1
|
Zhao Q, Wu J, Feng M, Zhang A, Fu L, Chen J, Li L, Li F, Li T, Jin S, Li S, Yu X. CXCL13 suppresses liver regeneration through the negative regulation of HGF signaling. Cell Death Dis 2025; 16:361. [PMID: 40325003 PMCID: PMC12052986 DOI: 10.1038/s41419-025-07568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Insufficient liver regeneration increases the risk of postoperative liver failure following liver transplantation or partial hepatectomy (PHx). Numerous growth factors and cytokines are related to liver regeneration; however, the underlying mechanisms have not been fully elucidated. In this study, CXCL13 was identified as a key factor delaying liver regeneration after PHx. We observed that CXCL13 expression was upregulated in PHx mice and patients following liver resection. CXCL13 deficiency accelerated liver regeneration, whereas these effects were abolished by recombinant murine CXCL13 administration. Moreover, proteomics analyses indicated that HGF levels in the serum after PHx were significantly greater in Cxcl13-/- mice than in WT mice. Further analysis revealed that CXCL13 deficiency promoted liver regeneration via elevated HGF expression in reparative macrophages and subsequent activated the HGF/c-MET axis in hepatocytes. Additionally, deficiency of macrophage CXCR5, the receptor for CXCL13, augmented liver regeneration and elevated HGF expression after PHx. Mechanistically, CXCL13 inhibited HGF expression in reparative macrophages via CXCR5-mediated AKT/FoxO3a signaling. We further determined that noncanonical NF-κB signaling activation induced CXCL13 expression in hepatic macrophages. Importantly, treatment with CXCL13-neutralizing antibody effectively improved liver regeneration in mice PHx model. Overall, our findings revealed a novel function of CXCL13 in negatively regulating liver regeneration. The underlying mechanism involved CXCL13/CXCR5-mediated FoxO3a signaling, which downregulated HGF expression in reparative macrophages and subsequently attenuated hepatocyte proliferation through inactivating HGF/c-MET signaling. These data suggest that therapeutic targeting of the CXCL13 signaling axis might decrease the risk of postoperative liver failure.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Jingyi Wu
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Mengyuan Feng
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Anjie Zhang
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Liwei Fu
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Jinglin Chen
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Lian Li
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fangzhou Li
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Tingting Li
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shengbao Li
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianjun Yu
- Department of Gastroenterology, Taihe Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.
- Laboratory of Inflammation and Molecular Pharmacology, Biomedical Research Institute, Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
2
|
Zhang X, Li S, Hao L, Jia F, Yu F, Hu X. Influencing factors and mechanism of hepatocyte regeneration. J Transl Med 2025; 23:493. [PMID: 40307789 PMCID: PMC12042435 DOI: 10.1186/s12967-025-06278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
As a research hotspot in the field of regenerative medicine, hepatocyte regeneration has great potential in the treatment of liver diseases. This paper comprehensively summarizes the diverse sources of hepatocyte regeneration and its complex influencing factors, and deeply discusses the typical mechanism. According to the existing research, we observed that Wnt signaling pathway and Notch signaling pathway can play a synergistic role in the process of hepatocyte regeneration. So we further analyzed the crosstalk between Wnt and Notch signal pathway and the cross mechanism with TGF-β, YAP/TAZ pathway during regeneration. Despite the remarkable progress in the study of liver regeneration at the cellular and molecular levels, the comprehensive understanding of the fine regulation of influencing factors and the interaction between mechanisms still needs to be deepened. This paper aims to systematically analyze the interaction between influencing factors and classical mechanisms of hepatocyte regeneration by integrating multi-group data and advanced bioinformatics methods, so as to provide feasible ideas for the treatment of liver diseases and lay a solid theoretical foundation for the future development of regenerative medicine. It is believed that focusing on the rational development of innovative means such as inducing gene tendentiousness expression and anti-aging therapy, and in-depth analysis of the complex interactive network between hepatocyte regeneration mechanisms are expected to open up a new road for the development of more effective treatment strategies for liver diseases.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Fukang Jia
- Henan University of Traditional Chinese, Zhengzhou, China
| | - Fei Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Hionides-Gutierrez A, Goikoetxea-Usandizaga N, Sanz-García C, Martínez-Chantar ML, Cubero FJ. Novel Emerging Mechanisms in Acetaminophen (APAP) Hepatotoxicity. Liver Int 2025; 45:e16167. [PMID: 39548712 DOI: 10.1111/liv.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Drug-induced liver injury represents a critical public health issue, marked by unpredictable and potentially severe adverse reactions to medications, herbal products or dietary supplements. AIMS Acetaminophen is notably a leading cause of hepatotoxicity, impacting over one million individuals worldwide. MATERIALS & METHODS Extensive research has elucidated the intricate mechanisms driving APAP-induced liver injury, emphasising the significant roles of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction and cell death. RESULTS These insights pave the way for innovative therapeutic strategies, including the use of magnesium, bile acids, microbiota modulation and mesenchymal stem cells. DISCUSSION & CONCLUSION This review explores into these pathological mechanisms, proposing viable therapeutic interventions for patients suffering from APAP-induced liver injury.
Collapse
Affiliation(s)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
4
|
Goran LG, Liţă (Cofaru) FA, Fierbinţeanu-Braticevici C. Acute-on-Chronic Liver Failure: Steps Towards Consensus. Diagnostics (Basel) 2025; 15:751. [PMID: 40150093 PMCID: PMC11941433 DOI: 10.3390/diagnostics15060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome characterized by organ failure and high short-term mortality. Since its first definition in 2013, many international organizations have defined this syndrome and, till now, there has been no agreement regarding definitions and diagnostic criteria. Although the precise mechanism of ACLF is unknown, precipitant factors and the systemic inflammation response play a major role. Specific management of this high-mortality syndrome is still under development, but a general consensus in the diagnosis and management of ACLF is needed.
Collapse
Affiliation(s)
- Loredana Gabriela Goran
- Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.A.L.); (C.F.-B.)
- Internal Medicine II and Gastroenterology Department, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| | - Florina Alexandra Liţă (Cofaru)
- Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.A.L.); (C.F.-B.)
- Emergency Department, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| | - Carmen Fierbinţeanu-Braticevici
- Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.A.L.); (C.F.-B.)
- Internal Medicine II and Gastroenterology Department, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
5
|
Li B, Liu S, Han W, Song P, Sun H, Cao X, Di G, Chen P. Aquaporin five deficiency suppresses fatty acid oxidation and delays liver regeneration through the transcription factor PPAR. J Biol Chem 2025; 301:108303. [PMID: 39947476 PMCID: PMC11930093 DOI: 10.1016/j.jbc.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
After 70% partial hepatectomy (PHx), the metabolic pathways leading to hepatocyte lipid droplet accumulation during liver regeneration remain unclear. Aquaporin 5 (Aqp5) is an aquaporin that facilitates the transport of both water and hydrogen peroxide (H2O2). In this study, we observed delayed liver regeneration following PHx in Aqp5 knockout (Aqp5-/-) mice. Considering the role of Aqp5 in H2O2 transport, we hypothesized that deficiency in Aqp5 may induce oxidative stress and hepatocyte injury. Through the measurement of reactive oxygen species (ROS) and redox-related indices, we observed significant alterations in ROS levels as well as malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations in regenerating livers lacking Aqp5 compared to wild-type controls. Oil Red O and 4-hydroxynonenal (4-HNE) staining results indicated that Aqp5 deficiency caused lipid accumulation during liver regeneration. The transcriptome sequencing results showed that the PPAR pathway is inhibited during the liver regeneration process in Aqp5 gene-knockout mice. The administration of the WY-14643 agonist, which targets the PPAR pathway, significantly mitigated delayed liver regeneration by enhancing hepatocyte proliferation and reducing lipid accumulation caused by Aqp5 deficiency. Our findings highlight the crucial role of Aqp5 in regulating H2O2 levels and lipid metabolism through the PPAR pathway during liver regeneration.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shixu Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Cao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Guo M, Jiang X, Ouyang H, Zhang X, Zhang S, Wang P, Bi G, Wu T, Zhou W, Liang F, Yang X, Fan S, Fang JH, Chen P, Bi H. Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals. Acta Pharm Sin B 2025; 15:1430-1446. [PMID: 40370533 PMCID: PMC12069244 DOI: 10.1016/j.apsb.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
Collapse
Affiliation(s)
- Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
7
|
Duncan AW. Pathological polyploidy and liver repair failure in RAD51-deficient mice. Hepatology 2025; 81:393-395. [PMID: 38546299 PMCID: PMC12036278 DOI: 10.1097/hep.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Andrew W. Duncan
- Department of Pathology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| |
Collapse
|
8
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
9
|
Li H, Zhou Y, Cai C, Liang H, Li X, Huang M, Fan S, Bi H. Fenofibrate induces liver enlargement in aging mice via activating the PPARα-YAP signaling pathway. Chem Biol Interact 2025; 405:111286. [PMID: 39442682 DOI: 10.1016/j.cbi.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fenofibrate is a clinically prescribed drug for treating hypertriglyceridemia, which is also a classic peroxisome proliferator-activated receptor α (PPARα) agonist. We previously reported that fenofibrate induced liver enlargement in adult mice partially through activation of the yes-associated protein (YAP) signaling pathway. However, the effects of fenofibrate on liver enlargement and the YAP signaling pathway in aging mice remain unclear. In this study, D-galactose-induced aging mice, naturally aging mice, and senescence-accelerated mice P8 (SAMP8) were used to investigate the effects of aging on fenofibrate-induced liver enlargement and YAP signaling activation. The results showed that fenofibrate-induced liver enlargement in aging mice was consistent with that of adult mice. The effects of fenofibrate on hepatocyte enlargement around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area were comparable between adult and aging mice. There was no significant difference in the upregulation of PPARα downstream proteins between the two groups following fenofibrate treatment. Fenofibrate treatment also increased the expression of proliferation-related proteins and activated the YAP signaling pathway to a similar degree in both groups. In summary, these results demonstrate that the fenofibrate-induced liver enlargement and activation of the YAP pathway are consistent between adult and aging mice, indicating that the effects of fenofibrate on promoting liver enlargement and its activation of the PPARα and YAP pathway were independent of aging. These findings offer a new perspective for the clinical use of fenofibrate in elderly patients and provide a new insight for the role of PPARα in liver enlargement.
