1
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
2
|
Azami P, Mohammadzadeh S, Seirafi S, Razeghian-Jahromi I. A review of cutting-edge biomarkers for diagnosing coronary artery disease. Medicine (Baltimore) 2025; 104:e41377. [PMID: 39854741 PMCID: PMC11771658 DOI: 10.1097/md.0000000000041377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates. This review comprehensively examines recent advances in emerging biomarkers for CAD detection. Our analysis delves into various aspects of these biomarkers such as their mechanisms of action, roles in the pathophysiology of the disease, and different measurement techniques employed in clinical practice. Comparative assessment of biomarker performance between CAD patients and control groups was also presented relying on their sensitivity, specificity, and area under the curve at specific cutoff points. In this regard, prominent biomarkers including Tenascin-C, IL-37, PTX3, transthyretin, soluble interleukin-6 receptor α, and miR-15a are identified as having high diagnostic potential for chronic CAD that indeed showcase promising performance metrics. These findings underscore the role of novel biomarkers in enhancing CAD risk stratification and improving patient outcomes through early intervention. However, the pursuit of an ideal and inclusive biomarker continues due to the multifaceted nature of CAD. Future randomized controlled trials are essential to bridge the gap between research findings and clinical practice in order to augment the practical application of these biomarkers in routine healthcare settings.
Collapse
Affiliation(s)
- Pouria Azami
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soroush Seirafi
- Department of Cardiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
3
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Tochigi K, Omura K, Hattori S, Asako M, Tanaka Y. Histological analysis of glucocorticoid receptor and eosinophilic cytokines in the adenoid mucosal epithelium. Int J Pediatr Otorhinolaryngol 2024; 184:112079. [PMID: 39173268 DOI: 10.1016/j.ijporl.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE In recent years, the clinical efficacy of medications for adenoid hypertrophy has been demonstrated. Topical nasal steroids have effects to shrink hypertrophic adenoids and improve symptoms of associated diseases. However, the mechanism which topical steroid administrations cause adenoid shrinkage remains unclear, herein, sensitivity for topical steroids in the mucosal epithelium of adenoids was evaluated histologically by comparing with tonsils. METHODS Histological analysis was performed on adenoids and tonsils removed from 32 pediatric patients with adenoid hypertrophy. In hematoxylin-eosin-stained specimens, the morphology of the mucosal epithelium and eosinophil infiltration were evaluated. The expression of the glucocorticoid receptor (GR), interleukin (IL)-4, and IL-25 in the mucosal epithelium was evaluated, and the staining intensity was scored as 0 (none), 1 (weak), and 2 (strong). The number of eosinophils and expression scores of GR, IL-4, and IL-25 were statistically compared between adenoids and tonsils and analyzed correlations with adenoids sizes. RESULTS Adenoids were covered with ciliated epithelium, and eosinophils in the mucosal epithelium and submucosal area was higher than tonsils (p < 0.05). GR expression in the most superficial layer of the mucosal epithelium was observed in adenoids, and the expression intensity score was higher than that in tonsils (p < 0.05). IL-4 and IL-25 were more widely expressed in the mucosal epithelium of adenoids than in tonsils, and their expression intensity scores were also higher than in tonsils (p < 0.05). A correlation was found between adenoid size and the intensity of IL-25 expression in the adenoid epithelium (p < 0.05). CONCLUSION Eosinophilic inflammations in adenoids mucosal epithelium could be one of etiology of adenoid hypertrophy, and the GR and eosinophilic inflammation in the adenoids mucosal epithelium might be target of topical nasal steroids to shrink hypertrophic adenoids.
Collapse
Affiliation(s)
- Kosuke Tochigi
- Department of Otorhinolaryngology/Head and Neck Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan.
| | - Kazuhiro Omura
- Department of Otorhinolaryngology/Head and Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Saaya Hattori
- Department of Otorhinolaryngology/Head and Neck Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Mikiya Asako
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Medical Center, Osaka, Japan
| | - Yasuhiro Tanaka
- Department of Otorhinolaryngology/Head and Neck Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
5
|
Chang C, Chen G, Wu W, Chen D, Chen S, Gao J, Feng Y, Zhen G. Exogenous IL-25 ameliorates airway neutrophilia via suppressing macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. Respir Res 2023; 24:260. [PMID: 37898756 PMCID: PMC10613395 DOI: 10.1186/s12931-023-02557-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Severe asthma is associated with substantial mortality and has unmet therapeutic need. A subset of severe asthma is characterized by neutrophilic airway inflammation. Classically activated (or M1) macrophages which express IL-12 and IL-23 are associated with airway neutrophilia in asthma. Exogenous IL-25 was reported to suppress intestinal inflammation in animal models of inflammatory bowel diseases via suppressing IL-12 and IL-23 production. We hypothesize that IL-25 ameliorates airway neutrophilia via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. METHODS In a mouse model of neutrophil-dominant allergic airway inflammation, the effect of mouse recombinant IL-25 on airway inflammation were assessed by H&E staining and bronchoalveolar lavage (BAL) cell counting. The percentage of M1 macrophages in lung tissue and BAL cells were analyzed by flow cytometry. Quantitative PCR and immunostaining were performed to measure the expression of Il12, Il23, and inflammatory cytokines. Mechanistic experiments were performed in primary culture of macrophages from mouse lungs. The expression of IL-12, IL-23 and IL-25 in sputum was analyzed in a cohort of severe asthma and subjects with eosinophilic or non-eosinophilic asthma. RESULTS Intranasal administration of IL-25 markedly decreased the number of neutrophils in BAL cells in a murine model of neutrophil-dominant allergic airway inflammation. Moreover, exogenous IL-25 decreased the number of M1 macrophages, and reduced the expression of IL-12, IL-23 in the lungs of the mouse model. Exogenous IL-25 also inhibited the expression of inflammatory cytokines IL-1β, IFN-γ, TNF-α and IL-17 A. In vitro, IL-25 suppressed IL-12 and IL-23 expression in lipopolysaccharide (LPS)-stimulated primary culture of mouse pulmonary macrophages. Mechanistically, IL-25 inhibited LPS-induced c-Rel translocation to nucleus via STAT3-dependent signaling. In a cohort of severe asthma, IL-25 protein levels in sputum were significantly lower than control subjects. The transcript levels of IL-12 and IL-23 were increased whereas IL-25 transcripts were decreased in sputum cells from subjects with non-eosinophilic asthma compared to eosinophilic asthma. CONCLUSIONS IL-25 expression is downregulated in subjects with severe or non-eosinophilic asthma. Exogenous IL-25 ameliorates airway neutrophilia, at least in part, via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23.
Collapse
Affiliation(s)
- Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Pulmonary and Critical Care Medicine, Tongji Hospital, 1095 Jiefang Avenue, 430030, Wuhan, China.
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Respiratory and Critical Care Medicine, Tongji Hospital, 430030, Wuhan, China.
| |
Collapse
|
6
|
Chiesa Fuxench ZC, Wan J, Wang S, Syed MN, Shin DB, Abuabara K, Gelfand JM. Risk of Inflammatory Bowel Disease in Patients With Atopic Dermatitis. JAMA Dermatol 2023; 159:1085-1092. [PMID: 37647058 PMCID: PMC10469290 DOI: 10.1001/jamadermatol.2023.2875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023]
Abstract
Importance Data on the association between atopic dermatitis (AD) and inflammatory bowel disease (IBD) are inconsistent. Few studies have examined the association of AD or AD severity with risk of ulcerative colitis (UC) and Crohn disease (CD) separately. Objectives To examine the risk of new-onset IBD, UC, and CD in children and adults with AD. Design, Setting, and Participants This population-based cohort study assessed patients with AD matched with up to 5 controls on age, practice, and index date. Treatment exposure was used as a proxy for AD severity. Data were retrieved from The Health Improvement Network, a UK electronic medical record database, for January 1, 1994, to February 28, 2015. Data analysis was performed from January 8, 2020, to June 30, 2023. Main Outcomes and Measures Outcomes of interest were incident IBD, UC, and CD. Logistic regression was used to examine the risk for each outcome in children and adults with AD compared with controls. Results A total of 1 809 029 pediatric controls were matched to 409 431 children with AD (93.2% mild, 5.5% moderate, and 1.3% severe). The pediatric cohort ranged in median age from 4 to 5 years (overall range, 1-10 years), was predominantly male (936 750 [51.8%] controls, 196 996 [51.6%] with mild AD, 11 379 [50.7%] with moderate AD, and 2985 [56.1%] with severe AD), and with similar socioeconomic status. A total of 2 678 888 adult controls were matched to 625 083 adults with AD (65.7% mild, 31.4% moderate, and 2.9% severe). The adult cohort ranged in median age from 45 to 50 years (overall range, 30-68 years) and was predominantly female (1 445 589 [54.0%] controls, 256 071 [62.3%] with mild AD, 109 404 [55.8%] with moderate AD, and 10 736 [59.3%] with severe AD). In fully adjusted models, children with AD had a 44% increased risk of IBD (hazard ratio [HR], 1.44; 95% CI, 1.31-1.58) and a 74% increased risk of CD (HR, 1.74; 95% CI, 1.54-1.97), which increased with worsening AD; however, they did not have increased risk of UC (HR, 1.09; 95% CI, 0.94-1.27) except for those with severe AD (HR, 1.65; 95% CI, 1.02-2.67). Adults with AD had a 34% (HR, 1.34; 95% CI, 1.27-1.40) increased risk of IBD, a 36% (HR, 1.36; 95% CI, 1.26-1.47) increased risk of CB, and a 32% (HR, 1.32; 95% CI, 1.24-1.41) increased risk of UC, with risk increasing with worsening AD. Conclusion and Relevance In this cohort study, children and adults with AD had an increased risk of IBD, with risk varying by age, AD severity, and IBD subtype. These findings provide new insights into the association between AD and IBD. Clinicians should be aware of these risks, particularly when selecting systemic treatments for AD in patients who may have coincident gastrointestinal symptoms.
