1
|
Bautin P, Fortier MA, Sean M, Little G, Martel M, Descoteaux M, Léonard G, Tétreault P. What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review. Pain 2025; 166:243-261. [PMID: 39793098 PMCID: PMC11726505 DOI: 10.1097/j.pain.0000000000003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain. This review synthesizes findings from 58 articles that constitute the current research landscape, covering methods and key discoveries. We discuss the evidence supporting the role of altered white matter microstructure and connectivity in chronic primary pain conditions, highlighting the importance of studying multiple chronic pain syndromes to identify common neurobiological pathways. We also explore the prospective clinical utility of diffusion MRI, such as its role in identifying diagnostic, prognostic, and therapeutic biomarkers. Furthermore, we address shortcomings and challenges associated with brain diffusion MRI in chronic primary pain studies, emphasizing the need for the harmonization of data acquisition and analysis methods. We conclude by highlighting emerging approaches and prospective avenues in the field that may provide new insights into the pathophysiology of chronic pain and potential new therapeutic targets. Because of the limited current body of research and unidentified targeted therapeutic strategies, we are forced to conclude that further research is required. However, we believe that brain diffusion MRI presents a promising opportunity for enhancing our understanding of chronic pain and improving clinical outcomes.
Collapse
Affiliation(s)
- Paul Bautin
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Fortier
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Monica Sean
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Little
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Léonard
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging du Centre intégré universitaire de santé et de services sociaux de l’Estrie—Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Lamm TT, Von Schrottenberg V, Rauch A, Bach B, Pedersen HF, Rask MT, Ørnbøl E, Wellnitz KB, Frostholm L. Five-factor personality traits and functional somatic disorder: A systematic review and meta-analysis. Clin Psychol Rev 2025; 115:102529. [PMID: 39701015 DOI: 10.1016/j.cpr.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Functional Somatic Disorders (FSD) is an umbrella term for various conditions characterized by persistent and troublesome physical symptoms, that are not better explained by other psychiatric or somatic conditions. Personality traits may play a crucial role in FSD, but the link is not fully understood. This study presents a systematic review and meta-analysis examines the relationship between the Five-Factor Model (FFM) of personality traits and FSD. METHODS The review was based on the PRISMA statement, and drew data from systematic searches in PsycInfo, PubMed, and Embase. To be eligible for inclusion, studies had to include eligible FSD groups and control groups and to assess FFM traits. Data were analyzed using random effects models. Sub-group and sensitivity analyses as well as meta-regression were used to explore the heterogeneity and robustness of findings. RESULTS In total 6841 records were screened and 52 included. FSD cases scored higher on neuroticism (k = 46, Hedge's g = 0.72, [95 % CI, 0.61: 0.83]) and lower on extraversion (k = 31, g = -0.41, [-0.55:-0.28]) and agreeableness (k = 15, g = -0.22, [-0.36:-0.09]) than healthy/unspecified controls. FSD cases scored higher on neuroticism (k = 9, g = 0.26 [0.08:0.44]) and agreeableness (k = 4, g = 0.43 [0.28:0.59]) than somatic controls, but did not differ on extraversion (k = 6, g = -0.17 [-0.45:0.11]). No significant differences were found for conscientiousness and openness. For psychiatric controls, meta-analysis was only possible for neuroticism (k = 3,= -0.61, [-1.98:0.77]). Findings displayed significant heterogeneity but no publication bias. CONCLUSIONS This review reveals significant associations between FFM traits and FSD, providing insight into the etiology, classification, and management of FSD.
Collapse
Affiliation(s)
- Thomas Tandrup Lamm
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Victoria Von Schrottenberg
- Institute of General Practice and Health Services Research, TUM School of Medicine and Health, Technical University of Munich, Orleansstraße 47, 81667 Munich, Germany.
| | - Anneline Rauch
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Bo Bach
- Center for Personality Disorder Research, Region Zealand, Fælledvej 6, 4200, Slagelse, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353 København K, Denmark.
| | - Heidi Frølund Pedersen
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Mette Trøllund Rask
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Eva Ørnbøl
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Kaare Bro Wellnitz
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| | - Lisbeth Frostholm
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Aarhus, Denmark.
| |
Collapse
|
3
|
Asadi Anar M, Hassanpour Adeh A, Peiravi S, Imani Porshokouh A, Rezazadeh Shojaee SS, Najafi F, Pishkari Y, Rahimi A, Karami S. Alterations of fractional anisotropy and white matter integrity in irritable bowel syndrome: a systematic review and meta-analysis of diffusion tensor imaging studies. Front Neurosci 2024; 18:1426218. [PMID: 39687489 PMCID: PMC11647022 DOI: 10.3389/fnins.2024.1426218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Background and aim The neurological processes responsible for irritable bowel syndrome (IBS) pathophysiology and its clinical potentials are not fully understood. The current study aimed to examine white matter microstructural abnormalities and the reasons behind white matter impairment in individuals with irritable bowel syndrome by performing a meta-analysis of diffusion tensor imaging studies. Methods PubMed, Scopus and Web of Science were searched until April 2024. Chosen articles based on our defined eligibility criteria were extracted for the data relating to fractional anisotropy and brain connectivity. Webplot digitizer was used to extract digital data. We used the latest version of STATA(ver18) to meta-analyze the data. Quality assessment of studies was done using a critical appraisal tool. Egger's test for minor study effects assessed the publication bias. Results 543 IBS cases and 472 healthy controls were included in this study. The mean age of the case and control group was 35.2 ± 17.4 and 33.6 ± 15.8 (mean ± SD), respectively. There was no statistically significant difference in age between groups (p > 0.05). Analyzed Standard mean difference using a fixed model for Fractional anisotropy of regions of interest (ROI) associated with sensory processing, such as the thalamus, insula, primary somatosensory cortex, dorsal cingulum and the fornix in selected studies showcased decreased white matter interactivity in case group however this decrease was not statistically different [SMD -88, 95%CI (-1.32, -0.44), p > 0.05]. Conclusion Further investigation is necessary to ascertain whether the modified structural connectivity mentioned in this study is a contributing factor to IBS, an outcome of the condition, a risk factor for it, or, more probably, a consequence of a mutually influential relationship between the changes observed in the white matter tract and IBS symptoms.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aydin Hassanpour Adeh
- Universal Scientific Education and Research Network, Tehran, Iran
- School of Medicine, Islamic Azad University, Tabriz, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyedeh Sara Rezazadeh Shojaee
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Farnaz Najafi
- Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Yasamin Pishkari
- Universal Scientific Education and Research Network, Tehran, Iran
| | - Arash Rahimi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ordaz-Alvarez HR, Priego-Parra BA, Reyes-Diaz SA, Garcia-Zermeño KR, del Rocio Francisco M, Amieva-Balmori M, Lemus-Chavarria MP, Roesch-Ramos L, Cano-Contreras AD, Roesch-Dietlen FB, Remes-Troche JM. Prevalence of Eating Disorders Among Adults With Irritable Bowel Syndrome. J Clin Gastroenterol 2024. [DOI: 10.1097/mcg.0000000000002101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/06/2024] [Indexed: 05/04/2025]
Abstract
Goal:
To investigate the prevalence of eating disorder (ED) symptoms among Mexican adults with irritable bowel syndrome (IBS).
Background:
The relationship between IBS and EDs is complex, yet understudied, particularly in Latin America.
Methods:
In this cross-sectional study, 369 Mexican adults (18 to 69 y), comprising 133 IBS patients and 236 healthy controls (HCs), were evaluated using the Rome IV criteria, The Spanish version of the Eating Disorder Examination Questionnaire (S-EDE-Q), the Irritable Bowel Syndrome Symptom Severity Scale (IBS-SSS) and the Hospital Anxiety and Depression Scale (HADS). Statistical analysis included the Student t test or the Wilcoxon Rank-sum test for group comparisons, the Kruskal-Wallis test for multiple comparisons, and logistic regression, with a significance threshold set at a P-value of <0.05.
Results:
IBS individuals were at an increased risk for clinically significant S-EDE-Q when compared with HCs (12.8% vs. 3.8%, odds ratio OR 3.6, 95% CI: 1.5-8.5; P=0.001), especially among younger individuals. IBS individuals displayed a higher risk for dietary restraint and heightened concerns about eating, body shape, and weight. In addition, binge-eating episodes occurred more frequently within the IBS group. Notably, there were no significant differences in body mass index between individuals with clinically significant S-EDE-Q and those with normal scores. IBS individuals with severe symptoms had higher S-EDE-Q scores; furthermore, those with IBS and clinically significant S-EDE-Q exhibited higher levels of anxiety and depression.
Conclusions:
Our study reveals a significantly higher risk for ED in IBS individuals compared with HCs. This highlights the crucial importance of conducting ED screenings before dietary interventions, particularly among younger individuals and those displaying elevated levels of anxiety and depression.
