1
|
Martín-Cardona A, Carrasco A, Arau B, Vidal J, Tristán E, Ferrer C, Gonzalez-Puglia G, Pallarès N, Tebé C, Farrais S, Núñez C, Fernández-Bañares F, Esteve M. γδ+ T-Cells Is a Useful Biomarker for the Differential Diagnosis between Celiac Disease and Non-Celiac Gluten Sensitivity in Patients under Gluten Free Diet. Nutrients 2024; 16:2294. [PMID: 39064736 PMCID: PMC11279444 DOI: 10.3390/nu16142294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The differential diagnosis between patients with celiac disease (CD) and non-celiac gluten sensitivity (NCGS) is difficult when a gluten-free diet (GFD) has been initiated before the diagnostic work-up. Isolated increases in TCRγδ+ and celiac lymphogram (increased TCRγδ+ plus decreased CD3-) may enable differential diagnosis in this challenging clinical setting. This study evaluated: (1) the accuracy of %TCRγδ+ and celiac lymphogram for diagnosing CD before and after GFD and for differentiation with NCGS; (2) TCRγδ+ kinetics at baseline and after starting GFD in both CD and NCGS. METHODS The inclusion criteria were patients with CD (n = 104), NCGS (n = 37), and healthy volunteers (n = 18). An intestinal biopsy for intraepithelial lymphogram by flow cytometry was performed at baseline and after GFD. The optimal cutoff for CD diagnostic accuracy was established by maximizing the Youden index and via logistic regression. RESULTS %TCRγδ+ showed better diagnostic accuracy than celiac lymphogram for identifying CD before and after GFD initiation. With a cutoff > 13.31, the accuracy for diagnosing CD in patients under GFD was 0.88 [0.80-0.93], whereas the accuracy for diagnosing NCGS (%TCRγδ+ ≤ 13.31) was 0.84 [0.76-0.89]. The percentage of TCRγδ+ cells showed differential kinetics between CD (baseline 22.7% [IQR, 16.4-33.6] vs. after GFD 26.4% [IQR, 17.8-36.8]; p = 0.026) and NCGS (baseline 9.4% [IQR, 4.1-14.6] vs. after GFD 6.4% [IQR, 3.2-11]; p = 0.022). CONCLUSION TCRγδ+ T cell assessment accurately diagnoses CD before and after a GFD. Increased TCRγδ+ was maintained in the long term after GFD in CD but not in NCGS. Altogether, this suggests the potential usefulness of this marker for the differential diagnosis of these two entities in patients on a GFD.
Collapse
Affiliation(s)
- Albert Martín-Cardona
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Carrasco
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Arau
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Vidal
- Department of Flow Cytometry, Catlab, 08232 Viladecavalls, Spain;
| | - Eva Tristán
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carme Ferrer
- Pathology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain;
| | - Gerardo Gonzalez-Puglia
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
| | - Natàlia Pallarès
- Biostatistics Support and Research Unit, Germans Trias i Pujol Research Institute and Hospital (IGTP), 08916 Badalona, Spain; (N.P.); (C.T.)
| | - Cristian Tebé
- Biostatistics Support and Research Unit, Germans Trias i Pujol Research Institute and Hospital (IGTP), 08916 Badalona, Spain; (N.P.); (C.T.)
| | - Sergio Farrais
- Gastroenterology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Fernando Fernández-Bañares
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Esteve
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, 08221 Terrassa, Spain; (A.M.-C.); (A.C.); (B.A.); (E.T.); (G.G.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
García-Hoz C, Crespo L, Pariente R, De Andrés A, Rodríguez-Ramos R, Roy G. Intraepithelial Lymphogram in the Diagnosis of Celiac Disease in Adult Patients: A Validation Cohort. Nutrients 2024; 16:1117. [PMID: 38674808 PMCID: PMC11054949 DOI: 10.3390/nu16081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Celiac disease is a gluten-related pathology, highly prevalent and heterogeneous in its clinical presentation, which leads to delays in diagnosis and misdiagnosis. The analysis of duodenal intraepithelial lymphocytes (IELs) by flow cytometry (lymphogram) is emerging as a discriminative tool in the diagnosis of various forms of celiac disease (CD). AIMS The aim of this study was to validate IEL lymphogram performance in the largest adult series to our knowledge, in support of its use as a diagnostic tool and as a biomarker of the dynamic celiac process. METHODS This was a retrospective study including 768 adult patients (217 with active CD, 195 on a gluten-free diet, 15 potential CD patients, and 411 non-celiac controls). The IEL subset cut-off values were established to calculate the diagnostic accuracy of the lymphogram. RESULTS A complete celiac lymphogram profile (≥14% increase in T cell receptor [TCR]γδ IELs and simultaneous ≤4% decrease in surface-negative CD3 [sCD3-] IELs) was strongly associated with active and potential forms in over 80% of the confirmed patients with CD, whereas the remaining patients with CD had partial lymphogram profiles (≥14% increase in TCRγδ or ≤4% decrease in sCD3- IELs), with lower diagnostic certainty. None of these patients had a non-celiac lymphogram. Quantifying the TCRγδ versus sCD3- imbalance as a ratio (≥5) is a discriminative index to discard or suspect CD at diagnosis. CONCLUSIONS We have validated the IEL lymphogram's diagnostic efficiency (79% sensitivity, 98% specificity), with an LR+ accuracy of 36.2. As expected, the increase in TCRγδ IELs is a reliable marker for celiac enteropathy, while changes in sCD3- IEL levels throughout the dynamic CD process are useful biomarkers of mucosal lesions.
Collapse
Affiliation(s)
- Carlota García-Hoz
- Department of Immunology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (R.P.); (A.D.A.); (R.R.-R.); (G.R.)
| | - Laura Crespo
- Department of Gastroenterology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain;
| | - Roberto Pariente
- Department of Immunology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (R.P.); (A.D.A.); (R.R.-R.); (G.R.)
| | - Ana De Andrés
- Department of Immunology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (R.P.); (A.D.A.); (R.R.-R.); (G.R.)
| | - Rafael Rodríguez-Ramos
- Department of Immunology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (R.P.); (A.D.A.); (R.R.-R.); (G.R.)
| | - Garbiñe Roy
- Department of Immunology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (R.P.); (A.D.A.); (R.R.-R.); (G.R.)
| |
Collapse
|
3
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Núñez C, Carrasco A, Corzo M, Pariente R, Esteve M, Roy G. Flow cytometric analysis of duodenal intraepithelial lymphocytes (celiac lymphogram): A diagnostic test for celiac disease. Methods Cell Biol 2023; 179:143-155. [PMID: 37625872 DOI: 10.1016/bs.mcb.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Celiac disease (CD) diagnosis in adults and certain cases of children mainly relies on the assessment of histopathological features in duodenal biopsies. However, none of the histological findings that characterize CD are pathognomonic. This, in addition to the clinical heterogeneity of the disease and the presence of seronegative forms, makes the diagnosis of CD still a challenge. A hallmark of the celiac mucosa is the elevated number of TCRγδ intraepithelial lymphocytes (IEL) in the epithelium, which may remain increased even long after gluten withdrawal. Active disease is also characterized by the decreased CD3- IEL subset. The use of flow cytometry enables a precise cell counting and phenotyping, allowing the ascertainment of both TCRγδ+ and CD3- IEL subsets, what is known as the "IEL lymphogram." Although determination of this lymphogram has become a routine evaluation tool in numerous hospitals, standardization of the technical method will guarantee an accurate performance in order to become a pivotal technique for CD diagnosis. Here we describe the protocol to process duodenal biopsies in order to obtain the IELs from the mucosa and to characterize lymphocyte populations by flow cytometry to obtain the IEL lymphogram.
Collapse
Affiliation(s)
- Concepción Núñez
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - A Carrasco
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Centro de Investigación Biomédica en Red de Enfermedades Hepática y Digestivas (CIBERehd), Barcelona, Spain
| | - María Corzo
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - R Pariente
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - M Esteve
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Centro de Investigación Biomédica en Red de Enfermedades Hepática y Digestivas (CIBERehd), Barcelona, Spain
| | - G Roy
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
5
|
Roy G, Fernández-Bañares F, Corzo M, Gómez-Aguililla S, García-Hoz C, Núñez C. Intestinal and blood lymphograms as new diagnostic tests for celiac disease. Front Immunol 2023; 13:1081955. [PMID: 36713361 PMCID: PMC9875591 DOI: 10.3389/fimmu.2022.1081955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Accurate celiac disease (CD) diagnosis is still challenging for some specific patients or circumstances. Thus, much effort has been expended last decades focused on seronegative or low grade enteropathy CD and, especially, on enable early diagnosis of individuals on a gluten-free diet (GFD). We discuss here two diagnostic approaches based on immunophenotyping by flow cytometry that we expect to reduce the persistent low diagnostic rates and the common diagnostic delay. The intraepithelial lymphogram is based on determining the percentage of TCRγδ+ and surface CD3- lymphocytes in the intestinal epithelium. The concomitant increase in TCRγδ+ and decrease in surface CD3- intraepithelial lymphocytes has been termed the celiac lymphogram and has been proved to be discriminative in seronegative, low grade enteropathy and potential CD, as well as in most CD patients on a GFD. A blood lymphogram based on the analysis of activated gut-homing CD8+ T cells combined with a 3-day gluten challenge is also considered, which has shown high sensitivity and specificity to diagnose seropositive Marsh 1 and Marsh 3 CD in individuals following a GFD. In addition, flow cytometry can be extremely useful in cases of refractory CD type II to identify aberrant cells. Those approaches represent highly accurate methods for CD diagnosis, being simple, fast, highly reproducible and of easy implementation in clinical practice.
