7.4 showed a controlled release pattern for camptothecin during 72 h. In vitro cytotoxicity of the prepared non-targeted and targeted micelles was carried out on human colorectal adenocarcinoma (HT29) and mouse colon carcinoma (C26) as EpCAM positive cell lines and Chinese hamster ovary (CHO) as EpCAM negative cell line. The results verified significantly higher cytotoxicity of the targeted micelles on HT29 and C26 cell lines, while no obvious difference was observed between targeted and non-targeted formulation on CHO cell line. The in vivo therapeutic efficiency investigation on BALB/c C26 tumor-bearing mice showed superior capability of the targeted formulation on tumor suppression and survival rate of the treated mice. The developed platform exhibited excellent characteristics to diminish camptothecin drawbacks and its adverse effects while considerably increasing its therapeutic index.
Collapse
|
26
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm 2021; 605:120822. [PMID: 34182039 DOI: 10.1016/j.ijpharm.2021.120822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 01/17/2023]
Abstract
Due to the high frequency and mortality of breast cancer, developing efficient targeted drug delivery systems for frightening against this malignancy is among cancer research priorities. The aim of this study was to synthesize a targeted micellar formulation of docetaxel (DTX) using DTX, folic acid (FA) and polyethylene glycol (PEG) conjugates as building blocks. In the current study, two therapeutic polymers consisting of FA-PEG-DTX and PEG-DTX conjugates were synthesized and implemented to form folate-targeted and non-targeted micelles. Dissipative particle dynamics (DPD) method was used to simulate the behavior of the nanoparticle. The anti-cancer drug, DTX was loaded in to the micelles via solvent switching method in order to increase its solubility and stability. The cytotoxicity of the targeted and non-targeted formulations was evaluated against 4T1 and CHO cell lines. In vivo therapeutic efficiency was studied using ectopic tumor model of metastatic breast cancer, 4T1, in Female BALB/c mice. The successful synthesis of therapeutic polymers, FA-PEG-DTX and PEG-DTX were confirmed implementing 1HNMR spectral analysis. The size of DTX-loaded non-targeted and targeted micelles were 176.3 ± 8.3 and 181 ± 10.1 nm with PDI of 0.23 and 0.17, respectively. Loading efficiencies of DTX in non-targeted and targeted micelles were obtained to be 85% and 82%, respectively. In vitro release study at pH = 7.4 and pH = 5.4 showed a controlled and continuous drug release for both formulations, that was faster at pH = 5.4 (100% drug release within 120 h) than at pH = 7.4 (80% drug release within 150 h). The targeted formulation showed a significant higher cytotoxicity against 4T1 breast cancer cells (high expression of folate receptor) within the range of 12.5 to 200 μg/mL in comparison with no-targeted one. However, there was no significant difference between the cytotoxicity of the targeted and non-targeted formulations against CHO cell line as low-expressed cell line. In accordance with in vitro investigation, in vivo studies verified the ideal anti-tumor efficacy of the targeted formulation compared to Taxotere and non-targeted formulation. Based on the obtained data, FA-targeted DTX-loaded nano-micelles significantly increased the therapeutic efficacy of DTX and therefore can be considered as a new potent platform for breast cancer chemotherapy.
Collapse
|
28
|
Bagheri E, Alibolandi M, Abnous K, Taghdisi SM, Ramezani M. Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 2021; 9:1351-1363. [PMID: 33447840 DOI: 10.1039/d0tb01960g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a dual-receptor doxorubicin-targeted delivery system based on mesoporous silica nanoparticles (MSNs) modified with mucine-1 and ATP aptamers (DOX@MSNs-Apts) was developed. An amine-modified mucine-1 (MUC1) aptamer was covalently anchored on the surface of carboxyl-functionalized MSNs. Then, ATP aptamers (ATP1 and ATP2 aptamers) were immobilized on the surface of MSNs through partial hybridization with the MUC1 aptamer by forming a Y-shaped DNA structure on the MSNs surface (DOX@MSNs-Apts) as a gatekeeper. The developed DOX@MSNs-Apts exhibited high DOX loading capacity. In addition, it indicated an ATP-responsive feature, leading to the release of DOX in the environment with high ATP concentration (10 mM), similar to the intracellular environment of tumor cells. This property demonstrated that anticancer drug (DOX) could be entrapped inside the nanocarrier with nearly no leakage in blood and a very low concentration of ATP (1 μM). It was found that after the internalization of DOX@MSNs-MUC1 by cancer cells via the MUC1 receptor-mediated endocytosis, the ATP aptamers left the surface of the nanocarrier, allowing for rapid DOX release. DOX@MSNs-Apts indicated higher cellular uptake in MCF-7 and C26 cancer cells (MUC1+), rather than CHO cells (MUC1-). The in vitro cytotoxicity and the in vivo antitumor efficacy of DOX@MSNs-Apts showed greater cytotoxicity than the nanoparticles decorated with scrambled ATP aptamers (DOX@MSNs-Apts scrambled) in C26 and MCF-7 cell lines (MUC1+). The biodistribution and in vivo anticancer efficacy on the C26 tumor bearing mice indicated that the DOX@MSNs-Apts had a higher tumor accumulation and superior tumor growth inhibitory effect compared to free DOX and their scrambled aptamers, DOX@MSNs-Apts scrambled. Overall, the obtained results indicated that the prepared smart platform could reveal new insights into the treatment of cancer.