Collapse
Affiliation(s)
- Zelma C. Chiesa Fuxench
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Joy Wan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Wang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Maha N. Syed
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Daniel B. Shin
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco
| | - Joel M. Gelfand
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
7
|
Harrison LC, Bandala‐Sanchez E, Oakey H, Colman PG, Watson K, Kim KW, Wu R, Hamilton‐Williams EE, Stone NL, Haynes A, Thomson RL, Vuillermin PJ, Soldatos G, Rawlinson WD, McGorm KJ, Morahan G, Barry SC, Sinnott RO, Wentworth JM, Couper JJ, Penno MAS. A surge in serum mucosal cytokines associated with seroconversion in children at risk for type 1 diabetes. J Diabetes Investig 2023; 14:1092-1100. [PMID: 37312283 PMCID: PMC10445231 DOI: 10.1111/jdi.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
AIMS/INTRODUCTION Autoantibodies to pancreatic islet antigens identify young children at high risk of type 1 diabetes. On a background of genetic susceptibility, islet autoimmunity is thought to be driven by environmental factors, of which enteric viruses are prime candidates. We sought evidence for enteric pathology in children genetically at-risk for type 1 diabetes followed from birth who had developed islet autoantibodies ("seroconverted"), by measuring mucosa-associated cytokines in their sera. MATERIALS AND METHODS Sera were collected 3 monthly from birth from children with a first-degree type 1 diabetes relative, in the Environmental Determinants of Islet Autoimmunity (ENDIA) study. Children who seroconverted were matched for sex, age, and sample availability with seronegative children. Luminex xMap technology was used to measure serum cytokines. RESULTS Of eight children who seroconverted, for whom serum samples were available at least 6 months before and after seroconversion, the serum concentrations of mucosa-associated cytokines IL-21, IL-22, IL-25, and IL-10, the Th17-related cytokines IL-17F and IL-23, as well as IL-33, IFN-γ, and IL-4, peaked from a low baseline in seven around the time of seroconversion and in one preceding seroconversion. These changes were not detected in eight sex- and age-matched seronegative controls, or in a separate cohort of 11 unmatched seronegative children. CONCLUSIONS In a cohort of children at risk for type 1 diabetes followed from birth, a transient, systemic increase in mucosa-associated cytokines around the time of seroconversion lends support to the view that mucosal infection, e.g., by an enteric virus, may drive the development of islet autoimmunity.
Collapse
Affiliation(s)
- Leonard C Harrison
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Esther Bandala‐Sanchez
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Helena Oakey
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Peter G Colman
- Department of Diabetes and EndocrinologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Kelly Watson
- Department of Diabetes and EndocrinologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Ki Wook Kim
- Virology Research Laboratory, Serology and Virology DivisionNSW Health, Prince of Wales HospitalSydneyNew South WalesAustralia
- Schools of Biomedical Sciences and Biotechnology and Biomolecular Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Roy Wu
- Virology Research Laboratory, Serology and Virology DivisionNSW Health, Prince of Wales HospitalSydneyNew South WalesAustralia
- Schools of Biomedical Sciences and Biotechnology and Biomolecular Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Natalie L Stone
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Aveni Haynes
- Telethon Kids Institute for Child Health Research, Centre for Child Health Researchthe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Rebecca L Thomson
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Peter J Vuillermin
- Faculty of School of MedicineDeakin UniversityGeelongVictoriaAustralia
- Child Health Research UnitBarwon HealthGeelongVictoriaAustralia
| | - Georgia Soldatos
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- Diabetes and Vascular Medicine UnitMonash HealthMelbourneVictoriaAustralia
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology DivisionNSW Health, Prince of Wales HospitalSydneyNew South WalesAustralia
- Schools of Biomedical Sciences and Biotechnology and Biomolecular Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kelly J McGorm
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Simon C Barry
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Richard O Sinnott
- Melbourne eResearch Group, School of Computing and Information ServicesUniversity of MelbourneMelbourneVictoriaAustralia
| | - John M Wentworth
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Diabetes and EndocrinologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Jennifer J Couper
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Megan AS Penno
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
8
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
9
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
10
|
Chen J, Wang Y, Shen L, Xiu Y, Wang B. Could IL-25 be a potential therapeutic target for intestinal inflammatory diseases? Cytokine Growth Factor Rev 2023; 69:43-50. [PMID: 35840510 DOI: 10.1016/j.cytogfr.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
As a member of the IL-17 cytokine family, IL-25 (also called IL-17E) induces and sustains type 2 immunity. IL-25, which is mainly produced by intestinal epithelial cells, has been gradually investigated in recent years for its function in intestinal inflammation but is not yet fully understood. This review summarizes the expression and function of IL-25 in the intestine, especially the progression of its regulatory role on type 2 immunity-related cells. Finally, we discuss the dual role of IL-25 based on inflammatory bowel disease to inform research on targeting IL-25 for the treatment of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
11
|
GZMK high CD8 + T effector memory cells are associated with CD15 high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome. Nat Commun 2022; 13:6752. [PMID: 36347862 PMCID: PMC9643357 DOI: 10.1038/s41467-022-34467-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
CD8+ T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8+ T effector memory cells (TEM) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8+ T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8+ T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.
Collapse
|
12
|
Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan. Viruses 2022; 14:v14102149. [PMID: 36298704 PMCID: PMC9610190 DOI: 10.3390/v14102149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) is caused by viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Where upregulation of several important biomarkers and multiple organ dysfunction occurs, this study aimed to evaluate the association of cardiac biomarkers and CS induced acute lung damage with disease severity and mortality in survival of COVID-19 patients. A total of 500 COVID-19 patients with elevated cardiac biomarkers were studied for the analysis of myocardial abnormality through cardiac enzymes, inflammatory biomarkers, and the expression analysis of various cytokines, including IL-1, IL-6, IL-10, IL-17, and IL-25 genes. The elevation of various cardiac enzymes including LDH (87%), CK (78.4%), TNI (80.4%), CK-MB (83%), and D-dimer (80.8%) were found correlated (p < 0.001) with COVID-19 infection. Cardiac enzyme elevation was highly associated with an increased level of inflammatory biomarkers such as CRP (14.2%), SAA (11.4%) and erythrocyte sedimentation rate (ESR) (7.8%) (p = 0.001 for all). The quantitative expression analysis of IL-10, 1L-17, and 1L-25 were found to be high, while those of IL-1 and IL-6 were moderately elevated. The death-to-live ratio of COVID-19 patients was 457:43 indicating that the patients having elevated levels of both CKMB, D-dimer, CK and IL-1, IL-6, IL-10 and D-dimer, Troponin, CK and IL-1, IL-10 had high fatality rate (73% and 12% respectively). The current finding concludes that the evaluation of cardiac biomarkers with cytokine storm plays a significant role in COVID-19-associated anatomical organ damage, myocardial injury, and mortality. Physicians should pay special attention to cardiac biomarkers in patients with old age, inflammation, and comorbidities among COVID-19 infections.
