1
|
Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, Jiang JK, Wilson KM, Zhang X, Sutter P, Wang A, Xu X, Choi K, Tawa G, Lorimer D, Abendroth J, O'Brien E, Hoyt SB, Berman E, Famulare CA, Mulloy JC, Levine RL, Perentesis JP, Thomas CJ, Starczynowski DT. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 2020; 11:11/508/eaaw8828. [PMID: 31484791 DOI: 10.1126/scitranslmed.aaw8828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.
Collapse
Affiliation(s)
- Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellin Berman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Uras IZ, Maurer B, Nebenfuehr S, Zojer M, Valent P, Sexl V. Therapeutic Vulnerabilities in FLT3-Mutant AML Unmasked by Palbociclib. Int J Mol Sci 2018; 19:ijms19123987. [PMID: 30544932 PMCID: PMC6321303 DOI: 10.3390/ijms19123987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
While significant progress has been made in the treatment of acute myeloid leukemia (AML), not all patients can be cured. Mutated in about 1/3 of de novo AML, the FLT3 receptor tyrosine kinase is an attractive target for drug development, activating mutations of the FLT3 map to the juxtamembrane domain (internal tandem duplications, ITD) or the tyrosine kinase domain (TKD), most frequently at codon D835. While small molecule tyrosine kinase inhibitors (TKI) effectively target ITD mutant forms, those on the TKD are not responsive. Moreover, FLT3 inhibition fails to induce a persistent response in patients due to mutational resistance. More potent compounds with broader inhibitory effects on multiple FLT3 mutations are highly desirable. We describe a critical role of CDK6 in the survival of FLT3+ AML cells as palbociclib induced apoptosis not only in FLT3–ITD+ cells but also in FLT3–D835Y+ cells. Antineoplastic effects were also seen in primary patient-derived cells and in a xenograft model, where therapy effectively suppressed tumor formation in vivo at clinically relevant concentrations. In cells with FLT3–ITD or -TKD mutations, the CDK6 protein not only affects cell cycle progression but also transcriptionally regulates oncogenic kinases mediating intrinsic drug resistance, including AURORA and AKT—a feature not shared by its homolog CDK4. While AKT and AURORA kinase inhibitors have significant therapeutic potential in AML, single agent activity has not been proven overly effective. We describe synergistic combination effects when applying these drugs together with palbociclib which could be readily translated to patients with AML bearing FLT3–ITD or –TKD mutations. Targeting synergistically acting vulnerabilities, with CDK6 being the common denominator, may represent a promising strategy to improve AML patient responses and to reduce the incidence of selection of resistance-inducing mutations.
Collapse
Affiliation(s)
- Iris Z Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Markus Zojer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
3
|
Zhou J, Chng WJ. Resistance to FLT3 inhibitors in acute myeloid leukemia: Molecular mechanisms and resensitizing strategies. World J Clin Oncol 2018; 9:90-97. [PMID: 30254964 PMCID: PMC6153124 DOI: 10.5306/wjco.v9.i5.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is classified as a type III receptor tyrosine kinase, which exerts a key role in regulation of normal hematopoiesis. FLT3 mutation is the most common genetic mutation in acute myeloid leukemia (AML) and represents an attractive therapeutic target. Targeted therapy with FLT3 inhibitors in AML shows modest promising results in current ongoing clinical trials suggesting the complexity of FLT3 targeting in therapeutics. Importantly, resistance to FLT3 inhibitors may explain the lack of overwhelming response and could obstruct the successful treatment for AML. Here, we summarize the molecular mechanisms of primary resistance and acquired resistance to FLT3 inhibitors and discuss the strategies to circumvent the emergency of drug resistance and to develop novel treatment intervention.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, NUHS, Singapore 119228, Singapore
| |
Collapse
|
4
|
A novel, dual pan-PIM/FLT3 inhibitor SEL24 exhibits broad therapeutic potential in acute myeloid leukemia. Oncotarget 2018; 9:16917-16931. [PMID: 29682194 PMCID: PMC5908295 DOI: 10.18632/oncotarget.24747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is one of the most common genetic lesions in acute myeloid leukemia patients (AML). Although FLT3 tyrosine kinase inhibitors initially exhibit clinical activity, resistance to treatment inevitably occurs within months. PIM kinases are thought to be major drivers of the resistance phenotype and their inhibition in relapsed samples restores cell sensitivity to FLT3 inhibitors. Thus, simultaneous PIM and FLT3 inhibition represents a promising strategy in AML therapy. For such reasons, we have developed SEL24-B489 - a potent, dual PIM and FLT3-ITD inhibitor. SEL24-B489 exhibited significantly broader on-target activity in AML cell lines and primary AML blasts than selective FLT3-ITD or PIM inhibitors. SEL24-B489 also demonstrated marked activity in cells bearing FLT3 tyrosine kinase domain (TKD) mutations that lead to FLT3 inhibitor resistance. Moreover, SEL24-B489 inhibited the growth of a broad panel of AML cell lines in xenograft models with a clear pharmacodynamic-pharmacokinetic relationship. Taken together, our data highlight the unique dual activity of the SEL24-B489 that abrogates the activity of signaling circuits involved in proliferation, inhibition of apoptosis and protein translation/metabolism. These results underscore the therapeutic potential of the dual PIM/FLT3-ITD inhibitor for the treatment of AML.