Collapse
Affiliation(s)
- Hector Ricardo Ordaz-Alvarez
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | - Bryan Adrian Priego-Parra
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, México
| | - Sara Alejandra Reyes-Diaz
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | - Karla Rocio Garcia-Zermeño
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | - Maria del Rocio Francisco
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | - Mercedes Amieva-Balmori
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | | | - Laura Roesch-Ramos
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | - Ana Delfina Cano-Contreras
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| | | | - José Maria Remes-Troche
- Departamento de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas
| |
Collapse
|
5
|
Timmers I, Biggs EE, Bruckert L, Tremblay-McGaw AG, Zhang H, Borsook D, Simons LE. Probing white matter microstructure in youth with chronic pain and its relation to catastrophizing using neurite orientation dispersion and density imaging. Pain 2024; 165:2494-2506. [PMID: 38718105 PMCID: PMC11511653 DOI: 10.1097/j.pain.0000000000003269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/25/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT Chronic pain is common in young people and can have a major life impact. Despite the burden of chronic pain, mechanisms underlying chronic pain development and persistence are still poorly understood. Specifically, white matter (WM) connectivity has remained largely unexplored in pediatric chronic pain. Using diffusion-weighted imaging, this study examined WM microstructure in adolescents (age M = 15.8 years, SD = 2.8 years) with chronic pain (n = 44) compared with healthy controls (n = 24). Neurite orientation dispersion and density imaging modeling was applied, and voxel-based whole-white-matter analyses were used to obtain an overview of potential alterations in youth with chronic pain and tract-specific profile analyses to evaluate microstructural profiles of tracts of interest more closely. Our main findings are that (1) youth with chronic pain showed widespread elevated orientation dispersion compared with controls in several tracts, indicative of less coherence; (2) signs of neurite density tract-profile alterations were observed in several tracts of interest, with mainly higher density levels in patients; and (3) several WM microstructural alterations were associated with pain catastrophizing in the patient group. Implicated tracts include both those connecting cortical and limbic structures (uncinate fasciculus, cingulum, anterior thalamic radiation), which were associated with pain catastrophizing, as well as sensorimotor tracts (corticospinal tract). By identifying alterations in the biologically informative WM microstructural metrics orientation dispersion and neurite density, our findings provide important and novel mechanistic insights for understanding the pathophysiology underlying chronic pain. Taken together, the data support alterations in fiber organization as a meaningful characteristic, contributing process to the chronic pain state.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Emma E. Biggs
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Lisa Bruckert
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Alexandra G. Tremblay-McGaw
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hui Zhang
- Department of Computer Science, University College London, London, United Kingdom
| | - David Borsook
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, MA, United States
| | - Laura E. Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
6
|
Li J, Ng W, Liu Y, Fang X, Wang Z, Pei L, Wei X. Neuroplasticity of the white matter tracts underlying recovery of diarrhea-predominant irritable bowel syndrome following acupuncture treatment. Front Neurosci 2024; 18:1383041. [PMID: 39364438 PMCID: PMC11447489 DOI: 10.3389/fnins.2024.1383041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder frequently associated with other pain syndromes and psychiatric conditions, including depression and anxiety. These abnormalities coincide with alterations in the brain's structure, particularly in the thalamus and cingulate system. Acupuncture has been demonstrated to be highly effective in treating IBS. However, it remains unclear how white matter (WM) tracts change after acupuncture treatment, and whether the neuroplasticity of these tracts can serve as a neural marker to assist in the development of novel treatments. In this study, we aim to answer these questions by investigating longitudinal changes in the WM of the thalamus and cingulate system in a group of diarrhea-predominant irritable bowel syndrome (IBS-D) patients before and after acupuncture treatment. We found that after acupuncture treatment, as IBS symptoms improved, there were significant changes in the microstructure of the right thalamus radiation (TR) (p < 0.05) and the right cingulum hippocampus (CH) (p < 0.05). At the same time, patients with reduced IBS symptom severity scores (SSSs) were associated with the change of the right CH (p = 0.015, r = -0.491), while reduced depressive conditions correlated with the change of the left TR (p = 0.019, r = 0.418). In addition, the consequences for the quality of life (QOL) showed a correlation with the right cingulum [cingulate cortex (CC)] (p = 0.012, r = 0.504) and left TR (p = 0.027, r = -0.397). Our study highlighted the potential implications of neuroplasticity in WM tracts for IBS. Furthermore, these findings suggested that the right CH, TR, and right CC can serve as potential "biomarkers" of IBS-D recovery under acupuncture treatments.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - WingYi Ng
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - YongKang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - XiaoKun Fang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - ZhongQiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - LiXia Pei
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - XueHu Wei
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Abou Chaaya J, Abou Chaaya J, Jaafar B, Saab L, Abou Chaaya J, Al Ahmar E, Estephan E. Morphological Changes of the Pituitary Gland in Patients with Irritable Bowel Syndrome Using Magnetic Resonance Imaging. J Imaging 2024; 10:226. [PMID: 39330446 PMCID: PMC11433444 DOI: 10.3390/jimaging10090226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal functional disorder characterized by unclear underlying mechanisms. Several theories propose that hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis leads to elevated cortisol levels and increased sensitivity of gut wall receptors. Given the absence of prior literature on this topic, our study aimed to investigate the potential for diagnosing IBS based on morphological changes in the pituitary gland, specifically its volume and grayscale intensity. Additionally, we aimed to assess whether factors such as gender, age, and body mass index influence these parameters. This retrospective study involved 60 patients, examining the volume and grayscale characteristics of their pituitary glands in the presence of IBS. Our findings revealed a positive correlation between pituitary gland volume and IBS diagnosis, although no significant correlation was observed with grayscale intensity. Due to the limited existing research and the small sample size of our study, further investigation with a larger cohort is warranted to validate these results.
Collapse
Affiliation(s)
- Jessica Abou Chaaya
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon;
| | - Jennifer Abou Chaaya
- Department of Nutrition and Dietetics, Faculty of Public Health Section 2, Lebanese University, Beirut, Lebanon;
| | - Batoul Jaafar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon;
| | - Lea Saab
- Faculty of Engineering, Sagesse University, Furn El Chebbak, Baabda, Lebanon;
| | - Jad Abou Chaaya
- Lab-STICC, UMR 6285 CNRS, ENIB, 29200 Brest, France;
- Applied Physics Lab, Faculty of Science, Lebanese University, Campus Fanar, Jdeideh, Lebanon
| | - Elie Al Ahmar
- Faculty of Engineering, Sagesse University, Furn El Chebbak, Baabda, Lebanon;
| | - Elias Estephan
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon;
- Faculty of Engineering, Sagesse University, Furn El Chebbak, Baabda, Lebanon;
- Bioengineering Nanoscience Laboratory UR_UM104 (LBN), Montpellier University, 545 Avenue Prof. Viala, 34193 Montpellier Cedex, France
| |
Collapse
|
8
|
Kato S, Kurokawa R, Suzuki F, Amemiya S, Shinozaki T, Takanezawa D, Kohashi R, Abe O. White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Magn Reson Med Sci 2024; 23:204-213. [PMID: 36990741 PMCID: PMC11024709 DOI: 10.2463/mrms.mp.2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Burning mouth syndrome (BMS) is defined by a burning sensation or pain in the tongue or other oral sites despite the presence of normal mucosa on inspection. Both psychiatric and neuroimaging investigations have examined BMS; however, there have been no analyses using the neurite orientation dispersion and density imaging (NODDI) model, which provides detailed information of intra- and extracellular microstructures. Therefore, we performed voxel-wise analyses using both NODDI and diffusion tensor imaging (DTI) models and compared the results to better comprehend the pathology of BMS. METHODS Fourteen patients with BMS and 11 age- and sex-matched healthy control subjects were prospectively scanned using a 3T-MRI machine using 2-shell diffusion imaging. Diffusion tensor metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and neurite orientation and dispersion index metrics (intracellular volume fraction [ICVF], isotropic volume fraction [ISO], and orientation dispersion index [ODI]) were retrieved from diffusion MRI data. These data were analyzed using tract-based spatial statistics (TBSS) and gray matter-based spatial statistics (GBSS). RESULTS TBSS analysis showed that patients with BMS had significantly higher FA and ICVF and lower MD and RD than the healthy control subjects (family-wise error [FWE] corrected P < 0.05). Changes in ICVF, MD, and RD were observed in widespread white matter areas. Fairly small areas with different FA were included. GBSS analysis showed that patients with BMS had significantly higher ISO and lower MD and RD than the healthy control subjects (FWE-corrected P < 0.05), mainly limited to the amygdala. CONCLUSION The increased ICVF in the BMS group may represent myelination and/or astrocytic hypertrophy, and microstructural changes in the amygdala in GBSS analysis indicate the emotional-affective profile of BMS.
Collapse
Affiliation(s)
- Shimpei Kato
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Fumio Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kohashi
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Zhang T, Chen Y, Li X, Zhang J, Duan L. Genetic associations and potential mediators between psychiatric disorders and irritable bowel syndrome: a Mendelian randomization study with mediation analysis. Front Psychiatry 2024; 15:1279266. [PMID: 38352653 PMCID: PMC10861787 DOI: 10.3389/fpsyt.2024.1279266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Objective Potential causal associations between psychiatric disorders and irritable bowel syndrome have been demonstrated in observational studies; however, these studies are susceptible to underlying confounding and reverse causation biases. We aimed to assess the causal effects of psychiatric disorders on irritable bowel syndrome (IBS) and the potential mediators from a genetic perspective by conducting a Mendelian randomization (MR) study with mediation analysis. Method Genetic instruments associated with psychiatric disorders, potential mediators, and IBS were obtained from large-scale genome-wide association studies (GWAS). Three MR methods - the inverse-variance weighted (IVW) method, MR-Egger method, and weighted median method, were used to investigate causal association estimates. Heterogeneity among different genetic instrumental variables (IVs) was assessed using Q tests. Additionally, the MR-PRESSO and MR-Pleiotropy methods were used to verify horizontal pleiotropy and detect outliers that might bias the results, which were removed from further analysis. Consequently, we used MR mediation analysis to investigate potential mediators in the causal associations between psychiatric disorders and IBS. Results MR provided evidence of the causal effects of genetically predicted broad depression, major depressive disorder (MDD), anxiety disorder, post-traumatic stress disorder (PTSD), and schizophrenia on IBS. The results of MR mediation analysis demonstrated that the reduction in acetate levels mediated 12.6% of the effects of broad depression on IBS; insomnia mediated 16.00%, 16.20%, and 27.14% of the effects of broad depression, MDD, and PTSD on IBS, respectively; and the increase in blood β-hydroxybutyrate levels mediated 50.76% of the effects of schizophrenia on IBS. Conclusion Our study confirmed the brain-gut axis involvement and potential modulators in the pathophysiology of psychiatric disorder-induced IBS from a genetic perspective, and suggests potential therapeutic targets for the disrupted brain-gut axis.