Collapse
|
13
|
Wu J, Zhang F, Tao H, Nawaz W, Chen D, Wu Z. The potential roles of interleukin-25 in infectious diseases. Front Immunol 2022; 13:986118. [PMID: 36119076 PMCID: PMC9478665 DOI: 10.3389/fimmu.2022.986118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a recently identified cytokine of the IL-17 family. Numerous studies illustrated that the expression of IL-25 is regulated by multiple pathogens, including parasitic, viral, and bacterial infections. IL-25 has a dual function in infectious diseases. On the one hand, IL-25 activates type 2 immunity via the relevant cytokines, including IL-4, IL-5, and IL-13, which are associated with the development of pathogenic infection-related allergic diseases. On the other hand, IL-25 involves in the recruitment of group 2 innate lymphoid cells (ILC2) to enhanced T helper 2 (Th2) cell differentiation, which are important to the clearance of pathogens. However, the precise roles of IL-25 in infectious diseases remain largely unknown. Thus, the current review will shed light on the pivotal roles of IL-25 in infectious diseases.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Hôpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Montréal, Canada
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- *Correspondence: Deyan Chen, ; Zhiwei Wu,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Deyan Chen, ; Zhiwei Wu,
| |
Collapse
|
14
|
Schmid F, Chao CM, Däbritz J. Pathophysiological Concepts and Management of Pulmonary Manifestation of Pediatric Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:7287. [PMID: 35806292 PMCID: PMC9266732 DOI: 10.3390/ijms23137287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pulmonary manifestation (PM) of inflammatory bowel disease (IBD) in children is a rare condition. The exact pathogenesis is still unclear, but several explanatory concepts were postulated and several case reports in children were published. We performed a systematic Medline search between April 1976 and April 2022. Different pathophysiological concepts were identified, including the shared embryological origin, "miss-homing" of intestinal based neutrophils and T lymphocytes, inflammatory triggering via certain molecules (tripeptide proline-glycine-proline, interleukin 25), genetic factors and alterations in the microbiome. Most pediatric IBD patients with PM are asymptomatic, but can show alterations in pulmonary function tests and breathing tests. In children, the pulmonary parenchyma is more affected than the airways, leading histologically mainly to organizing pneumonia. Medication-associated lung injury has to be considered in pulmonary symptomatic pediatric IBD patients treated with certain agents (i.e., mesalamine, sulfasalazine or infliximab). Furthermore, the risk of pulmonary embolism is generally increased in pediatric IBD patients. The initial treatment of PM is based on corticosteroids, either inhaled for the larger airways or systemic for smaller airways and parenchymal disease. In summary, this review article summarizes the current knowledge about PM in pediatric IBD patients, focusing on pathophysiological and clinical aspects.
Collapse
Affiliation(s)
- Florian Schmid
- Catholic Children’s Hospital Wilhelmstift, 22149 Hamburg, Germany;
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, 18057 Rostock, Germany;
- Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center of Lung Research (DZL), Justus-Liebig-University, 35398 Giessen, Germany
| | - Jan Däbritz
- Department of Pediatrics, University Medical Center Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
15
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Gheitasi R, Keramat F, Khosravi S, Hajilooi M, Pletz MW, Makarewicz O. Evaluation of Th2 and Th17 Immunity-Related Factors as Indicators of Brucellosis. Front Cell Infect Microbiol 2022; 11:786994. [PMID: 35071039 PMCID: PMC8777051 DOI: 10.3389/fcimb.2021.786994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Objective Brucellosis is a common bacterial zoonotic infection, and greater than half a million new cases are diagnosed annually. This study investigates the expression of Th2 and Th17 immunity-related factors (Th2-LCR lncRNA, IL-25, TRAF3IP2, and IL-17RB) in different stages of Brucella infections. Material and Methods In total, 99 brucellosis patients were divided into three groups (acute = first infection before treatment, relapse = before treatment, and treated = after treatment for 6–8 weeks with doxycycline and rifampin). Thirty-three healthy volunteers represented the control group. Gene expression levels were assessed by quantitative amplification in reference to the 18S rRNA gene and statistically evaluated. Results No significant differences in the expression of these genes were observed between the control group and patients after completion of antibiotic treatment. Compared to these two groups, only Th2-LCR lncRNA and TRAF3IP2 were significantly more highly expressed in the acute group. Th2-LCR lncRNA was also significantly elevated in the relapse group. TRAF3IP2 expression was additionally significantly increased in the acute group compared to the relapse group. Conclusion IL-25 and IL-17RB failed to differentiate between the infected and noninfected groups. TRAF3IP2 and Th2-LCR lncRNA might be good indicators of brucellosis during the acute phase, but the expression levels varied strongly among patients. To verify the suitability of these factors as an indicator for brucellosis, acute infection or relapse should be investigated in further studies on larger cohorts with well-defined inclusion criteria.
Collapse
Affiliation(s)
- Reza Gheitasi
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Khosravi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hajilooi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Li N, Saghafi N, Ghaneifar Z, Rezaee SA, Rafatpanah H, Abdollahi E. Evaluation of the Effects of 1,25VitD3 on Inflammatory Responses and IL-25 Expression. Front Genet 2021; 12:779494. [PMID: 34956328 PMCID: PMC8693381 DOI: 10.3389/fgene.2021.779494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023] Open
Abstract
VitD3 may contribute to a successful pregnancy through modulation of immune responses, so VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion (URSA). However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well. Objective: The purpose of this research was to investigate the influence of 1,25VitD3 on IL-25 and related cytokines of Th17 cells including IL-17A, IL-6, and IL-23 in peripheral blood mononuclear cells of healthy women as a control group and women with unexplained recurrent spontaneous abortion. Method: Isolation of peripheral blood mononuclear cells (PBMCs) was performed from peripheral blood of the subjects of the studied groups (20 women with URSA as a case group, and 20 control women). The effects of 1,25VitD3 (50 nM, for 24 h) on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, real-time PCR and ELISA were carried out. Results: The proportion of Th17 cells in women with URSA was considerably higher than in the control group. IL-25 mRNA and protein levels in cultured PBMCs from women with URSA were lower than the controls. 1,25VitD3 increased IL-25 expressions at both the protein and mRNA levels in PBMCs from women with URSA relative to the control group. Additionally, 1,25VitD3 treatment not only significantly decreased the percentage of Th17 cells frequency but also reduced expressions of IL-6, IL-17A, and IL-23 in PBMCs from women with URSA. Conclusion: 1,25VitD3 may diminish inflammatory responses cells via downregulation of IL-25 expression. It could be an interesting subject for future researches in the field of the immunopathology of URSA to identify molecular pathways in URSA treatment.
Collapse
Affiliation(s)
- Nana Li
- Department of Obstetrics, Jinan Maternal and Child Care Health Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nafiseh Saghafi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdorahim Rezaee
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture, and Research (ACECR), Mashhad Branch, Mashhad, Iran.,Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture, and Research (ACECR), Mashhad Branch, Mashhad, Iran.,Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Type 2 immunity in intestinal homeostasis and inflammatory bowel disease. Biochem Soc Trans 2021; 49:2371-2380. [PMID: 34581755 PMCID: PMC8589436 DOI: 10.1042/bst20210535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Type 2 immune responses commonly emerge during allergic reactions or infections with helminth parasites. Most of the cytokines associated with type 2 immune responses are IL-4, IL-5, and IL13, which are mainly produced by T helper 2 cells (TH2), eosinophils, basophils, mast cells, and group 2 innate lymphoid cells (ILC2s). Over the course of evolution, humans have developed type 2 immune responses to fight infections and to protect tissues from the potential collateral damage caused by inflammation. For example, worm parasites induce potent type 2 immune responses, which are needed to simultaneously clear the pathogen and to promote tissue repair following injury. Due to the strong type 2 immune responses induced by helminths, which can promote tissue repair in the damaged epithelium, their use has been suggested as a possible treatment for inflammatory bowel disease (IBD); however, the role of type 2 immune responses in the initiation and progression of IBD is not fully understood. In this review, we discuss the molecular and cellular mechanisms that regulate type 2 immune responses during intestinal homeostasis, and we briefly discuss the scarce evidence linking type 2 immune responses with the aetiology of IBD.