Collapse
|
5
|
Weisberg E, Sattler M, Manley PW, Griffin JD. Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy. Onco Targets Ther 2017; 11:175-182. [PMID: 29343975 PMCID: PMC5749544 DOI: 10.2147/ott.s127679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Fms-like tyrosine kinase-3 (FLT3; fetal liver kinase-2; human stem cell tyrosine kinase-1; CD135) is a class III receptor tyrosine kinase that is normally involved in regulating the proliferation, differentiation, and survival of both hematopoietic cells and dendritic cells. Mutations leading it to be constitutively activated make it an oncogenic driver in ~30% of acute myeloid leukemia (AML) patients where it is associated with poor prognosis. The prevalence of oncogenic FLT3 and the dependency on its constitutively activated kinase activity for leukemia growth make this protein an attractive target for therapeutic intervention. Of the numerous small molecule inhibitors under clinical investigation for the treatment of oncogenic FLT3-positive AML, the N-benzoyl-staurosporine, midostaurin (CGP41251; PKC412; Rydapt®; Novartis Pharma AG, Basel, Switzerland), is the first to be approved by the US Food and Drug Administration for the treatment, in combination with standard chemotherapy, of newly diagnosed adult AML patients who harbor mutations in FLT3. Here, we describe the early design of midostaurin, the preclinical discovery of its activity against oncogenic FLT3, and its subsequent clinical development as a therapeutic agent for FLT3 mutant-positive AML.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul W Manley
- Department of Oncology, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Silverbush D, Grosskurth S, Wang D, Powell F, Gottgens B, Dry J, Fisher J. Cell-Specific Computational Modeling of the PIM Pathway in Acute Myeloid Leukemia. Cancer Res 2017; 77:827-838. [PMID: 27965317 DOI: 10.1158/0008-5472.can-16-1578] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/09/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022]
Abstract
Personalized therapy is a major goal of modern oncology, as patient responses vary greatly even within a histologically defined cancer subtype. This is especially true in acute myeloid leukemia (AML), which exhibits striking heterogeneity in molecular segmentation. When calibrated to cell-specific data, executable network models can reveal subtle differences in signaling that help explain differences in drug response. Furthermore, they can suggest drug combinations to increase efficacy and combat acquired resistance. Here, we experimentally tested dynamic proteomic changes and phenotypic responses in diverse AML cell lines treated with pan-PIM kinase inhibitor and fms-related tyrosine kinase 3 (FLT3) inhibitor as single agents and in combination. We constructed cell-specific executable models of the signaling axis, connecting genetic aberrations in FLT3, tyrosine kinase 2 (TYK2), platelet-derived growth factor receptor alpha (PDGFRA), and fibroblast growth factor receptor 1 (FGFR1) to cell proliferation and apoptosis via the PIM and PI3K kinases. The models capture key differences in signaling that later enabled them to accurately predict the unique proteomic changes and phenotypic responses of each cell line. Furthermore, using cell-specific models, we tailored combination therapies to individual cell lines and successfully validated their efficacy experimentally. Specifically, we showed that cells mildly responsive to PIM inhibition exhibited increased sensitivity in combination with PIK3CA inhibition. We also used the model to infer the origin of PIM resistance engineered through prolonged drug treatment of MOLM16 cell lines and successfully validated experimentally our prediction that this resistance can be overcome with AKT1/2 inhibition. Cancer Res; 77(4); 827-38. ©2016 AACR.
