1
|
Cui J, Zhang Y, Zhang W, Li D, Hong Z, Zhao L, Sun J, Chen Y, Zhang N. Research Hotspots and Development Trends on Apolipoprotein B in the Field of Atherosclerosis: A Bibliometric Analysis. Mol Biotechnol 2025; 67:2204-2222. [PMID: 38963531 DOI: 10.1007/s12033-024-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cardiovascular diseases caused by atherosclerosis (AS) are the leading causes of disability and death worldwide. Apolipoprotein B (ApoB), the core protein of low-density lipoproteins, is a major contributor to cardiovascular disease-related morbidity and mortality, with apolipoprotein B (ApoB) playing a critical role in its pathogenesis. However, no bibliometric studies on the involvement of ApoB in AS have been published. This study aimed to conduct a comprehensive bibliometric analysis to explore the current and future trends regarding the role of ApoB in AS. METHODS Utilizing the Web of Science Core Collection, a thorough search was conducted for ApoB in AS-related papers related to research on ApoB in the field of AS during 1991-2023. The analysis focused on annual publication trends, leading countries/regions and institutions, influential authors, journal and key journals. CiteSpace and VOSviewer were employed to visualize reference co-citations, and keyword co-occurrences, offering insights into the research landscape and emerging trends. RESULTS This bibliometric analysis employed network diagrams for cluster analysis of a total of 2105 articles and reviews, evidencing a discernible upward trend in annual publication volume. This corpus of research emanates from 76 countries/regions and 2343 organizations, illustrating the widespread international engagement in ApoB-related AS studies. Notably, the United States and the University of California emerge as the most prolific contributors, which underscores their pivotal roles in advancing this research domain. The thematic investigation has increasingly focused on elucidating the mechanistic involvement of ApoB in atherosclerosis, its potential as a diagnostic biomarker, and its implications for therapeutic strategies. CONCLUSION This bibliometric analysis provides the first comprehensive perspective on the evolving promise of ApoB in AS-related research, emphasizing the importance of this molecule in opening up new diagnostic and therapeutic avenues. This study emphasizes the need for continued research and interdisciplinary efforts to strengthen the fight against AS. Furthermore, it emphasizes the critical role of international collaboration and interdisciplinary exploration in leveraging new insights to achieve clinical breakthroughs, thereby addressing the complexities of AS by focusing on ApoB.
Collapse
Affiliation(s)
- Jing Cui
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wenhong Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Dongtao Li
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yu Chen
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China.
| | - Ningkun Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Skriver C, Cronin-Fenton D, Borgquist S, Hansen Viuff J, Alkner S, Rydén L, Lænkholm AV, Manjer J, Bengtsson Y, Frederiksen K, Friis S, Mellemkjær L. Statin use and risk of breast cancer among women with benign breast disease: a Danish nationwide cohort study. Br J Cancer 2025; 132:828-836. [PMID: 40057666 PMCID: PMC12041342 DOI: 10.1038/s41416-025-02974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Statins have been suggested to protect against breast cancer risk, but the observational evidence is inconclusive. We examined the association between statin use and breast cancer incidence among women at higher risk of breast cancer due to a history of benign breast disease (BBD). METHODS Using Danish registries, we identified cancer-free women aged ≥50 years during 1996-2018 with a history of BBD and no prior statin prescriptions. Using Cox regression, we estimated multivariable-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for invasive breast cancer through 2020 with time-varying statin use defined according to continuity, duration, and intensity (estimated average daily dose), derived from prescription data. RESULTS Among 111,550 women, 7629 were diagnosed with breast cancer during median follow-up of 12.2 years. Overall statin use was not associated with breast cancer incidence (adjusted HR = 0.99; 95% CI, 0.93-1.06), with similar associations observed according to continuity and duration of use. However, long-term (≥10 years), high-intensity statin use was associated with a reduced HR of 0.75 (95% CI, 0.60-0.96). CONCLUSIONS Our findings did not indicate an association for overall statin use with breast cancer incidence among women with BBD. The inverse association with long-term, high-dose statin use requires further evaluation.
Collapse
Affiliation(s)
| | - Deirdre Cronin-Fenton
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hansen Viuff
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sara Alkner
- Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Lisa Rydén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Ylva Bengtsson
- Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | | | - Søren Friis
- Danish Cancer Institute, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Georgescu CM, Butnariu I, Cojocea CR, Tiron AT, Anghel DN, Mitrică IAM, Lăptoiu VI, Bidea A, Antonescu-Ghelmez D, Tuță S, Antonescu F. Subacute Cardiomyopathy Due to Statin Treatment: Can It Be True?-Case Report and Literature Review. Life (Basel) 2025; 15:630. [PMID: 40283184 PMCID: PMC12028598 DOI: 10.3390/life15040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background and Clinical Significance: Statins are a widely used drug class associated with a plethora of muscular side effects ranging from the subclinical elevation of creatine kinase to fulminant rhabdomyolysis. Cardiac myopathy secondary to statin treatment is rare and was recently reported as a part of statin-induced necrotizing autoimmune myopathy (SINAM). Its occurrence outside of this context is still debated. Case Presentation: We present the case of a 60-year-old male who developed atorvastatin-induced rhabdomyolysis, without associated hydroxymethyl glutaryl coenzyme A reductase (HMGCR) antibodies, with clinical findings of cardiac failure and severe ECG anomalies. The symptoms slowly regressed with statin withdrawal, and the patient made a full recovery. We discuss the recently proposed statin-associated cardiomyopathy (SACM) and the possible mechanisms. We compare our case to the three other cases of statin-induced cardiac myositis found in the literature. Conclusions: We believe that in vulnerable patients, as was our case, statins can determine significant subacute cardiac toxicity. This would seem to occur in the context of severe skeletal muscle injury, probably due to higher metabolic resistance on the part of the myocardium. Also, the available evidence suggests myocardial involvement should be actively investigated in SINAM patients, preferably by cardiac MRI.
Collapse
Affiliation(s)
- Camelia Mihaela Georgescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Ioana Butnariu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Cătălina Raluca Cojocea
- Department of Cardiology, “Sf. Ioan” Emergency Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Andreea Taisia Tiron
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Cardiology, “Sf. Ioan” Emergency Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Daniela-Nicoleta Anghel
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Iulia Ana-Maria Mitrică
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Vlad-Iulian Lăptoiu
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Adriana Bidea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Dana Antonescu-Ghelmez
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Sorin Tuță
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| | - Florian Antonescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, “Carol Davila” University of Medicine and Pharmacy, 041902 Bucharest, Romania
| |
Collapse
|
4
|
Paraskevas T, Gakis G, Papapanou M, Sergentanis TN, Sotiriadis A, Siristatidis CS. Statins for preventing preeclampsia. Cochrane Database Syst Rev 2025; 3:CD016133. [PMID: 40099754 PMCID: PMC11915783 DOI: 10.1002/14651858.cd016133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the relative benefits and harms of statins for preeclampsia prevention in pregnant women.
Collapse
Affiliation(s)
| | - Georgios Gakis
- General University Hospital of Patras, University of Patras, Patras, Greece
| | - Michail Papapanou
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros N Sergentanis
- Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynaecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos S Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Kim DY, Kim SH, Kim EJ, Han SJ, Park JY, Youn JC, Kim HS, Jeong JE, Ryu KH. ROsulord® sAfety for Patients with Dyslipidemia Study: A Non-interventional, Multicenter, Prospective, Observational Study in South Korea. Cardiol Ther 2025; 14:17-29. [PMID: 39579293 PMCID: PMC11893939 DOI: 10.1007/s40119-024-00391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
INTRODUCTION The ROsulord® sAfety for patients with Dyslipidemia study (ROAD study) in the Republic of Korea investigated the safety and efficacy of rosuvastatin in routine clinical practice. METHODS This non-interventional, multicenter, prospective, observational study was conducted over a period of approximately 4.6 years and involved 14,243 participants. During this study, we assessed the adverse events, changes in laboratory test results, and efficacy endpoints associated with rosuvastatin use. RESULTS The findings revealed a notably low adverse event rate of 1.63%, indicating a favorable safety profile for rosuvastatin in the management of dyslipidemia. Importantly, no clinically significant incidences of statin-associated myopathy, hepatotoxicity, or diabetes were observed during the study period. Moreover, this study demonstrated significant improvements in lipid profiles among patients receiving rosuvastatin treatment, with a reduction in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels. These improvements contributed to a lower cardiovascular risk in the study population. CONCLUSION Overall, these findings suggest that rosuvastatin is safe and effective in managing dyslipidemia in real-world clinical settings, providing clinicians with valuable insights into the benefits and risks associated with statin therapy in this patient population.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Cardiology, Ajou University Hospital, Suwon, Gyeonggi-do, Republic of Korea
| | - Sung Hea Kim
- Department of Cardiology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Eung-Ju Kim
- Department of Cardiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang-Jin Han
- Department of Cardiology, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea
| | - Ji-Yeong Park
- Department of Cardiology, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Jong-Chan Youn
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Hee-Seok Kim
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Eun Jeong
- Chong Kun Dang Pharmaceutical Corporation, Seoul, Republic of Korea
| | - Kyu-Hyung Ryu
- Department of Cardiology, Hebron Medical Center, #102, St.68K, Phum Prey Sala, Sangkat Kakab2, Khan Pou Senchey, Phnom Penh, Cambodia.