Collapse
|
19
|
Gowhari Shabgah A, Amir A, Gardanova ZR, Olegovna Zekiy A, Thangavelu L, Ebrahimi Nik M, Ahmadi M, Gholizadeh Navashenaq J. Interleukin-25: New perspective and state-of-the-art in cancer prognosis and treatment approaches. Cancer Med 2021; 10:5191-5202. [PMID: 34128588 PMCID: PMC8335817 DOI: 10.1002/cam4.4060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death which imposes a substantial financial burden. Among the several mechanisms involved in cancer progression, imbalance of immune cell-derived factors such as cytokines and chemokines plays a central role. IL-25, as a member of the IL-17 cytokine subfamily, exerts a paradoxical role in cancer, including tumor supportive and tumor suppressive. Hence, we have tried to clarify the role of IL-25 and its receptor in tumor progression and cancer prognosis. It has been confirmed that IL-25 exerts a tumor-suppressive role through inducing infiltration of eosinophils and B cells into the tumor microenvironment and activating the apoptotic pathways. In contrast, the tumor-supportive function has been implemented by activating inflammatory cascades, promoting cell cycle, and inducing type-2 immune responses. Since IL-25 has been dysregulated in tumor tissues and this dysregulation is involved in cancer development, its examination can be used as a tumor diagnostic and prognostic biomarker. Moreover, IL-25-based therapeutic approaches have shown promising results in cancer inhibition. In cancers in which IL-25 has a tumor-suppressive function, employing IL-25-enhancing approaches, such as Virulizin® and dihydrobenzofuran administration, has potentially inhibited tumor cell growth. On the other hand, in the case of IL-25-dependent tumor progression, using IL-25 blocking methods, including anti-IL-25 antibodies, might be a complementary approach to the other anticancer agent. Collectively, it is hoped, IL-25 might be a promising target in cancer treatment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of MedicineBam University of Medical SciencesBamIran
- Student Research CommitteeBam University of Medical SciencesBamIran
| | - Azwar Amir
- Wahidin Sudirohusodo Hospital MakassarMakassarTamalanreaIndonesia
| | - Zhanna R. Gardanova
- Department of PsychotherapyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic DentistrySechenov First Moscow State Medical UniversityMoscowRussia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of medical and Technical SciencesSaveetha UniversityChennaiIndia
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
20
|
Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, Zhang L, Hu D, Ciccia F, Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front Immunol 2021; 12:691559. [PMID: 34122457 PMCID: PMC8194343 DOI: 10.3389/fimmu.2021.691559] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines. IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review recent advances in the roles of IL-25 in the pathogenesis of inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lijun Zhang
- Department of Rheumatology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Naderi N, Farshidi N, Farshidi H, Montazerghaem H, Rahimzadeh M. Lack of association between serum IL-25 levels and acute coronary syndrome: a preliminary study. ACTA ACUST UNITED AC 2021; 61:60-65. [PMID: 33998410 DOI: 10.18087/cardio.2021.4.n1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose Here, for the first time, the possible association between IL-25 and the risk of acute coronary syndrome (ACS) in Iranian patients was investigated.Material and methods In this study, serum IL-25 concentrations were measured with an enzyme-linked immunosorbent assay in 88 ACS patients, 40 stable angina pectoris (SAP) patients, and 50 healthy control subjects.Results No significant differences in IL-25 concentrations were observed between SAP (340±168 ng / l), ACS (330±151 ng / l), and control (302±135 ng / l) groups (p=0.5), nor was there a difference among patients with 1, 2, or 3 vessel disease in the SAP and ACS groups. Linear regression analyses revealed that IL-25 was not correlated with coronary artery disease risk factors. Biochemical and demographic variables did not differ significantly among IL-25 quartiles.Conclusion Despite previous murine and human studies showing a protective role of IL-25 in atherosclerosis, our results revealed that IL-25 does not have potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
22
|
Cai J, McKinley T, Billiar I, Zenati MS, Gaski G, Vodovotz Y, Gruen DS, Billiar TR, Namas RA. Protective/reparative cytokines are suppressed at high injury severity in human trauma. Trauma Surg Acute Care Open 2021; 6:e000619. [PMID: 33748428 PMCID: PMC7929818 DOI: 10.1136/tsaco-2020-000619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Background Trauma elicits a complex inflammatory response that, among multiple presenting factors, is greatly impacted by the magnitude of injury severity. Herein, we compared the changes in circulating levels of mediators with known proinflammatory roles to those with known protective/reparative actions as a function of injury severity in injured humans. Methods Clinical and biobank data were obtained from 472 (trauma database-1 (TD-1), University of Pittsburgh) and 89 (trauma database-2 (TD-2), Indiana University) trauma patients admitted to the intensive care unit (ICU) and who survived to discharge. Injury severity was estimated based on the Injury Severity Score (ISS), and this was used as both a continuous variable and for the purpose of grouping patients into severity-based cohorts. Samples within the first 24 hours were obtained from all patients and then daily up to day 7 postinjury in TD-1. Sixteen cytokines were assayed using Luminex and were analyzed using two-way analysis of variance (p<0.05). Results Patients with higher ISSs had longer ICU and hospital stays, days on mechanical ventilation and higher rates of nosocomial infection when compared with the mild and moderate groups. Time course analysis and correlations with ISS showed that 11 inflammatory mediators correlated positively with injury severity, consistent with previous reports. However, five mediators (interleukin (IL)-9, IL-21, IL-22, IL-23 and IL-17E/25) were suppressed in patients with high ISS and inversely correlated with ISS. Discussion These findings suggest that severe injury is associated with a suppression of a subset of cytokines known to be involved in tissue protection and regeneration (IL-9, IL-22 and IL-17E/25) and lymphocyte differentiation (IL-21 and IL-23), which in turn correlates with adverse clinical outcomes. Thus, patterns of proinflammatory versus protective/reparative mediators diverge with increasing ISS.
Collapse
Affiliation(s)
- Jinman Cai
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mazen S Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Greg Gaski
- Department of Orthopedic Surgery, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
24
|
Lütfioğlu M, Sakallıoğlu U, Sakallıoğlu EE, Özden FO, Ürkmez SS, Bilgici B. Effects of smoking on the gingival crevicular fluid levels of interleukin-17A, interleukin-17E, and oxidative stress following periodontal treatment process. J Periodontal Res 2021; 56:388-396. [PMID: 33458831 DOI: 10.1111/jre.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE AND BACKGROUND How smoking affects periodontal inflammation and healing still needs to be revealed with all its mechanisms. In this study, the gingival crevicular fluid (GCF) levels of: (a) interleukin-17A (IL-17A) and interleukin-17E(IL-17E) with their ratios and (b) oxidative stress by means of total oxidative stress (TOS), total anti-oxidant capacity (TAOC), and their ratios as the oxidative stress index (OSI) were evaluated and compared for smoking and non-smoking periodontitis patients after a periodontitis management process including both the non-surgical and surgical treatments. MATERIALS AND METHODS Fifteen smoker and 15 non-smoker generalized periodontitis patients as 2 distinct groups participated in the study. Conventional clinical and radiographical examinations were utilized for the periodontitis diagnosis. The clinical data and GCF samples were collected at baseline, 4 week after non-surgical periodontal treatment (NSPT), and 4 weeks after surgical periodontal treatment (SPT). IL-17A, IL-17E, TOS, and TAOC were determined by ELISA and Rel Assay. RESULTS Clinical parameters in both smokers and non-smokers improved following periodontal treatment (P < .001) and their clinical data were similar for all the examination times (baseline, NSPT, and SPT) (P > .05). Following the treatment phases, the IL-17A concentration decreased and the IL-17E concentration increased in both the smokers and non-smokers (P < .01). The total amount of IL-17A decreased while the total amount of IL-17E increased in smokers throughout NSPT and SPT (P < .01). Such an alteration was seen only at SPT compared to NSPT and baseline in non-smokers (P < .01). The concentration and total amount of IL-17A were higher at baseline, and the concentration and total amount of IL-17E were lower at all examination time points in non-smokers as compared to smokers (P < .01). The 17A/E ratio decreased in both groups following the treatment phases and was higher in smokers at all the examination times (P < .01). TOS were higher and TAOC were lower in smokers versus non-smokers at all the time points, but the differences were significant only for TOS levels (P < .01). Throughout the treatment phases, the concentration and total amount of TOS decreased in smokers(P < .01) and only the total amount of TOS decreased in non-smokers (P < .01). The concentration and total amounts of TAOC increased throughout the treatments in both smokers and non-smokers without significant changes (P > .05). The baseline OSI was higher in smokers, and it decreased only in smokers following the treatment phases (P < .01). CONCLUSIONS Smoking and periodontal inflammation were found to alter IL-17A, IL-17E, and oxidant/anti-oxidant statuses in periodontitis patients. The intra-group assessments in smokers demonstrated more apparent alterations in the oxidant/anti-oxidant statuses and IL-17A and IL-17E levels after periodontitis management.
Collapse
Affiliation(s)
- Muge Lütfioğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Umur Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Eser Elif Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Feyza O Özden
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Sebati Sinan Ürkmez
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| | - Birsen Bilgici
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| |
Collapse
|
25
|
Gutierrez B, Gallardo I, Ruiz L, Alvarez Y, Cachofeiro V, Margolles A, Hernandez M, Nieto ML. Oleanolic acid ameliorates intestinal alterations associated with EAE. J Neuroinflammation 2020; 17:363. [PMID: 33246492 PMCID: PMC7697371 DOI: 10.1186/s12974-020-02042-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease affecting the CNS. Recent studies have indicated that intestinal alterations play key pathogenic roles in the development of autoimmune diseases, including MS. The triterpene oleanolic acid (OA), due to its anti-inflammatory properties, has shown to beneficially influence the severity of the experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS. We herein investigate EAE-associated gut intestinal dysfunction and the effect of OA treatment. Methods Mice with MOG35–55-induced EAE were treated with OA or vehicle from immunization day and were daily analyzed for clinical deficit. We performed molecular and histological analysis in serum and intestinal tissues to measure oxidative and inflammatory responses. We used Caco-2 and HT29-MTX-E12 cells to elucidate OA in vitro effects. Results We found that OA protected from EAE-induced changes in intestinal permeability and preserved the mucin-containing goblet cells along the intestinal tract. Serum levels of the markers for intestinal barrier damage iFABP and monocyte activation sCD14 were consistently and significantly reduced in OA-treated EAE mice. Beneficial OA effects also included a decrease of pro-inflammatory mediators both in serum and colonic tissue of treated-EAE mice. Moreover, the levels of some immunoregulatory cytokines, the neurotrophic factor GDNF, and the gastrointestinal hormone motilin were preserved in OA-treated EAE mice. Regarding oxidative stress, OA treatment prevented lipid peroxidation and superoxide anion accumulation in intestinal tissue, while inducing the expression of the ROS scavenger Sestrin-3. Furthermore, short-chain fatty acids (SCFA) quantification in the cecal content showed that OA reduced the high iso-valeric acid concentrations detected in EAE-mice. Lastly, using in vitro cell models which mimic the intestinal epithelium, we verified that OA protected against intestinal barrier dysfunction induced by injurious agents produced in both EAE and MS. Conclusion These findings reveal that OA ameliorates the gut dysfunction found in EAE mice. OA normalizes the levels of gut mucosal dysfunction markers, as well as the pro- and anti-inflammatory immune bias during EAE, thus reinforcing the idea that OA is a beneficial compound for treating EAE and suggesting that OA may be an interesting candidate to be explored for the treatment of human MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02042-6.