Collapse
Affiliation(s)
- Dana Silverbush
- Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
- Microsoft Research, Cambridge, UK
| | | | | | | | - Berthold Gottgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, UK
| | - Jonathan Dry
- AstraZeneca Oncology IMED, Waltham, Massachusetts.
| | - Jasmin Fisher
- Microsoft Research, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Alachkar H, Mutonga M, Malnassy G, Park JH, Fulton N, Woods A, Meng L, Kline J, Raca G, Odenike O, Takamatsu N, Miyamoto T, Matsuo Y, Stock W, Nakamura Y. T-LAK cell-originated protein kinase presents a novel therapeutic target in FLT3-ITD mutated acute myeloid leukemia. Oncotarget 2016; 6:33410-25. [PMID: 26450903 PMCID: PMC4741775 DOI: 10.18632/oncotarget.5418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022] Open
Abstract
Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML.
Collapse
Affiliation(s)
- Houda Alachkar
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Martin Mutonga
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Gregory Malnassy
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Noreen Fulton
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Alex Woods
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Liping Meng
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Gordana Raca
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Olatoyosi Odenike
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | | | | | - Yo Matsuo
- OncoTherapy Science, Inc., Kanagawa, Japan
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Huang A, Ju HQ, Liu K, Zhan G, Liu D, Wen S, Garcia-Manero G, Huang P, Hu Y. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer Lett 2016; 377:149-57. [PMID: 27132990 DOI: 10.1016/j.canlet.2016.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
Abstract
Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation.
Collapse
Affiliation(s)
- Amin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiyan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guilian Zhan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Daolu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Xu T, Zhong L, Gan LG, Xiao CL, Shan ZL, Yang R, Song H, Li L, Liu BZ. Effects of LG268 on Cell Proliferation and Apoptosis of NB4 Cells. Int J Med Sci 2016; 13:517-23. [PMID: 27429588 PMCID: PMC4946122 DOI: 10.7150/ijms.15507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022] Open
Abstract
AIMS To investigate the effect of LG100268 (LG268) on cell proliferation and apoptosis in NB4 cells. METHODS NB4 cells were treated with LG268 for 24 h or 48 h. The effect of LG268 on cell proliferation was assessed by the CCK-8 assay and colony-forming assay. Apoptosis and cell cycle were evaluated by flow cytometry. The protein expression levels of Survivin, PARP, c-Myc, cyclin D1, ERK, p-ERK, p38 MAPK, and p- p38 MAPK were detected by western blot. RESULTS We found that LG268 inhibited the proliferation of NB4 cells in a dose-dependent manner. Flow cytometry analysis showed that LG268 accelerated apoptosis in NB4 cells in a time- dependent manner and that LG268 treatment led to cell cycle arrest at G0/G1 phase. Moreover, LG268 significantly decreased the protein levels of Survivin, c-Myc, and cyclinD1. Cleaved PARP was observed in the LG268 treatment group but not in the control group. In addition, LG268 increased the phosphorylation level of p38 MAPK and decreased the phosphorylation level of ERK. CONCLUSIONS LG268 inhibited cell proliferation and promoted cell apoptosis in NB4 cells.
Collapse
Affiliation(s)
- Ting Xu
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhong
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liu-Gen Gan
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Lan Xiao
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Ling Shan
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Yang
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Song
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liu Li
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bei-Zhong Liu
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
10
|
Lazenby M, Hills R, Burnett AK, Zabkiewicz J. The HSP90 inhibitor ganetespib: A potential effective agent for Acute Myeloid Leukemia in combination with cytarabine. Leuk Res 2015; 39:617-24. [PMID: 25882550 PMCID: PMC4452084 DOI: 10.1016/j.leukres.2015.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 01/21/2023]
Abstract
HSP90 is a multi-client chaperone involved in regulating a large array of cellular processes and is commonly overexpressed in many different cancer types including hematological malignancies. Inhibition of HSP90 holds promise for targeting multiple molecular abnormalities and is therefore an attractive target for heterogeneous malignancies such as Acute Myeloid Leukemia (AML). Ganetespib is a highly potent second generation HSP90 inhibitor which we show is significantly more effective against primary AML blasts at nanomolar concentrations when compared with cytarabine (p<0.001). Dose dependant cytotoxicity was observed with an apoptotic response coordinate with the loss of pro-survival signaling through the client protein AKT. Combination treatment of primary blasts with ganetespib and cytarabine showed good synergistic interaction (combination index (CI): 0.47) across a range of drug effects with associated reduction in HSP70 feedback and AKT signaling levels. In summary, we show ganetespib to have high activity in primary AMLs as a monotherapy and a synergistic relationship with cytarabine when combined. The combination of cytotoxic cell death, suppression of cytoprotective/drug resistance mechanisms such as AKT and reduced clinical toxicity compared to other HSP90 inhibitors provide strong rationale for the clinical assessment of ganetespib in AML.
