1
|
Wang Z, Cai Q, Liu L, Zhu Z. Psyllium husk powder enhances the management of type 2 diabetes by modulating gut microbiota and their metabolic products. Food Res Int 2025; 211:116393. [PMID: 40356108 DOI: 10.1016/j.foodres.2025.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by hyperglycemia and insulin resistance. Plantain shell powder (PHP) serves as a high-quality source of dietary fiber, widely utilized in food additives and pharmaceutical applications. In this study, we investigated the hypoglycemic activity and underlying mechanisms of PHP by examining its effects on intestinal microbiota and metabolism in T2DM mice induced by a high-fat diet and streptozotocin (STZ). Our findings indicate that PHP significantly enhances blood glucose homeostasis and insulin sensitivity, reduces organ damage, and regulates blood lipid levels as well as short-chain fatty acid concentrations; notably, higher doses of PHP yielded optimal results. In addition, PHP can regulate the ratio of Bacteroidota to Firmicutes and increase the relative abundance of beneficial bacteria such as Bacteroidales, Muribaculaceae, and Parabacteroides. Furthermore, PHP enhances the enrichment of key metabolic pathways, including α-linolenic acid metabolism, monobactam biosynthesis, and PPAR signaling pathways, thereby promoting the production of beneficial metabolites. Complex interactions exist among these beneficial bacteria and metabolic pathways that are associated with improved metabolic function, regulation of glucose homeostasis, enhancement of insulin sensitivity, and reduction of inflammation. Our study demonstrates that PHP can ameliorate T2DM by reversing alterations in gut microbiota and metabolic profiles caused by T2DM while promoting the regulation of beneficial microbial populations.
Collapse
Affiliation(s)
- Zhengyu Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Quantao Cai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Liangzhong Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| | - Zhe Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Wuhan Longfengyuan Biotechnology Co., Ltd., Wuhan 430040, China.
| |
Collapse
|
2
|
Sarnaik D, Krishnakumar A, Nejati S, Sullivan CR, Cross TWL, Campbell WW, Johnson JS, Rahimi R. A smart capsule with a bacteria- and pH-triggered enteric polymer coating for targeted colonic microbiome sampling. Acta Biomater 2025:S1742-7061(25)00268-5. [PMID: 40263059 DOI: 10.1016/j.actbio.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
The gut microbiome is recognized as a critical factor in advancing precision nutrition and medicine for health and in developing dietary recommendations and targeted therapies for gastrointestinal (GI) health and diseases. However, conventional sampling methods, such as fecal analysis and colonoscopy, often fail to capture microbial information from specific regions of the GI tract or require invasive procedures, thereby limiting accuracy and clinical utility. As a non-invasive alternative, passive sampling capsules have been developed for site-specific microbiome analysis by employing pH-sensitive enteric coatings that delay sampling until the capsule reaches the targeted intestinal region. Although this approach has been successful in the small intestine, colonic sampling remains challenging due to the high interpersonal variability in intestinal pH, which makes it difficult to rely solely on a pH-triggering mechanism. To overcome this challenge, a dual bacterially and pH triggered polymeric enteric coating was created by blending lactulose and N,N-dimethylaminoethyl methacrylate, enabling complete dissolution within the colonic region. Through systematic characterization of multiple polymer blend compositions using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry, an optimized design was identified that provides both suitable physical integrity and rapid (∼2 h) degradation in the presence of colonic bacteria, across a pH range of 5 to 8. The optimized blend was subsequently applied as a double-layer enteric coating on a sampling capsule, enabling the dissolution of the outer layer in the small intestine and complete dissolution of the inner layer in the colon. In-vitro and in-vivo pig model studies were conducted to validate the capsule's sampling performance and to ensure the preservation of the microbial environment. Furthermore, 16S rRNA sequencing revealed a taxonomic similarity between samples collected by the capsule and the colonic microbiome (residing between the ileum and fecal matter). Overall, this technology provides an effective approach to targeted microbial sampling and may pave the way for more comprehensive colonic microbiome analyses and improved diagnostic capabilities for GI diseases. STATEMENT OF SIGNIFICANCE: Precise monitoring of the gut microbiome is vital for understanding health and disease, yet current sampling techniques often lack precision or require invasive procedures. Our work introduces a novel, non-invasive capsule that targets the colon using a dual-trigger polymer system activated by both pH and colonic bacteria. This design enables localized sampling of gut microbiota, overcoming the limitations of fecal analysis, endoscopy, and earlier pH-triggered capsule designs. By capturing microbial communities directly from the colon, our technology provides deeper insights into colonic health and conditions such as inflammatory bowel disease and colorectal cancer. This breakthrough represents a significant advancement in precision nutrition and medicine for human health, and advanced diagnostics and targeted therapies to support dietary guidance, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Devendra Sarnaik