Collapse
Affiliation(s)
- Beatriz Gutierrez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Yolanda Alvarez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Marita Hernandez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Maria Luisa Nieto
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain.
| |
Collapse
|
26
|
Medara N, Lenzo JC, Walsh KA, Darby IB, O'Brien-Simpson NM, Reynolds EC. T helper 17 cell-related cytokines in serum and saliva during management of periodontitis. Cytokine 2020; 134:155186. [PMID: 32717609 DOI: 10.1016/j.cyto.2020.155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
AIM T helper (Th)17 cells are implicated in the pathogenesis of periodontitis. This study investigated the effect of periodontal management on fifteen Th17-related cytokines in serum and saliva in periodontitis patients. MATERIALS AND METHODS Periodontal parameters, serum and saliva were collected from 40 healthy controls and 54 periodontitis subjects before treatment, and 3-, 6- and 12-months post-treatment. Cytokine concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α were determined by Luminex assay. RESULTS IL-1β, IL-6, sCD40L and TNF-α in serum, and IL-1β, IL-6, IL-25 and IL-31 in saliva were significantly higher at baseline compared to health and decreased with treatment. In contrast, serum IL-31 was significantly lower at baseline compared to health and increased with treatment. In addition, salivary IL-10, IL-17A, IL-17F, IL-23, IL-33, IFN-γ and TNF-α also displayed treatment-related reduction. Correlation networks showed that cytokines in saliva displayed a higher number of correlations compared to serum in periodontitis. CONCLUSION Treatment generally decreased cytokine concentrations except for serum IL-31 which showed a treatment-related increase. Serum cytokine concentrations may not be reflective of salivary cytokines. Saliva may be a better medium for cytokine detection compared to serum. Serum IL-31 and salivary IL-1β, IL-6, IL-10 and TNF-α were significant predictors for mean probing depth and may be potential biomarkers of interest in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
27
|
Borowczyk J, Buerger C, Tadjrischi N, Drukala J, Wolnicki M, Wnuk D, Modarressi A, Boehncke WH, Brembilla NC. IL-17E (IL-25) and IL-17A Differentially Affect the Functions of Human Keratinocytes. J Invest Dermatol 2020; 140:1379-1389.e2. [DOI: 10.1016/j.jid.2019.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/03/2023]
|
28
|
Abstract
Intestinal fibrosis is a common outcome of inflammatory bowel diseases (IBDs), becoming clinically apparent in 40% of patients with Crohn's disease and 5% of those with ulcerative colitis. Effective pharmacological treatments aimed at controlling or reversing fibrosis progression are unavailable. Fibrosis is characterized by an excessive local accumulation of extracellular matrix proteins (mainly collagen), as a result of their increased production by activated myofibroblasts and/or their reduced degradation by specific matrix metalloproteinases. Initiation and progression of fibrosis are modulated by several pro- and anti-fibrogenic molecules. In recent years, the cytokine interleukin-17 (IL-17) has been integrated into the pathogenesis of fibrosis, although its precise contribution to IBD, and especially to its related intestinal fibrosis, remains controversial. Several data suggest both a pro-inflammatory and pro-fibrotic action and a protective function of the Th17/IL-17 immune response. A recent study has demonstrated that the treatment with anti-IL-17 antibody significantly alleviated 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colorectal fibrosis in mice by down-regulating the expression of collagen 3 and several pro-fibrogenic cytokines. Here, we describe and discuss the possible involvement of the Th17/IL-17 immune response in the initiation ad progression of intestinal fibrosis.
Collapse
|
29
|
Dual-Functionalized MSCs that Express CX3CR1 and IL-25 Exhibit Enhanced Therapeutic Effects on Inflammatory Bowel Disease. Mol Ther 2020; 28:1214-1228. [PMID: 32087149 DOI: 10.1016/j.ymthe.2020.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great promise in inflammatory bowel disease (IBD) treatment, owing to their immunosuppressive capabilities, but their therapeutic effectiveness is sometimes thwarted by their low efficiency in entering the inflamed colon and variable immunomodulatory ability in vivo. Here, we demonstrated a new methodology to manipulate MSCs to express CX3C chemokine receptor 1 (CX3CR1) and interleukin-25 (IL-25) to promote their delivery to the inflamed colon and enhance their immunosuppressive capability. Compared to MSCs without treatment, MSCs infected with a lentivirus (LV) encoding CX3CR1 and IL-25 (CX3CR1&IL-25-LV-MSCs) exhibited enhanced targeting to the inflamed colon and could further move into extravascular space of the colon tissues via trans-endothelial migration in dextran sodium sulfate (DSS)-challenged mice after MSC intravenous injection. The administration of the CX3CR1&IL-25-LV-MSCs achieved a better therapeutic effect than that of the untreated MSCs, as indicated by pathological indices and inflammatory markers. Antibody-blocking studies indicated that the enhanced therapeutic effects of dual-functionalized MSCs were dependent on CX3CR1 and IL-25 function. Overall, this strategy, which is based on enhancing the homing and immunosuppressive abilities of MSCs, represents a promising therapeutic approach that may be valuable in IBD therapy.
Collapse
|
30
|
Yoshizaki T, Itoh S, Yamaguchi S, Numata T, Nambu A, Kimura N, Suto H, Okumura K, Sudo K, Yamaguchi A, Nakae S. IL-25 exacerbates autoimmune aortitis in IL-1 receptor antagonist-deficient mice. Sci Rep 2019; 9:17067. [PMID: 31745167 PMCID: PMC6864066 DOI: 10.1038/s41598-019-53633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
IL-25, a member of the IL-17 family of cytokines, is known to enhance type 2 immune responses, but suppress type 3 (IL-17A)-mediated immune responses. Mice deficient in IL-1 receptor antagonist (Il1rn−/− mice) have excessive IL-1 signaling, resulting in spontaneous development of IL-1–, TNF– and IL-17A–dependent aortitis. We found that expression of II25 mRNA was increased in the aortae of Il1rn−/− mice, suggesting that IL-25 may suppress development of IL-1–, TNF– and IL-17A–dependent aortitis in Il1rn−/− mice by inhibiting type 3-mediated immune responses. However, we unexpectedly found that Il25−/−Il1rn−/− mice showed attenuated development of aortitis, accompanied by reduced accumulation of inflammatory cells such as dendritic cells, macrophages and neutrophils and reduced mRNA expression of Il17a and Tnfa—but not Il4 or Il13—in local lesions compared with Il1rn−/− mice. Tissue–, but not immune cell–, derived IL-25 was crucial for development of aortitis. IL-25 enhanced IL-1β and TNF production by IL-25 receptor–expressing dendritic cells and macrophages, respectively, at inflammatory sites of aortae of Il1rn−/− mice, contributing to exacerbation of development of IL-1–, TNF– and IL-17A–dependent aortitis in those mice. Our findings suggest that neutralization of IL-25 may be a potential therapeutic target for aortitis.
Collapse
Affiliation(s)
- Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Satoshi Itoh
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Naoyuki Kimura
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8412, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8412, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
31
|
Walduck AK, Raghavan S. Immunity and Vaccine Development Against Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:257-275. [PMID: 31016627 DOI: 10.1007/5584_2019_370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is a highly-adapted gastrointestinal pathogen of humans and the immunology of this chronic infection is extremely complex. Despite the availability of antibiotic therapy, the global incidence of H. pylori infection remains high, particularly in low to middle-income nations. Failure of therapy and the spread of antibiotic resistance among the bacteria are significant problems and provide impetus for the development of new therapies and vaccines to treat or prevent gastric ulcer, and gastric carcinoma. The expansion of knowledge on gastric conventional and regulatory T cell responses, and the role of TH17 in chronic gastritis from studies in mouse models and patients have provided valuable insights into how gastritis is initiated and maintained. The development of human challenge models for testing candidate vaccines has meant a unique opportunity to study acute infection, but the field of vaccine development has not progressed as rapidly as anticipated. One clear lesson learned from previous studies is that we need a better understanding of the immune suppressive mechanisms in vivo to be able to design vaccine strategies. There is still an urgent need to identify practical surrogate markers of protection that could be deployed in future field vaccine trials. Important developments in our understanding of the chronic inflammatory response, progress and problems arising from human studies, and an outlook for the future of clinical vaccine trials will be discussed.