Collapse
Affiliation(s)
- Huilin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Zhang Z, Yue R, Wang Y, Ma L, Wang M, Chen Y. To explore the mechanism of gypenosides in the treatment of liver injury in rats based on GC-MS metabolomics and bile acid metabolism pathway. J Pharm Biomed Anal 2025; 252:116506. [PMID: 39418697 DOI: 10.1016/j.jpba.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Gynostemma pentaphyllum is a herbaceous vine of Cucurbitaceae family, and its principal pharmacological components, gypenosides (GPs), have been proved to be effective in various liver diseases. However, the mechanisms of GPs on liver injury are still to be studied for further. This investigation utilized the CCl4-induced liver injury rat model (LI) to comprehensively explore the mechanism of action of GPs in the treatment of chemical liver injury by comparing the metabolomic changes in four groups rats. In this study, the therapeutic efficacy of GPs in a liver injury rat model induced by weekly gavage of CCl4 was evaluated by inflammatory factors, oxidative damage indexes, and histopathological sections. Then, GC-MS technology was used to identify the metabolic profile of GPs in treating liver injury. Finally, the content variation of metabolites (BAs and SCFAs) was measured to elucidate the mechanism of GPs in the treatment of CCl4-induced liver injury. After 8 weeks of administration, GPs effectively reduced the degree of LI and appeared a substantial tendency of reversing in the levels of MDA, GSH, CYP7E1, CYP7A1 and CYP27A1. Untargeted metabolomics suggested that GPs may play a role in BAs and SCFAs metabolism. Targeted metabolomics and ELISA confirmed the key role of GPs in increasing SCFAs levels and regulating BAs metabolism. Overall, this study indicated that GPs can alleviate CCl4-induced liver injury. And GPs may exert beneficial effects on LI by affecting their metabolites (SCFAs and BAs).
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yibo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lizhou Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
11
|
Zhang S, Zhou B, Chen P, Chen G. In situ right posterior sectionectomy during liver procurement based on preoperative 3D planning to prevent extreme large-for-size syndrome in adult-to-adult liver transplantation: a case report. Quant Imaging Med Surg 2024; 14:9552-9562. [PMID: 39698676 PMCID: PMC11651932 DOI: 10.21037/qims-24-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Large-for-size syndrome (LFSS) is an uncommon but potentially lethal complication following adult liver transplantation (LT). Reduced-size liver transplantation (RSLT) is considered a valuable alternative to delayed fascial closure or mesh closure for preventing LFSS. In this article, we report a successful adult-to-adult RSLT case with in situ right posterior graft sectionectomy using three-dimensional (3D) computer-assisted planning. This case is unique, as it employed preoperative planned in situ right posterior segmental resection (iRPS). CASE DESCRIPTION A short and slim, 69-year-old woman was admitted to Daping Hospital in January, 2023. The patient had previously been diagnosed with hepatitis B virus (HBV)-related hepatocellular carcinoma and acute-on-chronic liver failure. She had received 1 month of hepatoprotective and anti-HBV treatment before being admitted to Daping Hospital, and she had not suffered from any episodes of encephalopathy or upper gastrointestinal bleeding. The physical examination revealed moderate yellow staining of the skin and sclera, abdominal distension, shifting dullness, and pitting edema of the lower limbs. The laboratory test results revealed high serum total bilirubin (TBil) (121.2 µmol/L) and a long prothrombin time (PT) (23.4 s). Computed tomography (CT) showed a 3.4 cm × 2.9 cm nodule in segment V of the liver without macrovascular invasion. Due to the patient's poor liver function, conventional anti-tumor therapies (e.g., surgical resection, transcatheter arterial chemoembolization, and radiofrequency ablation) could not be used, and LT was the only feasible treatment for the patient. The graft volume (GV) of the allocated liver was measured by computed tomography volumetry (CTV). The estimated graft-recipient weight ratio (GRWR) was 3.8%, and the estimated graft weight/right anteroposterior ratio (GW/RAP) was 120.2, which indicated that the donor liver size was severely mismatched with the recipient's abdominal cavity. After meticulous surgical planning using a 3D simulation implanting model, an in situ right posterior graft sectionectomy was performed, and the reduced-size graft was successfully implanted in the recipient. The post-transplant course was uneventful. At the 12-month follow-up, the patient had an excellent quality of life, and no signs of tumor recurrence. CONCLUSIONS In situ right posterior graft sectionectomy is a feasible and effective strategy for preventing LFSS, especially if there is a size discrepancy between the donor liver anteroposterior dimensions and the recipient's lower right hemithorax. Accurate preoperative surgical planning is the key element in the success of the proposed size-reduction strategies.
Collapse
Affiliation(s)
- Shiran Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Chen Y, Wu Y, Sun H, Zhang H, Tang D, Yuan T, Chen C, Huang W, Zhou X, Wu H, Xu S, Liu W, Jiao Y, Yang L, Li Q, Yan H, Yu W. Human liver progenitor-like cells-derived extracellular vesicles promote liver regeneration during acute liver failure. Cell Biol Toxicol 2024; 40:106. [PMID: 39604571 PMCID: PMC11602810 DOI: 10.1007/s10565-024-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Hepatocyte-derived liver progenitor-like cells (HepLPCs) exhibit a remarkable capacity to support liver function by detoxifying ammonia, promoting native liver regeneration, and suppressing inflammation, which leads to improvements in the recovery and survival of animals with acute liver failure (ALF). However, the mechanism through which HepLPCs promote liver regeneration is unclear. Here, we isolated HepLPC-derived extracellular vesicles (HepLPC-EVs) from conditioned media and performed microRNA sequencing analysis. Our results showed HepLPC-EVs promoted liver regeneration in mice with carbon tetrachloride or acetaminophen induced ALF. Cell cycle progression and proliferation of primary human hepatocytes were promoted after coculture with HepLPC-EVs. Exosomal miRNA sequencing confirmed that HepLPC-EVs were enriched with miR-183-5p, which played an essential role in ameliorating ALF. Mechanistically, HepLPC-derived exosomal miR-183-5p negatively regulated the expression of the target gene FoxO1, activated the Akt/GSK3β/β-catenin signaling pathway, and thereby promoted liver regeneration and restoration of normal liver function. These results indicate that during ALF, HepLPC-Exos mediate liver regeneration mainly through a paracrine exosome-dependent mechanism and these effects accelerate liver regeneration and lead to the restoration of normal liver function.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Yuling Wu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Hanyong Sun
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongdan Zhang
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China
| | - Dan Tang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Tianjie Yuan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Caiyang Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Weijian Huang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Xu Zhou
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Saihong Xu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Wenming Liu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Yingfu Jiao
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Liqun Yang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Qigen Li
- Department of Organ Transplantation, the Second Affiliated Hospital of Nanchang University, Nanchang, 330200, China.
| | - Hexin Yan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China.