Collapse
Affiliation(s)
- Garbiñe Roy
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Corzo
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Sara Gómez-Aguililla
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Carlota García-Hoz
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
6
|
Expósito Miranda M, García-Valdés L, Espigares-Rodríguez E, Leno-Durán E, Requena P. Sensibilidad al gluten no celiaca: etiología, diagnóstico diferencial y presentación clínica. GASTROENTEROLOGÍA Y HEPATOLOGÍA 2022:S0210-5705(22)00227-8. [PMID: 36244620 DOI: 10.1016/j.gastrohep.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
7
|
Mandile R, Maglio M, Mosca C, Marano A, Discepolo V, Troncone R, Auricchio R. Mucosal Healing in Celiac Disease: Villous Architecture and Immunohistochemical Features in Children on a Long-Term Gluten Free Diet. Nutrients 2022; 14:nu14183696. [PMID: 36145072 PMCID: PMC9504881 DOI: 10.3390/nu14183696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Considerable heterogeneity exists across studies assessing intestinal mucosal recovery in celiac (CD) patients on a gluten-free diet (GFD). We aimed at investigating histological and immunohistochemical features in CD patients on a long-term GFD and to correlate them to the GFD duration. Morphometrical and immunohistochemical analysis were retrospectively performed on duodenal biopsies in three groups of children: 33 on a long-term (>2 years) GFD (GFD-group), four of which remained seropositive despite dietary adherence, 31 with villous atrophy (ACD-group) and 76 heathy, non-celiac (CTR-group). Moreover, in the GFD-group, we correlated immunohistochemical alterations to the GFD duration. The villous to crypt (V/C) ratio significantly improved after the GFD and completely normalized in all patients, becoming even higher than in the CTR-group (median value 3.2 vs. 3, p = 0.007). In parallel, the number of CD3+ and TCRγδ+ cells in the epithelium were significantly reduced in the GFD compared to ACD patients, even if they remained higher than in the CTR-group (p < 0.05). In contrast, CD25+ cells in the lamina propria significantly decreased after the GFD (p < 0.05) and become comparable to the CTR-group (p = 0.9). In the GFD-group there was no difference in the immunohistochemical parameters between seropositive and seronegative patients and alterations did not correlate to GFD length. In conclusion, a GFD is able to both restore a normal V/C ratio and reduce inflammation, but the epithelium maintains some stigmata of the disorder, such as an increased number of CD3+ and TCRγδ+ cells. These alterations persist regardless of the duration of the GFD.
Collapse
Affiliation(s)
- Roberta Mandile
- Department of Translational Medical Science, Pediatrics Section University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Caterina Mosca
- Department of Translational Medical Science, Pediatrics Section University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Antonella Marano
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science, Pediatrics Section University Federico II, via Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, Pediatrics Section University Federico II, via Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, via Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, Pediatrics Section University Federico II, via Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, via Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817463275
| |
Collapse
|
8
|
Mata-Romero P, Martín-Holgado D, Ferreira-Nossa HC, González-Cordero PL, Izquierdo-Martín A, Barros-García P, Fernandez-Gonzalez N, Fernández-Pereira L, Cámara-Hijón C, Molina-Infante J. Ultra-short celiac disease exhibits differential genetic and immunophenotypic features compared to conventional celiac disease. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:652-659. [PMID: 35489585 DOI: 10.1016/j.gastrohep.2022.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ultra-short coeliac disease (USCD) is a novel celiac disease (CD) subtype limited to the duodenal bulb (D1). HLA haplotypes and flow cytometry have not been assessed yet. AIMS To compare genetic, clinical, serologic, histopathologic and inmmunophenotypic parameters between USCD and conventional celiac disease (CCD) patients. METHODS Prospective single-center study in children and adult patients undergoing duodenal biopsies on a gluten-containing diet. Biopsies for histology and flow cytometry were taken separately from D1 and distal duodenum. Biopsies in seronegative patients with celiac lymphogram were repeated after 2 years on a gluten-free diet. RESULTS Among 505 included patients, 127 were diagnosed with CD, of whom 7 (5.5%) showed USCD. HLADQ2 was significantly less common in USCD compared to CCD (71% vs. 95%, p 0.003). Likewise, USCD patients showed more frequent non-significant seronegativity (28% vs. 8%, p 0.07) and significantly lower titrations (7-15 IU/ml) of tissue transglutaminase antibodies (tTG-IgA) (60% vs. 13%, p<0.001). Biopsies from D1 revealed significant less NK cells down-expression in USCD patients (1.4 vs. 5, p 0.04). CONCLUSIONS Up to 5.5% of CD patients showed USCD. A lower frequency of HLADQ2, along with less serum tTG-IgA titration and duodenal NK cell suppression, were differential features of USCD.
Collapse
Affiliation(s)
- Pilar Mata-Romero
- Department of Gastroenterology. Hospital Universitario de Caceres, Caceres, Spain.
| | | | - Hal C Ferreira-Nossa
- Department of Gastroenterology. Hospital Universitario de Caceres, Caceres, Spain
| | | | | | | | | | | | | | - Javier Molina-Infante
- Department of Gastroenterology. Hospital Universitario de Caceres, Caceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
9
|
Lindeman I, Sollid LM. Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. Mucosal Immunol 2022; 15:51-63. [PMID: 34531547 DOI: 10.1038/s41385-021-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023]
Abstract
Single-cell analysis is a powerful technology that has found widespread use in recent years. For diseases with involvement of adaptive immunity, single-cell analysis of antigen-specific T cells and B cells is particularly informative. In autoimmune diseases, the adaptive immune system is obviously at play, yet the ability to identify the culprit T and B cells recognizing disease-relevant antigen can be difficult. Celiac disease, a widespread disorder with autoimmune components, is unique in that disease-relevant antigens for both T cells and B cells are well defined. Furthermore, the celiac disease gut lesion is readily accessible allowing for sampling of tissue-resident cells. Thus, disease-relevant T cells and B cells from the gut and blood can be studied at the level of single cells. Here we review single-cell studies providing information on such adaptive immune cells and outline some future perspectives in the area of single-cell analysis in autoimmune diseases.
Collapse
Affiliation(s)
- Ida Lindeman
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Camarero C, De Andrés A, García-Hoz C, Roldán B, Muriel A, León F, Roy G. Assessment of Duodenal Intraepithelial Lymphocyte Composition (Lymphogram) for Accurate and Prompt Diagnosis of Celiac Disease in Pediatric Patients. Clin Transl Gastroenterol 2021; 12:e00426. [PMID: 34757327 PMCID: PMC8585297 DOI: 10.14309/ctg.0000000000000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Quantitative and phenotypic analyses of duodenal intraepithelial lymphocytes (IELs) by flow cytometry (IEL lymphogram) confer specificity and enable the diagnosis even in unconventional presentations of celiac disease (CD). To evaluate the validity of the IEL lymphograms in the pediatric population for new insights into their use as biomarkers in the natural history of CD. METHODS We retrospectively included 1,211 children (602 with active CD, 92 on a gluten-free diet, 47 with potential CD, and 470 nonceliac controls) who required duodenal biopsies in this study. The cutoff values for IEL subsets were established to calculate the probability of disease according to the lymphogram. RESULTS A celiac lymphogram (a ≥15% increase in gamma-delta T-cell receptor IELs and a simultaneous ≤6% decrease in CD3 surface-negative [sCD3-]) IELs was strongly associated with the diagnosis of active CD, which was present in 89.7% of the confirmed patients. The remaining 10% of the celiac patients had a partial celiac lymphogram (≥15% increase gamma-delta T-cell receptor IELs or ≤6% decrease in sCD3- IELs), with lower diagnostic certainty. On a gluten-free diet, nearly 20% of the patients were indistinguishable from nonceliac subjects based on the lymphogram. In potential CD, a decrease in sCD3- IELs was a risk marker of progression to villous atrophy and a diagnosis of active CD. DISCUSSION If a biopsy is clinically indicated, the IEL lymphogram adds specificity to the histological findings, reducing diagnostic delays and misdiagnoses. The lymphogram is useful for monitoring the natural progression of the disease and predicting the transition from potential celiac to overt CD.