Collapse
Affiliation(s)
- Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Xu J, Pei S, Wang Y, Liu J, Qian Y, Huang M, Zhang Y, Xiao Y. Tpl2 Protects Against Fulminant Hepatitis Through Mobilization of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:1980. [PMID: 31481966 PMCID: PMC6710335 DOI: 10.3389/fimmu.2019.01980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) in the liver microenvironment protects against the inflammation-induced liver injury in fulminant hepatitis (FH). However, the molecular mechanism through which MDSC is recruited into the inflamed liver remain elusive. Here we identified a protein kinase Tpl2 as a critical mediator of MDSC recruitment into liver during the pathogenesis of Propionibacterium acnes/LPS-induced FH. Loss of Tpl2 dramatically suppressed MDSC mobilization into liver, leading to exaggerated local inflammation and increased FH-induced mortality. Mechanistically, although the protective effect of Tpl2 for FH-induced mortality was dependent on the presence of MDSC, Tpl2 neither directly targeted myeloid cells nor T cells to regulate FH pathogenesis, but functioned in hepatocytes to mediate the induction of MDSC-attracting chemokine CXCL1 and CXCL2 through modulating IL-25 (also known as IL-17E) signaling. As a consequence, increased MDSC in the inflamed liver specifically restrained the local proliferation of infiltrated pathogenic CD4+ T cells, and thus protected against the inflammation-induced acute liver failure. Together, our findings established Tpl2 as a critical mediator of MDSC recruitment and highlighted the therapeutic potential of Tpl2 for the treatment of FH.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanyun Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
IL-17E (IL-25) Enhances Innate Immune Responses during Skin Inflammation. J Invest Dermatol 2019; 139:1732-1742.e17. [DOI: 10.1016/j.jid.2019.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/20/2022]
|
34
|
Chen J, He Y, Tu L, Duan L. Dual immune functions of IL-33 in inflammatory bowel disease. Histol Histopathol 2019; 35:137-146. [PMID: 31294456 DOI: 10.14670/hh-18-149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-33 (IL-33) has emerged as a critical regulator in a variety of diseases, including inflammatory bowel disease (IBD). IL-33 can be produced by various tissues and cells, and typically induces Th2-type immune responses via binding to the receptor ST2. In addition, accumulated data have shown that IL-33 also plays a modulatory role in the function of regulatory T cells (Tregs), B cells, and innate immune cells such as macrophages and innate lymphoid cells (ILCs). IBD, including Crohn's disease and ulcerative colitis, are characterized by aberrant immunological responses leading to intestinal tissue injury and destruction. Although IL-33 expression is increased in IBD patients and correlates with the patients' disease activity index, mechanistic studies to date have demonstrated both pathogenic and protective roles in animal models of experimental colitis. In this review, we will summarize the roles and mechanisms of IL-33 in IBD, which is essential to understand the pathogenesis of IBD and determine potential therapies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, China.
| |
Collapse
|
35
|
Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. Int J Mol Sci 2019; 20:ijms20092159. [PMID: 31052382 PMCID: PMC6539046 DOI: 10.3390/ijms20092159] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.
Collapse
Affiliation(s)
- Sunil Kumar
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yideul Jeong
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Muhammad Umer Ashraf
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yong-Soo Bae
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
36
|
Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front Med (Lausanne) 2019; 5:364. [PMID: 30693283 PMCID: PMC6339915 DOI: 10.3389/fmed.2018.00364] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17A has a direct contribution in early induction and late chronic stages of various inflammatory diseases. In vitro and in vivo experiments have first characterized its local effects on different cell types and then its systemic effects. For instance, IL-17 axis is now identified as a key driver of psoriasis through its effects on keratinocytes. Similar observations apply for rheumatoid arthritis (RA) where IL-17A triggers changes in the synovium that lead to synovitis and maintain local inflammation. These results have prompted the development of biologics to target this cytokine. However, while convincing studies are reported on the efficacy of IL-17 inhibitors in psoriasis, there are conflicting results in RA. Patient heterogeneity but also the involvement of mediators that regulate IL-17 function may explain these results. Therefore, new tools and concepts are required to identify patients that could benefit from these IL-17 targeted therapies in RA and the development of predictive biomarkers of response has started with the emergence of various bioassays. Current strategies are also focusing on synovial biopsies that may be used to stratify patients. From local to systemic levels, new approaches are developing and move the field of RA management into the era of precision medicine.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
37
|
Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018; 155:1706-1715. [PMID: 30218667 PMCID: PMC6441974 DOI: 10.1053/j.gastro.2018.08.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Sporadic colorectal cancer is one of the most common and lethal cancers worldwide. The locations and functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous. T-helper (Th)1 cell-mediated responses against established colorectal tumors are associated with better outcomes of patients (time of relapse-free or overall survival), whereas Th17 cell-mediated responses and production of interleukin 17A (IL17A) have been associated with worse outcomes of patients. Tumors that develop in mouse models of colorectal cancer are rarely invasive and differ in many ways from human colorectal tumors. However, these mice have been used to study the mechanisms by which Th17 cells and IL17A promote colorectal tumor initiation and growth, which appear to involve their direct effects on colon epithelial cells. Specific members of the colonic microbiota may promote IL17A production and IL17A-producing cell functions in the colonic mucosa to promote carcinogenesis. Increasing our understanding of the interactions between the colonic microbiota and the mucosal immune response, the roles of Th17 cells and IL17 in these interactions, and how these processes are altered during colon carcinogenesis, could lead to new strategies for preventing or treating colorectal cancer.
Collapse
Affiliation(s)
- Christopher G Hurtado
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Franck Housseau
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Cynthia L Sears
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
38
|
Biological Properties and the Role of IL-25 in Disease Pathogenesis. J Immunol Res 2018; 2018:6519465. [PMID: 30345318 PMCID: PMC6174801 DOI: 10.1155/2018/6519465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
The interleukin- (IL-) 17 superfamily, a T cell-derived cytokine, consists of 6 ligands (IL-17A-IL-17F) and 5 receptors (IL-17RA-IL-17RE). IL-17A, a prototype member of this family, is involved in the pathogenesis of allergies, autoimmune diseases, allograft transplantations, and malignancies. By contrast, IL-17B is reported to be closely related to certain diseases, particularly tumors such as breast cancer, gastric cancer, and pancreatic cancer. Recently, the biological function of IL-17E (also called IL-25) in disease, particularly airway diseases, has attracted the attention of researchers. However, studies on IL-25 are scant. In this review, we detail the structural characteristics, expression patterns, responder cells, biological properties, and role of IL-25 in disease pathogenesis.
Collapse
|
39
|
Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9:1682. [PMID: 30127781 PMCID: PMC6088173 DOI: 10.3389/fimmu.2018.01682] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.