Collapse
Affiliation(s)
| | | | | | | | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Hasan M, Lei Z, Akter M, Iqbal Z, Usaila F, Ramkrishnan AS, Li Y. Chemogenetic activation of astrocytes promotes remyelination and restores cognitive deficits in visceral hypersensitive rats. iScience 2023; 26:105840. [PMID: 36619970 PMCID: PMC9812719 DOI: 10.1016/j.isci.2022.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Using a well-established chronic visceral hypersensitivity (VH) rat model, we characterized the decrease of myelin basic protein, reduced number of mature oligodendrocytes (OLs), and hypomyelination in the anterior cingulate cortex (ACC). The results of rat gambling test showed impaired decision-making, and the results of electrophysiological studies showed desynchronization in the ACC to basolateral amygdala (BLA) neural circuitry. Astrocytes release various factors that modulate oligodendrocyte progenitor cell proliferation and myelination. Astrocytic Gq-modulation through expression of hM3Dq facilitated oligodendrocyte progenitor cell proliferation and OL differentiation, and enhanced ACC myelination in VH rats. Activating astrocytic Gq rescued impaired decision-making and desynchronization in ACC-BLA. These data indicate that ACC hypomyelination is an important component of impaired decision-making and network desynchronization in VH. Astrocytic Gq activity plays a significant role in oligodendrocyte myelination and decision-making behavior in VH. Insights from these studies have potential for interventions in myelin-related diseases such as chronic pain-associated cognitive disorders.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Faeeqa Usaila
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Vitali R, Prioreschi C, Lorenzo Rebenaque L, Colantoni E, Giovannini D, Frusciante S, Diretto G, Marco-Jiménez F, Mancuso M, Casciati A, Pazzaglia S. Gut–Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate. Int J Mol Sci 2022; 23:ijms231911495. [PMID: 36232813 PMCID: PMC9569494 DOI: 10.3390/ijms231911495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1β, S-100, Tgf-β and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/−/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.
Collapse
Affiliation(s)
- Roberta Vitali
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Clara Prioreschi
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Laura Lorenzo Rebenaque
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad CEU-Cardenal Herrera, 46115 Valencia, Spain
| | - Eleonora Colantoni
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Daniela Giovannini
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Sarah Frusciante
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mariateresa Mancuso
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Arianna Casciati
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| | - Simonetta Pazzaglia
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| |
Collapse
|
12
|
Aristi G, O'Grady C, Bowen C, Beyea S, Lazar SW, Hashmi JA. Top-down threat bias in pain perception is predicted by intrinsic structural and functional connections of the brain. Neuroimage 2022; 258:119349. [PMID: 35690258 DOI: 10.1016/j.neuroimage.2022.119349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Top-down processes such as expectations play a key role in pain perception. In specific contexts, inferred threat of impending pain can affect perceived pain more than the noxious intensity. This biasing effect of top-down threats can affect some individuals more strongly than others due to differences in fear of pain. The specific characteristics of intrinsic brain characteristics that mediate the effects of top-down threat bias are mainly unknown. In this study, we examined whether threat bias is associated with structural and functional brain connectivity. The variability in the top-down bias was mapped to the microstructure of white matter in diffusion weighted images (DWI) using MRTrix3. Mean functional connectivity of five canonical resting state networks was tested for association with bias scores and with the identified DWI metrics. We found that the fiber density of the splenium of the corpus callosum was significantly low in individuals with high top-down threat bias (FWE corrected with 5000 permutations, p < 0.05). The mean functional connectivity within the language/memory and between language/memory and default mode networks predicted the bias scores. Functional connectivity within language memory networks predicted the splenium fiber density, higher pain catastrophizing and lower mindful awareness. Probabilistic tractography showed that the identified region in the splenium connected several sensory regions and high-order parietal regions between the two hemispheres, indicating the splenium's role in sensory integration. These findings demonstrate that individuals who show more change in pain with changes in the threat of receiving a stronger noxious stimulus have lower structural connectivity in the pathway necessary for integrating top-down cue information with bottom-up sensory information. Conversely, systems involved in memory recall, semantic and self-referential processing are more strongly connected in people with top-down threat bias.
Collapse
Affiliation(s)
- Guillermo Aristi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Christopher O'Grady
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Chris Bowen
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Steven Beyea
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Sara W Lazar
- Harvard Medical School, Mass General Hospital, Boston, MA. 02129, USA
| | - Javeria Ali Hashmi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada.
| |
Collapse
|
13
|
Hu Y, Jia Z, Zhang L, Zhang Z, Li H, Tan Z, Lv S, von Deneen KM, Duan S, Cui G, Nie Y, Zhang Y. White-matter microstructural alterations in patients with functional constipation: A tract-based spatial statistics study. Neurogastroenterol Motil 2022; 34:e14338. [PMID: 35195324 DOI: 10.1111/nmo.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Highly prevalent functional constipation (FC) belongs to the category of functional gastrointestinal disorders. Neuroimaging studies have demonstrated brain functional and morphometric changes in patients with FC. However, whether FC is associated with white-matter (WM) microstructural alterations remains unclear. METHODS Diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) were introduced to investigate WM microstructural changes as calculated by fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD) in 26 FC patients and 31 healthy controls. KEY RESULTS Patients with FC relative to healthy controls had significantly decreased FA with increased MD/RD in the genu (GCC) and body (BCC) of the corpus callosum, right cingulum (Cing), bilateral anterior corona radiata (ACR), bilateral superior corona radiata (SCR), and left posterior corona radiata (PCR) (pFWE < 0.05). Between-group difference was only in the left SCR and PCR when regressing out anxiety and depression as covariates. CONCLUSIONS AND INFERENCES These WM tracts are mainly responsible for sensory and emotional information communication and corresponding functional integration; thus, our findings indicate an association between FC and WM microstructural abnormalities in regions involved with visceral afferent and emotional-arousal processing. Alterations in WM microstructures including the CC, cingulum, and ACR are more related to psychological symptoms than constipation, which might have greater impact on brain structures.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhenzhen Jia
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lei Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shuai Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shijun Duan
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
14
|
Brain structural changes in regions within the salience network in patients with functional constipation. Brain Imaging Behav 2022; 16:1741-1748. [DOI: 10.1007/s11682-022-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
15
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
16
|
Koren T, Yifa R, Amer M, Krot M, Boshnak N, Ben-Shaanan TL, Azulay-Debby H, Zalayat I, Avishai E, Hajjo H, Schiller M, Haykin H, Korin B, Farfara D, Hakim F, Kobiler O, Rosenblum K, Rolls A. Insular cortex neurons encode and retrieve specific immune responses. Cell 2021; 184:5902-5915.e17. [PMID: 34752731 DOI: 10.1016/j.cell.2021.10.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the brain regulates peripheral immunity, yet whether and how the brain represents the state of the immune system remains unclear. Here, we show that the brain's insular cortex (InsCtx) stores immune-related information. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Thus, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Collapse
Affiliation(s)
- Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Re'ee Yifa
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mariam Amer
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nadia Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hilla Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itay Zalayat
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eden Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haitham Hajjo
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hedva Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Dorit Farfara
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Unit, Rambam Health Care Campus, Haifa, Israel; Cancer Research Center, EMMS Hospital, Nazareth, Israel
| | - Oren Kobiler
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
17
|
Liu G, Li S, Chen N, Zhao Z, Guo M, Liu H, Feng J, Zhang D, Yao Z, Hu B. Inter-hemispheric Functional Connections Are More Vulnerable to Attack Than Structural Connection in Patients With Irritable Bowel Syndrome. J Neurogastroenterol Motil 2021; 27:426-435. [PMID: 34210908 PMCID: PMC8266492 DOI: 10.5056/jnm20134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by recurrent abdominal pain and bowel dysfunction. However, the majority of previous neuroimaging studies focus on brain structure and connections but seldom on the inter-hemispheric connectivity or structural asymmetry. This study uses multi-modal imaging to investigate the abnormal changes across the 2 cerebral hemispheres in patients with IBS. Methods Structural MRI, resting-state functional MRI, and diffusion tensor imaging were acquired from 34 patients with IBS and 33 healthy controls. The voxel-mirrored homotopic connectivity, fractional anisotropy, fiber length, fiber number, and asymmetry index were calculated and assessed for group differences. In addition, we assessed their relevance for the severity of IBS. Results Compared with healthy controls, the inter-hemispheric functional connectivity of patients with IBS showed higher levels in bilateral superior occipital gyrus, middle occipital gyrus, precuneus, posterior cingulate gyrus, and angular gyrus, but lower in supplementary motor area. The statistical results showed no significant difference in inter-hemispheric anatomical connections and structural asymmetry, however negative correlations between inter-hemispheric connectivity and the severity of IBS were found in some regions with significant difference. Conclusions The functional connections between cerebral hemispheres were more susceptible to IBS than anatomical connections, and brain structure is relatively stable. Besides, the brain areas affected by IBS were concentrated in default mode network and sensorimotor network.