Collapse
Affiliation(s)
- Cristina Camarero
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Ana De Andrés
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Carlota García-Hoz
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Belén Roldán
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Alfonso Muriel
- Clinical Biostatistic Unit, University Hospital Ramón y Cajal IRYCIS, CIBERESP Nursing and Physiotherapy Department, University of Alcalá, Madrid, Spain;
| | | | - Garbiñe Roy
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| |
Collapse
|
12
|
Ruiz-Ramírez P, Carreras G, Fajardo I, Tristán E, Carrasco A, Salvador I, Zabana Y, Andújar X, Ferrer C, Horta D, Loras C, García-Puig R, Fernández-Bañares F, Esteve M. Intraepithelial Lymphocyte Cytometric Pattern Is a Useful Diagnostic Tool for Coeliac Disease Diagnosis Irrespective of Degree of Mucosal Damage and Age-A Validation Cohort. Nutrients 2021; 13:nu13051684. [PMID: 34063411 PMCID: PMC8155844 DOI: 10.3390/nu13051684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: The study of intraepithelial lymphocytes (IEL) by flow cytometry is a useful tool in the diagnosis of coeliac disease (CD). Previous data showed that an increase in %TCRγδ+ and decrease of %CD3− IEL constitute a typical CD cytometric pattern with a specificity of 100%. However, there are no data regarding whether there are differences in the %TCRγδ+ related to sex, age, titers of serology, and degree of histological lesion. Study aims: To confirm the high diagnostic accuracy of the coeliac cytometric patterns. To determine if there are differences between sex, age, serology titers, and histological lesion grade. Results: We selected all patients who fulfilled “4 of 5” rule for CD diagnosis (n = 169). There were no differences in %TCRγδ+ between sexes (p = 0.909), age groups (p = 0.986), serology titers (p = 0.53) and histological lesion grades (p = 0.41). The diagnostic accuracy of complete CD cytometric pattern was: specificity 100%, sensitivity 82%, PPV 100%, NPV 47%. Conclusion: We confirmed, in a validation cohort, the high diagnostic accuracy of complete CD pattern irrespective of sex, age, serology titers, and grade of mucosal lesion.
Collapse
Affiliation(s)
- Pablo Ruiz-Ramírez
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
| | - Gerard Carreras
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
| | - Ingrid Fajardo
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
| | - Eva Tristán
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Carrasco
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Salvador
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
| | - Yamile Zabana
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Andújar
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carme Ferrer
- Department of Pathology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain;
| | - Diana Horta
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
| | - Carme Loras
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roger García-Puig
- Department of Pediatrics, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain;
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, 08221 Barcelona, Spain; (P.R.-R.); (G.C.); (I.F.); (E.T.); (A.C.); (I.S.); (Y.Z.); (X.A.); (D.H.); (C.L.); (F.F.-B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-937365050
| |
Collapse
|
13
|
Basu K, Creasey H, Bruggemann N, Stevens J, Bloxham D, Woodward JM. Diagnosis of coeliac disease by flow cytometry of intraepithelial lymphocytes: a new 'gold' standard? Frontline Gastroenterol 2021; 13:119-125. [PMID: 35300471 PMCID: PMC8862495 DOI: 10.1136/flgastro-2021-101838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The analysis of intraepithelial lymphocytes (IELs) by flow cytometry of duodenal biopsies-the 'IEL' lymphogram-has been proposed as a diagnostic test for coeliac disease. However, its clinical applicability has been limited due to variability in methods and definitions. This study set out to define useful parameters for the application of the IEL lymphogram to the diagnosis of coeliac disease. DESIGN Flow cytometry was performed on 117 sets of duodenal biopsies in 107 adult patients with active coeliac disease, long-term coeliac disease on a gluten free diet and a control group. The initial 95 samples were used for hypothesis generation for the subsequent samples comprising 12 patients with coeliac disease and 10 controls. RESULTS Rather than using single linear cut-offs for CD3 and T-cell receptor γδ (TCRγδ)+ve IELs, a discriminant function was identified as %CD3+ve IELs+2x(%TCRγδ+IELs)>100. This differentiated coeliac disease from control biopsies in the hypothesis generating group. These results were replicated in the validation group and found to be independent of histology in patients on long-term gluten free diet up to 12 years (combined sensitivity, 98.5%; specificity, 97.7%). CONCLUSIONS Flow cytometric analysis of IELs is a highly sensitive and specific adjunct to serology and histological examination for the diagnosis of coeliac disease, even in individuals with coeliac disease following a gluten free diet who exhibit normal duodenal histology.
Collapse
Affiliation(s)
- Kaninika Basu
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hannah Creasey
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nina Bruggemann
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer Stevens
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David Bloxham
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jeremy Mark Woodward
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
14
|
Shannon MJ, Mace EM. Natural Killer Cell Integrins and Their Functions in Tissue Residency. Front Immunol 2021; 12:647358. [PMID: 33777044 PMCID: PMC7987804 DOI: 10.3389/fimmu.2021.647358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors associated with adhesion and migration and are often highly differentially expressed receptors amongst natural killer cell subsets in microenvironments. Tissue resident natural killer cells are frequently defined by their differential integrin expression compared to other NK cell subsets, and integrins can further localize tissue resident NK cells to tissue microenvironments. As such, integrins play important roles in both the phenotypic and functional identity of NK cell subsets. Here we review the expression of integrin subtypes on NK cells and NK cell subsets with the goal of better understanding how integrin selection can dictate tissue residency and mediate function from the nanoscale to the tissue environment.
Collapse
Affiliation(s)
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Cellular and molecular bases of refractory celiac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 358:207-240. [PMID: 33707055 DOI: 10.1016/bs.ircmb.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Refractory celiac disease (RCD) encompasses biologically heterogeneous disorders that develop in a small proportion (0.3%) of individuals with celiac disease that are associated with high morbidity. Two broad categories are currently recognized, type I (RCD I) and type II (RCD II), based on immunophenotypic and molecular features of the intraepithelial lymphocytes (IELs). RCD I is characterized by a polyclonal expansion of IELs displaying a normal immunophenotype, while RCD II represents a clonal proliferation of immunophenotypically "aberrant" IELs, and is considered a low-grade lymphoproliferative disorder. The pathogenesis of RCD I has not been clarified, but limited studies suggest multifactorial etiology. On the other hand, recent immunologic, molecular and immunophenotypic analyses have proposed lineage-negative innate IELs to be the cell of origin of a proportion of RCD II cases. Furthermore, sequencing studies have identified frequent, recurrent, activating mutations in members of the JAK-STAT pathway in RCD II. This finding, in conjunction with prior in vitro experimental observations, suggests roles of deregulated cytokine signaling in disease pathogenesis. In this review, we describe current understanding of environmental, immune and genetic factors associated with the development of RCD and briefly discuss diagnostic and therapeutic considerations.
Collapse
|
16
|
Foers AD, Shoukat MS, Welsh OE, Donovan K, Petry R, Evans SC, FitzPatrick ME, Collins N, Klenerman P, Fowler A, Soilleux EJ. Classification of intestinal T-cell receptor repertoires using machine learning methods can identify patients with coeliac disease regardless of dietary gluten status. J Pathol 2021; 253:279-291. [PMID: 33225446 PMCID: PMC7898595 DOI: 10.1002/path.5592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
In coeliac disease (CeD), immune-mediated small intestinal damage is precipitated by gluten, leading to variable symptoms and complications, occasionally including aggressive T-cell lymphoma. Diagnosis, based primarily on histopathological examination of duodenal biopsies, is confounded by poor concordance between pathologists and minimal histological abnormality if insufficient gluten is consumed. CeD pathogenesis involves both CD4+ T-cell-mediated gluten recognition and CD8+ and γδ T-cell-mediated inflammation, with a previous study demonstrating a permanent change in γδ T-cell populations in CeD. We leveraged this understanding and explored the diagnostic utility of bulk T-cell receptor (TCR) sequencing in assessing duodenal biopsies in CeD. Genomic DNA extracted from duodenal biopsies underwent sequencing for TCR-δ (TRD) (CeD, n = 11; non-CeD, n = 11) and TCR-γ (TRG) (CeD, n = 33; non-CeD, n = 21). We developed a novel machine learning-based analysis of the TCR repertoire, clustering samples by diagnosis. Leave-one-out cross-validation (LOOCV) was performed to validate the classification algorithm. Using TRD repertoire, 100% (22/22) of duodenal biopsies were correctly classified, with a LOOCV accuracy of 91%. Using TCR-γ (TRG) repertoire, 94.4% (51/54) of duodenal biopsies were correctly classified, with LOOCV of 87%. Duodenal biopsy TRG repertoire analysis permitted accurate classification of biopsies from patients with CeD following a strict gluten-free diet for at least 6 months, who would be misclassified by current tests. This result reflects permanent changes to the duodenal γδ TCR repertoire in CeD, even in the absence of gluten consumption. Our method could complement or replace histopathological diagnosis in CeD and might have particular clinical utility in the diagnostic testing of patients unable to tolerate dietary gluten, and for assessing duodenal biopsies with equivocal features. This approach is generalisable to any TCR/BCR locus and any sequencing platform, with potential to predict diagnosis or prognosis in conditions mediated or modulated by the adaptive immune response. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Andrew D Foers
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - M Saad Shoukat
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Oliver E Welsh
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | | | - Russell Petry
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Shelley C Evans
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Michael Eb FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nadine Collins
- Department of Molecular Pathology, Royal Surrey NHS Foundation Trust, Guildford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Elizabeth J Soilleux
- Department of Pathology, University of Cambridge, Cambridge, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Popp A, Taavela J, Graziano P, Parente P, Covelli C, Lamacchia C, Andriulli A, Mäki M, Isola J. A New Intraepithelial γδ T-Lymphocyte Marker for Celiac Disease Classification in Formalin-Fixed Paraffin-Embedded (FFPE) Duodenal Biopsies. Dig Dis Sci 2021; 66:3352-3358. [PMID: 33140183 PMCID: PMC8449760 DOI: 10.1007/s10620-020-06680-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The histopathologic diagnosis of celiac disease (CD) may be challenging when the duodenal biopsies mucosal injury is limited. Intraepithelial T-lymphocytes (IELs) can be useful to characterize the degree of mucosal inflammation. A small fraction of IELs expresses the γδ T-cell receptor (named γδ-IELs), whose density, determined by flow cytometry or frozen section immunohistochemistry (IHC), is a specific marker for CD. AIM To establish a new IHC assay for γδ-IELs applicable to formalin-fixed paraffin-embedded (FFPE) duodenal biopsies. METHODS We analyzed γδ-IELs using IHC in 138 duodenal biopsies using a standard IHC staining protocol with a new monoclonal antibody H-41. IELs were quantitated with digital image analysis. RESULTS Compared to those in non-celiac controls (n = 51), γδ-IEL density was significantly increased in newly diagnosed celiac disease patients (n = 22, p < 0.0001). In ROC-curve analysis, the cutoff of 6.5 γδ-IELs/100 enterocytes distinguished optimally active CD patients from non-celiac controls (sensitivity 96%, specificity 95%). γδ-IEL density in CD patients on a gluten-free diet (n = 53) were also higher than in controls (p < 0.0001), but lower than those in newly diagnosed CD (p < 0.0001). The diagnostic value of γδ-IELs outperformed that of CD3 + IELs in both patient groups. γδ-IELs were better than CD3 + IELs distinguishing between celiac disease and conditions histologically mimicking celiac disease (n = 12). CONCLUSIONS Intraepithelial γδ T-lymphocytes can be stained and quantitated reliably in FFPE duodenal biopsies. The results showed excellent specificity and sensitivity for celiac disease. The new IHC method of detection of γδ-IELs is a promising addition to the routine histopathologic assessment methodology of celiac disease.