| | - Weifeng Yu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
| |
Collapse
|
13
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
Lkham-Erdene B, Choijookhuu N, Kubota T, Uto T, Mitoma S, Shirouzu S, Ishizuka T, Kai K, Higuchi K, Mo Aung K, Batmunkh JE, Sato K, Hishikawa Y. Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy. Acta Histochem Cytochem 2024; 57:175-188. [PMID: 39552932 PMCID: PMC11565223 DOI: 10.1267/ahc.24-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming a major health problem worldwide. Liver regeneration is crucial for restoring liver function, and is regulated by extraordinary complex process, involving numerous factors under both physiologic and pathologic conditions. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid synthesized by sphingosine kinase 1 (SphK1), plays an important role in liver function through S1P receptors (S1PRs)-expressing cells. In this study, we investigated the effect of lipid overload on hepatocyte proliferation in a mouse hepatic steatosis model induced by feeding a methionine- and choline-deficient (MCD) diet. After 50% partial hepatectomy (PHx), liver tissues were sampled at various timepoints and then analyzed by immunohistochemistry, oil Red-O staining, quantitative-polymerase chain reaction (qPCR), and flow cytometry. In mice fed the MCD-diet, significantly exacerbated hepatic steatosis and accelerated liver regeneration were observed. After PHx, hepatocyte proliferation peaked at 48 and 36 hr in the liver of chow- and MCD-diet fed mice, respectively. By contrast, increased expression of S1PR2 was observed in hepatic neutrophils and macrophages of MCD-diet fed mice. Flow cytometry and qPCR experiments demonstrated that levels of HGF and FGF2 released by neutrophils and macrophages were significantly higher in MCD-diet fed mice. In conclusion, hepatic lipid overload recruits Kupffer cells and neutrophils that release HGF and FGF2 via SphK1/S1PR2 activation to accelerate hepatocyte proliferation.
Collapse
Affiliation(s)
- Baljinnyam Lkham-Erdene
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Thoracic surgery department, National Cancer Center, Ulaanbaatar, Mongolia
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Pathology and Forensic Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Toshiki Kubota
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Tomofumi Uto
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Shuya Mitoma
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kazuhiro Higuchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kham Mo Aung
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Jargal-Erdene Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| |
Collapse
|
15
|
Liang Y, Mei Q, He E, Ballar P, Wei C, Wang Y, Dong Y, Zhou J, Tao X, Qu W, Zhao M, Chhetri G, Wei L, Shao J, Shen Y, Liu J, Feng L, Shen Y. MANF serves as a novel hepatocyte factor to promote liver regeneration after 2/3 partial hepatectomy via doubly targeting Wnt/β-catenin signaling. Cell Death Dis 2024; 15:681. [PMID: 39289348 PMCID: PMC11408687 DOI: 10.1038/s41419-024-07069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Liver regeneration is an intricate pathophysiological process that has been a subject of great interest to the scientific community for many years. The capacity of liver regeneration is very critical for patients with liver diseases. Therefore, exploring the mechanisms of liver regeneration and finding good ways to improve it are very meaningful. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a member of newly identified neurotrophic factors (NTFs) family, extensively expresses in the liver and has demonstrated cytoprotective effects during ER stress and inflammation. However, the role of MANF in liver regeneration remains unclear. Here, we used hepatocyte-specific MANF knockout (MANFHep-/-) mice to investigate the role of MANF in liver regeneration after 2/3 partial hepatectomy (PH). Our results showed that MANF expression was up-regulated in a time-dependent manner, and the peak level of mRNA and protein appeared at 24 h and 36 h after 2/3 PH, respectively. Notably, MANF knockout delayed hepatocyte proliferation, and the peak proliferation period was delayed by 24 h. Mechanistically, our in vitro results showed that MANF physically interacts with LRP5 and β-catenin, two essential components of Wnt/β-catenin pathway. Specifically, as a cofactor, MANF binds to the extracellular segment of LRP5 to activate Wnt/β-catenin signaling. On the other hand, MANF interacts with β-catenin to stabilize cytosolic β-catenin level and promote its nuclear translocation, which further enhance the Wnt/β-catenin signaling. We also found that MANF knockout does not affect the c-Met/β-catenin complex after 2/3 PH. In summary, our study confirms that MANF may serve as a novel hepatocyte factor that is closely linked to the activation of the Wnt/β-catenin pathway via intracellular and extracellular targets.
Collapse
Affiliation(s)
- Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Enguang He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jie Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Wenyan Qu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Goma Chhetri
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Limeng Wei
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.
- Department of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
16
|
Liu S. AHR regulates liver enlargement and regeneration through the YAP signaling pathway. Heliyon 2024; 10:e37265. [PMID: 39296106 PMCID: PMC11408047 DOI: 10.1016/j.heliyon.2024.e37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by ligands that participates in many important physiological processes. Although AHR activation is associated with hepatomegaly, the underlying mechanism remains unclear. This study evaluated the effects of AHR activation on liver enlargement and regeneration in various transgenic mice and animal models. Activation of AHR by the non-toxic ligand YH439 significantly induced liver/body weight ratio in wild-type mice (1.37-fold) and AHRfl/fl.ALB-CreERT2 mice (1.54-fold). However, these effects not present in AHRΔHep mice. Additionally, the activation of AHR promotes hepatocyte enlargement (1.43-fold or 1.41-fold) around the central vein (CV) and increases number of Ki67+ cells (42.5-fold or 48.8-fold) around the portal vein (PV) in wild-type mice and AHRfl/fl.ALB-CreERT2 mice. In the 70 % partial hepatectomy (PHx) model, YH439 significantly induced hepatocyte enlargement (1.40-fold) and increased number of Ki67+ cells (3.97-fold) in AHRfl/fl.ALB-CreERT2 mice. However, these effects were not observed in AHRΔHep mice. Co-immunoprecipitation results suggested a potential protein-protein interaction between AHR and Yes-associated protein (YAP). Disruption of the association between YAP and transcription enhancer domain family member (TEAD) significantly inhibited AHR-induced liver enlargement and regeneration. Furthermore, AHR failed to induce liver enlargement and regeneration in YAPΔHep mice. Blocking the YAP signaling pathway effectively eliminated AHR-induced liver enlargement and regeneration. This study revealed the molecular mechanism of AHR regulation of liver size and regeneration through the activation of AHR-TEAD signaling pathway, thereby offering novel insights into the physiological role of AHR. These findings provide a theoretical foundation for the prevention and treatment of disorders associated with liver regeneration.
Collapse
Affiliation(s)
- Shenghui Liu
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
17
|
Wu Y, Li L, Li W, Li N, Zhang X, Zheng L, Zhong S, Lü S, Shu X, Zhou J, Ai D, Gao M, Liu S, Lü D, Long M. Stretch-induced hepatic endothelial mechanocrine promotes hepatocyte proliferation. Hepatology 2024:01515467-990000000-01018. [PMID: 39250438 DOI: 10.1097/hep.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Partial hepatectomy-induced liver regeneration causes the increase in relative blood flow rate within the liver, which dilates hepatic sinusoids and applies mechanical stretch on liver sinusoidal endothelial cells (LSECs). Heparin-binding EGF-like growth factor is a crucial growth factor during liver regeneration. We aimed to investigate whether this sinusoidal dilation-induced stretch promotes HB-EGF secretion in LSECs and what the related molecular mechanism is. APPROACH AND RESULTS In vivo partial hepatectomy, ex vivo liver perfusion, and in vitro LSEC mechanical stretch were applied to detect HB-EGF expression in LSECs and hepatocyte proliferation. Knockdown or inhibition of mechanosensitive proteins was used to unravel the molecular mechanism in response to stretch. This stretch triggers amplitude-dependent and duration-dependent HB-EGF upregulation in LSECs, which is mediated by Yes-associated protein (YAP) nuclear translocation and binding to TEA domain family. This YAP translocation is achieved in 2 ways: On one hand, F-actin polymerization-mediated expansion of nuclear pores promotes YAP entry into nucleus passively. On the other hand, F-actin polymerization upregulates the expression of BAG family molecular chaperone regulator 3, which binds with YAP to enter the nucleus cooperatively. In this process, β1-integrin serves as a target mechanosensory in stretch-induced signaling pathways. This HB-EGF secretion-promoted liver regeneration after 2/3 partial hepatectomy is attenuated in endothelial cell-specific Yap1 -deficient mice. CONCLUSIONS Our findings indicate that mechanical stretch-induced HB-EGF upregulation in LSECs through YAP translocation can promote hepatocyte proliferation during liver regeneration through a mechanocrine manner, which deepens the understanding of the mechanical-biological coupling in liver regeneration.