Collapse
Affiliation(s)
- M Lazenby
- Cardiff Experimental Cancer Medicine Centre (ECMC), Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - R Hills
- Cardiff Experimental Cancer Medicine Centre (ECMC), Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - A K Burnett
- Cardiff Experimental Cancer Medicine Centre (ECMC), Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - J Zabkiewicz
- Cardiff Experimental Cancer Medicine Centre (ECMC), Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
11
|
Engen CBN, Wergeland L, Skavland J, Gjertsen BT. Targeted Therapy of FLT3 in Treatment of AML-Current Status and Future Directions. J Clin Med 2014; 3:1466-89. [PMID: 26237612 PMCID: PMC4470194 DOI: 10.3390/jcm3041466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022] Open
Abstract
Internal tandem duplications (ITDs) of the gene encoding the Fms-Like Tyrosine kinase-3 (FLT3) receptor are present in approximately 25% of patients with acute myeloid leukemia (AML). The mutation is associated with poor prognosis, and the aberrant protein product has been hypothesized as an attractive therapeutic target. Various tyrosine kinase inhibitors (TKIs) have been developed targeting FLT3, but in spite of initial optimism the first generation TKIs tested in clinical studies generally induce only partial and transient hematological responses. The limited treatment efficacy generally observed may be explained by numerous factors; extensively pretreated and high risk cohorts, suboptimal pharmacodynamic and pharmacokinetic properties of the compounds, acquired TKI resistance, or the possible fact that inhibition of mutated FLT3 alone is not sufficient to avoid disease progression. The second-generation agent quizartinb is showing promising outcomes and seems better tolerated and with less toxic effects than traditional chemotherapeutic agents. Therefore, new generations of TKIs might be feasible for use in combination therapy or in a salvage setting in selected patients. Here, we sum up experiences so far, and we discuss the future outlook of targeting dysregulated FLT3 signaling in the treatment of AML.
Collapse
Affiliation(s)
| | - Line Wergeland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Jørn Skavland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen N-5021, Norway.
| |
Collapse
|
12
|
Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014; 124:3441-9. [PMID: 25270908 DOI: 10.1182/blood-2014-05-578070] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The objective was to evaluate the prognostic and predictive impact of allelic ratio and insertion site (IS) of internal tandem duplications (ITDs), as well as concurrent gene mutations, with regard to postremission therapy in 323 patients with FLT3-ITD-positive acute myeloid leukemia (AML). Increasing FLT3-ITD allelic ratio (P = .004) and IS in the tyrosine kinase domain 1 (TKD1, P = .06) were associated with low complete remission (CR) rates. After postremission therapy including intensive chemotherapy (n = 121) or autologous hematopoietic stem cell transplantation (HSCT, n = 17), an allelic ratio ≥ 0.51 was associated with an unfavorable relapse-free (RFS, P = .0008) and overall survival (OS, P = .004); after allogeneic HSCT (n = 93), outcome was significantly improved in patients with a high allelic ratio (RFS, P = .02; OS, P = .03), whereas no benefit was seen in patients with a low allelic ratio (RFS, P = .38; OS, P = .64). Multivariable analyses revealed a high allelic ratio as a predictive factor for the beneficial effect of allogeneic HSCT; ITD IS in TKD1 remained an unfavorable factor, whereas no prognostic impact of concurrent gene mutations was observed. The clinical trials described herein were previously published or are registered as follows: AMLHD93 and AMLHD98A, previously published; AML SG 07-04, ClinicalTrials.gov identifier #NCT00151242.
Collapse
|
13
|
Sampath D, Malik A, Plunkett W, Nowak B, Williams B, Burton M, Verstovsek S, Faderl S, Garcia-Manero G, List AF, Sebti S, Kantarjian HM, Ravandi F, Lancet JE. Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Akt-inhibitor triciribine phosphate monohydrate in patients with advanced hematologic malignancies. Leuk Res 2013; 37:1461-7. [PMID: 23993427 DOI: 10.1016/j.leukres.2013.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/27/2013] [Indexed: 01/17/2023]
Abstract
Akt, a serine/threonine protein kinase, is constitutively phosphorylated and hyperactivated in multiple cancers, including acute myeloid leukemia. High levels are linked to poor survival and inferior responses to chemotherapy, making Akt inhibition an attractive therapeutic target. In this phase I/II study of TCN-PM, a small-molecule Akt inhibitor, TCN-PM therapy was well tolerated in patients with advanced hematological malignancies, and reduced levels of phosphorylation of Akt and its substrate Bad were shown, consistent with inhibition of this survival pathway and induction of cell death. Further investigation of TCN-PM alone or in combination in patients with high Akt levels is warranted.