Collapse
Affiliation(s)
- Alina Popp
- grid.412330.70000 0004 0628 2985Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland ,grid.8194.40000 0000 9828 7548National Institute for Mother and Child Health, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Juha Taavela
- grid.412330.70000 0004 0628 2985Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Paolo Graziano
- grid.413503.00000 0004 1757 9135Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Paola Parente
- grid.413503.00000 0004 1757 9135Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Claudia Covelli
- grid.413503.00000 0004 1757 9135Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Carmela Lamacchia
- grid.10796.390000000121049995Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Angelo Andriulli
- grid.413503.00000 0004 1757 9135Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Markku Mäki
- grid.412330.70000 0004 0628 2985Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- grid.412330.70000 0004 0628 2985Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland ,Jilab Inc, Tampere, Finland
| |
Collapse
|
18
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
19
|
Eggesbø LM, Risnes LF, Neumann RS, Lundin KEA, Christophersen A, Sollid LM. Single-cell TCR sequencing of gut intraepithelial γδ T cells reveals a vast and diverse repertoire in celiac disease. Mucosal Immunol 2020; 13:313-321. [PMID: 31728027 DOI: 10.1038/s41385-019-0222-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
A hallmark of celiac disease (CeD), a chronic condition driven by cereal gluten exposure, is increase of gut intraepithelial γδ T cells. This may indicate pathogenic involvement of γδ T cells and existence of disease-specific γδ T-cell receptors (TCRs) recognizing defined antigen(s). We performed high-throughput and paired γδ TCR sequencing of single intraepithelial γδ T cells of untreated CeD patients (n = 8; 1821 cells), CeD patients treated with a gluten-free diet (n = 5; 436 cells) and controls (n = 7; 1068 cells). We found that CeD patients, both untreated and treated, had larger and more diverse γδ TCR repertoires, more frequent usage of TRDV1 and TRDV3 and different patterns of TCRγ/TCRδ-pairing compared with controls. Although we observed no public CDR3δ sequences, there were several public CDR3γ sequences-many of which were shared by not only the CeD patients, but also by the controls. These public CDR3s were characterized by few N/P nucleotide insertions with germline and near-germline configuration, hence being easy to generate. Previous findings of CeD-specific CDR3 motifs were not replicated. Thus, being unable to raise evidence for CeD-specific γδ TCRs in this first large, paired γδ TCR single-cell sequencing study, we project challenges for identification of CeD-relevant γδ TCR ligands.
Collapse
Affiliation(s)
- Linn M Eggesbø
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway.
| | - Louise F Risnes
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital- Rikshospitalet, 0372, Oslo, Norway
| | - Ralf S Neumann
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway
| | - Knut E A Lundin
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372, Oslo, Norway
| | - Asbjørn Christophersen
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway
| | - Ludvig M Sollid
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424, Oslo, Norway. .,Department of Immunology, University of Oslo and Oslo University Hospital- Rikshospitalet, 0372, Oslo, Norway.
| |
Collapse
|
20
|
Ong MLDM, Yeruva S, Sailer A, Nilsen SP, Turner JR. Differential regulation of claudin-2 and claudin-15 expression in children and adults with malabsorptive disease. J Transl Med 2020; 100:483-490. [PMID: 31605016 PMCID: PMC7047618 DOI: 10.1038/s41374-019-0324-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 01/14/2023] Open
Abstract
Intestinal Na+-nutrient cotransport depends on claudin-2 and claudin-15 mediated Na+ recycling. Expression of these proteins is coordinately regulated during postnatal development. While expression of claudin-2 and claudin-15 has been studied in inflammatory bowel disease (IBD) and celiac disease (CD), it has not been assessed in other malabsorptive diseases, and no reports have compared expression in children and adults. We used quantitative immunofluorescence microscopy to assess claudin-2 and claudin-15 expression in duodenal biopsies from children and adults with malabsorptive disease and healthy controls. Consistent with previous work in rodents, claudin-2 expression in healthy children was markedly greater, and claudin-15 expression was less, than that in adults. Claudin-2 expression was increased in adults with CD and downregulated in children with graft-versus-host disease (GVHD). In contrast, claudin-15 expression was reduced in adults with GVHD and common variable immunodeficiency (CVID). These data show that one of the two Na+/water pore-forming claudins is upregulated in CD and downregulated in GVHD and CVID. The specific claudin whose expression changes, however, reflects the age of the patient (child or adult). We conclude that contributions of claudin-2 and claudin-15 to pathophysiology of and responses to diarrhea in children and adults with GVHD and CVID differ from those in CD and IBD.
Collapse
Affiliation(s)
- M Lora D M Ong
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sunil Yeruva
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anne Sailer
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Steven P Nilsen
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Fernández-Bañares F, Carrasco A, Martín A, Esteve M. Systematic Review and Meta-Analysis: Accuracy of Both Gamma Delta+ Intraepithelial Lymphocytes and Coeliac Lymphogram Evaluated by Flow Cytometry for Coeliac Disease Diagnosis. Nutrients 2019; 11:E1992. [PMID: 31443602 PMCID: PMC6769802 DOI: 10.3390/nu11091992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
It has been suggested that in doubtful cases of coeliac disease, a high CD3+ T-cell receptor gamma delta+ (TCRγδ+) intraepithelial lymphocyte count increases the likelihood of coeliac disease. AIM To evaluate the diagnostic accuracy of both an isolated increase of TCRγδ+ cells and a coeliac lymphogram (increase of TCRγδ+ plus decrease of CD3- intraepithelial lymphocytes) evaluated by flow cytometry in the diagnosis of coeliac disease. METHODS The literature search was conducted in MEDLINE and EMBASE. The inclusion criteria were: an article that allows for the construction of a 2 × 2 table of true and false positive and true and false negative values. A diagnostic accuracy test meta-analysis was performed. RESULTS The search provided 49 relevant citations, of which 6 were selected for the analysis, which represented 519 patients and 440 controls. Coeliac lymphogram: The pooled S and Sp were 93% and 98%, without heterogeneity. The area under the SROC curve (AUC) was 0.98 (95% CI, 0.97-0.99). TCRγδ+: Pooled S and Sp were both 95%, with significant heterogeneity. The AUC was 0.97 (95% CI, 0.95-0.98). Conclusions: Both TCRγδ+ count and coeliac lymphogram assessed by flow cytometry in duodenal mucosal samples are associated with a high level of diagnostic accuracy for and against coeliac disease.
Collapse
Affiliation(s)
- Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa (Barcelona), Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ana Carrasco
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa (Barcelona), Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Martín
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa (Barcelona), Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa (Barcelona), Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the Peripheral Immune Response in Children with Celiac Disease Autoimmunity: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2019; 11:1925. [PMID: 31426299 PMCID: PMC6723580 DOI: 10.3390/nu11081925 10.3390/nu11081925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two Lactobacillus strains have proven anti-inflammatory properties by reducing pro-inflammatory responses to antigens. This randomized double-blind placebo-controlled trial tested the hypothesis that L. plantarum HEAL9 and L. paracasei 8700:2 suppress ongoing celiac disease autoimmunity in genetically at risk children on a gluten-containing diet in a longitudinally screening study for celiac disease. Seventy-eight children with celiac disease autoimmunity participated of whom 40 received 1010 CFU/day of L. plantarum HEAL9 and L. paracasei 8700:2 (probiotic group) and 38 children maltodextrin (placebo group) for six months. Blood samples were drawn at zero, three and six months and phenotyping of peripheral blood lymphocytes and IgA and IgG autoantibodies against tissue transglutaminase (tTG) were measured. In the placebo group, naïve CD45RA+ Th cells decreased (p = 0.002) whereas effector and memory CD45RO+ Th cells increased (p = 0.003). In contrast, populations of cells expressing CD4+CD25highCD45RO+CCR4+ increased in the placebo group (p = 0.001). Changes between the groups were observed for NK cells (p = 0.038) and NKT cells (p = 0.008). Median levels of IgA-tTG decreased more significantly over time in the probiotic (p = 0.013) than in the placebo (p = 0.043) group whereas the opposite was true for IgG-tTG (p = 0.062 respective p = 0.008). In conclusion, daily oral administration of L. plantarum HEAL9 and L. paracasei 8700:2 modulate the peripheral immune response in children with celiac disease autoimmunity.