Collapse
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran and Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
30
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
31
|
Falsafi M, Saljooghi AS, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Smart metal organic frameworks: focus on cancer treatment. Biomater Sci 2021; 9:1503-1529. [DOI: 10.1039/d0bm01839b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials, have been broadly employed as controlled systems of drug delivery due to their inherent interesting properties.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
32
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
33
|
Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Indexed: 05/06/2023]
Abstract
Infectious or immune diseases have caused serious threat to human health due to their complexity and specificity, and emerging drug delivery systems (DDSs) have evolved into the most promising therapeutic strategy for drug-targeted therapy. Various mesoporous biomaterials are exploited and applied as efficient nanocarriers to loading drugs by virtue of their large surface area, high porosity, and prominent biocompatibility. Nanosized mesoporous nanocarriers show great potential in biomedical research, and it has become the research hotspot in the interdisciplinary field. Herein, recent progress and assembly mechanisms on mesoporous inorganic biomaterials (e.g., silica, carbon, metal oxide) are summarized systematically, and typical functionalization methods (i.e., hybridization, polymerization, and doping) for nanocarriers are also discussed in depth. Particularly, structure-activity relationship and the effect of physicochemical parameters of mesoporous biomaterials, including morphologies (e.g., hollow, core-shell), pore textures (e.g., pore size, pore volume), and surface features (e.g., roughness and hydrophilic/hydrophobic) in DDS application are overviewed and elucidated in detail. As one of the important development directions, advanced stimuli-responsive DDSs (e.g., pH, temperature, redox, ultrasound, light, magnetic field) are highlighted. Finally, the prospect of mesoporous biomaterials in disease therapeutics is stated, and it will open a new spring for the development of mesoporous nanocarriers.
Collapse
Affiliation(s)
- Yidong Zou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
34
|
Shaban M, Hasanzadeh M. Biomedical applications of dendritic fibrous nanosilica (DFNS): recent progress and challenges. RSC Adv 2020; 10:37116-37133. [PMID: 35521236 PMCID: PMC9057131 DOI: 10.1039/d0ra04388e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic fibrous nanosilica (DFNS), with multi-component and hierarchically complex structures, has recently been receiving significant attention in various fields of nano-biomedicine. DFNS is an emerging class of mesoporous nanoparticles that has attracted great interest due to unique structures such as open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. This overview aims to study the application of DFNS towards biomedical investigations. This review is divided into four main sections. Sections 1–3 are related to the synthesis and characterization of DFNS. The biomedical potential of DFNS, such as cell therapy, gene therapy, immune therapy, drug delivery, imaging, photothermal therapy, bioanalysis, biocatalysis, and tissue engineering, is discussed based on advantages and limitations. Finally, the perspectives and challenges in terms of controlled synthesis and potential nano-biomedical applications towards future studies are discussed. Dendritic fibrous nanosilica (DFNS) , with multi-component and hierarchically complex structures, has recently been receiving significant attention in various fields of nano-biomedicine.![]()
Collapse
Affiliation(s)
- Mina Shaban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran .,Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
35
|
Babaei M, Abnous K, Taghdisi SM, Taghavi S, Sh Saljooghi A, Ramezani M, Alibolandi M. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm 2020; 156:84-96. [PMID: 32882423 DOI: 10.1016/j.ejpb.2020.08.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Simultaneous drug and gene delivery to cancer cells has been introduced to provide advantages of the synergistic effects of gene to sensitize the cancer cells to chemotherapeutic agent. In the current study, nucleolin-targeted co-delivery system, based on PEGylated rod-shaped mesoporous silica NPs was developed as a biocompatible nanocarrier for simultaneous delivery of camptothecin and survivin shRNA-expressing plasmid (iSur-DNA) to colon adenocarcinoma. The structural characterization including hydrodynamic radius and morphological characteristics of the prepared system demonstrated the mesoporous rod-shaped structure of the prepared system with 100-150 nm diameter. Camptothecin was loaded into the rod-shaped MSN NPs with encapsulation efficiency of 32%. At the next stage, the prepared camptothecin-loaded system was PEGylated and then iSur-DNA was condensed with C/P ratio of 6 to form PEG@MSNR-CPT/Sur. Then, the prepared camptothecin-iSur-DNA loaded PEGylated rod-shaped mesoporous silica NPs were tagged with AS1411 DNA aptamer (Apt-PEG@MSNR-CPT/Sur) in order to provide selective therapy against colorectal adenocarcinoma. The obtained results showed that the prepared platform controlled the release of anticancer drug, camptothecin. The experimental results indicated potent synergistic effect of iSur-pDNA and CPT in in vitro cytotoxicity, apoptosis induction and in vivo antitumor effect. In addition, tagging the system with AS1411 DNA aptamer facilitated drug uptake into nucleolin positive colorectal cancer cells leading to higher cellular toxicity and apoptosis induction in C26 cells compared to nucleolin-negative CHO cell line. Apt-PEG@MSNR-CPT/Sur system significantly supressed tumor growth rate in C26 tumor bearing mice while improving survival rate and pharmacokinetics of the platform in comparison with PEG@MSNR-CPT and PEG@MSNR-CPT/Sur. It could be concluded that the developed nucelolin targeted nanomedicine for co-delivery of camptothecin and iSur-DNA could serve as a versatile nanotherapeutic system against colorectal cancer.
Collapse
Affiliation(s)
- Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Wang Y, Jiang XY, Yu XY. BRD9 controls the oxytocin signaling pathway in gastric cancer via CANA2D4, CALML6, GNAO1, and KCNJ5. Transl Cancer Res 2020; 9:3354-3366. [PMID: 35117701 PMCID: PMC8798819 DOI: 10.21037/tcr.2020.03.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Background First-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers. Methods We used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells and AGS cells for global gene expression analysis in inhibiting BRD9 conditions. Results Our studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin. Conclusions Our study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 overexpression.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|