| |
Collapse
|
6
|
Łagowska K, Jurgoński A, Mori M, Yamori Y, Murakami S, Ito T, Toda T, Pieczyńska-Zając JM, Bajerska J. Effects of dietary seaweed on obesity-related metabolic status: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:e116-e130. [PMID: 38749056 DOI: 10.1093/nutrit/nuae042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025] Open
Abstract
CONTEXT Seaweed is a promising source of anti-obesity agents, including polysaccharides, proteins, polyphenols, carotenoids, and n-3 long-chain polyunsaturated fatty acids. The anti-obesity effects of such compounds may be due to several mechanisms, including inhibition of lipid absorption and metabolism, effect on satiety, and inhibition of adipocyte differentiation. OBJECTIVE The aim of this study was to assess the evidence from human randomized controlled trials for the effects of seaweed on body-weight status as well as lipid and nonlipid parameters in adults with overweight and obesity. DATA SOURCES Four databases-Medline, Scopus, Web of Science, and Cochrane Library-were searched from December 2022 to June 2023 using the following key words: Seaweed OR fucoxanthin OR alginates OR fucoidans OR phlorotannin's OR macroalgae OR marine algae AND obesity OR overweight OR BMI OR body mass index. DATA EXTRACTION Eleven interventional studies (10 parallel and 1 crossover) were extracted. DATA ANALYSIS Meta-analysis showed a significant effect, favoring the intervention group for BMI (body mass index) (standardized mean difference [SMD]: -0.40; 95% CI: -0.65 to -0.16 kg/m2; P = 0.0013) and percentage of fat mass (SMD: -1.48; 95% CI: -2.66% to -0.30%, P = 0.0138). The results were seen when refined or extracted brown seaweed (BMI) or only refined brown seaweed (% fat mass) were administered to participants for at least 8 weeks. Moreover, a significant overall effect of seaweed supplementation on total cholesterol (SMD: -7.72; 95% CI: -12.49 to -2.95 mg/dL; P = 0.0015) and low-density-lipoprotein cholesterol (SMD: -7.33; 95% CI: -11.64 to -3.02 mg/dL; P < 0.001) was noted. Any significant effects of seaweed on glucose metabolism were not shown. CONCLUSION Edible seaweed supplementation shows potential for managing obesity and disorders of the blood lipid profile when administered to participants for at least 8 weeks. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022378484 (www.crd.york.ac.uk/PROSPERO).
Collapse
Affiliation(s)
- Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Adam Jurgoński
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mari Mori
- Department of Laboratory Medicine, Jikei University School of Medicine, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Shigeru Murakami
- Faculty of Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
| | - Takashi Ito
- Faculty of Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
| | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | | | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Benedetti A, Castaldi G, Vermeersch P, Wilgenhof A, Convens C, Scott B, Verheye S, Agostoni P, Zivelonghi C. Clinical implications of coronary microvascular dysfunction in patients with non-obstructive coronary artery disease and role of the thermodilution method. Minerva Cardiol Angiol 2025; 73:23-37. [PMID: 36939733 DOI: 10.23736/s2724-5683.23.06289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
More than 60% of patients undergoing coronary angiography present no coronary artery disease (CAD). Angina and myocardial ischemia are classically determined by epicardial vascular obstruction, but coronary microvascular dysfunction (CMD) may also represent a possible cause for these phenomena. Two endotypes of CMD have been recognized, with two different pathophysiological mechanisms: structural CMD, characterized by low coronary flow reserve (CFR) and high microvascular resistance (MVR) values; and functional CMD, characterized by low CFR and normal MVR values. According to the present data, almost half of patients with non-obstructive CAD have shown signs of CMD. For this reason, further investigations for microvascular function assessment should be considered when evaluating no-CAD patients complaining of angina or presenting signs of myocardial ischemia. The thermodilution method is currently becoming a widespread invasive technique due to its feasibility and high reproducibility for coronary physiology evaluation. Furthermore, a recently introduced technique - called continuous thermodilution - allows for direct measurement of absolute coronary flow and resistances. The role of this brand-new technique in the clinical scenario is however still to be fully investigated and its use is at present limited to research purposes only. Among no-CAD patients, both structural and functional CMD are related to a worse prognosis in term of mortality and major adverse cardiovascular events (MACE). In this review, we will discuss the present evidence supporting the definition, prevalence and clinical implication of the different forms of CMD and the technical aspects of its invasive assessment.
Collapse
Affiliation(s)
- Alice Benedetti
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Gianluca Castaldi
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Paul Vermeersch
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Adriaan Wilgenhof
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Carl Convens
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Benjamin Scott
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | - Stefan Verheye
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium
| | | | - Carlo Zivelonghi
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, Antwerp, Belgium -
| |
Collapse
|
8
|
Kong D, Ryu JC, Shin N, Lee SE, Kim NG, Kim HY, Kim MJ, Choi J, Kim DH, Kang KS. In Vitro Modeling of Atherosclerosis Using iPSC-Derived Blood Vessel Organoids. Adv Healthc Mater 2025; 14:e2400919. [PMID: 39580678 DOI: 10.1002/adhm.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
As modeling of atherosclerosis requires recapitulating complex interactions with vasculature and immune cells, previous in vitro models have limitations due to their insufficient 3D vascular structures. However, induced pluripotent stem cell-derived blood vessel organoids (BVOs) are applicable for modeling vascular diseases, containing multiple cell types, including endothelial and vascular smooth muscle cells self-assembled into a blood vessel structure. Atherosclerotic BVOs with a microenvironment associated with atherogenesis, such as shear stress, low-density lipoprotein, pro-inflammatory cytokine, and monocyte co-culture are successfully developed. In atherosclerotic BVOs, representative atherosclerotic phenotypes, including endothelial dysfunction, inflammatory responses, formation of foam cells and fibrous plaque, and moreover, calcification of the plaques are observed. To verify the drug response in this model, it is treated with clinically used lovastatin and confirm phenotype attenuation. Furthermore, the therapeutic efficacy of nano-sized graphene oxides (NGOs) is evaluated on atherosclerosis. Due to their anti-inflammatory effects, NGOs effectively alleviate the pathologic lesions in atherosclerotic BVOs by promoting macrophage polarization toward M2. These results suggest that atherosclerotic BVOs are advanced in vitro models suitable for drug discovery and elucidation of therapeutic mechanisms. From the perspective of precision medicine, this platform using patient-derived BVOs can be further employed for personalized drug screening in the future.
Collapse
Affiliation(s)
- Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Chul Ryu
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Bio and Nano Convergence, Biogo Co., LTD, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Yeong Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungju Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Department of Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Martins de Oliveira A, Matias Silva R, Dias da Silva A, Silva TA. Electroanalysis of Statin Drugs: A Review on the Electrochemical Sensor Architectures Ranging from Classical to Modern Systems. Crit Rev Anal Chem 2024:1-20. [PMID: 39499262 DOI: 10.1080/10408347.2024.2420820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
An overview of the latest advances in the design of electrochemical sensor architectures dedicated to the determination of drugs from the statin class is presented in this review. Statins are drugs widely consumed for cholesterol control, and their determination in different matrices through the application of electroanalysis is growing considering advantages such as operational simplicity, lower cost and ease of sample preparation. Within the context of statins, electrochemical sensor architectures can be subdivided into conventional/classical electrodes such as glassy carbon electrodes, carbon paste electrodes, pencil graphite electrodes, boron-doped diamond electrodes and metallic electrodes, and more modern electrode systems, including the screen-printed electrodes and 3D-printed electrodes. Thus, different aspects related to the preparation of these electrochemical sensors and analytical performance are presented, also reflecting advances in terms of designs of new architectures and possible improvements not previously reviewed. Analyzed samples, advantages and disadvantages of different implemented sensor's modification strategies and perspectives for the electroanalysis of statins are also included throughout the work.