Collapse
Affiliation(s)
- Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Man Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Hong Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Jie Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China.,Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China
| |
Collapse
|
18
|
Elesawy BH, Alsanie WF, Algahtany MA, Al-Ashkhari JM, Alyarobi AK, Sakr HF. Whole and refined grains change behavior and reduce brain derived neurotrophic factor and neurotrophin-3 in rats. J Food Biochem 2021; 45:e13867. [PMID: 34278588 DOI: 10.1111/jfbc.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
In most of the world, wheat is one of the main staple foods, and is also widely used in livestock feed. In the current study, we investigated the effects of wheat grain consumption on the rat behavior and neurogenesis markers. Thirty male rats were divided into three equal groups (n = 10). Group 1 was the control group fed with chow diet (Carbohydrates 63%, fat 13% and protein 24%), the Group 2 rats were fed with whole grains and the Group 3 rats were fed with refined grains. After 12 weeks, we measured the hippocampal and prefrontal cortical brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 5-hydroxytryptamine, dopamine, norepinephrine, malondialdehyde (MDA) and reduced glutathione (GSH) levels. Also, we evaluated the rat behavior by forced swimming test (FST) and elevated plus maze (EPM) test. Additionally, we measured serum level of glucose, lipid profile, insulin and cortisol. Weight gain at the end of the study was measured in each group. The rats on a diet of whole and refined grains had low BDNF, NT-3, norepinephrine, dopamine and serotonin significantly (p < .01) in both the hippocampus and prefrontal cortex as compared to control rats. Moreover, the MDA increased significantly with significant reduction in GSH versus the control rats. Moreover, in response to grain consumption, the performance in FST showed a significant (p < .01) shortage in the latency of the attempts to escape as well as a significant prolongation (p < .01) in behavioral immobility as compared to control rats with significant (p < .05) prolongation in time spent in closed arm in EPM. An exclusive diet of either whole or refined grain in a rat model induced anxiety and depressive behaviors and negatively affected the BDNF and NT-3 and modulated the level of the neurotransmitters with significant shift in their behavior. PRACTICAL APPLICATIONS: Grains are considered the major caloric source all over the world that may predispose to the development of chronic diseases. In this research, we evaluated the role of grains in modulating the rate of production of neurogenic factors in rats.
Collapse
Affiliation(s)
- Basem H Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mubarak Ali Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Jawaher M Al-Ashkhari
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aya K Alyarobi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hussein F Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| |
Collapse
|
19
|
Xu Q, Weng Y, Liu C, Qiu L, Yang Y, Zhou Y, Wang F, Lu G, Zhang LJ, Qi R. Distributed Functional Connectome of White Matter in Patients With Functional Dyspepsia. Front Hum Neurosci 2021; 15:589578. [PMID: 33935665 PMCID: PMC8085333 DOI: 10.3389/fnhum.2021.589578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We aimed to find out the distributed functional connectome of white matter in patients with functional dyspepsia (FD). Methods: 20 patients with FD and 24 age- and gender-matched healthy controls were included into the study. The functional connectome of white matter and graph theory were used to these participants. Two-sample t-test was used for the detection the abnormal graph properties in FD. Pearson correlation was used for the relationship between properties and the clinical and neuropshychological information. Results: Patients with FD and healthy controls showed small-world properties in functional connectome of white matter. Compared with healthy controls, the FD group showed decreased global properties (Cp, S, Eglobal, and Elocal). Four pairs of fiber bundles that are connected to the frontal lobe, insula, and thalamus were affected in the FD group. Duration and Pittsburgh Sleep Quality Index positively correlated with the betweenness centrality of white matter regions of interest. Conclusion: FD patients turned to a non-optimized functional organization of WM brain network. Frontal lobe, insula, and thalamus were key regions in brain information exchange of FD. It provided some novel imaging evidences for the mechanism of FD.
Collapse
Affiliation(s)
- Qiang Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chang Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulin Yang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Zhou
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Söderquist F, Syk M, Just D, Kurbalija Novicic Z, Rasmusson AJ, Hellström PM, Ramklint M, Cunningham JL. A cross-sectional study of gastrointestinal symptoms, depressive symptoms and trait anxiety in young adults. BMC Psychiatry 2020; 20:535. [PMID: 33176747 PMCID: PMC7661167 DOI: 10.1186/s12888-020-02940-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND >Patients with functional gastrointestinal disorders have a high psychiatric co-morbidity. This study aimed to investigate and characterise gastrointestinal symptoms in relation to depressive symptoms and trait anxiety in a well-defined population of young adult psychiatric outpatients and healthy controls. METHODS Gastrointestinal symptoms were assessed with the Gastrointestinal Symptom Rating Scale for Irritable Bowel Syndrome (GSRS-IBS). Depressive symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale- Self assessment (MADRS-S). Trait anxiety was estimated with three of the Swedish universities of Personality (SSP) scales: Somatic trait anxiety, Psychic trait anxiety and Stress susceptibility. Self-ratings were collected from 491 young adult psychiatric outpatients and 85 healthy controls. Gastrointestinal symptom severity was compared between patients with and without current psychotropic medication and controls. Associations between gastrointestinal symptoms, depressive symptoms and trait anxiety were assessed using Spearman's coefficients and generalized linear models adjusting for possible confounders (sex, body mass index, bulimia nervosa). RESULTS Patients, with and without current psychotropic medication, reported significantly more gastrointestinal symptoms than controls. In the generalized linear models, total MADRS-S score (p < 0.001), Somatic trait anxiety (p < 0.001), Psychic trait anxiety (p = 0.002) and Stress susceptibility (p = 0.002) were independent predictors of the total GSRS-IBS score. Further exploratory analysis using unsupervised learning revealed a diverse spectrum of symptoms that clustered into six groups. CONCLUSION Gastrointestinal symptoms are both highly prevalent and diverse in young adult psychiatric outpatients, regardless of current psychotropic medication. Depressive symptom severity and degree of trait anxiety are independently related to the total gastrointestinal symptom burden.
Collapse
Affiliation(s)
- Fanny Söderquist
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden
| | - Mikaela Syk
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden
| | - David Just
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden
| | | | - Annica J Rasmusson
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Mia Ramklint
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Chiba T, Ito K, Mori F, Sasaki M, Matsumoto T. Detection of microstructural white matter alterations in functional gastrointestinal disorders assessed by diffusion kurtosis imaging. JGH Open 2020; 4:958-963. [PMID: 33102770 PMCID: PMC7578273 DOI: 10.1002/jgh3.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM We evaluated whether diffusion kurtosis and tensor imaging (DKI/DTI) could reveal microstructural alterations in the brains of patients with functional gastrointestinal disorders (FGIDs), and whether imaging findings were correlated with health-related quality of life (HRQOL). METHODS Twelve patients with FGIDs fulfilling the Rome IV criteria, and seven healthy controls were examined using a 3 T magnetic resonance (MR) scanner. Tract-based spatial statistics and regions of interest analyses were performed to compare the mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) between patients with FGIDs versus controls. HRQOL was assessed in patients with FGIDs using the eight-item short form of the Medical Outcome Study Questionnaire (SF-8) and the Gastrointestinal Symptom Rating Scale. RESULTS Patients with FGIDs had extensive, widespread regions of reduced MD in the white matter in comparison with healthy controls, whereas no significant differences were observed in MK and FA. No significant differences in deep gray matter for the MK, FA, and MD values were observed between patients with FGIDs and controls. In patients with FGIDs, the FA values in the globus pallidus had a significant and negative correlation with SF-8 (a mental component summary) (r = -0.797, P = 0.01 uncorrected for multiple comparisons). CONCLUSIONS DKI/DTI can help identify microstructural white matter alterations in patients with FGIDs. The FA values in the globus pallidus may be useful for a severity assessment of FGIDs.
Collapse
Affiliation(s)
- Toshimi Chiba
- Division of Internal Medicine, Department of Oral MedicineIwate Medical UniversityMoriokaJapan
| | - Kenji Ito
- Division of Ultrahigh Field MRI, Institute for Biomedical SciencesIwate Medical UniversityYahabaJapan
| | - Futoshi Mori
- Division of Ultrahigh Field MRI, Institute for Biomedical SciencesIwate Medical UniversityYahabaJapan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical SciencesIwate Medical UniversityYahabaJapan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal MedicineIwate Medical UniversityMoriokaJapan
| |
Collapse
|
22
|
Yuan Y, Ali MK, Mathewson KJ, Sharma K, Faiyaz M, Tan W, Parsons SP, Zhang KK, Milkova N, Liu L, Ratcliffe E, Armstrong D, Schmidt LA, Chen JH, Huizinga JD. Associations Between Colonic Motor Patterns and Autonomic Nervous System Activity Assessed by High-Resolution Manometry and Concurrent Heart Rate Variability. Front Neurosci 2020; 13:1447. [PMID: 32038145 PMCID: PMC6989554 DOI: 10.3389/fnins.2019.01447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Abnormal colonic motility may be associated with dysfunction of the autonomic nervous system (ANS). Our aim was to evaluate if associations between colonic motor patterns and autonomic neural activity could be demonstrated by assessing changes in heart rate variability (HRV) in healthy volunteers. A total of 145 colonic motor patterns were assessed in 11 healthy volunteers by High-Resolution Colonic Manometry (HRCM) using an 84-channel water-perfused catheter. Motor patterns were evoked by balloon distention, a meal and luminal bisacodyl. The electrocardiogram (ECG) and cardiac impedance were assessed during colonic manometry. Respiratory sinus arrhythmia (RSA) and root mean square of successive differences of beat-to-beat intervals (RMSSD) served as measures of parasympathetic reactivity while the Baevsky's Stress Index (SI) and the pre-ejection period (PEP) were used as measures of sympathetic reactivity. Taking all motor patterns into account, our data show that colonic motor patterns are accompanied by increased parasympathetic activity and decreased sympathetic activity that may occur without eliciting a significant change in heart rate. Motor Complexes (more than one motor pattern occurring in close proximity), High-Amplitude Propagating Pressure Waves followed by Simultaneous Pressure Waves (HAPW-SPWs) and HAPWs without SPWs are all associated with an increase in RSA and a decrease in SI. Hence RSA and SI may best reflect autonomic activity in the colon during these motor patterns as compared to RMSSD and PEP. SI and PEP do not measure identical sympathetic reactivity. The SPW, which is a very low amplitude pressure wave, did not significantly change the autonomic measures employed here. In conclusion, colonic motor patterns are associated with activity in the ANS which is reflected in autonomic measures of heart rate variability. These autonomic measures may serve as proxies for autonomic neural dysfunction in patients with colonic dysmotility.