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Caitlyn R Sullivan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Rybicka I, Kaźmierczak Z. The human phageome: niche-specific distribution of bacteriophages and their clinical implications. Appl Environ Microbiol 2025:e0178824. [PMID: 40237489 DOI: 10.1128/aem.01788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages (phages) play a crucial role in shaping the composition and diversity of the human microbiome across various body niches. Recent advancements in high-throughput sequencing technologies have enabled comprehensive analysis of the human phageome in different body sites. This review comprehensively analyzes phage populations across major human body niches, examining their distribution and dynamics through recent metagenomic discoveries. We explore how phage-bacteria interactions within different body sites contribute to homeostasis and disease development. Emerging evidence demonstrates that phageome perturbations can serve as early indicators of various disorders, particularly in the gut microbiome. Understanding these complex microbial interactions offers promising opportunities for developing novel diagnostic markers and therapeutic approaches. However, the causal relationship between phages, bacteria, and disease development remains unclear. Further research is needed to elucidate the role of phages in human health and disease and to explore their potential as diagnostic or therapeutic tools. Understanding the intricate interactions between phages, bacteria, and the human host is crucial for unraveling the complexities of the human microbiome and its impact on health and disease.
Collapse
Affiliation(s)
- Izabela Rybicka
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
- Faculty of Medicine, Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
4
|
Zhang Z, Jiang C, Xing YQ, Yang T, Zou L, Jia Z, Zhao L, Han X, Qu X, Zhang Z, Zong J, Wang S. Unveiling the interplay among skin microbiota, cytokines, and T2DM: an insightful Mendelian randomization study. Nutr Metab (Lond) 2025; 22:29. [PMID: 40211330 PMCID: PMC11987181 DOI: 10.1186/s12986-025-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/26/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Previous observational studies have indicated a correlation between the skin microbiome and Type 2 diabetes (T2DM). It is hypothesized that this causal relationship may be influenced by inflammatory responses. However, these factors as determinants of T2DM remain largely unexplored. METHOD This study incorporated data from the GWAS database on the skin microbiome, 91 types of inflammatory cytokines, and T2DM. We employed two-sample MR and multivariable MR methods to assess the correlation between the skin microbiome and T2DM, and to investigate whether this correlation is affected by inflammatory cytokines. RESULTS The results of the two-sample MR analysis indicate that within the skin microbiome, genetically predicted genus: Acinetobacter, class: Alphaproteobacteria, genus: Bacteroides, ASV005[Propionibacterium granulosum], and ASV072[Rothia mucilaginosa] are associated with an increased risk of T2DM, while phylum: Proteobacteria, genus: Enhydrobacter, family: Clostridiales, ASV006[Staphylococcus hominis] serve as protective factors against T2DM. Among the inflammatory cytokines, levels of Macrophage colony-stimulating factor 1, Tumor necrosis factor receptor superfamily member 9, Urokinase-type plasminogen activator, and C-C motif chemokine 28 are associated with an increased risk of T2DM. Multivariable MR analysis further revealed that Macrophage colony-stimulating factor 1 levels act as a mediating factor between ASV072[Rothia mucilaginosa] and T2DM. CONCLUSION In this study, we found a connection between the skin microbiome and T2DM, with inflammatory cytokines playing a key role in this relationship. This research helps us better understand this complex link and shows that addressing inflammation is important for preventing and treating diabetes. This could greatly benefit public health by reducing the impact of diabetes and its complications. Our results suggest that future studies should explore the specific biological interactions between the skin microbiome and diabetes to develop more effective risk management and treatment strategies from a microbial perspective.