Collapse
Affiliation(s)
- Åsa Håkansson
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - Carin Andrén Aronsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| | - Charlotte Brundin
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| | - Elin Oscarsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| | - Göran Molin
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - Daniel Agardh
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden.
| |
Collapse
|
23
|
Effects of Lactobacillus plantarum and Lactobacillus paracasei on the Peripheral Immune Response in Children with Celiac Disease Autoimmunity: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2019; 11:nu11081925. [PMID: 31426299 PMCID: PMC6723580 DOI: 10.3390/nu11081925] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023] Open
Abstract
Two Lactobacillus strains have proven anti-inflammatory properties by reducing pro-inflammatory responses to antigens. This randomized double-blind placebo-controlled trial tested the hypothesis that L. plantarum HEAL9 and L. paracasei 8700:2 suppress ongoing celiac disease autoimmunity in genetically at risk children on a gluten-containing diet in a longitudinally screening study for celiac disease. Seventy-eight children with celiac disease autoimmunity participated of whom 40 received 1010 CFU/day of L. plantarum HEAL9 and L. paracasei 8700:2 (probiotic group) and 38 children maltodextrin (placebo group) for six months. Blood samples were drawn at zero, three and six months and phenotyping of peripheral blood lymphocytes and IgA and IgG autoantibodies against tissue transglutaminase (tTG) were measured. In the placebo group, naïve CD45RA+ Th cells decreased (p = 0.002) whereas effector and memory CD45RO+ Th cells increased (p = 0.003). In contrast, populations of cells expressing CD4+CD25highCD45RO+CCR4+ increased in the placebo group (p = 0.001). Changes between the groups were observed for NK cells (p = 0.038) and NKT cells (p = 0.008). Median levels of IgA-tTG decreased more significantly over time in the probiotic (p = 0.013) than in the placebo (p = 0.043) group whereas the opposite was true for IgG-tTG (p = 0.062 respective p = 0.008). In conclusion, daily oral administration of L. plantarum HEAL9 and L. paracasei 8700:2 modulate the peripheral immune response in children with celiac disease autoimmunity.
Collapse
|
24
|
McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2019; 18:514-525. [PMID: 29717233 DOI: 10.1038/s41577-018-0013-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal epithelial barrier is patrolled by resident intraepithelial lymphocytes (IELs) that are involved in host defence against pathogens, wound repair and homeostatic interactions with the epithelium, microbiota and nutrients. Intestinal IELs are one of the largest populations of lymphocytes in the body and comprise several distinct subsets, the identity and lineage relationships of which have long remained elusive. Here, we review advances in unravelling the complexity of intestinal IEL populations, which comprise conventional αβ T cell receptor (TCRαβ)+ subsets, unconventional TCRαβ+ and TCRγδ+ subsets, group 1 innate lymphoid cells (ILC1s) and ILC1-like cells. Although these intestinal IEL lineages have partially overlapping effector programmes and recognition properties, they have strikingly different developmental pathways. We suggest that evolutionary pressure has driven the recurrent generation of cytolytic effector lymphocytes to protect the intestinal epithelial layer, but they may also precipitate intestinal inflammatory disorders, such as coeliac disease.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Dietary Factors and Mucosal Immune Response in Celiac Disease Patients Having Persistent Symptoms Despite a Gluten-free Diet. J Clin Gastroenterol 2019; 53:507-513. [PMID: 29505551 DOI: 10.1097/mcg.0000000000001013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GOALS The aim of this study was to investigate the role of dietary factors, distinct small-bowel mucosal immune cell types, and epithelial integrity in the perpetuation of gastrointestinal symptoms in treated celiac disease patients. BACKGROUND For unexplained reasons, many celiac disease patients suffer from persistent symptoms, despite a strict gluten-free diet (GFD) and recovered intestinal mucosa. STUDY We compared clinical and serological data and mucosal recovery in 22 asymptomatic and 25 symptomatic celiac patients on a long-term GFD. The density of CD3 and γδ intraepithelial lymphocytes (IELs), CD25 and FOXP3 regulatory T cells, and CD117 mast cells, and the expression of tight junction proteins claudin-3 and occludin, heat shock protein 60, interleukin 15, and Toll-like receptor 2 and 4 were evaluated in duodenal biopsies. RESULTS All subjects kept a strict GFD and had negative celiac autoantibodies and recovered mucosal morphology. The asymptomatic patients had higher mean fiber intake (20.2 vs. 15.2 g/d, P=0.028) and density of CD3 IELs (59.3 vs. 45.0 cell/mm, P=0.045) than those with persistent symptoms. There was a similar but nonsignificant trend in γδ IELs (17.9 vs. 13.5, P=0.149). There were no differences between the groups in other parameters measured. CONCLUSIONS Low fiber intake may predispose patients to persistent symptoms in celiac disease. There were no differences between the groups in the markers of innate immunity, epithelial stress or epithelial integrity. A higher number of IELs in asymptomatic subjects may indicate that the association between symptoms and mucosal inflammation is more complicated than previously thought.
Collapse
|
26
|
|
27
|
Abstract
GOALS To validate cut-off values of CD3 T-cell receptor gamma-delta chain (TCRγδ) intraepithelial lymphocyte (IEL) in the (differential) diagnosis of celiac disease (CD). BACKGROUND CD is characterized by an increase in gamma-delta IEL (CD3TCRγδ IEL). STUDY Percentages were determined by flow cytometric analysis of IELs from small bowel biopsies in 213 CD and 13 potential CD (PCD) patients and in total 112 controls. A cut-off value for percentages of CD3TCRγδ IEL to differentiate active CD and controls was obtained from a receiver operating characteristic curve and implemented in controls and PCD patients. RESULTS Percentage of CD3TCRγδ IEL was significantly increased in the majority of CD patients, irrespective of the presence of villous atrophy. A cut-off value of 14% for CD3TCRγδ IEL resulted in 66.3% sensitivity and 96.6% specificity for CD diagnosis (area under the curve, 88.6%). CONCLUSIONS A percentage of ≥14% CD3TCRγδ IEL has a high specificity for CD diagnosis and can be of diagnostic help in cases where diagnosis is not straightforward.
Collapse
|
28
|
Costes LMM, Lindenbergh-Kortleve DJ, van Berkel LA, Veenbergen S, Raatgeep HRC, Simons-Oosterhuis Y, van Haaften DH, Karrich JJ, Escher JC, Groeneweg M, Clausen BE, Cupedo T, Samsom JN. IL-10 signaling prevents gluten-dependent intraepithelial CD4 + cytotoxic T lymphocyte infiltration and epithelial damage in the small intestine. Mucosal Immunol 2019; 12:479-490. [PMID: 30542112 DOI: 10.1038/s41385-018-0118-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 02/04/2023]
Abstract
Breach of tolerance to gluten leads to the chronic small intestinal enteropathy celiac disease. A key event in celiac disease development is gluten-dependent infiltration of activated cytotoxic intraepithelial lymphocytes (IELs), which cytolyze epithelial cells causing crypt hyperplasia and villous atrophy. The mechanisms leading to gluten-dependent small intestinal IEL infiltration and activation remain elusive. We have demonstrated that under homeostatic conditions in mice, gluten drives the differentiation of anti-inflammatory T cells producing large amounts of the immunosuppressive cytokine interleukin-10 (IL-10). Here we addressed whether this dominant IL-10 axis prevents gluten-dependent infiltration of activated cytotoxic IEL and subsequent small intestinal enteropathy. We demonstrate that IL-10 regulation prevents gluten-induced cytotoxic inflammatory IEL infiltration. In particular, IL-10 suppresses gluten-induced accumulation of a specialized population of cytotoxic CD4+CD8αα+ IEL (CD4+ CTL) expressing Tbx21, Ifng, and Il21, and a disparate non-cytolytic CD4+CD8α- IEL population expressing Il17a, Il21, and Il10. Concomitantly, IL-10 suppresses gluten-dependent small intestinal epithelial hyperproliferation and upregulation of stress-induced molecules on epithelial cells. Remarkably, frequencies of granzyme B+CD4+CD8α+ IEL are increased in pediatric celiac disease patient biopsies. These findings demonstrate that IL-10 is pivotal to prevent gluten-induced small intestinal inflammation and epithelial damage, and imply that CD4+ CTL are potential new players into these processes.