Collapse
|
10
|
Brown A, Ramkumar V, Patel A, Kang D, Lim J, Shah S, Ebrahim HY, Abd Elmageed ZY. Statin Consumption and Appealing Colors: Exploring Statin-Related Injuries for Children Under the Age of Three Years. Cureus 2024; 16:e73520. [PMID: 39669859 PMCID: PMC11636390 DOI: 10.7759/cureus.73520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
INTRODUCTION Statins are frequently prescribed to lower the risk of atherosclerosis and cardiovascular-related diseases. While statins are considered safe, there are occasional accidental overdoses in children that warrant concern for how to protect children from unintended consumption. We aimed to determine which statins were more prone to injury, characterize the injury types commonly seen for each statin, assess the age at which statin-related injuries were most frequent, and compare statin-related injuries among genders. METHODS We accessed the National Electronic Injury Surveillance System (NEISS) database to collect hospital cases of drug-related injuries among children that occurred between 2013-2022. Out of these cases, subjects for this study were selected based on the inclusion criteria of statin-related injury. Additionally, we used disposition codes to identify the outcomes for each statin and children under three years of age. Descriptive statistics were utilized to display the frequency of disposition codes corresponding to specific statins and statin-related injuries by age. A regression analysis was then conducted to create a trend line showing the incidence of statin-related injury among males. RESULTS From 2013 to 2022, there were 81 statin-related injuries. Across the different statins, atorvastatin had the highest incidence of injuries among children under three years old (n=51), with a hospitalization rate of 39.22%. However, atorvastatin had the lowest hospitalization rate compared to other medications, such as rosuvastatin (67.0%) and simvastatin (47.0%). Hospitalization criteria were based on the disposition code 4: treated and admitted to the hospital. When comparing statin-related injuries in terms of age, we specifically found that atorvastatin-related consumption increased exponentially from nine months (n=1) to its highest occurrence at 24 months (n=16) with a percent change of 15%. The elevated occurrence at 24 months suggests that some developmental milestones in infants may make children more susceptible to atorvastatin-related injury. Additionally, a notable absence of statin-related injuries was identified after 24 months, followed by a recurrence at 36 months of age (n=8). When comparing statin-related injuries in terms of female and male children under three years, a notable finding was the continuous increase in male injuries from 2013-2021. The increase is significant in 2021, where there were a total of nine cases; two were female, and seven were male. The data showed a greater number of male cases (55.8%). The data also showed a rise in male visits to the emergency department between 2018 and 2021, possibly due to COVID-19. To explain, more children were at home with their parents/caretakers, which could have been the reason for the increase in accidental ingestion of statins. CONCLUSIONS Producing statins in colors appealing to children can increase the incidence of accidental consumption. This risk peaks till the age of two years, coinciding with the completion of the oral fixation developmental milestone. To address this issue, Electronic Health Records (EHR) prompts can assist physicians in taking a more proactive approach to prescription safety during their discussions with patients to create a safer environment for children.
Collapse
Affiliation(s)
- Allison Brown
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Vishveshvar Ramkumar
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Aditi Patel
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - David Kang
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Jedidiah Lim
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Samreen Shah
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Hassan Y Ebrahim
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Zakaria Y Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, Monroe, USA
| |
Collapse
|
11
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
12
|
Zhang Y, Wu D, Sun Q, Luo Z, Zhang Y, Wang B, Chen W. Atorvastatin combined with imipenem alleviates lung injury in sepsis by inhibiting neutrophil extracellular trap formation via the ERK/NOX2 signaling pathway. Free Radic Biol Med 2024; 220:179-191. [PMID: 38704053 DOI: 10.1016/j.freeradbiomed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Di Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Zhen Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yuhao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Bowei Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
13
|
Mihaylova R, Gevrenova R, Petrova A, Savov Y, Zheleva-Dimitrova D, Balabanova V, Momekov G, Simeonova R. Mitigating Effects of Tanacetum balsamita L. on Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). PLANTS (BASEL, SWITZERLAND) 2024; 13:2086. [PMID: 39124206 PMCID: PMC11314425 DOI: 10.3390/plants13152086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The metabolic syndrome and its associated co-morbidities have been recognized as predisposing risk factors for the development of metabolic-associated fatty liver disease (MAFLD). The present study reports on the beneficial effect of the Tanacetum balsamita methanol-aqueous extract (ETB) at 150 and 300 mg/kg bw on biochemical parameters related to oxidative stress, metabolic syndrome, and liver function in rat animal models with induced MAFLD. ETB was found to be non-toxic with LD50 > 3000 mg/kg and did not affect cell viability of hepatic HEP-G2 cells in a concentration up to 800 μg/mL. The pathology was established by a high-calorie diet and streptozotocin. Acarbose and atorvastatin were used as positive controls. At the higher dose, ETB reduced significantly (p < 0.05) the blood glucose levels by about 20%, decreased lipase activity by 52%, total cholesterol and triglycerides by 50% and 57%, respectively, and restored the amylase activity and leukocytes compared to the MAFLD group. ETB ameliorated oxidative stress biomarkers reduced glutathione and malondialdehyde in a dose-dependent manner. At 300 mg/kg, the beneficial effect of the extract on antioxidant enzymes was evidenced by the elevated catalase, glutathione peroxidase, and superoxide dismutase activity by 70%, 29%, and 44%, accordingly, compared to the MAFLD rats. ETB prevents the histopathological changes related to MAFLD. ETB, rich in 3,5-dicafeoylquinic, chlorogenic, and rosmarinic acids together with the isorhamnetin- and luteolin-glucoside provides a prominent amelioration of MAFLD.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Yonko Savov
- Institute of Emergency Medicine “N. I. Pirogov”, Bul. Totleben 21, Sofia 1000, Bulgaria;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| |
Collapse
|
14
|
Lennep BW, Mack J, Poondru S, Hood E, Looney BD, Williams M, Bianco JJ, Morgans AK. Enzalutamide: Understanding and Managing Drug Interactions to Improve Patient Safety and Drug Efficacy. Drug Saf 2024; 47:617-641. [PMID: 38607520 PMCID: PMC11182822 DOI: 10.1007/s40264-024-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/13/2024]
Abstract
Enzalutamide is an oral androgen receptor signaling inhibitor utilized in the treatment of men with prostate cancer. It is a moderate inducer of the cytochrome P450 (CYP) enzymes CYP2C9 and CYP2C19, and a strong inducer of CYP3A4. It was also shown to be a mild inhibitor of the efflux transporter P-glycoprotein in patients with prostate cancer. Enzalutamide is primarily metabolized by CYP3A4 and CYP2C8. The risk of enzalutamide drug interactions arises primarily when it is coadministered with other drugs that interact with these CYPs, including CYP3A4. In this review, we begin by providing an overview of enzalutamide including its dosing, use in special populations, pharmacokinetics, changes to its prescribing information, and potential for interaction with coadministered drugs. Enzalutamide interactions with drugs from a wide range of medication classes commonly prescribed to patients with prostate cancer are described, including oral androgen deprivation therapy, agents used to treat a range of cardiovascular diseases, antidiabetic drugs, antidepressants, anti-seizure medications, common urology medications, analgesics, proton pump inhibitors, immunosuppressants, and antigout drugs. Enzalutamide interactions with common vitamins and supplements are also briefly discussed. This review provides a resource for healthcare practitioners and patients that will help provide a basis for the understanding and management of enzalutamide drug-drug interactions to inform decision making, improve patient safety, and optimize drug efficacy.
Collapse
Affiliation(s)
| | - Jesse Mack
- Astellas Pharma Inc., Greensboro, NC, USA
| | | | - Elizabeth Hood
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | - Alicia K Morgans
- Dana-Farber Cancer Institute, 850 Brookline Ave, Dana 09-930, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Singh R, Chandi SK, Sran S, Aulakh SK, Nijjar GS, Singh K, Singh S, Tanvir F, Kaur Y, Sandhu APS. Emerging Therapeutic Strategies in Cardiovascular Diseases. Cureus 2024; 16:e64388. [PMID: 39131016 PMCID: PMC11317025 DOI: 10.7759/cureus.64388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular diseases (CVDs), including ischemic heart disease and stroke, are the leading cause of mortality worldwide, causing nearly 20 million deaths annually. Traditional therapies, while effective, have not curbed the rising prevalence of CVDs driven by aging populations and lifestyle factors. This review highlights innovative therapeutic strategies that show promise in improving patient outcomes and transforming cardiovascular care. Emerging pharmacological treatments, such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors, introduce novel mechanisms to complement existing therapies, significantly reducing cardiovascular events and mortality. These advancements emphasize the necessity of ongoing clinical trials and research to discover new therapeutic targets. Advanced biological therapies, including gene therapy, stem cell therapy, and RNA-based treatments, offer groundbreaking potential for repairing and regenerating damaged cardiovascular tissues. Despite being in various stages of clinical validation, early results are promising, suggesting these therapies could fundamentally change the CVD treatment landscape. Innovative medical devices and technologies, such as implantable devices, minimally invasive procedures, and wearable technology, are revolutionizing CVD management. These advancements facilitate early diagnosis, continuous monitoring, and effective treatment, driving care out of hospitals and into homes, improving patient outcomes and reducing healthcare costs. Personalized medicine, driven by genetic profiling and biomarker identification, allows for tailored therapies that enhance treatment efficacy and minimize adverse effects. However, the adoption of these emerging therapies faces significant challenges, including regulatory hurdles, cost and accessibility issues, and ethical considerations. Addressing these barriers and fostering interdisciplinary collaboration are crucial for accelerating the development and implementation of innovative treatments. Integrating emerging therapeutic strategies in cardiovascular care holds immense potential to transform CVD management. By prioritizing future research and overcoming existing challenges, a new era of personalized, effective, and accessible cardiovascular care can be achieved.