Collapse
Affiliation(s)
- Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linda Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Zhong
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ming Gao
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sijin Liu
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
19
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
20
|
Kotulkar M, Paine-Cabrera D, Venneman K, Apte U. Role of HNF4alpha-cMyc interaction in liver regeneration after partial hepatectomy. Front Endocrinol (Lausanne) 2024; 15:1404318. [PMID: 39145310 PMCID: PMC11322135 DOI: 10.3389/fendo.2024.1404318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Hepatocyte nuclear factor 4 alpha (HNF4α) is the master regulator of hepatic differentiation. Recent studies have also revealed the role of HNF4α in hepatocyte proliferation via negatively regulating the expression of proto-mitogenic genes, including cMyc. Here, we aimed to study the interaction between HNF4α-cMyc during liver regeneration after partial hepatectomy (PHX). Methods Wild-type (WT), hepatocyte-specific knockout of HNF4α (HNF4α-KO), cMyc (cMyc-KO), and HNF4α-cMyc double knockout (DKO) mice were subjected to PHX to induce liver regeneration. Blood and liver tissue samples were collected at 0h, 24h, 48h, 7D, and 14D after PHX for further analysis. Results WT, HNF4α-KO, cMyc-KO and DKO mice regained liver weight by 14 days after PHX. The deletion of cMyc did not affect liver regeneration, which was similar to the WT mice. WT and cMyc-KO mice started regaining liver weight as early as 24 hours after PHX, with a peak proliferation response at 48 hours after PHX. HNF4α- KO and DKO showed a delayed response with liver weight increase by day 7 after PHX. The overall hepatocyte proliferation response by DKO mice following PHX was lower than that of other genotypes. Interestingly, the surviving HNF4α-KO and DKO mice showed re-expression of HNF4α at mRNA and protein levels on day 14 after PHX. This was accompanied by a significant increase in the expression of Krt19 and Epcam, hepatic progenitor cell markers, in the DKO mice on day 14 after PHX. Conclusion These data indicate that, in the absence of HNF4α, cMyc contributes to hepatocyte-driven proliferation to compensate for the lost tissue mass. Furthermore, in the absence of both HNF4α and cMyc, HPC-driven proliferation occurs to support liver regeneration.
Collapse
Affiliation(s)
| | | | | | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
21
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
22
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
23
|
Song G, Feng G, Li Q, Peng J, Ge W, Long Y, Cui Z. Transcriptomic Characterization of Key Factors and Signaling Pathways for the Regeneration of Partially Hepatectomized Liver in Zebrafish. Int J Mol Sci 2024; 25:7212. [PMID: 39000319 PMCID: PMC11241411 DOI: 10.3390/ijms25137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Liver regeneration induced by partial hepatectomy (PHx) has attracted intensive research interests due to the great significance for liver resection and transplantation. The zebrafish (Danio rerio) is an excellent model to study liver regeneration. In the fish subjected to PHx (the tip of the ventral lobe was resected), the lost liver mass could be fully regenerated in seven days. However, the regulatory mechanisms underlying the liver regeneration remain largely unknown. In this study, gene expression profiles during the regeneration of PHx-treated liver were explored by RNA sequencing (RNA-seq). The genes responsive to the injury of PHx treatment were identified and classified into different clusters based on the expression profiles. Representative gene ontology (GO) enrichments for the early responsive genes included hormone activity, ribosome biogenesis and rRNA processing, etc., while the late responsive genes were enriched in biological processes such as glutathione metabolic process, antioxidant activity and cellular detoxification. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments were also identified for the differentially expressed genes (DEGs) between the time-series samples and the sham controls. The proteasome was overrepresented by the up-regulated genes at all of the sampling time points. Inhibiting proteasome activity by the application of MG132 to the fish enhanced the expression of Pcna (proliferating cell nuclear antigen), an indicator of hepatocyte proliferation after PHx. Our data provide novel insights into the molecular mechanisms underlying the regeneration of PHx-treated liver.
Collapse
Affiliation(s)
- Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guohui Feng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongbin Cui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
24
|
Cao Y, Wang S, Zhang M, Lai B, Liang Y. PFKFB3-mediated glycolysis in hepatic stellate cells promotes liver regeneration. Biochem Biophys Res Commun 2024; 712-713:149958. [PMID: 38640731 DOI: 10.1016/j.bbrc.2024.149958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Hepatic stellate cells (HSCs) perform a significant function in liver regeneration (LR) by becoming active. We propose to investigate if activated HSCs enhance glycolysis via PFKFB3, an essential glycolytic regulator, and whether targeting this pathway could be beneficial for LR. The liver and isolated HSCs of mice subjected to 2/3 partial hepatectomy (PHx) exhibited a significant rise in PFKFB3 expression, as indicated by quantitative RT-PCR analyses and Western blotting. Also, the primary HSCs of mice subjected to PHx have a significant elevation of the glycolysis level. Knocking down PFKFB3 significantly diminished the enhancement of glycolysis by PDGF in human LX2 cells. The hepatocyte proliferation in mice treated with PHx was almost completely prevented when the PFKFB3 inhibitor 3PO was administered, emerging that PFKFB3 is essential in LR. Furthermore, there was a decline in mRNA expression of immediate early genes and proinflammatory cytokines. In terms of mechanism, both the p38 MAP kinase and ERK1/2 phosphorylation in LO2 cells and LO2 proliferation were significantly reduced by the conditioned medium (CM) obtained from LX2 cells with either PFKFB3 knockdown or inhibition. Compared to the control group, isolated hepatocytes from 3PO-treated mice showed decreased p38 MAP kinase and ERK1/2 phosphorylation and proliferation. Thus, LR after PHx involves the activation of PFKFB3 in HSCs, which enhances glycolysis and promotes lactate production, thereby facilitating hepatocyte proliferation via the p38/ERK MAPK signaling pathway.
Collapse
Affiliation(s)
- Yapeng Cao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Siyu Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Min Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian Yang, 712046, China.
| |
Collapse
|
25
|
Wu T, Li L, Zhou W, Bi G, Jiang X, Guo M, Yang X, Fang J, Pang J, Fan S, Bi H. Gut Microbiota Affects Mouse Pregnane X Receptor Agonist Pregnenolone 16α-Carbonitrile-Induced Hepatomegaly by Regulating Pregnane X Receptor and Yes-Associated Protein Activation. Drug Metab Dispos 2024; 52:597-605. [PMID: 38697851 DOI: 10.1124/dmd.123.001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Pregnane X receptor (PXR) is essential in the regulation of liver homeostasis, and the gut microbiota is closely linked to liver physiologic and pathologic status. We previously found that activation of PXR significantly promotes liver enlargement through interaction with yes-associated protein (YAP). However, whether gut microbiota contributes to PXR-induced hepatomegaly and the involved mechanisms remain unclear. In this study, C57BL/6 mice were administered the mouse-specific agonist pregnenolone 16α-carbonitrile (PCN) for 5 days. Depletion of gut microbiota was achieved using broad-spectrum antibiotics (ABX) and fecal microbiota transplantation (FMT) was performed to restore the gut microbia. The composition of gut microbiota was analyzed by 16S rRNA sequencing, while the expression of PXR, YAP, and their downstream target genes and proteins were assessed. The results indicated that PCN treatment altered the composition and abundance of specific bacterial taxa. Furthermore, depletion of gut microbiota using ABX significantly attenuated PCN-induced hepatomegaly. FMT experiments further demonstrated that the fecal microbiota from PCN-treated mice could induce liver enlargement. Mechanistic studies revealed that ABX treatment impeded the PXR and YAP activation induced by PCN, as evidenced by decreased expression of PXR, YAP, and their downstream targets. Moreover, alterations in PXR and YAP activation were likely contributing to hepatomegaly in recipient mice following FMT from PCN-treated mice. Collectively, the current study demonstrated that gut microbiota is involved in PCN-induced hepatomegaly via regulating PXR and YAP activation, providing potential novel insights into the involvement of gut microbiota in PXR-mediated hepatomegaly. SIGNIFICANCE STATEMENT: This work describes that the composition of gut microbiota is altered in mouse pregnane X receptor (PXR) agonist pregnenolone 16α-carbonitrile (PCN)-induced hepatomegaly. Treatment with an antibiotic cocktail depletes the intestinal microbiota, leading to the impairment of liver enlargement caused by PCN. Additionally, fecal microbiota transplantation from PCN-treated mice induces liver enlargement. Further study revealed that gut microbiota is involved in hepatomegaly via regulating PXR and yes-associated protein activation.