Collapse
Affiliation(s)
- Yuhong Yuan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - M Khawar Ali
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Karen J Mathewson
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Kartik Sharma
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Mahi Faiyaz
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Wei Tan
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sean P Parsons
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Kailai K Zhang
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Natalija Milkova
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lijun Liu
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elyanne Ratcliffe
- Department of Pediatrics, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ji-Hong Chen
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
|
24
|
Mayer EA, Labus J, Aziz Q, Tracey I, Kilpatrick L, Elsenbruch S, Schweinhardt P, Van Oudenhove L, Borsook D. Role of brain imaging in disorders of brain-gut interaction: a Rome Working Team Report. Gut 2019; 68:1701-1715. [PMID: 31175206 PMCID: PMC6999847 DOI: 10.1136/gutjnl-2019-318308] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022]
Abstract
Imaging of the living human brain is a powerful tool to probe the interactions between brain, gut and microbiome in health and in disorders of brain-gut interactions, in particular IBS. While altered signals from the viscera contribute to clinical symptoms, the brain integrates these interoceptive signals with emotional, cognitive and memory related inputs in a non-linear fashion to produce symptoms. Tremendous progress has occurred in the development of new imaging techniques that look at structural, functional and metabolic properties of brain regions and networks. Standardisation in image acquisition and advances in computational approaches has made it possible to study large data sets of imaging studies, identify network properties and integrate them with non-imaging data. These approaches are beginning to generate brain signatures in IBS that share some features with those obtained in other often overlapping chronic pain disorders such as urological pelvic pain syndromes and vulvodynia, suggesting shared mechanisms. Despite this progress, the identification of preclinical vulnerability factors and outcome predictors has been slow. To overcome current obstacles, the creation of consortia and the generation of standardised multisite repositories for brain imaging and metadata from multisite studies are required.
Collapse
Affiliation(s)
- Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Qasim Aziz
- Neurogastroenterology Group, Queen Mary University of London, London, UK
| | - Irene Tracey
- Departments of Anaesthetics and Clinical Neurology, Pembroke College, Oxford, UK
| | - Lisa Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sigrid Elsenbruch
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg, Duisburg, Germany
| | | | - Lukas Van Oudenhove
- Translational Research in GastroIntestinal Disorders, KU Leuven Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - David Borsook
- Center for Pain and the Brain, Boston Children's, Massachusetts General and McLean Hospitals, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Delineating conditions and subtypes in chronic pain using neuroimaging. Pain Rep 2019; 4:e768. [PMID: 31579859 PMCID: PMC6727994 DOI: 10.1097/pr9.0000000000000768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Differentiating subtypes of chronic pain still remains a challenge—both from a subjective and objective point of view. Personalized medicine is the current goal of modern medical care and is limited by the subjective nature of patient self-reporting of symptoms and behavioral evaluation. Physiology-focused techniques such as genome and epigenetic analyses inform the delineation of pain groups; however, except under rare circumstances, they have diluted effects that again, share a common reliance on behavioral evaluation. The application of structural neuroimaging towards distinguishing pain subtypes is a growing field and may inform pain-group classification through the analysis of brain regions showing hypertrophic and atrophic changes in the presence of pain. Analytical techniques such as machine-learning classifiers have the capacity to process large volumes of data and delineate diagnostically relevant information from neuroimaging analysis. The issue of defining a “brain type” is an emerging field aimed at interpreting observed brain changes and delineating their clinical identity/significance. In this review, 2 chronic pain conditions (migraine and irritable bowel syndrome) with similar clinical phenotypes are compared in terms of their structural neuroimaging findings. Independent investigations are compared with findings from application of machine-learning algorithms. Findings are discussed in terms of differentiating patient subgroups using neuroimaging data in patients with chronic pain and how they may be applied towards defining a personalized pain signature that helps segregate patient subgroups (eg, migraine with and without aura, with or without nausea; irritable bowel syndrome vs other functional gastrointestinal disorders).
Collapse
|
26
|
Galambos A, Szabó E, Nagy Z, Édes AE, Kocsel N, Juhász G, Kökönyei G. A systematic review of structural and functional MRI studies on pain catastrophizing. J Pain Res 2019; 12:1155-1178. [PMID: 31114299 PMCID: PMC6489670 DOI: 10.2147/jpr.s192246] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: Pain catastrophizing is reliably associated with pain reports during experimental pain in healthy, pain-free subjects and in people with chronic pain. It also correlates with self-reports of clinical pain intensity/severity in a variety of disorders characterized by chronic pain in adults, adolescents and children. However, processes, through which it exerts its effects are yet unclear. In this paper, our primary aim was to synthesize neuroimaging research to open a window to possible mechanisms underlying pain catastrophizing in both chronic pain patients and healthy controls. We also aimed to compare whether the neural correlates of pain catastrophizing are similar in these two groups. Methods: PubMed and the Web of Science were searched for magnetic resonance imaging (MRI) studies that explored neural correlates of pain catastrophizing. Results: Twenty articles met the inclusion criteria. The results of our review show a connection between pain catastrophizing and brain areas tightly connected to pain perception (including the somatosensory cortices, anterior insula, anterior cingulate cortex and thalamus) and/or modulation (eg, the dorsolateral prefrontal cortex). Our results also highlight that these processes - in relation to pain catastrophizing - are more pronounced in chronic pain patients, suggesting that structural and functional brain alterations (and perhaps mechanisms) related to pain catastrophizing may depend on prior and/or relatively stable/constant pain experience. However, we also found methodological issues and differences that could lead to divergent results. Discussion: Based on our results, pain catastrophizing might be related to salience detection, pain processing, and top-down attentional processes. More research is recommended to explore neural changes to specific types of catastrophizing thoughts (eg, experimentally induced and/or state). Furthermore, we provide ideas regarding pain catastrophizing studies in the future for a more standardized approach.
Collapse
Affiliation(s)
- Attila Galambos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Zita Nagy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Édes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Natália Kocsel
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhász
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,Neuroscience and Psychiatry Unit, The University of Manchester, Manchester, United Kingdom and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyöngyi Kökönyei
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
|
28
|
Abstract
OBJECTIVE The pathophysiology of irritable bowel syndrome (IBS) is not completely understood, although we do know that patients with IBS have a high prevalence of psychiatric comorbidity (mainly depression and anxiety disorders). Melatonin, produced in the gastrointestinal tract, influences gut motility. Psychiatric conditions are associated with circadian disturbances in peripheral melatonin levels. This study aimed to investigate associations between daytime salivary melatonin and gastrointestinal symptoms in young adult psychiatric patients. METHODS Ninety-six patients (86% women), aged 18-25 years (M (SD) = 21 (2)), seeking psychiatric care with primarily anxiety disorders, affective disorders, or both were included in the study. Total scores from the Gastrointestinal Symptoms Rating Scale - IBS were compared with salivary melatonin measured at three time points (30 minutes after waking up, at 11:00 hours and 30 minutes after lunch) during the waking hours of 1 day. RESULTS After adjustment for potential confounders, melatonin levels in saliva 30 minutes after lunch remained significantly correlated to the total Gastrointestinal Symptoms Rating Scale - IBS score after correction for multiple testing (B = 0.016, SE = 0.006, p = .015, q = 0.045). In a post hoc analysis, symptoms of gastrointestinal pain and bloating contributed most to this association. CONCLUSIONS In young adult psychiatric patients, salivary melatonin levels after lunch are associated with gastrointestinal symptoms, which is consistent with the proposed effect of elevated levels of gastrointestinal melatonin on gut motility. This result suggests a link between IBS symptoms and regulation of melatonin in patients with psychiatric disorders.
Collapse
|
29
|
Kano M, Dupont P, Aziz Q, Fukudo S. Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2018; 24:512-527. [PMID: 30041284 PMCID: PMC6175554 DOI: 10.5056/jnm18072] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.
Collapse
Affiliation(s)
- Michiko Kano
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai,
Japan
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai,
Japan
- Psychosomatic Medicine, Tohoku University Hospital, Sendai,
Japan
| | | | - Qasim Aziz
- Center for Digestive Diseases, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary College, University of London,
UK
| | - Shin Fukudo
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai,
Japan
- Psychosomatic Medicine, Tohoku University Hospital, Sendai,
Japan
| |
Collapse
|
30
|
Zhao L, Wang Y, Zhang Y. Microstructural changes in the brain in elderly patients with irritable bowel syndrome. Aging Med (Milton) 2018; 1:141-148. [PMID: 31942491 PMCID: PMC6880712 DOI: 10.1002/agm2.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE It is unclear how alterations in gray matter volume and white matter density affect elderly patients with irritable bowel syndrome (IBS). This study aimed to investigate the relationship between structural changes in the brain and psychological stress in elderly IBS patients. METHODS Eighteen IBS patients and 12 healthy controls underwent structural magnetic resonance imaging. Voxel-based morphometry and diffusion tensor imaging analysis were used to identify abnormalities in cortical regions and white matter, respectively. RESULTS The IBS group showed a significant GMV reduction in the cingulate gyrus, occipital lobe, hippocampus, frontal lobe, medial frontal gyrus, superior frontal gyrus, and limbic lobe as well as a higher GMV in the insula, superior temporal gyrus, angular gyrus, and supramarginal gyrus. Diffusion tensor imaging indicated that the IBS group had lower fractional anisotropy in the corpus callosum, upper corona, fornix, internal capsule, and brainstem. Additionally, IBS patients showed higher mean diffusivity in the cingulate gyrus, corpus callosum, upper corona, internal capsule, external capsule, fornix, and superior longitudinal fasciculus. CONCLUSION Structural changes in the brain play a role in the condition of elderly IBS patients. Psychological stress is an important factor for developing IBS via the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Lanlan Zhao
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuezhi Wang
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Zhang
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
31
|
Fang J, Li S, Li M, Chan Q, Ma X, Su H, Wang T, Zhan W, Yan J, Xu M, Zhang Y, Zeng L, Tian J, Jiang G. Altered white matter microstructure identified with tract-based spatial statistics in irritable bowel syndrome: a diffusion tensor imaging study. Brain Imaging Behav 2018; 11:1110-1116. [PMID: 27627891 DOI: 10.1007/s11682-016-9573-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neural mechanisms underlying the pathophysiology of irritable bowel syndrome(IBS) are far from being completely understood. The purpose of the present study was to investigate potential white matter (WM) microstructural changes and underlying causes for WM impairment in IBS using diffusion tensor imaging. The present prospective study involved 19 patients with IBS and 20 healthy controls. Whole-brain voxel-wise analyses of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were performed by tract-based spatial statistics (TBSS) to localize abnormal WM regions between the 2 groups. We found that IBS patients had significantly reduced FA (P < 0.05) in the splenium of the corpus callosum, the right retrolenticular area of the internal capsule and the right superior corona radiata. We also found increased MD (P < 0.05) in the splenium and body of the corpus callosum, the right retrolenticular area of the internal capsule, the right superior corona radiata and the right posterior limb of the internal capsule. In addition, IBS patients had significantly increased AD (P < 0.05) in the splenium of the corpus callosum, the bilateral retrolenticular area of the internal capsule and the left posterior limb of the internal capsule. We conclude that the WM microstructure is changed in IBS and the underlying pathological basis may be attributed to the axonal injury and loss. These results may lead to a better understanding of the pathophysiology of IBS.