Collapse
Affiliation(s)
- L M M Costes
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - D J Lindenbergh-Kortleve
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - L A van Berkel
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - S Veenbergen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - H R C Raatgeep
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - Y Simons-Oosterhuis
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - D H van Haaften
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - J J Karrich
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - J C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M Groeneweg
- Department of Pediatrics, Maasstad Hospital, Rotterdam, 3079 DZ, The Netherlands
| | - B E Clausen
- Institute for Molecular Medicine, University Medical Center of Johannes Gutenberg University, Mainz, 55131, Germany
| | - T Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - J N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
29
|
Sagebiel AF, Steinert F, Lunemann S, Körner C, Schreurs RRCE, Altfeld M, Perez D, Reinshagen K, Bunders MJ. Tissue-resident Eomes + NK cells are the major innate lymphoid cell population in human infant intestine. Nat Commun 2019; 10:975. [PMID: 30816112 PMCID: PMC6395753 DOI: 10.1038/s41467-018-08267-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023] Open
Abstract
Innate lymphoid cells (ILC), including natural killer (NK) cells, are implicated in host-defense and tissue-growth. However, the composition and kinetics of NK cells in the intestine during the first year of life, when infants are first broadly exposed to exogenous antigens, are still unclear. Here we show that CD103+ NK cells are the major ILC population in the small intestines of infants. When compared to adult intestinal NK cells, infant intestinal NK cells exhibit a robust effector phenotype, characterized by Eomes, perforin and granzyme B expression, and superior degranulation capacity. Absolute intestinal NK cell numbers decrease gradually during the first year of life, coinciding with an influx of intestinal Eomes+ T cells; by contrast, epithelial NKp44+CD69+ NK cells with less cytotoxic capacity persist in adults. In conclusion, NK cells are abundant in infant intestines, where they can provide effector functions while Eomes+ T cell responses mature. Innate lymphoid cells (ILC), including natural killer (NK) cells, are important innate immune regulators. Here the authors show that, in human infant intestines, CD103+Eomes+ NK cells are the predominant ILC population, but are replaced gradually by Eomes+ T cells, while NKp44+ NK cells persist in adult intestines.
Collapse
Affiliation(s)
- Adrian F Sagebiel
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Fenja Steinert
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Christian Körner
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Renée R C E Schreurs
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Madeleine J Bunders
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany. .,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Chander U, Leeman-Neill RJ, Bhagat G. Pathogenesis of Enteropathy-Associated T Cell Lymphoma. Curr Hematol Malig Rep 2018; 13:308-317. [PMID: 29943210 DOI: 10.1007/s11899-018-0459-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To provide an update on the pathogenesis of enteropathy-associated T cell lymphoma (EATL) and its relationship with refractory celiac disease (RCD), in light of current knowledge of immune, genetic, and environmental factors that promote neoplastic transformation of intraepithelial lymphocytes (IELs). RECENT FINDINGS EATL frequently evolves from RCD type II (RCD II) but can occur "de novo" in individuals with celiac disease. Recurrent activating mutations in members of the JAK/STAT pathway have been recently described in EATL and RCD II, which suggests deregulation of cytokine signaling to be an early event in lymphomagenesis. Intraepithelial T cells are presumed to be the cell of origin of EATL (and RCD II). Recent in vitro molecular and phenotypic analyses and in vivo murine studies, however, suggest an origin of RCD II from innate IELs (NK/T cell precursors), which could also be the cell of origin of RCD II-derived EATL. The immune microenvironment of the small intestinal mucosa in celiac disease fosters the development of EATL, often in a multistep pathway.
Collapse
Affiliation(s)
- Udit Chander
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24:1649-1659. [PMID: 29788271 DOI: 10.1093/ibd/izy177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gastrointestinal tract harbors the largest microbiota load in the human body, hence maintaining a delicate balance between immunity against invading pathogens and tolerance toward commensal. Such immune equilibrium, or intestinal homeostasis, is conducted by a tight regulation and cooperation of the different branches of the immune system, including the innate and the adaptive immune system. However, several factors affect this delicate equilibrium, ultimately leading to gastrointestinal disorders including inflammatory bowel disease. Therefore, here we decided to review the currently available information about innate immunity lymphocyte subsets playing a role in intestinal inflammation. RESULTS Intestinal innate lymphocytes are composed of intraepithelial lymphocytes (IELs) and lamina propria innate lymphoid cells (ILCs). While IELs can be divided into natural or induced, ILCs can be classified into type 1, 2, or 3, resembling, respectively, the properties of TH1, TH2, or TH17 adaptive lymphocytes. Noteworthy, the phenotype and function of both IELs and ILCs are disrupted under inflammatory conditions, where they help to exacerbate intestinal immune responses. CONCLUSIONS The modulation of both IELs and ILCs to control intestinal inflammatory responses represents a major challenge, as they provide tight regulation among the epithelium, the microbiota, and the adaptive immune system. An improved understanding of the innate immunity mechanisms involved in gastrointestinal inflammation would therefore aid in the diagnosis and further treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- A Montalban-Arques
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - M Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - D Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
32
|
Jansen MAE, van den Heuvel D, Jaddoe VWV, van Zelm MC, Moll HA. Abnormalities in CD57+ cytotoxic T cells and Vδ1+ γδT cells in subclinical celiac disease in childhood are affected by cytomegalovirus. The Generation R Study. Clin Immunol 2017; 183:233-239. [PMID: 28456719 DOI: 10.1016/j.clim.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/26/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is a digestive and autoimmune disorder driven by an immune response to modified gluten peptides. Affected intestines show infiltrates of various T-cell and NK-cell subsets. It is currently unclear if individuals with subclinical CD have systemic abnormalities in immune cells. We here studied whether subclinical CD is associated with changes in blood CD57-expressing and Vδ1-expressing lymphocytes in children, and whether cytomegalovirus (CMV) infection modifies this association. Included were 1068 children from the Generation R Study. Serum Immunoglobulin G (IgG) levels against CMV were measured by ELISA; Tissue transglutaminase type 2 antibody (TG2A) levels with fluorescence enzyme immunoassay (FEIA). Duodenal biopsies, additional Human Leukocyte Antigen (HLA) DQ 2.2, 2.5 and 8 and endomysial antibody (EMA) typing were performed in TG2A positive children. Subclinical CD cases (n=12) had 1.8 fold (95% CI 1.06; 3.1) fewer Vδ1+ T cells which was predominantly observed in CMV seronegative children (p-interaction 0.02), and 2.7 fold (95% CI 1.25; 5.99) more CD57+ T cells than HLA DQ2/-DQ8 positive controls (n=339). Hence, children with subclinical CD have alterations in specific blood T cell subsets that are linked to viral pathology. The observed interaction effect between subclinical CD and CMV may contribute to the understanding of disease pathogenesis.
Collapse
Affiliation(s)
- M A E Jansen
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - D van den Heuvel
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - V W V Jaddoe
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - M C van Zelm
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - H A Moll
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Zamora V, García-Ballesteros C, Benet-Campos C, Ballester F, Cuéllar C, Andreu-Ballester JC. Anti-Anisakis sp. antibodies in serum of healthy subjects. Relationship with αβ and γδ T cells. Acta Parasitol 2017; 62:97-103. [PMID: 28030343 DOI: 10.1515/ap-2017-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
Anisakiosis is nowadays one of the nematodoses more prevalent in Spain, with rates that oscillate between 0.43% in Galicia (N.W. Spain), and 15.7% and 22.1% in inland and southern regions, respectively. Likewise, it has been proved that Anisakis larvae have developed mechanisms to modulate the dichotomy of the host immune response for their own benefit. The experimental hypothesis of the present study was that Anisakis sp. larval products can be mediators of immune suppression and induce changes on the populations of αβ+ and γδ+ T cells. In the present study we determined the levels of anti-Anisakis antibodies in the serum of healthy people, and their relationship with the B and T cell subsets. Levels of anti-Anisakis antibodies (Ig's, IgG, IgM, IgA and IgE) were measured by ELISA, while B and T cell subsets were studied by flow cytometry. Cells were labelled with monoclonal antibodies against CD45, CD4, CD8, CD56, CD3, CD19, TCRαβ and TCRγδ. All the specific isotypes studied were negatively correlated with NKT cell rates with the exception of IgG. A previous contact with Anisakis was related to a decrease in CD56+αβ+ and all γδ+ T cell subsets. The CD3+γδ+ population was lower in the group of subjects that showed IgA anti-Anisakis. We observed an inverse correlation among αβ-γδ NKT cells and anti-Anisakis sp. antibodies. CD3+CD56+ cells showed a significant decrease in the group of anti-Anisakis positive subjects. This fact was especially significant with CD3+CD56+γδ+ cells in the case of the anti-Anisakis IgA positive group.