Collapse
Affiliation(s)
- Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Jianhong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| |
Collapse
|
26
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
27
|
Luenstedt J, Hoping F, Feuerstein R, Mauerer B, Berlin C, Rapp J, Marx L, Reichardt W, von Elverfeldt D, Ruess DA, Plundrich D, Laessle C, Jud A, Neeff HP, Holzner PA, Fichtner-Feigl S, Kesselring R. Partial hepatectomy accelerates colorectal metastasis by priming an inflammatory premetastatic niche in the liver. Front Immunol 2024; 15:1388272. [PMID: 38919609 PMCID: PMC11196966 DOI: 10.3389/fimmu.2024.1388272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Background Resection of colorectal liver metastasis is the standard of care for patients with Stage IV CRC. Despite undoubtedly improving the overall survival of patients, pHx for colorectal liver metastasis frequently leads to disease recurrence. The contribution of this procedure to metastatic colorectal cancer at a molecular level is poorly understood. We designed a mouse model of orthograde metastatic colorectal cancer (CRC) to investigate the effect of partial hepatectomy (pHx) on tumor progression. Methods CRC organoids were implanted into the cecal walls of wild type mice, and animals were screened for liver metastasis. At the time of metastasis, 1/3 partial hepatectomy was performed and the tumor burden was assessed longitudinally using MRI. After euthanasia, different tissues were analyzed for immunological and transcriptional changes using FACS, qPCR, RNA sequencing, and immunohistochemistry. Results Mice that underwent pHx presented significant liver hypertrophy and an increased overall metastatic load compared with SHAM operated mice in MRI. Elevation in the metastatic volume was defined by an increase in de novo liver metastasis without any effect on the growth of each metastasis. Concordantly, the livers of pHx mice were characterized by neutrophil and bacterial infiltration, inflammatory response, extracellular remodeling, and an increased abundance of tight junctions, resulting in the formation of a premetastatic niche, thus facilitating metastatic seeding. Conclusions Regenerative pathways following pHx accelerate colorectal metastasis to the liver by priming a premetastatic niche.
Collapse
Affiliation(s)
- Jost Luenstedt
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Hoping
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Rapp
- Eye Center, University Medical Center Freiburg, Freiburg, Germany
- Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Lisa Marx
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothea Plundrich
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Jud
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Hannes Philipp Neeff
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Anton Holzner
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Uriarte I, Santamaria E, López-Pascual A, Monte MJ, Argemí J, Latasa MU, Adán-Villaescusa E, Irigaray A, Herranz JM, Arechederra M, Basualdo J, Lucena F, Corrales FJ, Rotellar F, Pardo F, Merlen G, Rainteau D, Sangro B, Tordjmann T, Berasain C, Marín JJG, Fernández-Barrena MG, Herrero I, Avila MA. New insights into the regulation of bile acids synthesis during the early stages of liver regeneration: A human and experimental study. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167166. [PMID: 38642480 DOI: 10.1016/j.bbadis.2024.167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIMS Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.
Collapse
Affiliation(s)
- Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaria
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María J Monte
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Université Paris-Saclay, Inserm U1193, Orsay, France
| | - Josepmaria Argemí
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jorge Basualdo
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain; Internal Medicine Department, ICOT Hospital Ciudad de Telde, Las Palmas, Spain
| | - Felipe Lucena
- Internal Medicine Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Fernando Rotellar
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando Pardo
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine, Paris, France
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marín
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Ignacio Herrero
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain.
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
29
|
Deng J, Teng J, Xiao T, Wen J, Meng W. MAD1 deficiency accelerates hepatocellular proliferation via suppressing TGF-β signaling. Heliyon 2024; 10:e31312. [PMID: 38813231 PMCID: PMC11133804 DOI: 10.1016/j.heliyon.2024.e31312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Numerous researches have reported on the regulatory network of liver regeneration induced by partial hepatectomy (PH). However, information on key molecules and/or signaling pathways regulating the termination stage of liver regeneration remains limited. In this study, we identify hepatic mitotic arrest deficient 1 (MAD1) as a crucial regulator of transforming growth factor β (TGF-β) in the hepatocyte to repress liver regeneration. MAD1 has a low expression level at the rapid proliferation phase but significantly increases at the termination phase of liver regeneration. We show that MAD1 deficiency accelerates hepatocyte proliferation and enhances mitochondrial biogenesis and respiratory. Mechanistically, MAD1 deficiency in hepatocytes enhances mitochondrial function and promotes hepatocyte proliferation by suppressing TGF-β signaling. Our study reveals MAD1 as a novel suppressor of hepatocyte proliferation, which may provide a new therapeutic target for the recovery of liver function after liver transplant and partial hepatectomy.
Collapse
Affiliation(s)
- Jiangming Deng
- National Clinical Research Center for Metabolic Diseases and the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- The Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Departments of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jianhui Teng
- National Clinical Research Center for Metabolic Diseases and the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- The Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ting Xiao
- The Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Hepatology, Hunan Children's Hospital, Changsha, 410000, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Wen Meng
- National Clinical Research Center for Metabolic Diseases and the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- The Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Departments of Oncology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
30
|
Yan Y, Chen Q, Dai X, Xiang Z, Long Z, Wu Y, Jiang H, Zou J, Wang M, Zhu Z. Amino acid metabolomics and machine learning for assessment of post-hepatectomy liver regeneration. Front Pharmacol 2024; 15:1345099. [PMID: 38855741 PMCID: PMC11157015 DOI: 10.3389/fphar.2024.1345099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Amino acid (AA) metabolism plays a vital role in liver regeneration. However, its measuring utility for post-hepatectomy liver regeneration under different conditions remains unclear. We aimed to combine machine learning (ML) models with AA metabolomics to assess liver regeneration in health and non-alcoholic steatohepatitis (NASH). Methods The liver index (liver weight/body weight) was calculated following 70% hepatectomy in healthy and NASH mice. The serum levels of 39 amino acids were measured using ultra-high performance liquid chromatography-tandem mass spectrometry analysis. We used orthogonal partial least squares discriminant analysis to determine differential AAs and disturbed metabolic pathways during liver regeneration. The SHapley Additive exPlanations algorithm was performed to identify potential AA signatures, and five ML models including least absolute shrinkage and selection operator, random forest, K-nearest neighbor (KNN), support vector regression, and extreme gradient boosting were utilized to assess the liver index. Results Eleven and twenty-two differential AAs were identified in the healthy and NASH groups, respectively. Among these metabolites, arginine and proline metabolism were commonly disturbed metabolic pathways related to liver regeneration in both groups. Five AA signatures were identified, including hydroxylysine, L-serine, 3-methylhistidine, L-tyrosine, and homocitrulline in healthy group, and L-arginine, 2-aminobutyric acid, sarcosine, beta-alanine, and L-cysteine in NASH group. The KNN model demonstrated the best evaluation performance with mean absolute error, root mean square error, and coefficient of determination values of 0.0037, 0.0047, 0.79 and 0.0028, 0.0034, 0.71 for the healthy and NASH groups, respectively. Conclusion The KNN model based on five AA signatures performed best, which suggests that it may be a valuable tool for assessing post-hepatectomy liver regeneration in health and NASH.
Collapse
Affiliation(s)
- Yuqing Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianping Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hui Jiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mu Wang
- The NanHua Affiliated Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
31
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
32
|
Smith-Cortinez N, Heegsma J, Podunavac M, Zakarian A, Cardenas JC, Faber KN. Novel Inositol 1,4,5-Trisphosphate Receptor Inhibitor Antagonizes Hepatic Stellate Cell Activation: A Potential Drug to Treat Liver Fibrosis. Cells 2024; 13:765. [PMID: 38727301 PMCID: PMC11083487 DOI: 10.3390/cells13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they proliferate, migrate, and produce ECM. Calcium signaling, involving the inositol 1,4,5-trisphosphate receptor (IP3R), regulates HSC activation. This study investigated the efficacy of a novel IP3R inhibitor, desmethylxestospongin B (dmXeB), in preventing HSC activation. Freshly isolated rat HSCs were activated in vitro in the presence of varying dmXeB concentrations. The dmXeB effectively inhibited HSC proliferation, migration, and expression of fibrosis markers without toxicity to the primary rat hepatocytes or human liver organoids. Furthermore, dmXeB preserved the quiescent phenotype of HSCs marked by retained vitamin A storage. Mechanistically, dmXeB suppressed mitochondrial respiration in activated HSCs while enhancing glycolytic activity. Notably, methyl pyruvate, dimethyl α-ketoglutarate, and nucleoside supplementation all individually restored HSC proliferation despite dmXeB treatment. Overall, dmXeB demonstrates promising anti-fibrotic effects by inhibiting HSC activation via IP3R antagonism without adverse effects on other liver cells. These findings highlight dmXeB as a potential therapeutic agent for liver fibrosis treatment, offering a targeted approach to mitigate liver fibrosis progression and its associated complications.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| | - Masa Podunavac
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
| | - J. César Cardenas
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
- Center for Integrative Biology, Universidad Mayor, Santiago 7510041, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| |
Collapse
|
33
|
Wang WC, Wu TH, Hung HC, Lee JC, Cheng CH, Wang YC, Lee CF, Wu TJ, Chou HS, Chan KM, Lee WC. Liver regeneration of living donor after liver donation for transplantation: Disparity in the left and right remnant liver. Medicine (Baltimore) 2024; 103:e37632. [PMID: 38579088 PMCID: PMC10994454 DOI: 10.1097/md.0000000000037632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
Donor safety is crucial for living donor liver transplantation (LDLT), and sufficient liver regeneration significantly affects outcomes of living donors. This study aimed to investigate clinical factors associated with liver regeneration in living donors. The study retrospectively reviewed 380 living donors who underwent liver donation at Chang Gung Memorial Hospital in Linkou. The clinical characteristics and medical parameters of donors were analyzed and compared according to liver donation graft type. There were 355 donors (93.4%) with right hemi-liver donations and 25 donors (6.6%) with left hemi-liver donations. Left hemi-liver donors had a higher body mass index (BMI) and a larger ratio of remnant liver volume (RLV) to total liver volume (TLV). However, the 2 groups showed no significant difference in the liver regeneration ratio. The type of remnant liver (P < .001), RLV/body weight (P = .027), RLV/TLV (P < .001), serum albumin on postoperative day 7 and total bilirubin levels on postoperative day 30 were the most significant factors affecting liver regeneration in living donors. In conclusion, adequate liver regeneration is essential for donor outcome after liver donation. The remnant liver could eventually regenerate to an adequate volume similar to the initial TLV before liver donation. However, the remnant left hemi-liver had a faster growth rate than the remnant right hemi-liver in donors.