Collapse
Affiliation(s)
- Jin Fang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Shumei Li
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | | | - Xiaofen Ma
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Huanhuan Su
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Jianhao Yan
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Ming Xu
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Yaxi Zhang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Luxian Zeng
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China.
| |
Collapse
|
32
|
Microstructural White Matter Abnormalities in the Dorsal Cingulum of Adolescents with IBS. eNeuro 2018; 5:eN-NWR-0354-17. [PMID: 30109260 PMCID: PMC6090517 DOI: 10.1523/eneuro.0354-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/20/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in fractional anisotropy (FA) have been considered to reflect microstructural white matter (WM) changes in disease conditions; however, no study to date has examined WM changes using diffusion tensor imaging (DTI) in adolescents with irritable bowel syndrome (IBS). The objective of the present study was two-fold: (1) to determine whether differences in FA, and other non-FA metrics, were present in adolescents with IBS compared to healthy controls using whole-brain, region of interest (ROI)-restricted tract-based spatial statistics (TBSS) and canonical ROI DTI analyses for the cingulum bundle, and (2) to determine whether these metrics were related to clinical measures of disease duration and pain intensity in the IBS group. A total of 16 adolescents with a Rome III diagnosis of IBS (females = 12; mean age = 16.29, age range: 11.96-18.5 years) and 16 age- and gender-matched healthy controls (females = 12; mean age = 16.24; age range: 11.71-20.32 years) participated in this study. Diffusion-weighted images were acquired using a Siemens 3-T Trio Tim Syngo MRI scanner with a 32-channel head coil. The ROI-restricted TBSS and canonical ROI-based DTI analyses revealed that adolescents with IBS showed decreased FA in the right dorsal cingulum bundle compared to controls. No relationship between FA and disease severity measures was found. Microstructural WM alterations in the right dorsal cingulum bundle in adolescents with IBS may reflect a premorbid brain state or the emergence of a disease-driven process that results from complex changes in pain- and affect-related processing via spinothalamic and corticolimbic pathways.
Collapse
|
33
|
Lefter R, Ciobica A, Guenné S, Compaoré M, Kiendrebéogo M, Stanciu C, Trifan A. Complex Neurobehavioral Testing of a Rat Model of the Irritable Bowel Syndrome. NEUROPHYSIOLOGY+ 2018; 50:266-277. [DOI: 10.1007/s11062-018-9748-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 02/05/2023]
|
34
|
Pitiot A, Smith JK, Humes DJ, Garratt J, Francis ST, Gowland PA, Spiller RC, Marciani L. Cortical differences in diverticular disease and correlation with symptom reports. Neurogastroenterol Motil 2018; 30:e13303. [PMID: 29392838 DOI: 10.1111/nmo.13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/07/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies have shown that the brain of patients with gastrointestinal disease differ both structurally and functionally from that of controls. Highly somatizing diverticular disease (HSDD) patients were also shown to differ from low somatizing (LSDD) patients functionally. This study aimed to investigate how they differed structurally. METHODS Four diseases subgroups were studied in a cross-sectional design: 20 patients with asymptomatic diverticular disease (ADD), 18 LSDD, 16 HSDD, and 18 with irritable bowel syndrome. We divided DD patients into LSDD and HSDD using a cutoff of 6 on the Patient Health Questionnaire 12 Somatic Symptom (PHQ12-SS) scale. All patients underwent a 1-mm isotropic structural brain MRI scan and were assessed for somatization, hospital anxiety, depression, and pain catastrophizing. Whole brain volumetry, cortical thickness analysis and voxel-based morphometry were carried out using Freesurfer and SPM. KEY RESULTS We observed decreases in gray matter density in the left and right dorsolateral prefrontal cortex (dlPFC), and in the mid-cingulate and motor cortex, and increases in the left (19, 20) and right (19, 38) Brodmann Areas. The average cortical thickness differed overall across groups (P = .002) and regionally: HSDD > ADD in the posterior cingulate cortex (P = .03), HSDD > LSDD in the dlPFC (P = .03) and in the ventrolateral PFC (P < .001). The thickness of the anterior cingulate cortex and of the mid-prefrontal cortex were also found to correlate with Pain Catastrophizing (Spearman's ρ = 0.24, P = .043 uncorrected and Spearman's ρ = 0.25, P = .03 uncorrected). CONCLUSION & INFERENCES This is the first study of structural gray matter abnormalities in diverticular disease patients. The data show brain differences in the pain network.
Collapse
Affiliation(s)
- A Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., Nottingham, UK
| | - J K Smith
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - D J Humes
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - J Garratt
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - P A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - R C Spiller
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - L Marciani
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
35
|
Hippocampal gene expression profiling in a rat model of functional constipation reveals abnormal expression genes associated with cognitive function. Neurosci Lett 2018; 675:103-109. [DOI: 10.1016/j.neulet.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
|
36
|
Gupta A, Woodworth DC, Ellingson BM, Rapkin AJ, Naliboff B, Kilpatrick LA, Stains J, Masghati S, Tillisch K, Mayer EA, Labus JS. Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. THE JOURNAL OF PAIN 2018; 19:528.e1-528.e15. [PMID: 29391213 DOI: 10.1016/j.jpain.2017.12.269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/06/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022]
Abstract
Provoked vestibulodynia (PVD) is a chronic pelvic pain disorder affecting 16% of the female population. Neuroimaging studies have highlighted central abnormalities in PVD, similar to other chronic pelvic pain disorders, including brain regions involved in sensory processing and modulation of pain. The aim of the study was to determine alterations in the subvoxel, microstructural organization within tissues in PVD compared with healthy control participants (HCs) and a disease control group (irritable bowel syndrome [IBS]). Diffusion tensor imaging magnetic resonance imaging was conducted in 87 age-matched premenopausal women (29 PVD, 29 HCs, 29 IBS). Statistical parameter mapping of fractional anisotropy (FA) and mean diffusivity (MD) maps were used to identify microstructural difference in the brain specific to PVD or shared with IBS. PVD alterations in microstructural organization of the brain were predominantly observed in fibers associated with sensorimotor integration and pain processing that relay information between the thalamus, basal ganglia, sensorimotor, and insular cortex. PVD, compared with HCs, showed extensive increases in the FA of somatosensory and basal ganglia regions. In contrast, PVD and IBS subjects did not show any FA-related group differences. PVD subjects showed greater MD in the basal ganglia compared with HCs (higher MD in the internal capsule and pallidum) and IBS (higher MD in the putamen and pallidum). Increases in MD were associated with increased vaginal muscle tenderness and vulvar pain. The current findings highlight possible shared mechanisms between 2 different pelvic pain disorders, but also highlight the widespread alterations observed specifically in PVD compared with HCs. PERSPECTIVE Alterations in microstructure in PVD were observed in fibers associated with sensorimotor integration and pain processing, which were also associated with increased vaginal muscle tenderness and vulvar pain. These alterations may be contributing to increased pain sensitivity and tenderness, highlighting the need for new therapies targeting the central nervous system.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Davis C Woodworth
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Benjamin M Ellingson
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Department of Radiology at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andrea J Rapkin
- Department of Obstetrics and Gynecology at UCLA, Los Angeles, California
| | - Bruce Naliboff
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lisa A Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jean Stains
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California
| | - Salome Masghati
- Department of Obstetrics and Gynecology at UCLA, Los Angeles, California
| | - Kirsten Tillisch
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, Los Angeles, California; David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
37
|
Nan J, Zhang L, Chen Q, Zong N, Zhang P, Ji X, Ma S, Zhang Y, Huang W, Du Z, Xia Y, Zhang M. White Matter Microstructural Similarity and Diversity of Functional Constipation and Constipation-predominant Irritable Bowel Syndrome. J Neurogastroenterol Motil 2018; 24:107-118. [PMID: 29291612 PMCID: PMC5753909 DOI: 10.5056/jnm17038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Background/Aims The Rome III criteria separated chronic constipation into functional constipation (FC) and constipation-predominant irritable bowel syndrome (IBS-C), but some researchers questioned the partitioning and treated both as distinct parts of a continuum. The study aims to explore the similarity and diversity of brain white matter between FC and IBS-C. Methods The voxel-wise analysis of the diffusion parameters was used to quantify the white matter changes of female brains in 18 FC patients and 20 IBS-C patients compared with a comparison group with 19 healthy controls by tract-based spatial statistics. The correlations between diffusive parameters and clinical symptoms were evaluated using a Pearson's correlation. Results In comparison to healthy controls, FC patients showed a decrease of fractional anisotropy (FA) and an increase of radial diffusivity (RD) in multiple major fibers encompassing the corpus callosum (CC, P = 0.001 at peak), external capsule (P = 0.002 at peak), corona radiata (CR, P = 0.001 at peak), and superior longitudinal fasciculus (SLF, P = 0.002 at peak). In contrast, IBS-C patients showed FA and RD aberrations in the CC (P = 0.048 at peak). Moreover, the direct comparison between FC and IBS-C showed only RD differences in the CR and SLF. In addition, FA and RD in the CC were significantly associated with abdominal pain for all patients, whereas FA in CR (P = 0.016) and SLF (P = 0.040) were significantly associated with the length of time per attempt and incomplete evacuation separately for FC patients. Conclusion These results may improve our understanding of the pathophysiological mechanisms underlying different types of constipation.