Collapse
Affiliation(s)
- Deepa Sampath
- Departments of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grunwald MR, Levis MJ. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol 2013; 97:683-94. [PMID: 23613268 DOI: 10.1007/s12185-013-1334-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
Since the Food and Drug Administration approval of imatinib for treatment of chronic myeloid leukemia in 2001, tyrosine kinase inhibitors (TKIs) have become a mainstay in the care of many malignancies. In acute myeloid leukemia (AML), activating mutations in the FMS-like tyrosine kinase 3 (FLT3) gene result in survival and proliferation of leukemic blasts and are associated with adverse prognosis. Therefore, the FLT3 receptor is an appealing target for inhibition. Multiple small molecule TKIs are currently in development for FLT3-mutated AML, and agents are beginning to show promising efficacy. In other malignancies, the development of resistance to TKIs during the course of therapy has proven to be a challenge, and thus far, in clinical trials of FLT3 TKIs, resistance to inhibition represents a significant barrier to successful FLT3 inhibition. Understanding the mechanisms of resistance and overcoming these obstacles to target inhibition will be central to the success of these agents.
Collapse
Affiliation(s)
- Michael R Grunwald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|
15
|
Selective Akt inhibitors synergize with tyrosine kinase inhibitors and effectively override stroma-associated cytoprotection of mutant FLT3-positive AML cells. PLoS One 2013; 8:e56473. [PMID: 23437141 PMCID: PMC3578845 DOI: 10.1371/journal.pone.0056473] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/09/2013] [Indexed: 12/03/2022] Open
Abstract
Objectives Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells. Methods We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy. Results and Conclusions Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment.
Collapse
|
16
|
Williams AB, Nguyen B, Li L, Brown P, Levis M, Leahy D, Small D. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia 2012; 27:48-55. [PMID: 22858906 DOI: 10.1038/leu.2012.191] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) normally functions in the survival/proliferation of hematopoietic stem/progenitor cells, but its constitutive activation by internal tandem duplication (ITD) mutations correlates with a poor prognosis in AML. The development of FLT3 tyrosine kinase inhibitors (TKI) is a promising strategy, but resistance that arises during the course of treatment caused by secondary mutations within the mutated gene itself poses a significant challenge. In an effort to predict FLT3 resistance mutations that might develop in patients, we used saturation mutagenesis of FLT3/ITD followed by selection of transfected cells in FLT3 TKI. We identified F621L, A627P, F691L and Y842C mutations in FLT3/ITD that confer varying levels of resistance to FLT3 TKI. Western blotting confirmed that some FLT3 TKI were ineffective at inhibiting FLT3 autophosphorylation and signaling through MAP kinase, STAT5 and AKT in some mutants. Balb/c mice transplanted with the FLT3/ITD Y842C mutation confirmed resistance to sorafenib in vivo but not to lestaurtinib. These results indicate a growing number of FLT3 mutations that are likely to be encountered in patients. Such knowledge, combined with known remaining sensitivity to other FLT3 TKI, will be important to establish as secondary drug treatments that can be substituted when these mutants are encountered.
Collapse
Affiliation(s)
- A B Williams
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M, Zhang C, Daley JF, Frank D, Fox E, Griffin JD. Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells. PLoS One 2011; 6:e25351. [PMID: 21980431 PMCID: PMC3182213 DOI: 10.1371/journal.pone.0025351] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022] Open
Abstract
Objectives Clinical responses achieved with FLT3 kinase inhibitors in acute myeloid leukemia (AML) are typically transient and partial. Thus, there is a need for identification of molecular mechanisms of clinical resistance to these drugs. In response, we characterized MOLM13 AML cell lines made resistant to two structurally-independent FLT3 inhibitors. Methods MOLM13 cells were made drug resistant via prolonged exposure to midostaurin and HG-7-85-01, respectively. Cell proliferation was determined by Trypan blue exclusion. Protein expression was assessed by immunoblotting, immunoprecipitation, and flow cytometry. Cycloheximide was used to determine protein half-life. RT-PCR was performed to determine FLT3 mRNA levels, and FISH analysis was performed to determine FLT3 gene expression. Results and Conclusions We found that MOLM13 cells readily developed cross-resistance when exposed to either midostaurin or HG-7-85-01. Resistance in both lines was associated with dramatically elevated levels of cell surface FLT3 and elevated levels of phosphor-MAPK, but not phospho-STAT5. The increase in FLT3-ITD expression was at least in part due to reduced turnover of the receptor, with prolonged half-life. Importantly, the drug-resistant phenotype could be rapidly reversed upon withdrawal of either inhibitor. Consistent with this phenotype, no significant evidence of FLT3 gene amplification, kinase domain mutations, or elevated levels of mRNA was observed, suggesting that protein turnover may be part of an auto-regulatory pathway initiated by FLT3 kinase activity. Interestingly, FLT3 inhibitor resistance also correlated with resistance to cytosine arabinoside. Over-expression of FLT3 protein in response to kinase inhibitors may be part of a novel mechanism that could contribute to clinical resistance.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Stability/drug effects