Collapse
Affiliation(s)
- Rajinderpal Singh
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | - Seerat Sran
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | - Smriti K Aulakh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | | | | | - Sumerjit Singh
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Fnu Tanvir
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Yasmeen Kaur
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Ajay Pal Singh Sandhu
- Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| |
Collapse
|
16
|
Frieden P, Gagnon R, Bénard É, Cossette B, Bergeron F, Talbot D, Guertin JR. Strategies aiming to improve statin therapy adherence in older adults: a systematic review. BMC Geriatr 2024; 24:444. [PMID: 38773394 PMCID: PMC11110402 DOI: 10.1186/s12877-024-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Randomized clinical trials have shown that, under optimal conditions, statins reduce the risk of cardiovascular events in older adults. Given the prevalence and consequences of suboptimal adherence to statin among older adults, it is essential to document strategies designed to increase statin adherence in this population. The objective of this systematic review is to describe and summarize the effectiveness of interventions to improve statin adherence in older adults (≥ 65 years old). METHODS This review followed PRISMA guidelines. Studies were identified from PubMed, PsycINFO, Embase, CINAHL and Web of Science. Study selection was conducted independently by four reviewers working in pairs. Included studies reported data on interventions designed to increase adherence to statin therapy in older adults and were original trials or observational studies. Interventions were pragmatically regrouped into 8 different categories going from patient to administrative level. Two reviewers extracted study data and assessed study quality independently. Given the heterogeneity between the included studies, a narrative critique and summary was conducted. RESULTS Twelve out of the 2889 identified articles were included in the review. Our review showed that simplifying patients' drug regimen, administrative improvements and large-scale pharmacy-led automated telephone interventions show positive effects on patient adherence to statin therapy, with odds ratios between > 1.0 and 3.0, while education-based strategies and intensified patient care showed mixed results. CONCLUSIONS Current evidence suggests that some interventions can increase statin adherence in older adults, which could help in the reduction of the risk of a cardiovascular event in this population.
Collapse
Affiliation(s)
- Philipp Frieden
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de recherche du CHU de Québec - Université Laval, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, local J1-11, Quebec City, QC, G1S 4L8, Canada
- Faculté de médecine, Université Laval, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
| | - Rose Gagnon
- Faculté de médecine, Université Laval, Quebec City, QC, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (Cirris), Quebec City, QC, Canada
| | - Élodie Bénard
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de recherche du CHU de Québec - Université Laval, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, local J1-11, Quebec City, QC, G1S 4L8, Canada
- Faculté de médecine, Université Laval, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
| | - Benoît Cossette
- Centre de recherche sur le vieillissement du CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Denis Talbot
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de recherche du CHU de Québec - Université Laval, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, local J1-11, Quebec City, QC, G1S 4L8, Canada
- Faculté de médecine, Université Laval, Quebec City, QC, Canada
| | - Jason Robert Guertin
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de recherche du CHU de Québec - Université Laval, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, local J1-11, Quebec City, QC, G1S 4L8, Canada.
- Faculté de médecine, Université Laval, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
| |
Collapse
|
17
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
18
|
Mésidor M, Sirois C, Guertin JR, Schnitzer ME, Candas B, Blais C, Cossette B, Poirier P, Brophy JM, Lix L, Tadrous M, Diop A, Hamel D, Talbot D. Effect of statin use for the primary prevention of cardiovascular disease among older adults: a cautionary tale concerning target trials emulation. J Clin Epidemiol 2024; 168:111284. [PMID: 38367659 DOI: 10.1016/j.jclinepi.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVES Evidence concerning the effect of statins in primary prevention of cardiovascular disease (CVD) among older adults is lacking. Using Quebec population-wide administrative data, we emulated a hypothetical randomized trial including older adults >65 years on April 1, 2013, with no CVD history and no statin use in the previous year. STUDY DESIGN AND SETTING We included individuals who initiated statins and classified them as exposed if they were using statin at least 3 months after initiation and nonexposed otherwise. We followed them until March 31, 2018. The primary outcome was the composite endpoint of coronary events (myocardial infarction, coronary bypass, and percutaneous coronary intervention), stroke, and all-cause mortality. The intention-to-treat (ITT) effect was estimated with adjusted Cox models and per-protocol effect with inverse probability of censoring weighting. RESULTS A total of 65,096 individuals were included (mean age = 71.0 ± 5.5, female = 55.0%) and 93.7% were exposed. Whereas we observed a reduction in the composite outcome (ITT-hazard ratio (HR) = 0.75; 95% CI: 0.68-0.83) and mortality (ITT-HR = 0.69; 95% CI: 0.61-0.77) among exposed, coronary events increased (ITT-HR = 1.46; 95% CI: 1.09-1.94). All multibias E-values were low indicating that the results were not robust to unmeasured confounding, selection, and misclassification biases simultaneously. CONCLUSION We cannot conclude on the effectiveness of statins in primary prevention of CVD among older adults. We caution that an in-depth reflection on sources of biases and careful interpretation of results are always required in observational studies.
Collapse
Affiliation(s)
- Miceline Mésidor
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada.
| | - Caroline Sirois
- Centre de recherche du CHU de Québec, Université Laval, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Canada; Institut national de santé publique du Québec, Québec, Canada
| | - Jason Robert Guertin
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Mireille E Schnitzer
- Faculté de pharmacie et Département de médecine sociale et préventive, Université de Montréal, Montréal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada
| | - Bernard Candas
- Département de médecine sociale et préventive, Université Laval, Québec, Canada
| | - Claudia Blais
- Faculté de pharmacie, Université Laval, Québec, Canada; Institut national de santé publique du Québec, Québec, Canada
| | - Benoit Cossette
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Montréal, Canada
| | - Paul Poirier
- Faculté de pharmacie, Université Laval, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - James M Brophy
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada; McGill University Hospital Center, Centre for Health Outcomes Research, Montréal, Canada
| | - Lisa Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mina Tadrous
- University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Canada
| | - Awa Diop
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Denis Hamel
- Institut national de santé publique du Québec, Québec, Canada
| | - Denis Talbot
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
19
|
Park S, Lee JW, Nam DR, Jung SY. Exploring signals of myopathy associated with statin and contraindicated comedications in the realworld. Fundam Clin Pharmacol 2024; 38:380-388. [PMID: 37818695 DOI: 10.1111/fcp.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Using statins in combination with other drugs was reported to increase the risk of myopathy. However, there was a sparse number of studies on the incidence of adverse events (AEs) associated with the concomitant use of statin and contraindicated drugs in the real world. OBJECTIVES This study aimed to identify the risk of concomitant use of statins with contraindicated drugs by exploring signals related to statin-drug interactions. METHODS We performed a disproportionality analysis for drugs and AEs by applying the case/non-case study using the KIDS-KAERS database (KIDS-KD), 2016-2020. A case was defined as an individual case safety reports (ICSRs) including "rhabdomyolysis/myopathy." A non-case was defined as an ICSR, including all other AEs. We applied Ω shrinkage measure model, chi-square statics model, additive model, multiplicative model, and combination risk ratio model to detect signals of myopathy due to statin with concomitant drugs including antiviral agents, immunosuppressants, and antifungals. RESULTS Among 1 011 234 ICSRs, 2708 were cases, with 861 cases of statin monotherapy and 1248 of concomitant uses of statin. The adjusted reporting odds ratios were 3.27 (95% confidence interval [CI]: 3.11-3.43), 8.70 (95% CI: 8.04-9.40), and 1.83 (95% CI: 1.73-1.94), respectively. Several combinations of signals were detected through an additive model or multiplicative model. CONCLUSION Signals of an increased risk of myopathy associated with the use of statins with concomitant drugs, including contraindicated drugs, were confirmed in a real-world setting.