Collapse
Grants
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
- College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Chunyu Jiang
- Department of Trauma Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi-Qi Xing
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianke Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueling Qu
- Pelvic Floor Repair Center, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Zhen Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Rahim MA, Seo H, Barman I, Hossain MS, Shuvo MSH, Song HY. Insights into Autophagy in Microbiome Therapeutic Approaches for Drug-Resistant Tuberculosis. Cells 2025; 14:540. [PMID: 40214493 PMCID: PMC11989032 DOI: 10.3390/cells14070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Tuberculosis, primarily caused by Mycobacterium tuberculosis, is an airborne lung disease and continues to pose a significant global health threat, resulting in millions of deaths annually. The current treatment for tuberculosis involves a prolonged regimen of antibiotics, which leads to complications such as recurrence, drug resistance, reinfection, and a range of side effects. This scenario underscores the urgent need for novel therapeutic strategies to combat this lethal pathogen. Over the last two decades, microbiome therapeutics have emerged as promising next-generation drug candidates, offering advantages over traditional medications. In 2022, the Food and Drug Administration approved the first microbiome therapeutic for recurrent Clostridium infections, and extensive research is underway on microbiome treatments for various challenging diseases, including metabolic disorders and cancer. Research on microbiomes concerning tuberculosis commenced roughly a decade ago, and the scope of this research has broadened considerably over the last five years, with microbiome therapeutics now viewed as viable options for managing drug-resistant tuberculosis. Nevertheless, the understanding of their mechanisms is still in its infancy. Although autophagy has been extensively studied in other diseases, research into its role in tuberculosis is just beginning, with preliminary developments in progress. Against this backdrop, this comprehensive review begins by succinctly outlining tuberculosis' characteristics and assessing existing treatments' strengths and weaknesses, followed by a detailed examination of microbiome-based therapeutic approaches for drug-resistant tuberculosis. Additionally, this review focuses on establishing a basic understanding of microbiome treatments for tuberculosis, mainly through the lens of autophagy as a mechanism of action. Ultimately, this review aims to contribute to the foundational comprehension of microbiome-based therapies for tuberculosis, thereby setting the stage for the further advancement of microbiome therapeutics for drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
- Probiotics Microbiome Commercialization Research Center (PMC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Mohammed Solayman Hossain
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
- Probiotics Microbiome Commercialization Research Center (PMC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| |
Collapse
|
6
|
Ernesti I, Massari MC, Cipriani F, Masi D, Glaser K, Genco M, Tuccinardi D, Lubrano C, Mariani S, Angeloni A, Gnessi L, Basciani S, Watanabe M. Impact of a very low-calorie ketogenic diet on metabolic and microbiota outcomes in post-bariatric patients and bariatric-Naïve individuals: A comparative pilot study. Diabetes Obes Metab 2025; 27:1950-1959. [PMID: 39791264 PMCID: PMC11885101 DOI: 10.1111/dom.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
AIMS To date, bariatric surgery (BS) is the most effective long-term treatment for obesity, but weight regain (WR) is common. The very low-calorie ketogenic diet (VLCKD) is effective for weight loss and may influence gut microbiota (GM) composition, but it has been scarcely evaluated in post-bariatric patients. This study compared the efficacy and safety of a VLCKD in patients with WR post-bariatric surgery (BS+) and in bariatric surgery-naïve patients (BS-). METHODS In this prospective, case-control study, 33 patients (15 BS+, 18 BS-) underwent an 8-week-long VLCKD. Outcomes included weight loss, metabolic profile, safety and GM composition. RESULTS Both groups achieved significant weight loss (BS+: -6.9%, BS-: -8.3%), but the BS+ group showed slightly less metabolic improvement, particularly in insulin resistance and triglycerides. GM composition differed at baseline, reflecting the lasting effects of BS, and VLCKD led to significant changes in both groups. Microbial diversity and specific taxonomic shifts were more pronounced in BS- patients. Mild renal function changes were noted in BS+ patients, though these remained within clinically acceptable ranges. CONCLUSION VLCKD is effective in both BS+ and BS- patients, though metabolic and microbial responses may be less robust post-surgery, possibly due to anatomical and physiological changes. Tailored approaches may be therefore needed to optimize outcomes in post-bariatric patients.