- Enzyme Stability/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Half-Life
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Staurosporine/analogs & derivatives
- Staurosporine/pharmacology
- Thiazoles/pharmacology
- Tyrosine/metabolism
- Up-Regulation/drug effects
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/chemistry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology/Hematologic Neoplasia, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
VEGF targeted therapy in acute myeloid leukemia. Crit Rev Oncol Hematol 2010; 80:241-56. [PMID: 21035354 DOI: 10.1016/j.critrevonc.2010.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 01/07/2023] Open
Abstract
The cooperation of two classes of mutations in hematopoietic cells is hypothesized in a multistep pathogenesis model of acute myeloid leukemia (AML). Class I mutations confer a proliferative and/or survival advantage, whereas Class II mutations block hematopoietic differentiation and impair apoptosis in AML cells. In addition to these two classes of mutations, a relevant role for angiogenesis in the pathophysiology of AML has been recently proposed. The recognition that the vascular endothelial growth factor (VEGF) pathway is a key regulator of angiogenesis has led to the development of several VEGF-targeted approaches. These include neutralizing antibodies, VEGF traps or selective tyrosine kinase inhibitors for VEGFRs. Other drugs that indirectly affect VEGF pathway, such as statins or arsenic trioxide, also have been shown to possess antiangiogenic activity in leukemias. The benefits of these VEGF targeted agents and their current stage of development as novel anti-antiangiogenic therapies in AML are discussed in this review.
Collapse
|
19
|
Weisberg E, Sattler M, Ray A, Griffin JD. Drug resistance in mutant FLT3-positive AML. Oncogene 2010; 29:5120-34. [DOI: 10.1038/onc.2010.273] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Ustun C, DeRemer DL, Jillella AP, Bhalla KN. Investigational drugs targeting FLT3 for leukemia. Expert Opin Investig Drugs 2009; 18:1445-56. [PMID: 19671038 DOI: 10.1517/13543780903179278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FMS-like tyrosine kinase-3 (FLT3) is a member of the class III membrane receptor tyrosine kinase family and is important in survival, proliferation and differentiation of hematopoietic cells. FLT3 is mutated in approximately 30% of acute myelogenous leukemia patients. These mutations involve internal tandem duplications in the juxtamembrane domain of the receptor and tyrosine kinase point mutations in the activation loop. Over the past decade, due to the incidence and poor prognosis associated with FLT3, numerous agents have been developed to directly inhibit the activity of wild type and mutated FLT3. In this review, we focus on the preclinical data demonstrating in vitro activity, inhibition of downstream signaling pathways and potential synergy with traditional chemotherapeutic agents. Also, early clinical trial data specifically focusing on drug toxicity, clinical efficacy and future directions of FLT3-directed anticancer therapy are discussed.
Collapse
|
21
|
Foss B, Tronstad KJ, Bruserud Ø. Connexin-based signaling in acute myelogenous leukemia (AML). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:1-8. [PMID: 19883623 DOI: 10.1016/j.bbamem.2009.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/15/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Normal and malignant hematopoiesis are regulated by intercellular communication in the hematopoietic microenvironments, and both soluble mediators as well as direct cell-cell contact play important functional roles. Gap junctions are complex membrane structures that transfer molecules between neighboring cells and thereby alter intracellular signaling and metabolism. The gap junction building blocks, the connexins, are also involved in gap junction-independent intercellular communication by forming hemichannels that transfer substances between the intra- and extracellular spaces. Connexins are furthermore involved in cell regulation as single molecules by modulating intracellular pathways and possibly gene transcription. The role of connexins in leukemogenesis and leukemic cell functions are not well characterized. In this review, we describe the known effects of gap junctions and connexins in acute myelogenous leukemia and the diverse potential of connexins in acute myelogenous leukemia chemosensitivity, intracellular signaling and cell death regulation.