Collapse
Affiliation(s)
- Wei-Cheng Wang
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Han Wu
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hao-Chien Hung
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jin-Chiao Lee
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsien Cheng
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Chao Wang
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Fang Lee
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hong-Shiue Chou
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Ming Chan
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Department of General Surgery and Chang Gung Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
34
|
Zhang T, Seeger P, Simsek Y, Sabihi M, Lücke J, Zazara DE, Shiri AM, Kempski J, Blankenburg T, Zhao L, Belios I, Machicote A, Mercanoglu B, Fard-Aghaie M, Notz S, Lykoudis PM, Kemper M, Ghadban T, Mann O, Hackert T, Izbicki JR, Renné T, Huber S, Giannou AD, Li J. IL-22 promotes liver regeneration after portal vein ligation. Heliyon 2024; 10:e27578. [PMID: 38533053 PMCID: PMC10963228 DOI: 10.1016/j.heliyon.2024.e27578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Background Insufficient remnant liver volume (RLV) after the resection of hepatic malignancy could lead to liver failure and mortality. Portal vein ligation (PVL) prior to hepatectomy is subsequently introduced to increase the remnant liver volume and improve the outcome of hepatic malignancy. IL-22 has previously been reported to promote liver regeneration, while facilitating tumor development in the liver via Steap4 upregulation. Here we performed PVL in mouse models to study the role of IL-22 in liver regeneration post-PVL. Methods Liver weight and volume was measured via magnetic resonance imaging (MRI). Immunohistochemistry for Ki67 and hepatocyte growth factor (HGF) was performed. IL-22 was analyzed by flow cytometry and quantitative polymerase chain reaction (qPCR) was used for acquisition of Il-33, Steap4, Fga, Fgb and Cebpd. To analyze signaling pathways, mice with deletion of STAT3 and a neutralizing antibody for IL-22 were used. Results The remnant liver weight and volume increased over time after PVL. Additionally, we found that liver regenerative molecules, including Ki67 and HGF, were significantly increased in remnant liver at day 3 post-PVL, as well as IL-22. Administration of IL-22 neutralizing antibody could reduce Ki67 expression after PVL. The upregulation of IL-22 after PVL was mainly derived from innate cells. IL-22 blockade resulted in lower levels of IL-33 and Steap4 in the remnant liver, which was also the case in mice with deletion of STAT3, the main downstream signaling molecule of IL-22, in hepatocytes. Conclusion IL-22 promotes liver regeneration after PVL. Thus, a combination of IL-22 supplementation and Steap4 blockade could potentially be applied as a novel therapeutic approach to boost liver regeneration without facilitating tumor progression after PVL.
Collapse
Affiliation(s)
- Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Yashin Simsek
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dimitra E. Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tom Blankenburg
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ioannis Belios
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andres Machicote
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sara Notz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Panagis M. Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Greece
- Division of Surgery & Interventional Science, University College London (UCL), UK
| | - Marius Kemper
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
35
|
Wang P, Kang Q, Wu WS, Rui L. Hepatic Snai1 and Snai2 promote liver regeneration and suppress liver fibrosis in mice. Cell Rep 2024; 43:113875. [PMID: 38451818 PMCID: PMC11025633 DOI: 10.1016/j.celrep.2024.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Liver injury stimulates hepatocyte replication and hepatic stellate cell (HSC) activation, thereby driving liver regeneration. Aberrant HSC activation induces liver fibrosis. However, mechanisms underlying liver regeneration and fibrosis remain poorly understood. Here, we identify hepatic Snai1 and Snai2 as important transcriptional regulators for liver regeneration and fibrosis. Partial hepatectomy or CCl4 treatment increases occupancies of Snai1 and Snai2 on cyclin A2 and D1 promoters in the liver. Snai1 and Snai2 in turn increase promoter H3K27 acetylation and cyclin A2/D1 expressions. Hepatocyte-specific deletion of both Snai1 and Snai2, but not one alone, suppresses liver cyclin A2/D1 expression and regenerative hepatocyte proliferation after hepatectomy or CCl4 treatments but augments CCl4-stimulated HSC activation and liver fibrosis. Conversely, Snai2 overexpression in the liver enhances hepatocyte replication and suppresses liver fibrosis after CCl4 treatment. These results suggest that hepatic Snai1 and Snai2 directly promote, via histone modifications, reparative hepatocyte replication and indirectly inhibit liver fibrosis.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; School of Chemical Engineering and Light Insulation, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianqian Kang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine, UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
37
|
Wakiya T, Sakuma Y, Onishi Y, Sanada Y, Okada N, Hirata Y, Horiuchi T, Omameuda T, Takadera K, Sata N. Liver resection volume-dependent pancreatic strain following living donor hepatectomy. Sci Rep 2024; 14:6753. [PMID: 38514681 PMCID: PMC10957952 DOI: 10.1038/s41598-024-57431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
The liver and pancreas work together to recover homeostasis after hepatectomy. This study aimed to investigate the effect of liver resection volume on the pancreas. We collected clinical data from 336 living liver donors. They were categorized into left lateral sectionectomy (LLS), left lobectomy, and right lobectomy (RL) groups. Serum pancreatic enzymes were compared among the groups. Serum amylase values peaked on postoperative day (POD) 1. Though they quickly returned to preoperative levels on POD 3, 46% of cases showed abnormal values on POD 7 in the RL group. Serum lipase levels were highest at POD 7. Lipase values increased 5.7-fold on POD 7 in the RL group and 82% of cases showed abnormal values. The RL group's lipase was twice that of the LLS group. A negative correlation existed between the remnant liver volume and amylase (r = - 0.326)/lipase (r = - 0.367) on POD 7. Furthermore, a significant correlation was observed between POD 7 serum bilirubin and amylase (r = 0.379)/lipase (r = 0.381) levels, indicating cooccurrence with liver and pancreatic strain. Pancreatic strain due to hepatectomy occurs in a resection/remnant liver volume-dependent manner. It would be beneficial to closely monitor pancreatic function in patients undergoing a major hepatectomy.
Collapse
Affiliation(s)
- Taiichi Wakiya
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yasunaru Sakuma
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yasuharu Onishi
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yukihiro Sanada
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Noriki Okada
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuta Hirata
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshio Horiuchi
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takahiko Omameuda
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiichiro Takadera
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Naohiro Sata
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
38
|
Li H, Liu Y, Meng F, Chen J, Han X. Adrenarche-accompanied rise of adrenal sex steroid precursors prevents NAFLD in Young Female rats by converting into active androgens and inactivating hepatic Srebf1 signaling. BMC Genomics 2024; 25:190. [PMID: 38369486 PMCID: PMC10875776 DOI: 10.1186/s12864-024-10107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common cause of chronic liver disease in children and adolescents, but its etiology remains largely unknown. Adrenarche is a critical phase for hormonal changes, and any disturbance during this period has been linked to metabolic disorders, including obesity and dyslipidemia. However, whether there is a causal linkage between adrenarche disturbance and the increasing prevalence of NAFLD in children remains unclear. RESULTS Using the young female rat as a model, we found that the liver undergoes a transient slowdown period of growth along with the rise of adrenal-derived sex steroid precursors during adrenarche. Specifically blocking androgen actions across adrenarche phase using androgen receptor antagonist flutamide largely increased liver weight by 47.97% and caused marked fat deposition in liver, thus leading to severe NAFLD in young female rats. Conversely, further administrating nonaromatic dihydrotestosterone (DHT) into young female rats across adrenarche phase could effectively reduce liver fat deposition. But, administration of the aromatase inhibitor, formestane across adrenarche had minimal effects on hepatic de novo fatty acid synthesis and liver fat deposition, suggesting adrenal-derived sex steroid precursors exert their anti-NAFLD effects in young females by converting into active androgens rather than into active estrogens. Mechanistically, transcriptomic profiling and integrated data analysis revealed that active androgens converted from the adrenal sex steroid precursors prevent NAFLD in young females primarily by inactivating hepatic sterol regulatory element-binding transcription factor 1 (Srebf1) signaling. CONCLUSIONS We firstly evidenced that adrenarche-accompanied rise of sex steroid precursors plays a predominant role in preventing the incidence of NAFLD in young females by converting into active androgens and inactivating hepatic Srebf1 signaling. Our novel finding provides new insights into the etiology of NAFLD and is crucial in developing effective prevention and management strategies for NAFLD in children.