Collapse
Affiliation(s)
- Ilaria Ernesti
- Department of Surgical SciencesSapienza UniversityRomeItaly
| | - Maria Chiara Massari
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Fiammetta Cipriani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Davide Masi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Krzysztof Glaser
- Department of EndocrinologyMetabolism and Internal MedicinePoznan University of Medical SciencesPoznańPoland
| | - Martina Genco
- Unicamillus‐Saint Camillus International University of Health SciencesRomeItaly
| | - Dario Tuccinardi
- Research Unit of Endocrinology and Diabetology, Department of Medicine and SurgeryUniversità Campus Bio‐MedicoRomeItaly
- Fondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Carla Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Stefania Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | | | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Mikiko Watanabe
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental MedicineSapienza UniversityRomeItaly
| |
Collapse
|
7
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2025; 480:1969-1981. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
9
|
Seco-Hidalgo V, Witney AA, Chico ME, Vaca M, Arevalo A, Schuyler AJ, Platts-Mills TAE, Ster IC, Cooper PJ. Rurality and relative poverty drive acquisition of a stable and diverse gut microbiome in early childhood in a non-industrialized setting. Sci Rep 2025; 15:5601. [PMID: 39955323 PMCID: PMC11830098 DOI: 10.1038/s41598-025-89224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
There are limited longitudinal data from non-industrialized settings on patterns and determinants of gut bacterial microbiota development in early childhood. We analysed epidemiological data and stool samples collected from 60 children followed from early infancy to 5 years of age in a rural tropical district in coastal Ecuador. Data were collected longitudinally on a wide variety of individual, maternal, and household exposures. Extracted DNA from stool samples were analysed for bacterial microbiota using 16S rRNA gene sequencing. Both alpha and beta diversity indices suggested stable profiles towards 5 years of age. Greater alpha diversity and lower beta diversity were associated with factors typical of rural poverty including low household incomes, overcrowding, and greater agricultural and animal exposures. Consumption of unpasteurized milk was consistently associated with greater alpha diversity indices. Delivery method and antibiotic exposures during pregnancy and early childhood appeared to have limited effects on developmental trajectories of gut microbiota. Infants living in a non-industrialized setting in conditions of greater poverty and typically rural exposures appeared to acquire more rapidly a stable and diverse gut bacterial microbiome during childhood.
Collapse
Affiliation(s)
- Victor Seco-Hidalgo
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Adam A Witney
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Martha E Chico
- Fundación Ecuatoriana Para la Investigación en Salud, Quito, Ecuador
| | - Maritza Vaca
- Fundación Ecuatoriana Para la Investigación en Salud, Quito, Ecuador
| | - Andrea Arevalo
- Fundación Ecuatoriana Para la Investigación en Salud, Quito, Ecuador
| | - Alexander J Schuyler
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, VA, USA
| | | | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK.