Collapse
Affiliation(s)
- Sewon Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Ju Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Dal Ri Nam
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sun-Young Jung
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
21
|
Granat MM, Eifler-Zydel J, Kolmas J. Statins-Their Role in Bone Tissue Metabolism and Local Applications with Different Carriers. Int J Mol Sci 2024; 25:2378. [PMID: 38397055 PMCID: PMC10888549 DOI: 10.3390/ijms25042378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.
Collapse
Affiliation(s)
- Marcin Mateusz Granat
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Eifler-Zydel
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| |
Collapse
|
22
|
Seol S, Choi JR, Choi B, Kim S, Jeon JY, Park KN, Park JH, Park MW, Eun YG, Park JJ, Lee BJ, Shin YS, Kim CH, Park RW, Jang JY. Effect of statin use on head and neck cancer prognosis in a multicenter study using a Common Data Model. Sci Rep 2023; 13:19770. [PMID: 37957229 PMCID: PMC10643676 DOI: 10.1038/s41598-023-45654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Few studies have found an association between statin use and head and neck cancer (HNC) outcomes. We examined the effect of statin use on HNC recurrence using the converted Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM) in seven hospitals between 1986 and 2022. Among the 9,473,551 eligible patients, we identified 4669 patients with HNC, of whom 398 were included in the target cohort, and 4271 were included in the control cohort after propensity score matching. A Cox proportional regression model was used. Of the 4669 patients included, 398 (8.52%) previously received statin prescriptions. Statin use was associated with a reduced rate of 3- and 5-year HNC recurrence compared to propensity score-matched controls (risk ratio [RR], 0.79; 95% confidence interval [CI], 0.61-1.03; and RR 0.89; 95% CI 0.70-1.12, respectively). Nevertheless, the association between statin use and HNC recurrence was not statistically significant. A meta-analysis of recurrence based on subgroups, including age subgroups, showed similar trends. The results of this propensity-matched cohort study may not provide a statistically significant association between statin use and a lower risk of HNC recurrence. Further retrospective studies using nationwide claims data and prospective studies are warranted.
Collapse
Affiliation(s)
- Soobeen Seol
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jung Ran Choi
- Department of Otolaryngology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Byungjin Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Sungryeal Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University, Bucheon, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Min Woo Park
- Department of Otolaryngology-Head and Neck Surgery, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jung Je Park
- Department of Otorhinolaryngology, College of Medicine, Gyeongsang National University and Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
- Department of Biomedical Informatics, Ajou University School of Medicine, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Jeon Yeob Jang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
- Department of Otolaryngology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
23
|
Bigossi M, Maroteau C, Dawed AY, Taylor A, Srinivasan S, Melhem AL, Pearson ER, Pola R, Palmer CNA, Siddiqui MK. A gene risk score using missense variants in SLCO1B1 is associated with earlier onset statin intolerance. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:536-545. [PMID: 37253618 PMCID: PMC10509567 DOI: 10.1093/ehjcvp/pvad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS The efficacy of statin therapy is hindered by intolerance to the therapy, leading to discontinuation. Variants in SLCO1B1, which encodes the hepatic transporter OATB1B1, influence statin pharmacokinetics, resulting in altered plasma concentrations of the drug and its metabolites. Current pharmacogenetic guidelines require sequencing of the SLCO1B1 gene, which is more expensive and less accessible than genotyping. In this study, we aimed to develop an easy, clinically implementable functional gene risk score (GRS) of common variants in SLCO1B1 to identify patients at risk of statin intolerance. METHODS AND RESULTS A GRS was developed from four common variants in SLCO1B1. In statin users from Tayside, Scotland, UK, those with a high-risk GRS had increased odds across three phenotypes of statin intolerance [general statin intolerance (GSI): ORGSI 2.42; 95% confidence interval (CI): 1.29-4.31, P = 0.003; statin-related myopathy: ORSRM 2.51; 95% CI: 1.28-4.53, P = 0.004; statin-related suspected rhabdomyolysis: ORSRSR 2.85; 95% CI: 1.03-6.65, P = 0.02]. In contrast, using the Val174Ala genotype alone or the recommended OATP1B1 functional phenotypes produced weaker and less reliable results. A meta-analysis with results from adjudicated cases of statin-induced myopathy in the PREDICTION-ADR Consortium confirmed these findings (ORVal174Ala 1.99; 95% CI: 1.01-3.95, P = 0.048; ORGRS 1.76; 95% CI: 1.16-2.69, P = 0.008). For those requiring high-dose statin therapy, the high-risk GRS was more consistently associated with the time to onset of statin intolerance amongst the three phenotypes compared with Val174Ala (GSI: HRVal174Ala 2.49; 95% CI: 1.09-5.68, P = 0.03; HRGRS 2.44; 95% CI: 1.46-4.08, P < 0.001). Finally, sequence kernel association testing confirmed that rare variants in SLCO1B1 are associated with the risk of intolerance (P = 0.02). CONCLUSION We provide evidence that a GRS based on four common SLCO1B1 variants provides an easily implemented genetic tool that is more reliable than the current recommended practice in estimating the risk and predicting early-onset statin intolerance.
Collapse
Affiliation(s)
- Margherita Bigossi
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Cyrielle Maroteau
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford OX3 7FZ, UK
| | - Adem Y Dawed
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alasdair Taylor
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Sundararajan Srinivasan
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alaa’ Lufti Melhem
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Ewan R Pearson
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Colin N A Palmer
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Moneeza K Siddiqui
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| |
Collapse
|
24
|
Braczko A, Harasim G, Kawecka A, Walczak I, Kapusta M, Narajczyk M, Stawarska K, Smoleński RT, Kutryb-Zając B. Blocking cholesterol formation and turnover improves cellular and mitochondria function in murine heart microvascular endothelial cells and cardiomyocytes. Front Physiol 2023; 14:1216267. [PMID: 37745244 PMCID: PMC10512729 DOI: 10.3389/fphys.2023.1216267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Statins and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are cornerstones of therapy to prevent cardiovascular disease, acting by lowering lipid concentrations and only partially identified pleiotropic effects. This study aimed to analyze impacts of atorvastatin and synthetic peptide PCSK9i on bioenergetics and function of microvascular endothelial cells and cardiomyocytes. Methods: Mitochondrial function and abundance as well as intracellular nucleotides, membrane potential, cytoskeleton structure, and cell proliferation rate were evaluated in mouse heart microvascular endothelial cells (H5V) and cardiomyocytes (HL-1) under normal and hypoxia-mimicking conditions (CoCl2 exposure). Results: In normal conditions PCSK9i, unlike atorvastatin, enhanced mitochondrial respiratory parameters, increased nucleotide levels, prevented actin cytoskeleton disturbances and stimulated endothelial cell proliferation. Under hypoxia-mimicking conditions both atorvastatin and PCSK9i improved the mitochondrial respiration and membrane potential in both cell types. Conclusion: This study demonstrated that both treatments benefited the endothelial cell and cardiomyocyte bioenergetics, but the effects of PCSK9i were superior.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
25
|
Maurina M, Benedetti A, Stefanini G, Condorelli G, Collet C, Zivelonghi C, Smits PC, Paradies V. Coronary Vascular (DYS) Function and Invasive Physiology Assessment: Insights into Bolus and Continuous Thermodilution Methods. J Clin Med 2023; 12:4864. [PMID: 37510979 PMCID: PMC10381553 DOI: 10.3390/jcm12144864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
A considerable number of patients with angina or myocardial ischemia have no significant coronary artery disease on invasive angiography. In recent years, several steps towards a better comprehension of the pathophysiology of these conditions, angina or ischemia with non-obstructive coronary arteries (ANOCA/INOCA), have been made. Nevertheless, several gaps in knowledge still remain. This review is intended to provide a comprehensive overview of ANOCA and INOCA, with a particular focus on pathophysiology, recent diagnostic innovations, gaps in knowledge and treatment modalities.