Collapse
Affiliation(s)
- Brynjar Foss
- Department of Health Studies, University of Stavanger, Stavanger, Norway.
| | | | | |
Collapse
|
22
|
Nishioka C, Ikezoe T, Yang J, Yokoyama A. Multitargeted tyrosine kinase inhibitor stimulates expression of IL-6 and activates JAK2/STAT5 signaling in acute myelogenous leukemia cells. Leukemia 2009; 23:2304-8. [PMID: 19675589 DOI: 10.1038/leu.2009.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009; 86:237-50. [PMID: 19498045 DOI: 10.1189/jlb.0209097] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The MAPKs are a family of serine/threonine kinases that play an essential role in connecting cell-surface receptors to changes in transcriptional programs. MAPKs are part of a three-component kinase module consisting of a MAPK, an upstream MEK, and a MEKK that couples the signals from cell-surface receptors to trigger downstream pathways. Three major groups of MAPKs have been characterized in mammals, including ERKs, JNKs, and p38MAPKs. Over the last decade, extensive work has established that these proteins play critical roles in the regulation of a wide variety of cellular processes including cell growth, migration, proliferation, differentiation, and survival. It has been demonstrated that ERK, JNK, and p38MAPK activity can be regulated in response to a plethora of hematopoietic cytokines and growth factors that play critical roles in hematopoiesis. In this review, we summarize the current understanding of MAPK function in the regulation of hematopoiesis in general and myelopoiesis in particular. In addition, the consequences of aberrant MAPK activation in the pathogenesis of various myeloid malignancies will be discussed.
Collapse
Affiliation(s)
- Christian R Geest
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Additive effect of PTK787/ZK 222584, a potent inhibitor of VEGFR phosphorylation, with Idarubicin in the treatment of acute myeloid leukemia. Exp Hematol 2009; 37:679-91. [DOI: 10.1016/j.exphem.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/01/2009] [Accepted: 03/02/2009] [Indexed: 11/22/2022]
|
25
|
|
26
|
Abstract
Abstract
Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the β-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA interference technology, deregulated MCL-1 protein expression was shown to play a major role in conferring the resistance phenotype of 32D_ITD627E cells. Enhanced and sustained binding of the adaptor protein GRB-2 to the FLT3_ITD627E receptor is involved in MCL-1 up-regulation and is independent from TKI (PKC412)–induced inhibition of the receptor kinase. Thus, we describe a new mechanism of primary resistance to TKIs, which operates by reprogramming local and distant signal transduction events of the FLT3 tyrosine kinase. The data presented suggest that particular ITDs of FLT3 may be associated with rewired signaling and differential responsiveness to TKIs.
Collapse
|
27
|
Muranyi AL, Dedhar S, Hogge DE. Combined inhibition of integrin linked kinase and FMS-like tyrosine kinase 3 is cytotoxic to acute myeloid leukemia progenitor cells. Exp Hematol 2009; 37:450-60. [PMID: 19302919 DOI: 10.1016/j.exphem.2009.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/04/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Dysregulation of signaling pathways leading to enhanced cell proliferation and resistance to apoptosis is frequent in acute myeloid leukemia (AML). The effectiveness of inhibiting two such pathways, the phosphatidylinosityl-3-kinase pathway via the intermediate integrin-linked kinase (ILK), and FMS-like tyrosine kinase-3 (FLT-3) signaling pathway in killing AML cells was studied. MATERIALS AND METHODS AML colony-forming cell (CFC) assays were used to determine the effects of a small molecule inhibitor of both ILK and FLT-3 (QLT0267) on poor prognosis primary AML sample viability. Kinase assays and Western blots were used to analyze effects of the compound on target molecules. RESULTS In 31/36 AML blast samples p-Akt was detected indicating phosphatidylinosityl-3-kinase activation. ILK was ubiquitously and FLT-3 abundantly expressed. Downregulation of ILK in the AML cell line TF-1 using small interfering RNA caused >or= 50% CFC death, suggesting ILK inhibition might also be toxic to primary AML cells. In vitro kinase assays on three AML samples showed inhibition of both ILK and FLT-3 by QLT0267. Treatment of AML patient blast cells (n=27) with QLT0267, caused a dose- and time-dependent downregulation of p-Akt and kill of AML-CFC with AML samples containing FLT-3 mutations being more sensitive to QLT0267 than those without. AML samples were more sensitive to QLT0267 killing than normal bone marrow (IC(50)=3 microM, vs 10 microM for AML-CFC and normal CFC, respectively, n=5). CONCLUSION Combined inhibition of ILK and FLT-3 with a small molecule kinase inhibitor can achieve selective targeting of AML rather than normal hematopoietic progenitors.