- Escuela de Medicine, Universidad Internacional del Ecuador, Quito, Ecuador.
- Fundación Ecuatoriana Para la Investigación en Salud, Quito, Ecuador.
| |
Collapse
|
10
|
Wang Y, Jiang D, Pan X, Sun K, Li T, Cao X, Zhu X. Gut Microbiota in T2DM Patients with Microvascular Complications: A 16S rRNA Sequencing Study. Diabetes Metab Syndr Obes 2025; 18:373-381. [PMID: 39963193 PMCID: PMC11831918 DOI: 10.2147/dmso.s493720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/24/2024] [Indexed: 02/20/2025] Open
Abstract
Objective This study aims to investigate the characteristics of gut microbiota in patients with microvascular complications of Type 2 Diabetes Mellitus (T2DM) using 16S rRNA high-throughput sequencing technology. Methods Patients diagnosed with T2DM were enrolled as study subjects. Based on the presence of microvascular complications, subjects were divided into a study group, a control group. Clinical fecal samples from the two groups were subjected to diversity analysis using the Illumina MiSeq high-throughput sequencing technology, comparing the richness and diversity of the gut microbiota between the two groups. The Tax4Fun software was utilized for the functional prediction of differential microbiota. Results A total of 3727 operational taxonomic units (OTUs) were identified, with 1311 OTUs common to both groups, and 1363 and 1053 OTUs unique to the study group and the control group, respectively. The study group exhibited a significant increase in the relative abundance of Clostridia and Negativicutes, and a marked decrease in Gammaproteobacteria, Bacilli, and Verrucomicrobia compared to the control group. LefSe analysis revealed significant differences in the relative abundance at two phyla, two classes, two orders, three families, and two genera levels between the groups. KEGG pathway analysis of differential microbiota identified 10 pathways with statistically significant differences (P<0.05). Conclusion This study reveals significant disparities in gut microbiota abundance between T2DM patients and those with microvascular complications of T2DM, suggesting potential microbial markers for diagnosing and treating microvascular complications of T2DM.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Dongmei Jiang
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Xia Pan
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Ke Sun
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Tingting Li
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Xin Cao
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| | - Xiaohui Zhu
- Department of Endocrinology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
11
|
Shehbaz A, Afzaal M, Akram N, Saeed F, Khan W, Ahmed F, Ahmed A, Asghar A, Faisal Z. Intermittent Fasting and Probiotics: Synergistic Modulation of Gut Health for Therapeutic Advantages. Probiotics Antimicrob Proteins 2025; 17:479-486. [PMID: 39261391 DOI: 10.1007/s12602-024-10358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Intermittent fasting (IF) is an increasingly popular dietary approach involving alternating fasting and eating periods. This review aims to summarize the growing body of literature demonstrating that IF is a potential nutritional practice that involves alternating periods of fasting and eating and the numerous benefits of IF, especially in the modulation of healthy gut microbiota. The positive impact of intermittent fasting on gut microbiota not only promotes gastrointestinal health but also has far-reaching effects on critical systems throughout the body. Additionally, the evidence presented in this review highlights the significant preventive and therapeutic effects of intermittent fasting on a wide range of disorders. This includes reducing the risk of diabetes, and neurological disorders, alleviating obesity, and enhancing the functioning of the liver, ultimately contributing to the maintenance of metabolic equilibrium. Perhaps most notably, these effects play a substantial role in preventing diabetes, a global health concern of increasing significance. This comprehensive investigation delves into the scientific foundations of intermittent fasting's impact on gut microbiota and its implications for averting chronic diseases, providing valuable insights for future research and therapeutic applications.