Collapse
Affiliation(s)
- Haoqing Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yingyu Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Junan Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
39
|
Zhao J, Ghallab A, Hassan R, Dooley S, Hengstler JG, Drasdo D. A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage. iScience 2024; 27:108077. [PMID: 38371522 PMCID: PMC10869925 DOI: 10.1016/j.isci.2023.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024] Open
Abstract
This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.
Collapse
Affiliation(s)
- Jieling Zhao
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| |
Collapse
|
40
|
Lopez-Lopez V, Linecker M, Caballero-Llanes A, Reese T, Oldhafer KJ, Hernandez-Alejandro R, Tun-Abraham M, Li J, Fard-Aghaie M, Petrowsky H, Brusadin R, Lopez-Conesa A, Ratti F, Aldrighetti L, Ramouz A, Mehrabi A, Autran Machado M, Ardiles V, De Santibañes E, Marichez A, Adam R, Truant S, Pruvot FR, Olthof PB, Van Gulick TM, Montalti R, Troisi RI, Kron P, Lodge P, Kambakamba P, Hoti E, Martinez-Caceres C, de la Peña-Moral J, Clavien PA, Robles-Campos R. Liver Histology Predicts Liver Regeneration and Outcome in ALPPS: Novel Findings From A Multicenter Study. Ann Surg 2024; 279:306-313. [PMID: 37487004 DOI: 10.1097/sla.0000000000006024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND AIMS Alterations in liver histology influence the liver's capacity to regenerate, but the relevance of each of the different changes in rapid liver growth induction is unknown. This study aimed to analyze the influence of the degree of histological alterations during the first and second stages on the ability of the liver to regenerate. METHODS This cohort study included data obtained from the International ALPPS Registry between November 2011 and October 2020. Only patients with colorectal liver metastases were included in the study. We developed a histological risk score based on histological changes (stages 1 and 2) and a tumor pathology score based on the histological factors associated with poor tumor prognosis. RESULTS In total, 395 patients were included. The time to reach stage 2 was shorter in patients with a low histological risk stage 1 (13 vs 17 days, P ˂0.01), low histological risk stage 2 (13 vs 15 days, P <0.01), and low pathological tumor risk (13 vs 15 days, P <0.01). Regarding interval stage, there was a higher inverse correlation in high histological risk stage 1 group compared to low histological risk 1 group in relation with future liver remnant body weight ( r =-0.1 and r =-0.08, respectively), and future liver remnant ( r =-0.15 and r =-0.06, respectively). CONCLUSIONS ALPPS is associated with increased histological alterations in the liver parenchyma. It seems that the more histological alterations present and the higher the number of poor prognostic factors in the tumor histology, the longer the time to reach the second stage.
Collapse
Affiliation(s)
- Victor Lopez-Lopez
- Department of Surgery and Liver and Pancreas transplantation, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| | - Michael Linecker
- Department of Surgery and Transplantation, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Albert Caballero-Llanes
- Department of Pathology, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| | - Tim Reese
- Department of Surgery, Division of Liver, Bileduct and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Karl J Oldhafer
- Department of Surgery, Division of Liver, Bileduct and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | | | - Mauro Tun-Abraham
- Department of Surgery, Western University, London, Ontario, Canada
- Division of Transplantation/Hepatobiliary Surgery, Department of Surgery, University of Rochester, NY
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Petrowsky
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| | - Roberto Brusadin
- Department of Surgery and Liver and Pancreas transplantation, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| | - Asuncion Lopez-Conesa
- Department of Surgery and Liver and Pancreas transplantation, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| | - Francesca Ratti
- Department of Surgery, Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, School of Medicine, Milan, Italy
| | - Luca Aldrighetti
- Department of Surgery, Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, School of Medicine, Milan, Italy
| | - Ali Ramouz
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Victoria Ardiles
- Department of Surgery, Division of HPB Surgery, Liver Transplant Unit, Italian Hospital Buenos Aires, Argentina
| | - Eduardo De Santibañes
- Department of Surgery, Division of HPB Surgery, Liver Transplant Unit, Italian Hospital Buenos Aires, Argentina
| | - Arthur Marichez
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | - René Adam
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | - Stéphanie Truant
- Department of Digestive Surgery and Transplantation, University Hospital, Lille, France
| | - Francois-René Pruvot
- Department of Digestive Surgery and Transplantation, University Hospital, Lille, France
| | - Pim B Olthof
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Thomas M Van Gulick
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Roberto Montalti
- Department of Clinical Medicine and Surgery, Federico II University Hospital Naples, Napoli, Italy
| | - Roberto I Troisi
- Department of Clinical Medicine and Surgery, Federico II University Hospital Naples, Napoli, Italy
| | - Philipp Kron
- HPB and Transplant Unit, St. James's University Hospital, Leeds, UK
| | - Peter Lodge
- HPB and Transplant Unit, St. James's University Hospital, Leeds, UK
| | - Patryk Kambakamba
- Department of Hepatobiliary Surgery and Liver Transplantation, St. Vincent's University Hospital, Dublin, Ireland
| | - Emir Hoti
- Department of Hepatobiliary Surgery and Liver Transplantation, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Jesus de la Peña-Moral
- Department of Pathology, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| | - Pierre-Alain Clavien
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ricardo Robles-Campos
- Department of Surgery and Liver and Pancreas transplantation, Virgen de la Arrixaca Clinic and University Hospital, IMIB, Murcia, Spain
| |
Collapse
|
41
|
Yang S, Liu C, Jiang M, Liu X, Geng L, Zhang Y, Sun S, Wang K, Yin J, Ma S, Wang S, Belmonte JCI, Zhang W, Qu J, Liu GH. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024; 15:98-120. [PMID: 37378670 PMCID: PMC10833472 DOI: 10.1093/procel/pwad039] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
42
|
Fang Y, Ma H, Zhang X, Zhang P, Li Y, He S, Sheng C, Dong G. Smart glypican-3-targeting peptide-chlorin e6 conjugates for targeted photodynamic therapy of hepatocellular carcinoma. Eur J Med Chem 2024; 264:116047. [PMID: 38118394 DOI: 10.1016/j.ejmech.2023.116047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive and lethal malignancy with poor prognosis, necessitating the urgent development of effective treatments. Targeted photodynamic therapy (PDT) offers a promising way to selectively eradicate tumor cells without affecting normal cells. Inspired by promising features of peptide-drug conjugates (PDCs) in targeted cancer therapy, herein a novel glypican-3 (GPC3)-targeting PDC-PDT strategy was developed for the precise PDT treatment of HCC. The GPC3-targeting photosensitizer conjugates were developed by attaching GPC3-targeting peptides to chlorin e6. Conjugate 8b demonstrated the ability to penetrate HCC cells via GPC3-mediated entry process, exhibiting remarkable tumor-targeting capacity, superior antitumor efficacy, and minimal toxicity towards normal cells. Notably, conjugate 8b achieved complete tumor elimination upon light illumination in a HepG2 xenograft model without harm to normal tissues. Overall, this innovative GPC3-targeting conjugation strategy demonstrates considerable promise for clinical applications for the treatment of HCC.