Collapse
Affiliation(s)
| | - Luisa Senra
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
40
|
Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, Peng S, Le TH, Chen Y, Zhao S, He B, Mi Q, Zhang X, Du Q. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018; 155:366-379. [PMID: 30012462 DOI: 10.1016/j.bcp.2018.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
Previous studies reported that Ginsenoside Rd (Rd) had anti-inflammatory and anti-cancer effects. However, the molecular mechanism underlying the inhibition effect of Rd on colitis in mice hasn't been clarified clearly. Here, in our study, we detected the effects of Rd on dextran sulfate sodium (DSS)-induced murine colitis, and found that oral administration of Rd dose-dependently alleviated DSS-induced body weight loss, colon length shortening and colonic pathological damage with lower myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities and higher glutathione level. In addition, the production of pro-inflammatory cytokines (IL-1β, TNF-a and IL-6) in both serum and colonic tissues were significantly down-regulated by Rd administration. The activation of NLRP3 inflammasome was also suppressed in Rd-treated group, resulting in reduced caspase-1 production and IL-1β secretion. In vitro, Rd remarkably inhibited NLRP3 inflammasome activation which was mostly dependent on the mitochondrial translocation of p62 and mitophagy. Importantly, Rd-driven inhibition of the NLRP3 inflammasome was significantly blocked by various autophagy inhibitors. Furthermore, upregulation of AMPK/ULK1 signaling pathway accounted for Rd-induced autophagy, which was also seen in vivo. In conclusion, our results demonstrated the function of Rd on the inhibition NLRP3 inflammasome and its potential application for the treatment of NLRP3-associated diseases.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianing Wang
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, Jiangsu, Nanjing 210009, China
| | - Yan Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu & Affiliated Hospital of Southwest Jiaotong University, 82 Qing Long Street, Chengdu 610031, China
| | - Xiuting Liu
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sishi Peng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Thi Ha Le
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Qiongyu Mi
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Xu Zhang
- Department of Medicine, The First People's Hospital of Chengdu & Affiliated Hospital of Chengdu Medical College, 18# Wanxiang East Road, Chengdu 610041, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
41
|
Mantani PT, Vallejo J, Ljungcrantz I, Nilsson J, Björkbacka H, Fredrikson GN. Interleukin-25 reduces Th17 cells and inflammatory responses in human peripheral blood mononuclear cells. Hum Immunol 2018; 79:685-692. [PMID: 29966691 DOI: 10.1016/j.humimm.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The absence of interleukin-25 (IL-25) favors the induction of Th1 and Th17 immune responses in mice. Th1 immune responses have been associated with the pathology of atherosclerosis, a lipid and inflammation driven disease of the arterial wall. PURPOSE OF RESEARCH To evaluate the effect of IL-25 on human peripheral blood mononuclear cells (hPBMCs) in the presence and absence of oxidized low density lipoprotein (oxLDL), a key player in atherosclerosis development. PRINCIPAL RESULTS Human PBMCs were incubated with recombinant human IL-25 (rhIL-25) in the presence and absence of oxLDL and analyzed with flow cytometry while cytokine secretion was measured in cell culture supernatants. The IL-25 receptor, IL-17RB, was mostly expressed on T cells. Incubation of hPBMCs with IL-25 reduced the frequency of Th17 cells. Furthermore, IL-25 inhibited the release of the Th17-inducing cytokine IL-6 from dendritic cells isolated from hPBMCs indicating that the IL-25 mediated Th17 suppression may be indirect. Moreover, IL-25 reduced the secretion of the proinflammatory cytokine IFNγ from hPBMCs. OxLDL decreased IFNγ release from hPBMCs regardless of the presence or absence of IL-25. CONCLUSIONS IL-25 reduces Th1 and Th17 immune responses in hPBMCs raising the interesting possibility that IL-25 could have a protective role in human atherosclerosis.
Collapse
Affiliation(s)
- Polyxeni T Mantani
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Sweden.
| | - Jenifer Vallejo
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Sweden
| | | |
Collapse
|
42
|
Guggino G, Lin X, Rizzo A, Xiao F, Saieva L, Raimondo S, Di Liberto D, Candore G, Ruscitti P, Cipriani P, Giacomelli R, Dieli F, Alessandro R, Triolo G, Lu L, Ciccia F. Interleukin-25 Axis Is Involved in the Pathogenesis of Human Primary and Experimental Murine Sjögren's Syndrome. Arthritis Rheumatol 2018; 70:1265-1275. [PMID: 29569854 DOI: 10.1002/art.40500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the role of the interleukin-25 (IL-25)/IL-17 receptor B (IL-17RB) axis in experimental Sjögren's syndrome (SS) and in patients with primary SS and primary SS-associated lymphoma. METHODS Expression of IL-25, IL-17RB, IL-17B, and tumor necrosis factor receptor-associated factor 6 (TRAF6) was analyzed on minor salivary gland (SG) samples from patients with primary SS and on parotid gland samples from patients with primary SS-associated B cell non-Hodgkin's lymphoma (NHL). IL-17RB expression and the frequencies of natural group 2 innate lymphoid cells (ILC2s), inflammatory ILC2s, and M2-polarized macrophages were assessed by flow cytometry in SG mononuclear cells and peripheral blood mononuclear cells (PBMCs). Tissue distribution of ILC2s was studied by confocal microscopy. The role of recombinant IL-25 and of rituximab in modulating IL-25 expression was investigated in in vitro studies. IL-25/IL-17RB and TRAF6 expression and the role of IL-25 inhibition were also studied in the experimental murine model of SS. RESULTS Activation of the IL-25/IL-17RB/TRAF6 axis correlated with the focus score and was observed in patients with primary SS and in patients with primary SS-associated NHL. A significant increase in the frequency of inflammatory ILC2s was observed both in SG mononuclear cells and in PBMCs. IL-25 stimulation of isolated SG mononuclear cells and PBMCs from patients and controls resulted both in inflammatory ILC2 expansion and in increased autoantibody production. Rituximab modulated expression of inflammatory ILC2s and IL-25 in primary SS. SG protein-immunized mice developed overt SS symptoms with increased IL-25 expression and increased frequency of CD4+IL-17RB+TRAF6+ cells. IL-25 neutralization attenuated disease progression and tissue pathology in mice with experimental SS. CONCLUSION IL-25 may promote the inflammatory state in primary SS and may be a potential target for novel disease-modifying therapeutic strategies in patients with primary SS.
Collapse
Affiliation(s)
| | | | - Aroldo Rizzo
- Ospedali riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Fan Xiao
- University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | - Liwei Lu
- University of Hong Kong, Hong Kong
| | | |
Collapse
|
43
|
Nold-Petry CA, Nold MF, Levy O, Kliger Y, Oren A, Borukhov I, Becker C, Wirtz S, Sandhu MK, Neurath M, Dinarello CA. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation. Front Immunol 2017; 8:1531. [PMID: 29312281 PMCID: PMC5732239 DOI: 10.3389/fimmu.2017.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023] Open
Abstract
Background The expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation. Methods We employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid). We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture. Results In the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF) by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40%) and gp96-II peptide (35%). Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%), lipopolysaccharide-induced TNF (48%), IL-6 (81%) and in Staphylococcus epidermidis-induced TNF (67%) and IL-6 (81%), as well as IL-12/IL-18-induced IFNγ (75%). gp96-II peptide reduced IL–1β, IL-6, TNF and GM-CSF in human peripheral blood mononuclear cells to a similar degree without affecting cell viability, whereas RANTES, IL-25 and MIF were twofold to threefold increased. Conclusion gp96-II peptide protects against murine intestinal inflammation by regulating inflammation in vivo and in vitro, pointing to its promise as a novel treatment for inflammatory bowel disease.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | - Christoph Becker
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manjeet K Sandhu
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Markus Neurath
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
44
|
Li J, Liao Y, Ding T, Wang B, Yu X, Chu Y, Xu J, Zheng L. Tumor-infiltrating macrophages express interleukin-25 and predict a favorable prognosis in patients with gastric cancer after radical resection. Oncotarget 2017; 7:11083-93. [PMID: 26840565 PMCID: PMC4905459 DOI: 10.18632/oncotarget.7095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/17/2016] [Indexed: 12/28/2022] Open
Abstract
Interleukin-25 (IL-25) is a recently identified member of the proinflammatory IL-17 cytokine family; however, its role in human tumors remains largely unknown. The aim of this study was to investigate the cellular source and clinical significance of IL-25 in gastric cancer (GC) in situ. The results demonstrated that macrophages (Mφs) were the primary IL-25-expressing cells (IL-25+) in GC in situ. Moreover, IL-25+ cells were highly enriched in the intra-tumoral (IT) region of GC tissues (p < 0.001). The production of IL-25 in Mφs exposed to culture supernatant from gastric cancer cell line SGC7901 in vitro was induced by transforming growth factor-β1, and their density in the IT region was positively associated with those of other effector immune cells, namely, CD4+ T cells, CD8+ T cells and CD103+T cells (p < 0.01). This suggested that macrophages might produce IL-25 to create an antitumor micromilieu in GC tissues. The level of IL-25+IT cells was positively associated with histological grade (p < 0.001) and found to be an independent predictor of favorable survival (p = 0.024) in patients with GC after radical resection. These findings suggest that IL-25+IT cells may be a novel therapeutic target in those patients.
Collapse
Affiliation(s)
- Jinqing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuan Liao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tong Ding
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Bo Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xingjuan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yifan Chu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Key Laboratory of Gene Engineering of The Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
45
|
Abe Y, Nambu A, Yamaguchi S, Takamori A, Suto H, Hirose S, Yokosuka T, Nakae S, Sudo K. Role of interleukin-25 in development of spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Biochem Biophys Rep 2017; 12:62-65. [PMID: 28955793 PMCID: PMC5613236 DOI: 10.1016/j.bbrep.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/05/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022] Open
Abstract
Interleukin (IL)-25, which is a member of the IL-17 family of cytokines, induces production of such Th2 cytokines as IL-4, IL-5, IL-9 and/or IL-13 by various types of cells, including Th2 cells, Th9 cells and group 2 innate lymphoid cells (ILC2). On the other hand, IL-25 can suppress Th1- and Th17-associated immune responses by enhancing Th2-type immune responses. Supporting this, IL-25 is known to suppress development of experimental autoimmune encephalitis, which is an IL-17-mediated autoimmune disease in mice. However, the role of IL-25 in development of IL-17-mediated arthritis is not fully understood. Therefore, we investigated this using IL-1 receptor antagonist-deficient (IL-1Ra-/-) mice, which spontaneously develop IL-17-dependent arthritis. However, development of spontaneous arthritis (incidence rate, disease severity, proliferation of synovial cells, infiltration of PMNs, and bone erosion in joints) and differentiation of Th17 cells in draining lymph nodes in IL-25-/- IL-1Ra-/- mice were similar to in control IL-25+/+ IL-1Ra-/- mice. These observations indicate that IL-25 does not exert any inhibitory and/or pathogenic effect on development of IL-17-mediated spontaneous arthritis in IL-1Ra-/- mice.