Collapse
Affiliation(s)
- Amna Shehbaz
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Warda Khan
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, 51452, Buraydah, Saudi Arabia
| | - Aftab Ahmed
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zargham Faisal
- Department of Human Nutrition and Dietetics, Iqra University Karachi, Karachi, Pakistan
| |
Collapse
|
12
|
Cui M, Yang WM, Yao P. Protective effect of low-dose lactulose in dextran sulfate sodium induced ulcerative colitis model of rats. Sci Rep 2025; 15:2760. [PMID: 39843913 PMCID: PMC11754915 DOI: 10.1038/s41598-025-86823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e., normal drinking water was provided for an initial 14 days in blank control group, 4% dextran sulfate sodium was used for modeling in the remaining 4 groups. During the 15-24th day, rats in the blank control group were administered with 0.9% saline (0.5 ml/d) by gavage. In the rest 4 groups, rats were administered 0.9% saline (0.5 ml/d, UC model), mesalazine (400 mg/kg/d), lactulose (1000 mg/kg/d), and lactulose + mesalazine (two-drug combination) by gavage. In addition to symptoms and pathological changes, serum IL-6, TNF-α, and High-sensitivity C-reactive protein(Hs-CRP) by ELISA analysis, mRNA and protein expression levels of TLR-2, TLR-4, Nuclear factor-κB(NF-κB), IL-6, and TNF-α in colon tissues by RT-qPCR and WB analyses respectively. Meanwhile, short-chain fatty acid(SCFAs) and intestinal flora were analyzed. Low-dose lactulose improved symptoms (diarrhea, blood in stool, weight loss) and pathological inflammation. In addition to serum IL-6, TNF-α, and Hs-CRP, the mRNA and protein expression levels of TLR-2, TLR-4, NF-κB, IL-6 and TNF-α in the colon were down-regulated with the intervention of lactulose.Meanwhile, lactulose decreased the ileocecal PH, increased SCFAs and altered the intestinal flora. Low-dose lactulose may be beneficial to UC by regulating TLRs/NF-κB pathway, reducing ileocecal PH, increasing SCFAs, regulating intestinal flora and improving the intestinal mucosal barrier. Meanwhile, low-dose lactulose and mesalazine may have additive effects upon combination.
Collapse
Affiliation(s)
- Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China
| | - Wei-Ming Yang
- Xinjiang Medical University, Xinjiang Province, Urumqi, 830000, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China.
| |
Collapse
|
13
|
Luo Q, Chu S, Wu Y, Jin L, Liu R, Xu Y, Yu Y, Jin Y, Houndekon LOEP, Hu H, Zou Y, Huang H, Chen H. Characteristics of tongue coating microbiota in diabetic and non-diabetic kidney patients receiving hemodialysis. BMC Oral Health 2025; 25:104. [PMID: 39833942 PMCID: PMC11748270 DOI: 10.1186/s12903-025-05455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Tongue-coating microbiota, especially known as the tongue microbiome, holds significant value as both a prospective clinical diagnostic biomarker and therapeutic target, which plays a crucial role in the oral microecological health. However, there is limited understanding of the composition and function of tongue coating microbiota in chronic kidney disease patients undergoing hemodialysis. METHODS Thirty-one non-diabetic hemodialysis patients (nonDM_HD), 29 diabetic hemodialysis patients (DM_HD) and 33 healthy controls (HC) were enrolled. Swabs from tongue coating were collected. The 16S rDNA (V3-V4 region) was sequenced to scrutinize the tongue-coating bacterial microbiome difference. RESULTS Both nonDM_HD and DM_HD showed distinct bacterial communities of oral microbiota compared to HC. The abundance of Streptococcus, Lactobacillus, Ruminococcaceae G1, Ligilactobacillus and Abiotrophia showed a significant increase (p < 0.05) in DM_HD and nonDM_HD compared to HC, while Haemophilus, Lachnoanaerobaculum, Peptostreptococcaceae G1, Peptostreptococcus showed a significant decrease (p < 0.05) respectively. Veillonella, Lactobacillus, Limosilactobacillus etc. may serve as potential biomarkers for DM_HD. While Streptococcus, Ruminococcaceae G1, Actinobacillus, Abiotrophia can be considered alternative biomarkers for nonDM_HD. Moreover, the enriched Haemophilus, Actinomyces, Lachnoanaerobaculum were prominent features of the tongue coating microbiota in HC, which could be used as the potential therapeutic targets of chronic kidney disease. Network analysis revealed a less complex interaction relationship among the tongue coating bacterial microbiota of nonDM_HD and DM_HD. Furthermore, correlations were identified between the microbiome composition and clinical parameters of the individuals. CONCLUSION In conclusion, deciphering the tongue coating microbiota of kidney patients undergoing hemodialysis will helpful in assessing the role of oral microbiota in pathobiology and development of kidney disease, which is expected to become a potential biomarkers and adjuvant therapeutic target.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Siyuan Chu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yongqun Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lingling Jin
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Rui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Yulin Xu
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Yina Yu
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Yawei Jin
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | | | - Heshen Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yvchen Zou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Huang
- Department of Stomatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China.