Collapse
Affiliation(s)
- Jiaofen Nan
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Liangliang Zhang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiqiang Chen
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Nannan Zong
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Peiyong Zhang
- First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xing Ji
- First Affiliated Hospital of Yan'an University, Yan'an, China
| | - Shaohui Ma
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Huang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhongzhou Du
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yongquan Xia
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Coppieters I, De Pauw R, Caeyenberghs K, Lenoir D, DeBlaere K, Genbrugge E, Meeus M, Cagnie B. Differences in white matter structure and cortical thickness between patients with traumatic and idiopathic chronic neck pain: Associations with cognition and pain modulation? Hum Brain Mapp 2018; 39:1721-1742. [PMID: 29327392 DOI: 10.1002/hbm.23947] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/05/2017] [Accepted: 01/01/2018] [Indexed: 12/18/2022] Open
Abstract
Brain alterations are hypothesized to be present in patients with chronic whiplash-associated disorders (CWAD). The aim of this case-control study was to examine alterations in cortical thickness and white matter (WM) structure, and the presence of brain microhemorrhages in a patient group encountering chronic neck pain of traumatic origin (i.e., CWAD) when compared with a patient group characterized by nontraumatic chronic neck pain [i.e., chronic idiopathic neck pain (CINP)], and healthy controls. Furthermore, we aimed to investigate associations between brain structure on one hand and cognitive performance and central sensitization (CS) on the other hand. T1-weighted, diffusion-weighted and T2*-weighted magnetic resonance images of the brain were acquired in 105 women (31 controls, 37 CINP, 37 CWAD) to investigate regional cortical thickness, WM structure, and microhemorrhages, respectively. Next, cognitive performance, and CS encompassing distant hyperalgesia and conditioned pain modulation (CPM) efficacy were examined. Cortical thinning in the left precuneus was revealed in CWAD compared with CINP patients. Also, decreased fractional anisotropy, together with increased values of mean diffusivity and radial diffusivity could be observed in the left cingulum hippocampus and tapetum in CWAD compared with CINP, and in the left tapetum in CWAD patients compared with controls. Moreover, the extent of WM structural deficits in the left tapetum coincided with decreased CPM efficacy in the CWAD group. This yields evidence for associations between decreased endogenous pain inhibition, and the degree of regional WM deficits in CWAD. Our results emphasize the role of structural brain alterations in women with CWAD compared with CINP.
Collapse
Affiliation(s)
- I Coppieters
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Pain in Motion International Research Group (www.paininmotion.be).,Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium
| | - R De Pauw
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - K Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Banyo, Australia
| | - D Lenoir
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - K DeBlaere
- Department of Radiology, Ghent University, Ghent, Belgium
| | - E Genbrugge
- Department of Radiology, Ghent University, Ghent, Belgium
| | - M Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Pain in Motion International Research Group (www.paininmotion.be).,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - B Cagnie
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Muthulingam J, Haas S, Hansen TM, Laurberg S, Lundby L, Jørgensen HS, Drewes AM, Krogh K, Frøkjaer JB. Microstructural white matter brain abnormalities in patients with idiopathic fecal incontinence. Neurogastroenterol Motil 2018; 30. [PMID: 28730720 DOI: 10.1111/nmo.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal central nervous system processing of visceral sensation may be a part of the pathogenesis behind idiopathic fecal incontinence (IFI). Our aim was to characterize brain differences in patients with IFI and healthy controls by means of structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). METHODS In 21 female patients with IFI and 15 female healthy controls, whole-brain structural differences in gray matter volume (GMV), cortical thickness, and white matter tracts fractional anisotropy (FA) were quantified. For this purpose, we used voxel-based morphometry, surface based morphometry and tract-based spatial statistic, respectively. Furthermore, associations between structural brain characteristics and latencies of rectal sensory evoked electroencephalography potentials were determined. KEY RESULTS Compared to healthy controls, IFI patients had significantly reduced FA values, reflecting reduced white matter tract integrity, in the left hemisphere superior longitudinal fasciculus (SLF), posterior thalamic radiation, and middle frontal gyrus (MFG), all P<.05. No differences were observed in GMV or in cortical thickness. The reduced FA values in the SLF and MFG were correlated with prolonged latencies of cortical potentials evoked by rectal stimuli (all P<.05). CONCLUSIONS & INFERENCES This explorative study suggests that IFI patients have no macrostructural brain changes, but exhibit microstructural changes in white matter tracts relevant for sensory processing. The clinical relevance of this finding is supported by its correlations with prolonged latencies of cortical potentials evoked by rectal stimulation. This supports the theories of central nervous system changes as part of the pathogenesis in IFI patients.
Collapse
Affiliation(s)
- J Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Haas
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - T M Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Laurberg
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - L Lundby
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - H S Jørgensen
- Institute for Clinical Medicine - The MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - A M Drewes
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - K Krogh
- Neurogastroenterology Unit, Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - J B Frøkjaer
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
40
|
Tatu K, Costa T, Nani A, Diano M, Quarta DG, Duca S, Apkarian AV, Fox PT, Cauda F. How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. Neuroimage Clin 2017; 18:15-30. [PMID: 30023166 PMCID: PMC5987668 DOI: 10.1016/j.nicl.2017.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
•In chronic pain, gray matter (GM) alterations are not distributed randomly across the brain.•The pattern of co-alterations resembles that of brain connectivity.•The alterations' distribution partly rely on the pathways of functional connectivity.•This method allows us to identify tendencies in the distribution of GM co-alteration related to chronic pain.
Collapse
Affiliation(s)
- Karina Tatu
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Focus Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Focus Lab, Department of Psychology, University of Turin, Turin, Italy; Michael Trimble Neuropsychiatry Research Group, University of Birmingham and BSMHFT, Birmingham, UK
| | - Matteo Diano
- Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University, Tilburg, Netherlands; Department of Psychology, University of Torino, Torino, Italy
| | - Danilo G Quarta
- S.C. Anestesia, Rianimazione e Terapia Antalgica, Martini Hospital, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Neuroradiology, Koelliker Hospital, Turin, Italy
| | - A Vania Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Department of Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
41
|
Hayes DJ, Chen DQ, Zhong J, Lin A, Behan B, Walker M, Hodaie M. Affective Circuitry Alterations in Patients with Trigeminal Neuralgia. Front Neuroanat 2017; 11:73. [PMID: 28928638 PMCID: PMC5591854 DOI: 10.3389/fnana.2017.00073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/11/2017] [Indexed: 11/24/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe chronic neuropathic facial pain disorder. Affect-related behavioral and structural brain changes have been noted across chronic pain disorders, but have not been well-studied in TN. We examined the potential impact of TN (37 patients: 23 with right-sided TN, 14 with left-sided TN), compared to age- and sex-matched healthy controls, on three major white matter tracts responsible for carrying affect-related signals—i.e., cingulum, fornix, and medial forebrain bundle. Diffusion magnetic resonance imaging (dMRI), deterministic multi-tensor tractography for tract modeling, and a model-driven region-of-interest approach was used. We also used volumetric gray matter analysis on key targets of these pathways (i.e., hippocampus, cingulate cortex subregions, nucleus accumbens, and ventral diencephalon). Hypotheses included: (1) successful modeling of tracts; (2) altered white matter microstructure of the cingulum and medial forebrain bundle (via changes in dMRI metrics such as fractional anisotropy, and mean, axial, and radial diffusivities) compared to controls; (3) no alterations in the control region of the fornix; (4) corresponding decreases in gray matter volumes. Results showed (1) all 325 tracts were successfully modeled, although 11 were partially complete; (2) The cingulum and medial forebrain bundle (MFB) were altered in those with TN, with dMRI metric changes in the middle (p = 0.001) and posterior cingulum (p < 0.0001), and the MFB near the ventral tegmental area (MFB-VTA) (p = 0.001). The posterior cingulum and MFB-VTA also showed unilateral differences between right- and left-sided TN patients; (3) No differences were noted at any fornix subdivision; (4) decreased volumes were noted for the hippocampus, posterior cingulate, nucleus accumbens, and ventral diencephalon. Together, these results support the notion of selectively altered affective circuits in patients with TN, which may be related to the experience of negative affect and the increased comorbidity of mood and anxiety disorders in this population.
Collapse
Affiliation(s)
- Dave J Hayes
- Psychology Department and Neuroscience Program, Union CollegeSchenectady, NY, United States.,Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - David Q Chen
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Jidan Zhong
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Ariel Lin
- Psychology Department and Neuroscience Program, Union CollegeSchenectady, NY, United States
| | - Brendan Behan
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Matthew Walker
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Cerebral white matter structure is disrupted in Gulf War Veterans with chronic musculoskeletal pain. Pain 2017; 158:2364-2375. [DOI: 10.1097/j.pain.0000000000001038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Abstract
Clinicians have commonly differentiated chronic back pain into two broad subsets: namely, non-inflammatory (or mechanical) back pain and inflammatory back pain. As the terminology suggests, the latter category, in which ankylosing spondylitis (AS) is prominent, presupposes a close link between pain and inflammation. Advances in research into the genetics and immunology of AS have improved our understanding of the inflammatory processes involved in this disease, and have led to the development of potent anti-inflammatory biologic therapeutic agents. However, evidence from clinical trials and from biomarker and imaging studies in patients with AS indicate that pain and inflammation are not always correlated. Thus, the assumption that pain in AS is a reliable surrogate marker for inflammation might be an over-simplification. This Review provides an overview of current concepts relating to neuro-immune interactions in AS and summarizes research that reveals an increasingly complex interplay between the activation of the immune system and pain pathways in the nervous system. The different types of pain experienced by patients with AS, insights from brain imaging studies, neurological mechanisms of pain, sex bias in pain and how the immune system can modify pain in patients with AS are also discussed.