Collapse
|
34
|
Arregui MV, Urmeneta JMZ, Brito HL, De Esteban JPM, Martínez CP, Llenas LF, Urtasun EA, Pericas FS, Musgo RA, Gutierrez MRM, Sarrasqueta MP. The role of flow cytometry in celiac disease screening using human leukocyte antigen in adult patients with type 1 diabetes mellitus. Ann Gastroenterol 2017; 30:179-185. [PMID: 28243038 PMCID: PMC5320030 DOI: 10.20524/aog.2016.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with type 1 diabetes mellitus (DM1) have an increased risk of celiac disease (CD). Since CD can be seronegative, more sensible tests for detection are needed. In seronegative patients, CD diagnosis may be difficult because of a lack of specificity. Flow cytometry analysis of lymphocyte populations can be useful in this situation. We aimed to study the prevalence of CD in adult DM1 using human leukocyte antigen (HLA) compatibility-based screening. A secondary goal was to study the role of flow cytometry as a complementary tool in these patients. METHODS We selected 200 patients with DM1, of whom 190 (95%) had HLA DQ2, DQ8 or both. Of these, 136 agreed to participate and provided epidemiological data. All patients underwent blood tests and gastroscopy. RESULTS Sixteen patients had a histology consistent with CD. After ruling out other diagnoses, 6 patients were diagnosed with CD, 2 of whom had negative antibodies. All were DQ2.5 homozygous, with a CD prevalence of 9.8% in this group. In the flow cytometry analysis of duodenal biopsy samples, when we compared all non-CD with CD patients, we found that the γ/δ intraepithelial lymphocyte (IEL) percentage was significantly higher and the CD3 negative IEL percentage significantly lower in the CD group. We found similar results when we compared only those with histological lesions. CONCLUSIONS Screening of CD in patients with DM1 by HLA detects only 1% of seronegative patients with CD. DQ2.5 homozygous patients are at most risk of developing CD. The study of lymphocyte populations in the duodenal biopsy by flow cytometry discriminates patients with CD from those without CD with high sensitivity and specificity.
Collapse
Affiliation(s)
- Miren Vicuña Arregui
- Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona (Miren Vicuña Arregui, Jose Manuel Zozaya Urmeneta, Carlos Prieto Martínez)
| | - Jose Manuel Zozaya Urmeneta
- Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona (Miren Vicuña Arregui, Jose Manuel Zozaya Urmeneta, Carlos Prieto Martínez)
| | - Helena León Brito
- Department of Gastroenterology, Hospital Reina Sofía, Tudela (Helena León Brito)
| | | | - Carlos Prieto Martínez
- Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona (Miren Vicuña Arregui, Jose Manuel Zozaya Urmeneta, Carlos Prieto Martínez)
| | - Lluis Forga Llenas
- Department of Endocrinology and Nutrition, Complejo Hospitalario de Navarra, Pamplona (Lluis Forga Llenas)
| | - Erkuden Aranburu Urtasun
- Hematology, Complejo Hospitalario de Navarra, Pamplona (Erkuden Aranburu Urtasun, Francisco Sala Pericas)
| | - Francisco Sala Pericas
- Hematology, Complejo Hospitalario de Navarra, Pamplona (Erkuden Aranburu Urtasun, Francisco Sala Pericas)
| | - Ramón Angós Musgo
- Gastroenterology, Clínica Universidad de Navarra, Pamplona (Ramón Angós Musgo)
| | | | | |
Collapse
|
35
|
The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One 2017; 12:e0170270. [PMID: 28166225 PMCID: PMC5293270 DOI: 10.1371/journal.pone.0170270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
One of the hallmarks of Celiac disease (CD) is intraepithelial lymphocytosis in the small intestine. Until now, investigations to characterize the T cell subpopulations within the epithelial layer have not discriminated between the heterodimeric co-receptor molecule, CD8αβ, and the possibly immunoregulatory CD8αα homodimer molecule. Besides TCRαβ+ CD4+ cells, no other phenotypes have been shown to be gluten-reactive. Using flow cytometry on lymphocytes from duodenal biopsies, we determined that the number of B cells (CD3- CD19+) and the number of CD3+ CD4- CD8- double-negative (DN) T cells were elevated 6–7 fold in children with CD. We next isolated and quantified intraepithelial lymphocytes (IELs) from biopsies obtained from patients (both children and adults) with CD, potential CD and non-CD controls. Flow cytometric analysis of the duodenal T cell subpopulations was performed including the markers TCRαβ, TCRγδ, CD4, CD8α and CD8β. Proportions of γδ T cells and CD8αβ+ cells among IELs were increased in CD patients, whereas proportions of CD4+ CD8αα+ and CD4+ single-positive T cells were decreased. Additionally, two gluten-reactive T cell lines (TCLs) derived from CD biopsies were analyzed for changes in proportions of T cell subsets before and after gluten stimulation. In a proliferation assay, dividing cells were tracked with carboxyfluorescein succinimidyl ester (CFSE), and both αβ and γδ T cells proliferated in response to gluten. Changes in duodenal T cell subpopulations in potential CD patients followed the same pattern as for CD patients, but with less pronounced effect.
Collapse
|
36
|
Sánchez-Castañon M, Castro BG, Toca M, Santacruz C, Arias-Loste M, Iruzubieta P, Crespo J, López-Hoyos M. Intraepithelial lymphocytes subsets in different forms of celiac disease. AUTOIMMUNITY HIGHLIGHTS 2016; 7:14. [PMID: 27663425 PMCID: PMC5035275 DOI: 10.1007/s13317-016-0085-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
AIM The enumeration of intraepithelial lymphocytes subsets (total, γδ, and CD3(-) IELs) by flow cytometry (FCM), named as IEL lymphogram, constitutes a useful tool for celiac disease (CD) diagnosis. The aim of this study was to quantify IELs by FCM and their diagnostic value to differentiate active, silent and potential CD. METHODS Prospective study of 60 active and 20 silent CD patients, and 161 controls in which duodenal biopsy and IEL quantification by FCM was performed. RESULTS Active and silent CD patients had significant higher levels of both total and γδ IELs than absent CD patients (P < 0.0001 and P < 0.0001, P = 0.012 and P < 0.011; respectively). Active and silent CD patients had significant lower levels of CD3(-) IELs than absent CD patients (P < 0.047 and P < 0.009, respectively). Moreover, they were lower in silent than in active CD patients (P = 0.002). Changes of IELs subsets were more marked in children than adults active CD. The optimal IEL lymphogram cut off values for active CD diagnosis were: ≥10, ≥15 and ≤9 %, and with better performance characteristics for silent CD: ≥ 11, ≥10 and ≤5 %. CONCLUSION The evaluation of IELs subsets by FCM is useful to confirm diagnosis of active and silent CD.
Collapse
Affiliation(s)
- M Sánchez-Castañon
- Immunology Section, Hospital Universitario Marqués de Valdecilla-IDIVAL, 39008, Santander, Spain
| | - B G Castro
- Gastroenterology Service, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - M Toca
- Immunology Section, Hospital Universitario Marqués de Valdecilla-IDIVAL, 39008, Santander, Spain
| | - C Santacruz
- Immunology Section, Hospital Universitario Marqués de Valdecilla-IDIVAL, 39008, Santander, Spain
| | - M Arias-Loste
- Gastroenterology Service, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - P Iruzubieta
- Gastroenterology Service, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - J Crespo
- Gastroenterology Service, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Marcos López-Hoyos
- Immunology Section, Hospital Universitario Marqués de Valdecilla-IDIVAL, 39008, Santander, Spain.
| |
Collapse
|
37
|
Schmitz F, Kooy-Winkelaar Y, Wiekmeijer AS, Brugman MH, Mearin ML, Mulder C, Chuva de Sousa Lopes S, Mummery CL, Staal FJ, van Bergen J, Koning F. The composition and differentiation potential of the duodenal intraepithelial innate lymphocyte compartment is altered in coeliac disease. Gut 2016; 65:1269-78. [PMID: 25966995 DOI: 10.1136/gutjnl-2014-308153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Coeliac disease (CD), a gluten-induced enteropathy, alters the composition and function of duodenal intraepithelial T cells. The intestine also harbours four types of CD3-negative intraepithelial lymphocytes (IELs) with largely unknown function: CD56(-)CD127(-), CD56(-)CD127(+), CD56(+)CD127(-) and CD56(+)CD127(+). Here we aimed to gain insight into the potential function of these innate IELs in health and disease. DESIGN We determined the phenotypes, relative abundance and differentiation potential of these innate IEL subsets in duodenal biopsies from controls and patients with CD or patients with refractory CD type II (RCDII). RESULTS Hierarchical clustering analysis of the expression of 15 natural killer and T cell surface markers showed that innate IELs differed markedly from innate peripheral blood lymphocytes and divided innate IEL subsets into two main branches: a CD127(-) branch expressing high levels of interleukin (IL) 2/15Rβ but no IL-21R, and a CD127(+) branch with the opposite phenotype. While CD was characterised by the contraction of all four innate IEL subsets, a selective expansion of CD56(-)CD127(-) and CD56(-)CD127(+) innate IEL was detected in RCDII. In vitro, in the presence of IL-15, CD56(-)CD127(-) IEL from controls and patients with CD, but not from patients with RCDII, differentiated into functional natural killer and T cells, the latter largely dependent on notch-signalling. Furthermore, compared with non-coeliac controls, CD56(-)CD127(-) IEL from patients with CD expressed more intracellular CD3ε and CD3γ and gave more pronounced T cell differentiation. CONCLUSIONS Thus, we demonstrate previously unappreciated diversity and plasticity of the innate IEL compartment and its loss of differentiation potential in patients with RCDII.