Collapse
Affiliation(s)
- Yuxin Fang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Haoqian Ma
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Xianghua Zhang
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Peifeng Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China; National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yu Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
43
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy to treat murine liver diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575286. [PMID: 38260488 PMCID: PMC10802626 DOI: 10.1101/2024.01.11.575286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
|
44
|
Zhang Z, Shi B, Lv X, Dong Y, Li L, Xia Z. Effects of silybin supplementation on growth performance, serum indexes and liver transcriptome of Peking ducks. Front Vet Sci 2024; 10:1325115. [PMID: 38239743 PMCID: PMC10795170 DOI: 10.3389/fvets.2023.1325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
As an emerging feed additive extracted from the traditional herb milk thistle, silybin has few applications and studies in Peking ducks. The aim of this study was to explore the practical significance of silymarin application in Peking ducks and to provide more theoretical support for the application of silymarin in livestock and poultry production. A total of 156 1-day-old healthy Peking ducks were randomly divided into four groups and supplemented with 0 mg/kg (control group), 400 mg/kg (S400), 800 mg/kg (S800) and 1,600 mg/kg (S1600) of silybin in the diets at day 14, to investigate the effects of silymarin on the growth, serum indexes and liver transcriptome of Peking ducks. The whole experiment lasted until day 42, and the sample collection was scheduled to take place in the morning. A substantial inprovement in average daily gain (ADG) and a decrease in feed conversion ratio (FCR) occurred in the S1600 group on days 14-28 compared to the control group (p < 0.05). The FCRs of other additive groups in the same period showed the same results. Supplementation of diets with silybin significantly increased serum IgA levels and when 1,600 mg/kg of silybin was given, levels of TNF-α and IL-6 were also significantly decreased (p < 0.05). In addition, we observed that the S1600 group had a significantly lower (p < 0.05) glutamine transaminase and an increased (p < 0.05) T-SOD level in the S400 group (p < 0.05). Liver transcriptome sequencing showed that 71 and 258 differentially expressed genes (DEGs) were identified in the S400 and S1600 groups, respectively, compared with the control group. DEGs related to cell composition and function, antigen processing and presentation were up-regulated, while DEGs related to insulin resistance and JAK-STAT were down-regulated. Conclusively, silybin can be used as a feed additive to improve the growth performance and health status of Peking ducks.
Collapse
Affiliation(s)
- Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueze Lv
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing General Animal Husbandry Station, Beijing, China
| | - Yingchao Dong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Barrientos-Bonilla AA, Pensado-Guevara PB, Puga-Olguín A, Nadella R, Sánchez-García ADC, Zavala-Flores LM, Villanueva-Olivo A, Cibrián-Llanderal IT, Rovirosa-Hernández MDJ, Hernandez-Baltazar D. BrdU does not induce hepatocellular damage in experimental Wistar rats. Acta Histochem 2024; 126:152117. [PMID: 38016413 DOI: 10.1016/j.acthis.2023.152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bromodeoxyuridine (BrdU) is used in studies related to cell proliferation and neurogenesis. The multiple intraperitoneal injections of this molecule could favor liver function profile changes. In this study, we evaluate the systemic and hepatocellular impact of BrdU in male adult Wistar rats in 30 %-partial hepatectomy (PHx) model. The rats received BrdU 50 mg/Kg by intraperitoneal injection at 0.5, 1, 2, 3, 6, 9 and 16 days after 30 %-PH. The rats were distributed into four groups as follows, control, sham, PHx/BrdU(-) and PHx/BrdU(+). On day 16, we evaluated hepatocellular nuclei and analyzed histopathological features by haematoxylin-eosin stain and apoptotic profile was qualified by caspase-3 presence. The systemic effect was evaluated by liver markers such as alanine transferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (AP), bilirubin, total proteins and serum albumin content. The statistical analysis consisted of a student t-test and one-way ANOVA. BrdU did not induce apoptosis or hepatocellular damage in male rats. Multiple administrations of BrdU in male rats did not induce significant decrease body weight, but increased serum ALT and LDH levels were found. Our results show that the BrdU does not produce hepatocellular damage.
Collapse
Affiliation(s)
| | | | - Abraham Puga-Olguín
- Unidad de Salud Integrativa, Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | | - Arnulfo Villanueva-Olivo
- Departamento de Histología. Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | - Daniel Hernandez-Baltazar
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Investigadoras e investigadores por México CONAHCyT-Instituto de Neuroetología, Universidad Veracruzana, Mexico.
| |
Collapse
|
46
|
Li Y, Yang X, Bao T, Sun X, Li X, Zhu H, Zhang B, Ma T. Radix Astragali decoction improves liver regeneration by upregulating hepatic expression of aquaporin-9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155166. [PMID: 37918281 DOI: 10.1016/j.phymed.2023.155166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The therapeutic efficacy of liver injuries heavily relies on the liver's remarkable regenerative capacity, necessitating the maintenance of glycose/lipids homeostasis and oxidative eustasis during the recovery process. Astragali Radix, an herbal tonic widely used in China and many other countries, is believed to have many positive effects, including immune stimulation, nourishing, antioxidant, liver protection, diuresis, anti-diabetes, anti-cancer and expectorant. Astragali Radix is widely integrated into hepatoprotective formulas as it is believed to facilitate liver regeneration. Nevertheless, the precise molecular pharmacological mechanisms underlying this hepatoprotective effect remain elusive. PURPOSE To investigate the improving effects of Astragali Radix on liver regeneration and the underlying mechanisms. METHODS A mouse model of 70% partial hepatectomy (PHx) was employed to investigate the impact of Radix Astragali decoction (HQD) on liver regeneration. HQD was orally administered for 7 days before the PHx procedure and throughout the experiment. N-acetylcysteine (NAC) was used as a positive control for liver regeneration. Liver regeneration was assessed by evaluating the liver-to-body weight ratio (LW/BW) and the expression of representative cell proliferation marker proteins. Oxidative stress and glucose metabolism were analyzed using biochemical assays, Western blotting, dihydroethidium (DHE) fluorescence, and periodic acid-Schiff (PAS) staining methods. To understand the role of AQP9 as a potential molecular target of HQD in promoting liver regeneration, td-Tomato-tagged AQP9 transgenic mice (AQP9-RFP) were employed to determine the expression pattern of AQP9 protein. AQP9 knockout mice (AQP9-/-) were used to assess the specific targeting of AQP9 in the promotion of liver regeneration by HQD. RESULTS HQD significantly upregulated hepatic AQP9 expression, alleviated liver injury and promoted liver regeneration in wild-type (AQP9+/+) mice after 70% PHx. However, the beneficial impact of HQD on liver regeneration was absent in AQP9 gene knockout (AQP9-/-) mice. Moreover, HQD facilitated the uptake of glycerol by hepatocytes, enhanced gluconeogenesis, and concurrently reduced H2O2 content and oxidative stress levels in AQP9+/+ but not AQP9-/- mouse livers. Additionally, main active substance of Radix Astragali, astragaloside IV (AS-IV) and cycloastragenol (CAG), demonstrated substantial upregulation of AQP9 expression and promoted liver regeneration in AQP9+/+ but not AQP9-/- mice. CONCLUSION This study is the first to demonstrate that Radix Astragali and its main active constituents (AS-IV and CAG) improve liver regeneration by upregulating the expression of AQP9 in hepatocytes to increase gluconeogenesis and reduce oxidative stress. The study revealed novel molecular pharmacological mechanisms of Radix Astragali and provided a promising therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xu Yang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Tiantian Bao
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiaojuan Sun
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Huilin Zhu
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
47
|
Zhang Z, Deng S, Shi Q. Isoliquiritigenin attenuates high glucose-induced proliferation, inflammation, and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:123-131. [PMID: 37368032 DOI: 10.1007/s00210-023-02598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-β1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1β was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1β; expression of CTGF, TGF-β1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Zhu JH, Guan XC, Yi LL, Xu H, Li QY, Cheng WJ, Xie YX, Li WZ, Zhao HY, Wei HJ, Zhao SM. Single-nucleus transcriptome sequencing reveals hepatic cell atlas in pigs. BMC Genomics 2023; 24:770. [PMID: 38087243 PMCID: PMC10717992 DOI: 10.1186/s12864-023-09765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
Collapse
Affiliation(s)
- Jun-Hong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Cheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Lan-Lan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Xu
- School of Public Finance and Economics, Yunnan University of Finance and Economics, Kunming, 650221, China
| | - Qiu-Yan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Jie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu-Xiao Xie
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, 563006, China
| | - Wei-Zhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Su-Mei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
50
|
Rizvi F, Lee YR, Diaz-Aragon R, Bawa PS, So J, Florentino RM, Wu S, Sarjoo A, Truong E, Smith AR, Wang F, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023; 30:1640-1657.e8. [PMID: 38029740 PMCID: PMC10843608 DOI: 10.1016/j.stem.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.
Collapse
Affiliation(s)
- Fatima Rizvi
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yu-Ri Lee
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ricardo Diaz-Aragon
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rodrigo M Florentino
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susan Wu
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Arianna Sarjoo
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Emily Truong
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anna R Smith
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Elissa Everton
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alina Ostrowska
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyounghwa Jung
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, Infectious Diseases Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Valerie Gouon-Evans
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|