Collapse
Affiliation(s)
- Matteo Maurina
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Cardio Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Cardiology, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands
| | - Alice Benedetti
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, 2020 Antwerp, Belgium
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Cardio Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Cardio Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
| | - Carlo Zivelonghi
- HartCentrum, Antwerpen Hospital Network (ZNA) Middelheim, 2020 Antwerp, Belgium
| | - Pieter C. Smits
- Department of Cardiology, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands
| | - Valeria Paradies
- Department of Cardiology, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands
- Department of Cardiology, Erasmus University Medical Center, Thoraxcenter, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
26
|
Saghebasl S, Nobakht A, Saghebasl H, Hayati S, Naturi O, Rahbarghazi R. Sandwich-like electro-conductive polyurethane-based gelatin/soybean oil nanofibrous scaffolds with a targeted release of simvastatin for cardiac tissue engineering. J Biol Eng 2023; 17:42. [PMID: 37415188 DOI: 10.1186/s13036-023-00364-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Cardiac tissue engineering (CTE) is a promising way for the restoration of injured cardiac tissue in the healthcare system. The development of biodegradable scaffolds with appropriate chemical, electrical, mechanical, and biological properties is an unmet need for the success of CTE. Electrospinning is a versatile technique that has shown potential applications in CTE. Herein, four different types of multifunctional scaffolds, including synthetic-based poly (glycerol sebacate)-polyurethane (PGU), PGU-Soy scaffold, and a series of trilayer scaffolds containing two outer layers of PGU-Soy and a middle (inner) layer of gelatin (G) as a natural and biodegradable macromolecule without simvastatin (S) and with simvastatin (GS), an anti-inflammatory agent, were fabricated in the sandwich-like structure using electrospinning technique. This approach offers a combination of the advantages of both synthetic and natural polymers to enhance the bioactivity and the cell-to-cell and cell-to-matrix intercommunication. An in vitro drug release analysis was performed after the incorporation of soybean oil (Soy) and G. Soy is used as a semiconducting material was introduced to improve the electrical conductivity of nanofibrous scaffolds. The physicochemical properties, contact angle, and biodegradability of the electrospun scaffolds were also assessed. Moreover, the blood compatibility of nanofibrous scaffolds was studied through activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assay. The results showed that all scaffolds exhibited defect-free morphologies with mean fiber diameters in the range of 361 ± 109 to 417 ± 167 nm. A delay in blood clotting was observed, demonstrating the anticoagulant nature of nanofibrous scaffolds. Furthermore, rat cardiomyoblast cell lines (H9C2) were cultured on scaffolds for 7 days, and the morphology and cell arrangement were monitored. Data indicated an appropriate cytocompatibility. Of note, in the PGU-Soy/GS nanofibrous scaffold, a high survival rate was indicated compared to other groups. Our findings exhibited that the simvastatin-loaded polymeric system had positive effects on cardiomyoblasts attachment and growth and could be utilized as a drug release carrier in the field of CTE.
Collapse
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Nobakht
- Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran
| | - Hesam Saghebasl
- Faculty of Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sanya Hayati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Yang W, Wang S, Zhao Y, Jiang Q, Loor JJ, Tian Y, Fan W, Li M, Zhang B, Cao J, Xu C. Regulation of cholesterol metabolism during high fatty acid-induced lipid deposition in calf hepatocytes. J Dairy Sci 2023:S0022-0302(23)00370-3. [PMID: 37419743 DOI: 10.3168/jds.2022-23136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 07/09/2023]
Abstract
Cholesterol in the circulation is partly driven by changes in feed intake, but aspects of cholesterol metabolism during development of fatty liver are not well known. The objective of this study was to investigate mechanisms of cholesterol metabolism in calf hepatocytes challenged with high concentrations of fatty acids (FA). To address mechanistic insights regarding cholesterol metabolism, liver samples were collected from healthy control dairy cows (n = 6; 7-13 d in milk) and cows with fatty liver (n = 6; 7-11 d in milk). In vitro, hepatocytes isolated from 3 healthy female calves (1 d old) were challenged with or without a mix of 1.2 mM FA to induce metabolic stress. In addition, hepatocytes were processed with 10 µmol/L of the cholesterol synthesis inhibitor simvastatin or 6 µmol/L of the cholesterol intracellular transport inhibitor U18666A with or without the 1.2 mM FA mix. To evaluate the role of cholesterol addition, hepatocytes were treated with 0.147 mg/mL methyl-β-cyclodextrin (MβCD + FA) or 0.147 mg/mL MβCD with or without 10 and 100 µmol/L cholesterol before incubation with FA (CHO10 + FA and CHO100 + FA). In vivo data from liver biopsies were analyzed by 2-tailed unpaired Student's t-test. Data from in vitro calf hepatocytes were analyzed by one-way ANOVA. Compared with healthy cows, blood plasma total cholesterol and plasma low-density lipoprotein cholesterol content in cows with fatty liver was markedly lower, whereas the hepatic total cholesterol content did not differ. In contrast, compared with healthy controls, the triacylglycerol content in the liver and the content of FA, β-hydroxybutyrate, and aspartate aminotransferase in the plasma of cows with fatty liver were greater. The results revealed that both fatty liver in vivo and challenge of calf hepatocytes with 1.2 mM FA in vitro led to greater mRNA and protein abundance of sterol regulatory element binding transcription factor 1 (SREBF1) and fatty acid synthase (FASN). In contrast, mRNA and protein abundance of sterol regulatory element binding transcription factor 2 (SREBF2), acyl coenzyme A-cholesterol acyltransferase, and ATP-binding cassette subfamily A member 1 (ABCA1) were lower. Compared with the FA group, the cholesterol synthesis inhibitor simvastatin led to greater protein abundance of microsomal triglyceride transfer protein and mRNA abundance of SREBF2, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), ACAT2, and lower ABCA1 and FASN protein abundance. In contrast, compared with the FA group, the cholesterol intracellular transport inhibitor U18666A + FA led to greater total cholesterol concentration and greater protein and mRNA abundance of FASN. Compared with the MβCD + FA group, the addition of 10 µmol/L cholesterol led to greater concentration of cholesteryl ester and excretion of apolipoprotein B100, and greater protein and mRNA abundance of ABCA1 and microsomal triglyceride transfer protein, and lower concentration of malondialdehyde. Overall, a reduction in cholesterol synthesis promoted FA metabolism in hepatocytes likely to relieve the oxidative stress caused by the high FA load. The data suggest that maintenance of normal cholesterol synthesis promotes very low-density lipoprotein excretion and can reduce lipid accumulation and oxidative stress in dairy cows that experience fatty liver.
Collapse
Affiliation(s)
- Wei Yang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuang Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingying Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ming Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
28
|
Khafagy ES, Motawee AO, Ghorab MM, Gardouh AR. Atorvastatin-loaded pro-nanolipospheres with ameliorated oral bioavailability and antidyslipidemic activity. Colloids Surf B Biointerfaces 2023; 227:113361. [PMID: 37236085 DOI: 10.1016/j.colsurfb.2023.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Abeer Osama Motawee
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of pharmaceutical sciences, Faculty of pharmacy, Jadara university, Irbid 21110, Jordan
| |
Collapse
|
29
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
30
|
Alsaeedi A, Welham S, Rose P, Zhu YZ. The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals. Antioxidants (Basel) 2023; 12:antiox12040908. [PMID: 37107283 PMCID: PMC10135325 DOI: 10.3390/antiox12040908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Mammalian cells and tissues have the capacity to generate hydrogen sulfide gas (H2S) via catabolic routes involving cysteine metabolism. H2S acts on cell signaling cascades that are necessary in many biochemical and physiological roles important in the heart, brain, liver, kidney, urogenital tract, and cardiovascular and immune systems of mammals. Diminished levels of this molecule are observed in several pathophysiological conditions including heart disease, diabetes, obesity, and immune function. Interestingly, in the last two decades, it has become apparent that some commonly prescribed pharmacological drugs can impact the expression and activities of enzymes responsible for hydrogen sulfide production in cells and tissues. Therefore, the current review provides an overview of the studies that catalogue key drugs and their impact on hydrogen sulfide production in mammals.
Collapse
Affiliation(s)
- Asrar Alsaeedi
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Simon Welham
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
31
|
Zivkovic S, Maric G, Cvetinovic N, Lepojevic-Stefanovic D, Bozic Cvijan B. Anti-Inflammatory Effects of Lipid-Lowering Drugs and Supplements-A Narrative Review. Nutrients 2023; 15:nu15061517. [PMID: 36986246 PMCID: PMC10053759 DOI: 10.3390/nu15061517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Since the establishment of the "lipid hypothesis", according to which, cholesterol level is directly correlated to the risk of CVD, many different lipid-lowering agents have been introduced in clinical practice. A majority of these drugs, in addition to their lipid-lowering properties, may also exhibit some anti-inflammatory and immunomodulatory activities. This hypothesis was based on the observation that a decrease in lipid levels occurs along with a decrease in inflammation. Insufficient reduction in the inflammation during treatment with lipid-lowering drugs could be one of the explanations for treatment failure and recurrent CVD events. Thus, the aim of this narrative review was to evaluate the anti-inflammatory properties of currently available lipid-lowering medications including statins, ezetimibe, bile acid sequestrants (BAS), proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, fibrates, omega-3 fatty acids, and niacin, as well as dietary supplements and novel drugs used in modern times.