Collapse
|
28
|
Chu SH, Small D. Mechanisms of resistance to FLT3 inhibitors. Drug Resist Updat 2009; 12:8-16. [PMID: 19162530 PMCID: PMC4891941 DOI: 10.1016/j.drup.2008.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/02/2008] [Indexed: 11/21/2022]
Abstract
The success of the small molecule tyrosine kinase receptor inhibitor (TKI) imatinib mesylate (Gleevec) in the treatment of chronic myeloid leukemia (CML) constitutes an eminent paradigm shift advocating the rational design of cancer therapeutics specifically targeting the transformation events that drive tumorigenicity. In acute myeloid leukemias (AMLs), the most frequent identified transforming events are activating mutations in the FLT3 receptor tyrosine kinase that constitutively activate survival and proliferation pathways. FLT3 TKIs that are in various phases of clinical trials are showing some initial promise. However, primary and secondary acquired resistance stands to severely compromise long-term and durable efficacy of these inhibitors as a therapeutic strategy. Here, we discuss the mechanisms of resistance to FLT3 inhibitors and possible strategies to overcome resistance through closer examination of the events of leukemogenesis and design of combination therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/therapeutic use
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- S. Haihua Chu
- Department of Oncology, Johns Hopkins University School of Medicine, CRB1-251, 1650 Orleans St., Baltimore, MD 21231-1000, United States
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, CRB1-251, 1650 Orleans St., Baltimore, MD 21231-1000, United States
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, CRB1-251, 1650 Orleans St., Baltimore, MD 21231-1000, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, CRB1-251, 1650 Orleans St., Baltimore, MD 21231-1000, United States
| |
Collapse
|
29
|
Kasper S, Breitenbuecher F, Hoehn Y, Heidel F, Lipka DB, Markova B, Huber C, Kindler T, Fischer T. The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia. Leuk Res 2008; 32:1698-708. [DOI: 10.1016/j.leukres.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/29/2008] [Accepted: 05/03/2008] [Indexed: 02/01/2023]
|
30
|
Hu S, Niu H, Minkin P, Orwick S, Shimada A, Inaba H, Dahl GVH, Rubnitz J, Baker SD. Comparison of antitumor effects of multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Mol Cancer Ther 2008; 7:1110-20. [PMID: 18483300 DOI: 10.1158/1535-7163.mct-07-2218] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We compared the antitumor activities of the multitargeted tyrosine kinase inhibitors imatinib, sorafenib, and sunitinib to determine which inhibitor is best suited to be used for the treatment of acute myelogenous leukemia (AML). In nine human AML cell lines, sorafenib and sunitinib were more potent inhibitors of cellular proliferation than imatinib (IC50, 0.27 to >40, 0.002-9.1, and 0.007-13 micromol/L for imatinib, sorafenib, and sunitinib, respectively). Sorafenib and sunitinib were potent inhibitors of cells with fms-like tyrosine kinase 3 internal tandem duplication (IC50, 2 and 7 nmol/L) and c-KIT N822K mutations (IC50, 23 and 40 nmol/L). In four cell lines (MV4-11, Kasumi-1, KG-1, and U937) that spanned a range of drug sensitivities, sorafenib and sunitinib had similar activity in apoptosis and cell cycle assays, except that sunitinib did not promote apoptosis in U937 cells. Both drugs inhibited mitogen-activated protein kinase signaling but had no effect on AKT signaling in most of the cell lines tested. Sorafenib was substantially more bound than sunitinib in human plasma (unbound fraction, 0.59% versus 8.4%) and cell culture medium (unbound fraction, 1.3% versus 39%), indicating that sorafenib was more potent than sunitinib and that unbound sorafenib concentrations with activity against most AML cell lines are achievable in vivo. There was more intracellular accumulation of sorafenib than of sunitinib and imatinib in AML cells. Between 1 and 10 micromol/L, sorafenib inhibited the proliferation of six of nine primary AML blast samples by > or =50%. Our results highlight the pharmacologic features of sorafenib that may provide it an advantage in the treatment of AML.
Collapse
Affiliation(s)
- Shuiying Hu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 North Lauderdale Street, DTRC Room D1034, Mail Stop 314, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Barbarroja N, Siendones E, Torres LA, Luque MJ, Martinez JM, Dorado G, Velasco F, Torres A, López-Pedrera C. MEK inhibition induces caspases activation, differentiation blockade and PML/RARα degradation in acute promyelocytic leukaemia. Br J Haematol 2008; 142:27-35. [DOI: 10.1111/j.1365-2141.2008.07154.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
John Wiley & Sons, Ltd.. Current Awareness in Hematological Oncology. Hematol Oncol 2007. [DOI: 10.1002/hon.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|