BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Wlodkowic D, Darzynkiewicz Z. Microfluidics: Emerging prospects for anti-cancer drug screening. World J Clin Oncol 2010; 1(1): 18-23 [PMID: 21603306 DOI: 10.5306/wjco.v1.i1.18]
URL: https://www.wjgnet.com/2218-4333/full/v1/i1/18.htm
Number Citing Articles
Nelita T. Elliott, Fan Yuan. A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumorsBiotechnology and Bioengineering 2012; 109(5): 1326 doi: 10.1002/bit.24397
Tamal Das, Suman Chakraborty. Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research?Biomicrofluidics 2013; 7(1): 011811 doi: 10.1063/1.4789750
Mariana R. Carvalho, Fátima Raquel Maia, Sílvia Vieira, Rui L. Reis, Joaquim M. Oliveira. Tuning Enzymatically Crosslinked Silk Fibroin Hydrogel Properties for the Development of a Colorectal Cancer Extravasation 3D Model on a ChipGlobal Challenges 2018; 2(5-6): 1700100 doi: 10.1002/gch2.201700100
Olivia Campana, Donald Wlodkowic. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk AssessmentEnvironmental Science & Technology 2018; 52(3): 932 doi: 10.1021/acs.est.7b03370
Yoshihiro Kawano, Chino Otsuka, James Sanzo, Christopher Higgins, Tatsuo Nirei, Tobias Schilling, Takuji Ishikawa, David T. Eddington. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in MicrofluidicsPLOS ONE 2015; 10(3): e0116925 doi: 10.1371/journal.pone.0116925
P. Sajeesh, S. Manasi, M. Doble, A. K. Sen. A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cellsLab on a Chip 2015; 15(18): 3738 doi: 10.1039/C5LC00598A
Zhuo Zhang, Sunitha Nagrath. Microfluidics and cancer: are we there yet?Biomedical Microdevices 2013; 15(4): 595 doi: 10.1007/s10544-012-9734-8
Trinh L. Doan, Michael Pollastri, Michael A. Walters, Gunda I. Georg. Annual Reports in Medicinal Chemistry 2011; 46: 385 doi: 10.1016/B978-0-12-386009-5.00004-7
Parthiv Kant Chaudhuri, Majid Ebrahimi Warkiani, Tengyang Jing, Kenry Kenry, Chwee Teck Lim. Microfluidics for research and applications in oncologyThe Analyst 2016; 141(2): 504 doi: 10.1039/C5AN00382B
Seung Hwan Lee, Hyun-Woo Rhee, Danny van Noort, Hong Jai Lee, Hee Ho Park, Ik-Soo Shin, Jong-In Hong, Tai Hyun Park. Microfluidic bead-based sensing platform for monitoring kinase activityBiosensors and Bioelectronics 2014; 57: 1 doi: 10.1016/j.bios.2014.01.039
Choong Kim, Junichi Kasuya, Jessie Jeon, Seok Chung, Roger D. Kamm. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugsLab on a Chip 2015; 15(1): 301 doi: 10.1039/C4LC00866A
Arianna Mencattini, Adele De Ninno, Jacopo Mancini, Luca Businaro, Eugenio Martinelli, Giovanna Schiavoni, Fabrizio Mattei. Tumor Immunology and Immunotherapy – Cellular Methods Part BMethods in Enzymology 2020; 632: 479 doi: 10.1016/bs.mie.2019.06.012
Katia Grenier, David Dubuc, Tong Chen, Francois Artis, Thomas Chretiennot, Mary Poupot, Jean-Jacques Fournie. Recent Advances in Microwave-Based Dielectric Spectroscopy at the Cellular Level for Cancer InvestigationsIEEE Transactions on Microwave Theory and Techniques 2013; 61(5): 2023 doi: 10.1109/TMTT.2013.2255885
John Saliba, Arij Daou, Samar Damiati, Jessica Saliba, Marwan El-Sabban, Rami Mhanna. Development of Microplatforms to Mimic the In Vivo Architecture of CNS and PNS Physiology and Their DiseasesGenes 2018; 9(6): 285 doi: 10.3390/genes9060285