| | - Haimin Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Qin X, Zhang M, Chen S, Tang Y, Cui J, Ding G. Short-chain fatty acids in fetal development and metabolism. Trends Mol Med 2024:S1471-4914(24)00329-0. [PMID: 39694776 DOI: 10.1016/j.molmed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Short-chain fatty acids (SCFAs), primarily derived from gut microbiota, play a role in regulating fetal development; however, the mechanism remains unclear. Fetal SCFAs levels depends on maternal SCFAs transported via the placenta. Metabolic stress, particularly from diabetes and obesity, can disrupt maternal SCFAs levels, impairing fetal metabolic reprogramming. Dysregulated SCFAs may negatively impact the development of the fetal cardiovascular, nervous, and immune systems, potentially contributing to adverse outcomes in adulthood. This review focuses on recent advances regarding the role of maternal SCFAs in shaping the metabolic profile of offspring, especially in the context of various maternal metabolic disorders. Given that SCFAs may influence fetal development through the placenta-embryo axis, targeted SCFAs supplementation could be a promising strategy against developmental diseases associated with intrauterine risk factors.
Collapse
Affiliation(s)
- Xueyun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Mo Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Shiting Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
15
|
Seco-Hidalgo V, Witney A, Chico ME, Vaca M, Arevalo A, Schuyler AJ, Platts-Mills TA, Ster IC, Cooper PJ. Rurality and relative poverty drive acquisition of a stable and diverse gut microbiome in early childhood in a non-industrialized setting. RESEARCH SQUARE 2024:rs.3.rs-5361957. [PMID: 39678332 PMCID: PMC11643292 DOI: 10.21203/rs.3.rs-5361957/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
There are limited longitudinal data from non-industrialized settings on patterns and determinants of gut bacterial microbiota development in early childhood. We analysed epidemiological data and stool samples collected from 60 children followed from early infancy to 5 years of age in a rural tropical district in coastal Ecuador. Data were collected longitudinally on a wide variety of individual, maternal, and household exposures. Extracted DNA from stool samples were analyzed for bacterial microbiota using 16S rRNA gene sequencing. Both alpha and beta diversity indices suggested stable profiles towards 5 years of age. Greater alpha diversity and lower beta diversity were associated with factors typical of rural poverty including low household incomes, overcrowding, and greater agricultural and animal exposures, but not with birth mode or antibiotic exposures. Consumption of unpasteurized milk was consistently associated with greater alpha diversity indices. Infants living in a non-industrialized setting in conditions of greater poverty and typically rural exposures appeared to acquire more rapidly a stable and diverse gut bacterial microbiome during childhood.