Collapse
Affiliation(s)
- Stefan Zivkovic
- Department of Cardiovascular Disease, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Gorica Maric
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
| | - Natasa Cvetinovic
- Department of Cardiovascular Disease, University Medical Center "Dr Dragisa Misovic-Dedinje", 11000 Belgrade, Serbia
| | | | - Bojana Bozic Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Springer JM, Kermani TA. Recent advances in the treatment of giant cell arteritis. Best Pract Res Clin Rheumatol 2023; 37:101830. [PMID: 37328409 DOI: 10.1016/j.berh.2023.101830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/18/2023]
Abstract
Giant cell arteritis (GCA) is a systemic, granulomatous, large-vessel vasculitis that affects individuals over the age of 50 years. Morbidity from disease includes cranial manifestations which can cause irreversible blindness, while extra-cranial manifestations can cause vascular damage with large-artery stenosis, occlusions, aortitis, aneurysms, and dissections. Glucocorticoids while efficacious are associated with significant adverse effects. Furthermore, despite treatment with glucocorticoids, relapses are common. An understanding of the pathogenesis of GCA has led to the discovery of tocilizumab as an efficacious steroid-sparing therapy while additional therapeutic targets affecting different inflammatory pathways are under investigation. Surgical treatment may be indicated in cases of refractory ischemia or aortic complications but data on surgical outcomes are limited. Despite the recent advances, many unmet needs exist, including the identification of patients or subsets of GCA who would benefit from earlier initiation of adjunctive therapies, patients who may warrant long-term immunosuppression and medications that sustain permanent remission. The impact of medications like tocilizumab on long-term outcomes, including the development of aortic aneurysms and vascular damage also warrants investigation.
Collapse
Affiliation(s)
- Jason M Springer
- Vanderbilt University Medical Center, 1161 21st Avenue Sound, T3113 Medical Center North, Nashville, TN, 37232, USA.
| | - Tanaz A Kermani
- University of California Los Angeles, 2020 Santa Monica Boulevard, Suite 540, Santa Monica, CA, 90404, USA.
| |
Collapse
|
33
|
Sarmah D, Sarkar A, Datta A, Ghosh B, Rana N, Sahu S, Gupta V, Thongire V, Chaudhary A, Vadak N, Kaur H, Raut S, Singh U, Borah A, Bhattacharya P. Cardiolipin-Mediated Alleviation of Mitochondrial Dysfunction Is a Neuroprotective Effect of Statin in Animal Model of Ischemic Stroke. ACS Chem Neurosci 2023; 14:709-724. [PMID: 36706354 DOI: 10.1021/acschemneuro.2c00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In clinical settings, the benefit of statin for stroke is debatable as regular statin users may suffer from myalgia, statin-associated myopathy (SAM), and rarely rhabdomyolysis. Studies suggest that patients on statin therapy show lesser vulnerability toward ischemic stroke and post-stroke frailty. Both pre- and post-treatment benefits of statin have been reported as evident by its neuroprotective effects in both cases. As mitochondrial dysfunction following stroke is the fulcrum for neuronal death, we hereby explore the role of statin in alleviating mitochondrial dysfunction by regulating the mitochondrial dynamics. In the present study, we intend to evaluate the role of statin in modulating cardiolipin-mediated mitochondrial functionality and further providing a therapeutic rationale for repurposing statins either as preventive or an adjunctive therapy for stroke.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Sarkar
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aishika Datta
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Bijoyani Ghosh
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nikita Rana
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Shubhrakanta Sahu
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Vishal Gupta
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Vrushali Thongire
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Antra Chaudhary
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Namrata Vadak
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Swapnil Raut
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Upasna Singh
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Pallab Bhattacharya
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
34
|
Ahmed LA, Al-Massri KF. Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using Stem Cell Therapy. Curr Mol Pharmacol 2023; 16:43-59. [PMID: 35196976 DOI: 10.2174/1874467215666220222105004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Dysbiosis has been linked to various diseases ranging from cardiovascular, neurologic, gastrointestinal, respiratory, and metabolic illnesses to cancer. Restoring of gut microbiota balance represents an outstanding clinical target for the management of various multidrug-resistant diseases. Preservation of gut microbial diversity and composition could also improve stem cell therapy which now has diverse clinical applications in the field of regenerative medicine. Gut microbiota modulation and stem cell therapy may be considered a highly promising field that could add up towards the improvement of different diseases, increasing the outcome and efficacy of each other through mutual interplay or interaction between both therapies. Importantly, more investigations are required to reveal the cross-talk between microbiota modulation and stem cell therapy to pave the way for the development of new therapies with enhanced therapeutic outcomes. This review provides an overview of dysbiosis in various diseases and their management. It also discusses microbiota modulation via antibiotics, probiotics, prebiotics, and fecal microbiota transplant to introduce the concept of dysbiosis correction for the management of various diseases. Furthermore, we demonstrate the beneficial interactions between microbiota modulation and stem cell therapy as a way for the development of new therapies in addition to limitations and future challenges regarding the applications of these therapies.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
35
|
Mthembu SXH, Orlando P, Silvestri S, Ziqubu K, Mazibuko-Mbeje SE, Mabhida SE, Nyambuya TM, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Impact of dyslipidemia in the development of cardiovascular complications: Delineating the potential therapeutic role of coenzyme Q 10. Biochimie 2023; 204:33-40. [PMID: 36067903 DOI: 10.1016/j.biochi.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa; Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | | | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
36
|
Amanlou A, Nassireslami E, Dehpour AR, Rashidian A, Chamanara M. Beneficial Effects of Statins on Seizures Independent of Their Lipid-Lowering Effect: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:13-25. [PMID: 36688200 PMCID: PMC9843460 DOI: 10.30476/ijms.2021.91645.2289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
Among the many types of central nervous system (CNS) disorders, seizures and epilepsy severely affect the quality of life and routine daily activity of the sufferers. We aimed to review research studies that investigated the effect of statins on the prevention and treatment of seizures and epilepsy. Both animal models and human studies were included in this review. This article starts with a brief introduction about seizure, its prevalence, treatment, and various animal models of seizures and epilepsy. Next, we discuss statin's mechanism of action, side effects, and effects on neurological disorders with a specific focus on seizures. Finally, the effects of different types of statins on seizures are compared. The present review gives a better understanding of the therapeutic effects of statins on neurological disorders in animal models and human studies. This permits researchers to set up study designs to resolve current ambiguities and contradictions on the beneficial effects of statins on neurological disorders.
Collapse
Affiliation(s)
- Arash Amanlou
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Subedi L, Pandey P, Khadka B, Shim JH, Cho SS, Kweon S, Byun Y, Kim KT, Park JW. Enhancement of the anticancer effect of atorvastatin-loaded nanoemulsions by improving oral absorption via multivalent intestinal transporter-targeting lipids. Drug Deliv 2022; 29:3397-3413. [DOI: 10.1080/10717544.2022.2149896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
38
|
Vital KD, Cardoso BG, Lima IP, Campos AB, Teixeira BF, Pires LO, Dias BC, de Alcantara Candido P, Cardoso VN, Fernandes SOA. Therapeutic effects and the impact of statins in the prevention of ulcerative colitis in preclinical models: A systematic review. Fundam Clin Pharmacol 2022; 37:493-507. [PMID: 36514874 DOI: 10.1111/fcp.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Gatti Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iasmin Pinheiro Lima
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Beatriz Campos
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Faria Teixeira
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octávio Pires
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Coutinho Dias
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia de Alcantara Candido
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
39
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
40
|
Singh S, Zahoor I, Sharma N, Behl T, Kanojia N, Sehgal A, Mohan S, Almoshari Y, Salawi A, Aleya L, Bungau S. Insights into the pivotal role of statins and its nanoformulations in hyperlipidemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76514-76531. [PMID: 36161571 DOI: 10.1007/s11356-022-23043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi-248007, Dehradun, Uttarakhand, India
| | - Neha Kanojia
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
41
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
42
|
Peres EC, Victorio JA, Nunes-Souza V, Breithaupt-Faloppa AC, Rabelo LA, Tavares-de-Lima W, Davel AP, Rossoni LV. Simvastatin protects against intestinal ischemia/reperfusion-induced pulmonary artery dysfunction. Life Sci 2022; 306:120851. [PMID: 35926590 DOI: 10.1016/j.lfs.2022.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
AIMS The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1β and IL-6 in lung explants following II/R. SIGNIFICANCE The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.