Collapse
|
44
|
Hotta J, Zhou G, Harno H, Forss N, Hari R. Complex regional pain syndrome: The matter of white matter? Brain Behav 2017; 7:e00647. [PMID: 28523214 PMCID: PMC5434177 DOI: 10.1002/brb3.647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Many central pathophysiological aspects of complex regional pain syndrome (CRPS) are still unknown. Although brain-imaging studies are increasingly supporting the contribution of the central nervous system to the generation and maintenance of the CRPS pain, the brain's white-matter alterations are seldom investigated. METHODS In this study, we used diffusion tensor imaging to explore white-matter changes in twelve CRPS-type-1 female patients suffering from chronic right upper-limb pain compared with twelve healthy control subjects. RESULTS Tract-based spatial-statistics analysis revealed significantly higher mean diffusivity, axial diffusivity, and radial diffusivity in the CRPS patients, suggesting that the structural connectivity is altered in CRPS. All these measures were altered in the genu, body, and splenium of corpus callosum, as well as in the left anterior and posterior and the right superior parts of the corona radiata. Axial diffusivity was significantly correlated with clinical motor symptoms at whole-brain level, supporting the physiological significance of the observed white-matter abnormalities. CONCLUSIONS Altogether, our findings further corroborate the involvement of the central nervous system in CRPS.
Collapse
Affiliation(s)
- Jaakko Hotta
- Department of Neuroscience and Biomedical Engineering Aalto University Espoo Finland.,Aalto NeuroImaging Aalto University Espoo Finland.,Clinical Neurosciences, Neurology University of Helsinki and Department of Neurology, Helsinki University Hospital Helsinki Finland
| | - Guangyu Zhou
- Department of Neuroscience and Biomedical Engineering Aalto University Espoo Finland.,Department of Neurology Northwestern University Chicago IL USA
| | - Hanna Harno
- Clinical Neurosciences, Neurology University of Helsinki and Department of Neurology, Helsinki University Hospital Helsinki Finland.,Pain Clinic Department of Anesthesiology, Intensive Care and Pain Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering Aalto University Espoo Finland.,Clinical Neurosciences, Neurology University of Helsinki and Department of Neurology, Helsinki University Hospital Helsinki Finland
| | - Riitta Hari
- Department of Neuroscience and Biomedical Engineering Aalto University Espoo Finland.,Department of Art Aalto University Helsinki Finland
| |
Collapse
|
45
|
Tsang SW, Auyeung KKW, Bian ZX, Ko JKS. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis. Curr Neuropharmacol 2017; 14:842-856. [PMID: 27009115 PMCID: PMC5333584 DOI: 10.2174/1570159x14666160324144154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/07/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients.
Collapse
Affiliation(s)
| | | | | | - J K S Ko
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
46
|
Törnblom H, Drossman DA. Centrally Targeted Pharmacotherapy for Chronic Abdominal Pain: Understanding and Management. Handb Exp Pharmacol 2017; 239:417-440. [PMID: 28204956 DOI: 10.1007/164_2016_106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chronic abdominal pain has a widespread impact on the individual and the society. Identifying and explaining mechanisms of importance for the pain experience within a biopsychosocial context are central in order to select treatment that has a chance for symptom reduction. With current knowledge of brain-gut interactions, chronic abdominal pain, which mostly appears in functional gastrointestinal disorders, to a large extent involves pain mechanisms residing within the brain. As such, the use of centrally targeted pharmacotherapy as an effective treatment option is obvious in a selected number of patients. The antidepressants are most common, but also other classes of medications can be used, either alone or in combination. The latter option refers to when there is insufficient effect of one drug alone or side effects limiting dosage, and when combined in lower doses, certain drugs give rise to augmentation effects. This chapter outlines basic mechanisms of importance for the understanding of chronic abdominal pain and the pharmacologic treatment options.
Collapse
Affiliation(s)
- Hans Törnblom
- Dept of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345, Gothenburg, Sweden.
| | - Douglas A Drossman
- Drossman Center for the Education and Practice of Biopsychosocial Care, Professor Emeritus of Medicine and Psychiatry, UNC Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Drossman Gastroenterology PLLC, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Walitt B, Ceko M, Gracely JL, Gracely RH. Neuroimaging of Central Sensitivity Syndromes: Key Insights from the Scientific Literature. Curr Rheumatol Rev 2016; 12:55-87. [PMID: 26717948 DOI: 10.2174/1573397112666151231111104] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/24/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
Central sensitivity syndromes are characterized by distressing symptoms, such as pain and fatigue, in the absence of clinically obvious pathology. The scientific underpinnings of these disorders are not currently known. Modern neuroimaging techniques promise new insights into mechanisms mediating these postulated syndromes. We review the results of neuroimaging applied to five central sensitivity syndromes: fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, temporomandibular joint disorder, and vulvodynia syndrome. Neuroimaging studies of basal metabolism, anatomic constitution, molecular constituents, evoked neural activity, and treatment effect are compared across all of these syndromes. Evoked sensory paradigms reveal sensory augmentation to both painful and nonpainful stimulation. This is a transformative observation for these syndromes, which were historically considered to be completely of hysterical or feigned in origin. However, whether sensory augmentation represents the cause of these syndromes, a predisposing factor, an endophenotype, or an epiphenomenon cannot be discerned from the current literature. Further, the result from cross-sectional neuroimaging studies of basal activity, anatomy, and molecular constituency are extremely heterogeneous within and between the syndromes. A defining neuroimaging "signature" cannot be discerned for any of the particular syndromes or for an over-arching central sensitization mechanism common to all of the syndromes. Several issues confound initial attempts to meaningfully measure treatment effects in these syndromes. At this time, the existence of "central sensitivity syndromes" is based more soundly on clinical and epidemiological evidence. A coherent picture of a "central sensitization" mechanism that bridges across all of these syndromes does not emerge from the existing scientific evidence.
Collapse
Affiliation(s)
- Brian Walitt
- National Center for Complementary and Integrative Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
48
|
Qi R, Liu C, Weng Y, Xu Q, Chen L, Wang F, Zhang LJ, Lu GM. Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome. Front Mol Neurosci 2016; 9:141. [PMID: 27999530 PMCID: PMC5138208 DOI: 10.3389/fnmol.2016.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS)-a relapsing functional bowel disorder-presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) to investigate changes in interhemispheric coordination in IBS patients. Resting-state functional and structural magnetic resonance images were acquired from 65 IBS patients and 67 healthy controls (HCs; matched for age, sex and educational level). Interhemispheric voxel-mirrored homotopic connectivity (VMHC) was calculated and compared between groups. Homotopic regions showing abnormal VMHC in patients were targeted as regions of interest (ROIs) for analysis of DTI tractography. The fractional anisotropy (FA), fiber number and fiber length were compared between groups. Statistical analysis was also performed by including anxiety and depression as covariates to evaluate their effect. A Pearson correlation analysis between abnormal interhemispheric connectivity and clinical indices of IBS patients was performed. Compared to HCs, IBS patients had higher interhemispheric functional connectivity between bilateral thalami, cuneus, posterior cingulate cortices (PCC), lingual gyri and inferior occipital/cerebellum lobes, as well as lower interhemispheric functional connectivity between bilateral ventral anterior cingulate cortices (vACC) and inferior parietal lobules (IPL). The inclusion of anxiety and depression as covariates abolished VMHC difference in vACC. Microstructural features of white matter tracts connecting functionally abnormal regions did not reveal any differences between the groups. VMHC values in vACC negatively correlated with the quality of life (QOL) scores of patients. In conclusion, this study provides preliminary evidence of the disrupted functional coordination rather than anatomic coordination between interhemispheric regions within the cortex-thalamus circuit in IBS patients, which could partly account for the enhanced visceral information processing and impaired endogenous pain or emotion inhibition associated with IBS.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Chang Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Liya Chen
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Long J Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| | - Guang M Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University Nanjing, China
| |
Collapse
|
49
|
Huang L, Kutch JJ, Ellingson BM, Martucci KT, Harris RE, Clauw DJ, Mackey S, Mayer EA, Schaeffer AJ, Apkarian AV, Farmer MA. Brain white matter changes associated with urological chronic pelvic pain syndrome: multisite neuroimaging from a MAPP case-control study. Pain 2016; 157:2782-2791. [PMID: 27842046 PMCID: PMC5117992 DOI: 10.1097/j.pain.0000000000000703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPSs) in men and women have focused on end organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multisite investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared with positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data were collected from participants with UCPPS (n = 52), IBS (n = 39), and healthy sex- and age-matched controls (n = 61). White matter microstructure, measured as fractional anisotropy (FA), was examined by diffusion tensor imaging. Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished patients with IBS from those with UCPPS and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development.
Collapse
Affiliation(s)
- Lejian Huang
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jason J. Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA
| | - Benjamin M. Ellingson
- Oppenheimer Center for Neurobiology of Stress and Pain, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| | - Katherine T. Martucci
- Departments of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Stanford University Medical Center, Stanford, CA
| | - Richard E. Harris
- Department of Anesthesiology, and the Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI
| | - Daniel J. Clauw
- Department of Anesthesiology, and the Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI
| | - Sean Mackey
- Departments of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Stanford University Medical Center, Stanford, CA
| | - Emeran A. Mayer
- Oppenheimer Center for Neurobiology of Stress and Pain, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| | - Anthony J. Schaeffer
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - A. Vania Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL
- Departments of Surgery and Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Melissa A. Farmer
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
50
|
Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 2016; 58:1-8. [PMID: 26802985 PMCID: PMC4956598 DOI: 10.1016/j.bbi.2016.01.017] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients.
Collapse
Affiliation(s)
- Vera Chesnokova
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States.
| | - Robert N Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Kolja Wawrowsky
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|