IL-25 is known to inhibit Th17 cell differentiation. IL-25 is known to suppress Th17-mediated autoimmune diseases in mice. IL-25 does not play any inhibitory and/or pathogenic role in IL-17-mediated arthritis.
Collapse
Affiliation(s)
- Yasuharu Abe
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Pharmacy, Toyohashi Medical Center, National Hospital Organization, Aichi 440-8510, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ayako Takamori
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo 113-8412, Japan
| | - Sachiko Hirose
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
46
|
Entwistle LJ, Wilson MS. MicroRNA-mediated regulation of immune responses to intestinal helminth infections. Parasite Immunol 2017; 39. [PMID: 27977850 DOI: 10.1111/pim.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
Intestinal helminth infections are highly prevalent in the developing world, often resulting in chronic infection and inflicting high host morbidity. With the emergence of drug-resistant parasites, a limited number of chemotherapeutic drugs available and stalling vaccine efforts, an increased understanding of antihelminth immunity is essential to provide new avenues to therapeutic intervention. MicroRNAs are a class of small, nonprotein coding RNAs which negatively regulate mRNA translation, thus providing finite control over gene expression in a plethora of biological settings. The miRNA-mediated coordinated control of gene expression has been shown to be essential in infection and immunity, in promoting and fine-tuning the appropriate immune response. This review gathers together and discusses observations of miRNA-mediated effects on the immune system and the subsequent impact on our understanding of antihelminth immunity.
Collapse
Affiliation(s)
- L J Entwistle
- Allergy and Anti-Helminth Laboratory, The Francis Crick Institute, London, UK
| | - M S Wilson
- Allergy and Anti-Helminth Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
47
|
Shi T, Xie Y, Fu Y, Zhou Q, Ma Z, Ma J, Huang Z, Zhang J, Chen J. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis. Mucosal Immunol 2017; 10:983-995. [PMID: 27901018 DOI: 10.1038/mi.2016.102] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 10/01/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-25 (IL-25) is an important regulatory cytokine that has a key role on mucosal immune tolerance during inflammation response. However, the molecular mechanism that regulates the colonic IL-25 expression in Crohn's disease (CD) remains unclear. In this study, IL-25 level was proved to decrease in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mice and IL-10 knockout (KO) spontaneous colitis mice. An inverse correlation between IL-25 and miR-31 was discovered in the colons from model mice and CD patients. Furthermore, target validation analysis demonstrated that miR-31 directly regulated IL-25 expression by binding to its messenger RNA 3'-untranslated region. Changing colonic miR-31 level in the colitis mice could affect the mucosal IL-12/23-mediated Th1/Th17 pathway and lead to either amelioration or aggravation of colonic inflammation. In addition, the therapeutic effects of anti-miR-31 in TNBS-induced colitis were abolished by colonic treatment with IL-25 antibody or colonic down-expression of IL-25. Our findings demonstrated that IL-25 could be a crucial anti-inflammatory cytokine in TNBS-induced colitis and the signaling of miR-31 targeting IL-25 might be a possible mechanism that regulates IL-12/23-mediated Th1/Th17 inflammatory responses during colonic inflammation process. Restoring colonic IL-25 expression and blocking Th1/Th17 responses via intracolonic administration of miR-31 inhibitor may represent a promising approach for CD treatment.
Collapse
Affiliation(s)
- T Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Y Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Y Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Q Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Z Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - J Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Z Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - J Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - J Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Lavocat F, Ndongo-Thiam N, Miossec P. Interleukin-25 Produced by Synoviocytes Has Anti-inflammatory Effects by Acting As a Receptor Antagonist for Interleukin-17A Function. Front Immunol 2017; 8:647. [PMID: 28620392 PMCID: PMC5449741 DOI: 10.3389/fimmu.2017.00647] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
The production and function of cytokines are highly regulated. One mechanism is the balance between pro- and anti-inflammatory cytokines. As interleukin (IL)-17A and IL-25 share the IL-17RA receptor chain, we hypothesize that IL-25 acts as an IL-17A receptor antagonist and limits its pro-inflammatory effects. The production and expression kinetics of IL-25 and its receptor chains IL-17RA and RB were analyzed in rheumatoid synoviocytes alone or in coculture with peripheral blood mononuclear cells (PBMCs). The effects of autocrine or exogenous IL-25 on synoviocytes were investigated in the presence or not of an anti-IL-25 antibody. To study the regulatory effects of IL-25, synoviocytes and/or PBMCs were exposed to IL-25 before being treated with IL-17A and tumor necrosis factor alpha (TNF-α) alone or combined. IL-25, IL-6, and bioactive IL-17A were quantified in rheumatoid arthritis (RA) patient plasma. Synoviocytes expressed and secreted IL-25, and expressed the two chains of its receptor IL-17RA and IL-17RB. IL-17RB expression was increased by TNF-α. IL-25 production occurred at a delayed time point (5 days) after stimulation with IL-17A and TNF-α. Synoviocytes pretreated with IL-25 were less responsive to IL-17A and TNF-α. PBMCs exposed to IL-25 showed a decreased production of pro-inflammatory mediators, including IL-17A with a 57% decrease; p = 0.002. IL-25 levels were elevated in the plasma of RA patients compared to healthy subjects (p = 0.03). However, these levels are not high enough to inhibit the function of circulating IL-17A. In conclusion, it was shown for the first time that synoviocytes produce IL-25, specifically at late time points and that IL-25 acts as a regulator of IL-17A-driven inflammation, as indicated by in vitro results and in vivo, in a long-term RA patient follow-up. These results may be important when considering IL-17A inhibition.
Collapse
Affiliation(s)
- Fabien Lavocat
- Department of Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Edouard Herriot Hospital, Lyon, France
| | - Ndiémé Ndongo-Thiam
- Department of Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Edouard Herriot Hospital, Lyon, France
| | - Pierre Miossec
- Department of Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
49
|
Shik D, Tomar S, Lee JB, Chen CY, Smith A, Wang YH. IL-9-producing cells in the development of IgE-mediated food allergy. Semin Immunopathol 2017; 39:69-77. [PMID: 27909880 PMCID: PMC5225002 DOI: 10.1007/s00281-016-0605-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Food allergy is a harmful immune reaction driven by uncontrolled type 2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4+TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type 2 innate lymphoid cells (ILC2s) and CD4+TH2 cells, which perpetuate allergic reactions from the skin to the gut. IL-4 and cross-linking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9-producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy-triggered anaphylaxis.
Collapse
Affiliation(s)
- Dana Shik
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Sunil Tomar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jee-Boong Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Chun-Yu Chen
- Division of Hematology/Oncology and Bone Marrow Transplantation, Nationwide Children's Hospital, Columbus, 43205, USA
| | - Andrew Smith
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
50
|
Abstract
Immunoglobulin E (IgE)-mediated food allergy is an adverse reaction to foods and is driven by uncontrolled type-2 immune responses. Current knowledge cannot explain why only some individuals among those with food allergy are prone to develop life-threatening anaphylaxis. It is increasingly evident that the immunologic mechanisms involved in developing IgE-mediated food allergy are far more complex than allergic sensitization. Clinical observations suggest that patients who develop severe allergic reactions to food are often sensitized through the skin in early infancy. Environmental insults trigger epidermal thymic stromal lymphopoietin and interleukin-33 (IL-33) production, which endows dendritic cells with the ability to induce CD4
+TH2 cell-mediated allergic inflammation. Intestinal IL-25 propagates the allergic immune response by enhancing collaborative interactions between resident type-2 innate lymphoid cells and CD4
+TH2 cells expanded by ingested antigens in the gastrointestinal tract. IL-4 signaling provided by CD4
+TH2 cells induces emigrated mast cell progenitors to become multi-functional IL-9-producing mucosal mast cells, which then expand greatly after repeated food ingestions. Inflammatory cytokine IL-33 promotes the function and maturation of IL-9-producing mucosal mast cells, which amplify intestinal mastocytosis, resulting in increased clinical reactivity to ingested food allergens. These findings provide the plausible view that the combinatorial signals from atopic status, dietary allergen ingestions, and inflammatory cues may govern the perpetuation of allergic reactions from the skin to the gut and promote susceptibility to life-threatening anaphylaxis. Future in-depth studies of the molecular and cellular factors composing these stepwise pathways may facilitate the discovery of biomarkers and therapeutic targets for diagnosing, preventing, and treating food allergy.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45299-3026, USA
| |
Collapse
|