Collapse
Affiliation(s)
- Emília C Peres
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Nunes-Souza
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiza A Rabelo
- Laboratory of Cardiovascular Reactivity, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Alagoas, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
43
|
Hu PP, Luo SX, Fan XQ, Li D, Tong XY. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front Pharmacol 2022; 13:1000316. [PMID: 36160452 PMCID: PMC9501673 DOI: 10.3389/fphar.2022.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular diseases, such as myocardial infarction and stroke, which account for the highest death toll worldwide. Macrophage is the major contributor to atherosclerosis progression, and therefore, macrophage-associated pathological process is considered an extremely important target for the diagnosis and treatment of atherosclerosis. However, the existing clinical strategies still have many bottlenecks and challenges in atherosclerosis’s early detection and management. Nanomedicine, using various nanoparticles/nanocarriers for medical purposes, can effectively load therapeutic agents, significantly improve their stability and accurately deliver them to the atherosclerotic plaques. In this review, we summarized the latest progress of the macrophage-targeted nanomedicine in the diagnosis and treatment of atherosclerosis, and their potential applications and clinical benefits are also discussed.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| | - Shuang Xue Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Yong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| |
Collapse
|
44
|
Grisham JM, Tran AH, Ellery K. Hypertriglyceridemia-induced acute pancreatitis in children: A mini-review. Front Pediatr 2022; 10:931336. [PMID: 36110119 PMCID: PMC9469503 DOI: 10.3389/fped.2022.931336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Severe hypertriglyceridemia (HTG) is a known metabolic cause of acute pancreatitis (AP) in pediatric patients. The incidence of hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is less well established in pediatric compared to adult patients. Studies in adults suggest that higher risk of AP occurs when triglyceride levels (TG) are >1,000 mg/dL. Most common etiologies for severe HTG in pediatric patients are either from primary hypertriglyceridemia, underlying genetic disorders of lipid and TG metabolism, or secondary hypertriglyceridemia, separate disease or exposure which affects TG metabolism. Most common theories for the pathophysiology of HTG-AP include hydrolysis of TG by pancreatic lipase to free fatty acids leading to endothelial and acinar cell damage and ischemia, as well as hyperviscosity related to increased chylomicrons. Though there are varying reports of HTG-AP severity compared to other causes of AP, a steadily growing body of evidence suggests that HTG-AP can be associated with more severe course and complications. Therapeutic interventions for HTG-AP typically involve inpatient management with dietary restriction, intravenous fluids, and insulin; select patients may require plasmapheresis. Long term interventions generally include dietary modification, weight management, control of secondary causes, and/or antihyperlipidemic medications. Though some therapeutic approaches and algorithms exist for adult patients, evidence-based management guidelines have not been well established for pediatric patients.
Collapse
Affiliation(s)
- John M. Grisham
- Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, OH, United States
| | - Andrew H. Tran
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Kate Ellery
- Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Umekubo N, Hayashi Y. Catalytic Asymmetric Michael Reaction of Methyl Alkynyl Ketone Catalyzed by Diphenylprolinol Silyl Ether. ACS ORGANIC & INORGANIC AU 2022; 2:245-251. [PMID: 36855469 PMCID: PMC9954212 DOI: 10.1021/acsorginorgau.1c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The asymmetric Michael reaction of methyl alkynyl ketone and α,β-unsaturated aldehyde catalyzed by diphenylprolinol silyl ether was developed. Although methyl alkynyl ketone is a good Michael acceptor, it also acts as a Michael donor to afford the synthetically important δ-oxo aldehydes with excellent enantioselectivity. The products possessing several functional groups, such as alkyne, ketone, and aldehyde moieties, are useful chiral building blocks for further synthesis. Using this reaction as a key step, a side chain of atorvastatin (Lipitor), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, was synthesized in a two-pot sequence with excellent diastereo- and enantioselectivities.
Collapse
|
46
|
Getz KR, Bellile E, Zarins KR, Chinn SB, Taylor JMG, Rozek LS, Wolf GT, Mondul AM. The association between inflammatory biomarkers and statin use among patients with head and neck squamous cell carcinoma. Head Neck 2022; 44:1393-1403. [PMID: 35338544 PMCID: PMC9088158 DOI: 10.1002/hed.27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) and cytokines are associated with prognosis among patients with head and neck squamous cell carcinoma (HNSCC). Statins (cholesterol-lowering drugs) may improve HNSCC prognosis, particularly in human papillomavirus (HPV)-positive cases, but the mechanism remains unclear. METHODS Statin use was collected from medical records for HNSCC cases (2008-2014). TILs were counted in tumor tissue, and a total weighted score (TILws) was created. Cytokines were measured in blood. The associations between statins and biomarkers were estimated using logistic (biomarker categories: <median, ≥median) and linear regression models (log-transformed continuous biomarkers) adjusted for age, smoking, and comorbidities. RESULTS We observed a positive association between statins and TILs among HPV-positive patients (TILws odds ratio [OR] = 2.80; 95% CI = 1.03-7.61), but no association among HPV-negative patients. We observed no association between statins and cytokines. CONCLUSIONS Statins may influence TILs in HPV-positive patients. This may be the mechanism through which they improve prognosis in HPV-positive HNSCC patients.
Collapse
Affiliation(s)
- Kayla R Getz
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Steven B Chinn
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeremy M G Taylor
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.,Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Dose-dependent impact of statin therapy intensity on circulating progenitor cells in patients undergoing percutaneous coronary intervention for the treatment of acute versus chronic coronary syndrome. PLoS One 2022; 17:e0267433. [PMID: 35587929 PMCID: PMC9119492 DOI: 10.1371/journal.pone.0267433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background By low-density lipoprotein (LDL) reduction, statins play an important role in cardiovascular risk modification. Incompletely understood pleiotropic statin effects include vasoprotection that might originate from mobilisation and differentiation of vascular progenitor cells. Data on the potentially differential impact of statin treatment intensity on circulating progenitor cells in patients undergoing percutaneous coronary intervention (PCI) are scarce. This study examines the potential association of different permanent statin treatment regimens on circulating progenitor cells in patients with coronary syndrome. Methods and results In a monocentric prospective all-comers study, 105 consecutive cases scheduled for coronary angiography due to either (A) non-invasive proof of ischemia and chronic coronary syndrome (CCS) or (B) troponin-positive acute coronary syndrome (ACS) were included. According to the 2018 American College of Cardiology Guidelines on Blood Cholesterol, patients were clustered depending on their respective permanent statin treatment regimen in either a high- to moderate-intensity statin treatment (HIST) or a low-intensity statin treatment (LIST) group. Baseline characteristics including LDL levels were comparable. From blood drawn at the time of PCI, peripheral blood mononuclear cells were isolated, cultivated and counted and, by density gradient centrifugation, levels of circulating progenitor cells were determined using fluorescence-activated cell sorting (FACS) analysis. In ACS patients both absolute and relative numbers of circulating early-outgrowth endothelial progenitor cells (EPCs) concurrently were significantly lower in the HIST group as compared to the LIST group. This effect was more pronounced in ACS patients than in CCS patients. Both in ACS and CCS patients, HIST caused a significant reduction of the number of circulating SMPCs. Conclusions In patients undergoing PCI, a dose intensity-dependent and LDL level-independent pro-differentiating vasoprotective pleiotropic capacity of statins for EPC and SMPC is demonstrated.
Collapse
|
48
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
49
|
Sun D, Zhang M, Wei M, Wang Z, Qiao W, Liu P, Zhong X, Liang Y, Chen Y, Huang Y, Yu W. Ox-LDL-mediated ILF3 overexpression in gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Aging (Albany NY) 2022; 14:3887-3909. [PMID: 35507914 PMCID: PMC9134943 DOI: 10.18632/aging.204051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Background: This study aimed to investigate the relationship of dyslipidemia and interleukin-enhancer binding factor 3 (ILF3) in gastric cancer, and provide insights into the potential application of statins as an agent to prevent and treat gastric cancer. Methods: The expression levels of ILF3 in gastric cancer were examined with publicly available datasets such as TCGA, and western blotting and immunohistochemistry were performed to determine the expression of ILF3 in clinical specimens. The effects of ox-LDL on expression of ILF3 were further verified with western blot analyses. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) pathway analyses were performed to reveal the potential downstream signaling pathway targets of ILF3. The effects of statins and ILF3 on PI3K/AKT/mTOR signaling pathway, cell proliferation, cell cycle, migration and invasion of gastric cancer cells were investigated with Edu assay, flow cytometry and transwell assay. Results: Immunohistochemistry and western blot demonstrated that the positive expression rates of ILF3 in gastric cancer tissues were higher than adjacent mucosa tissues. The ox-LDL promoted the expression of ILF3 in a time-concentration-dependent manner. ILF3 promoted the proliferation, cell cycle, migration and invasion by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibited the proliferation, cell cycle, migration and invasion of gastric cancer by inhibiting the expression of ILF3. Conclusions: These findings demonstrate that ox-LDL promotes ILF3 overexpression to regulate gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibits the expression of ILF3, which might be a new targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Danping Sun
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng Wei
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhaoyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Liu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xin Zhong
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yize Liang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuanyuan Chen
- Department of Nursing Department, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yadi Huang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wenbin Yu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
50
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|