Collapse
Affiliation(s)
- Frederike Schmitz
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - M Luisa Mearin
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Mulder
- Department of Gastroenterology, Free University Medical Center, Amsterdam, The Netherlands
| | | | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Jt Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Vivas S, Vaquero L, Rodríguez-Martín L, Caminero A. Age-related differences in celiac disease: Specific characteristics of adult presentation. World J Gastrointest Pharmacol Ther 2015; 6:207-212. [PMID: 26558154 PMCID: PMC4635160 DOI: 10.4292/wjgpt.v6.i4.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Celiac disease may appear both in early childhood and in elderly subjects. Current knowledge of the disease has revealed some differences associated to the age of presentation. Furthermore, monitoring and prognosis of celiac subjects can vary depending on the pediatric or adult stage. The main objective of this review is to provide guidance for the adult diagnostic and follow-up processes, which must be tailored specifically for adults and be different from pediatric patients.
Collapse
|
39
|
Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum. Nutrients 2015; 7:8960-76. [PMID: 26529008 PMCID: PMC4663572 DOI: 10.3390/nu7115444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum.
Collapse
|
40
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
41
|
Abadie V, Jabri B. Immunopathology of Celiac Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Adlercreutz EH, Weile C, Larsen J, Engkilde K, Agardh D, Buschard K, Antvorskov JC. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin Exp Immunol 2014; 177:391-403. [PMID: 24673402 PMCID: PMC4226590 DOI: 10.1111/cei.12340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
The interplay between diet and immune parameters which could affect type 1 diabetes (T1D) pathogenesis is not sufficiently clarified. Intestinal up-regulation of the activating receptor natural killer group 2D (NKG2D) (CD314) and its ligands is a hallmark of coeliac disease. However, the direct effect of gluten on NKG2D expression is not known. We studied, by fluorescence activated cell sorter (lymphoid tissues) and reverse transcription–quantitative polymerase chain reaction (intestine and pancreatic islets), if a gluten-free diet (GF diet) from 4 weeks of age or a gluten-free diet introduced in breeding pairs (SGF diet), induced changes in NKG2D expression on DX5+(CD49b) natural killer (NK) cells, CD8+ T cells and in intestinal and islet levels of NKG2D and ligands in BALB/c and non-obese diabetic (NOD) mice. Gluten-free NOD mice had lower insulitis (P < 0·0001); reduced expression of NKG2D on DX5+ NK cells in spleen and auricular lymph nodes (P < 0·05); and on CD8+ T cells in pancreas-associated lymph nodes (P = 0·04). Moreover, the level of CD71 on DX5+ NK cells and CD8+ T cells (P < 0·005) was markedly reduced. GF and SGF mice had reduced expression of NKG2D and DX5 mRNA in intestine (P < 0·05). Differences in intestinal mRNA expression were found in mice at 8, 13 and 20 weeks. Intestinal expression of NKG2D ligands was reduced in SGF mice with lower expression of all ligands. In isolated islets, a SGF diet induced a higher expression of specific NKG2D ligands. Our data show that a gluten-free diet reduces the level of NKG2D and the expression of NKG2D ligands. These immunological changes may contribute to the lower T1D incidence associated with a gluten-free diet.
Collapse
Affiliation(s)
- E H Adlercreutz
- Diabetes and Celiac Disease Unit, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Fernández-Bañares F, Carrasco A, García-Puig R, Rosinach M, González C, Alsina M, Loras C, Salas A, Viver JM, Esteve M. Intestinal intraepithelial lymphocyte cytometric pattern is more accurate than subepithelial deposits of anti-tissue transglutaminase IgA for the diagnosis of celiac disease in lymphocytic enteritis. PLoS One 2014; 9:e101249. [PMID: 25010214 PMCID: PMC4091865 DOI: 10.1371/journal.pone.0101249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND & AIMS An increase in CD3+TCRγδ+ and a decrease in CD3- intraepithelial lymphocytes (IEL) is a characteristic flow cytometric pattern of celiac disease (CD) with atrophy. The aim was to evaluate the usefulness of both CD IEL cytometric pattern and anti-TG2 IgA subepithelial deposit analysis (CD IF pattern) for diagnosing lymphocytic enteritis due to CD. METHODS Two-hundred and five patients (144 females) who underwent duodenal biopsy for clinical suspicion of CD and positive celiac genetics were prospectively included. Fifty had villous atrophy, 70 lymphocytic enteritis, and 85 normal histology. Eight patients with non-celiac atrophy and 15 with lymphocytic enteritis secondary to Helicobacter pylori acted as control group. Duodenal biopsies were obtained to assess both CD IEL flow cytometric (complete or incomplete) and IF patterns. RESULTS Sensitivity of IF, and complete and incomplete cytometric patterns for CD diagnosis in patients with positive serology (Marsh 1+3) was 92%, 85 and 97% respectively, but only the complete cytometric pattern had 100% specificity. Twelve seropositive and 8 seronegative Marsh 1 patients had a CD diagnosis at inclusion or after gluten free-diet, respectively. CD cytometric pattern showed a better diagnostic performance than both IF pattern and serology for CD diagnosis in lymphocytic enteritis at baseline (95% vs 60% vs 60%, p = 0.039). CONCLUSIONS Analysis of the IEL flow cytometric pattern is a fast, accurate method for identifying CD in the initial diagnostic biopsy of patients presenting with lymphocytic enteritis, even in seronegative patients, and seems to be better than anti-TG2 intestinal deposits.
Collapse
Affiliation(s)
- Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
- * E-mail:
| | - Anna Carrasco
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
| | - Roger García-Puig
- Department of Pediatrics, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa (Barcelona), Spain
| | - Mercè Rosinach
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
| | - Clarisa González
- Department of Pathology, Hospital Universitari Mutua Terrassa, University of Barcelona, CIBERehd, Terrassa (Barcelona), Spain
| | | | - Carme Loras
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
| | - Antonio Salas
- Department of Pathology, Hospital Universitari Mutua Terrassa, University of Barcelona, CIBERehd, Terrassa (Barcelona), Spain
| | - Josep M. Viver
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa (Barcelona), Spain
| |
Collapse
|
44
|
Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 2013; 8:e76008. [PMID: 24124528 PMCID: PMC3790827 DOI: 10.1371/journal.pone.0076008] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.
Collapse
|
45
|
Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am J Gastroenterol 2012; 107:1563-9. [PMID: 22825364 DOI: 10.1038/ajg.2012.220] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In celiac disease, complete histological normalization of the small-intestinal mucosa occurs in only 8-20% of adult patients after commencing a gluten-free diet. Intraepithelial lymphocytosis may persist for years while villous morphology normalizes. Factors contributing to this and the clinical relevance of persistent intraepithelial lymphocytosis were here investigated. METHODS Altogether 177 adult celiac disease patients adhering to a long-term strict gluten-free diet were enrolled. Co-morbidities, ongoing medications, and consumption of oats and wheat-starch were recorded. Small-bowel morphology and intraepithelial lymphocyte count as well as laboratory parameters of malabsorption were evaluated. Gastrointestinal symptoms and psychological well-being were measured by structured questionnaires. RESULTS In all, 170 (96%) out of the 177 patients evinced normal villous architecture and 7 (4%) villous atrophy. Among patients with normal villous structure, 96 (56%) had persistent intraepithelial lymphocytosis and 74 (44%) completely normal small-intestinal mucosa. Consumption of oats was the only factor contributing to the persistent intraepithelial lymphocytosis. Co-morbidities, Helicobacter pylori gastritis, drugs, or wheat-starch in the diet had no effect. The clinical outcome of the patients with persistent intraepithelial lymphocytosis was good, since no signs of malabsorption, excess malignancies, increase in gastrointestinal symptoms, or impaired quality of life were associated with it when compared to subjects with completely normal mucosa. The only outcome found in this study was a significantly lower, although normal villous height-crypt depth ratio among the patients with persistent intraepithelial lymphocytosis as compared to those with completely normal mucosa. CONCLUSIONS Despite excellent villous recovery in this study, persistent intraepithelial lymphocytosis was still common among celiac disease patients on a long-term strict gluten-free diet. Consumption of oats was associated with persistent duodenal lymphocytosis and this calls for further investigations. The prognosis of patients with persistent intraepithelial lymphocytosis seems to be good while adhering to a gluten-free diet for a mean of 11 years.
Collapse
|
46
|
Abstract
Obesity and related type 2 diabetes are increasing at epidemic proportions globally. It is now recognized that inflammatory responses mediated within the adipose tissue in obesity are central to the development of disease. Once initiated, chronic inflammation associated with obesity leads to the modulation of immune cell function. This review will focus specifically on the impact of obesity on γδ T cells, a T-cell subset that is found in high concentrations in epithelial tissues such as the skin, intestine, and lung. Epithelial γδ T cell function is of particular concern in obesity as they are the guardians of the epithelial barrier and mediate repair. A breakdown in their function, and subsequently the deterioration of the epithelium can result in dire consequences for the host. Obese patients are more prone to non-healing injuries, infection, and disease. The resulting inflammation from these pathologies further perpetuates the disease condition already present in obese hosts. Here we will provide insight into the immunomodulation of γδ T cells that occurs in the epithelial barrier during obesity and discuss current therapeutic options.
Collapse
|
47
|
Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012; 34:551-66. [PMID: 22660791 DOI: 10.1007/s00281-012-0316-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | | | | |
Collapse
|