Collapse
Affiliation(s)
| | | | | | - Maritza Vaca
- Fundación Ecuatoriana Para la Investigación en Salud
| | | | | | | | | | | |
Collapse
|
16
|
Liu R, Qiao X, Shi Y, Peterson CB, Bush WS, Cominelli F, Wang M, Zhang L. Constructing phylogenetic trees for microbiome data analysis: A mini-review. Comput Struct Biotechnol J 2024; 23:3859-3868. [PMID: 39554614 PMCID: PMC11564040 DOI: 10.1016/j.csbj.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
As next-generation sequencing technologies advance rapidly and the cost of metagenomic sequencing continues to decrease, researchers now face an unprecedented volume of microbiome data. This surge has stimulated the development of scalable microbiome data analysis methods and necessitated the incorporation of phylogenetic information into microbiome analysis for improved accuracy. Tools for constructing phylogenetic trees from 16S rRNA sequencing data are well-established, as the highly conserved regions of the 16S gene are limited, simplifying the identification of marker genes. In contrast, metagenomic and whole genome shotgun (WGS) sequencing involve sequencing from random fragments of the entire gene, making identification of consistent marker genes challenging owing to the vast diversity of genomic regions, resulting in a scarcity of robust tools for constructing phylogenetic trees. Although bacterial sequence tree construction tools exist for upstream bioinformatics, many downstream researchers-those integrating these trees into statistical models or machine learning-are either unaware of these tools or find them difficult to use due to the steep learning curve of processing raw sequences. This is compounded by the fact that public datasets often lack phylogenetic trees, providing only abundance tables and taxonomic classifications. To address this, we present a comprehensive review of phylogenetic tree construction techniques for microbiome data (16S rRNA or whole-genome shotgun sequencing). We outline the strengths and limitations of current methods, offering expert insights and step-by-step guidance to make these tools more accessible and widely applicable in quantitative microbiome data analysis.
Collapse
Affiliation(s)
- Ruitao Liu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Xi Qiao
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Yushu Shi
- Weill Cornell Medicine, Cornell University, 1300 York Ave, New York, 10065, NY, United States
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Digestive Health Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| |
Collapse
|
17
|
Park J, Mok B, Chung HJ, Park HY, Kim HS. Heat-treated brown rice starch structure and effect on short-chain fatty acids and mouse intestinal microbiota. Int J Biol Macromol 2024; 283:137597. [PMID: 39577522 DOI: 10.1016/j.ijbiomac.2024.137597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rice with high resistant starch (RS) exhibits the potential to improve glucose metabolism, insulin sensitivity. In this study, using two rice varieties-Samgwang, a medium-amylose rice, and Dodamssal, a high-amylose rice containing RS-we analyzed the composition and molecular structural characteristics of brown rice and its starch and the effects on fasting blood glucose levels, fecal short-chain fatty acid (SCFA), and gut microbiota after 8 weeks of consumption in mice. The amylose content of heat-treated Samgwang (HS) and -Dodamssal (HD) was 21.0 ± 0.2 and 47.5 ± 0.3 %, respectively, while RS contents were 0.8 ± 0.0 and 14.7 ± 1.0 %. HD exhibited a C-type starch crystallinity with a lower proportion of short chains and a higher proportion of long chains compared to HS. HD-fed mice exhibited lower fasting blood glucose levels and the highest SCFA levels in their feces. They also had the highest abundance of Ruminococcus bromii, an RS-degrading bacterium, the highest positive correlation with Faecalicatena fissicatena (r = 0.9), and the highest negative correlation with Lachnoclostridium scindens and Lawsonibacter asaccharolyticus (r = -0.8). Overall, HD consumption can improve glucose metabolism by increasing intestinal SCFA production and can serve as a prebiotic dietary ingredient to improve obesity and diabetes.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea.
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, USA
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea
| | - Hong-Sik Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea
| |
Collapse
|
18
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
19
|
Chen Q, Cheng W, Zhang J, Chi C, Lin M, He C, Liao Z, Gong F. Fibroblast growth factor 21 improves insulin sensitivity by modulating the bile acid-gut microbiota axis in type Ⅱ diabetic mice. Free Radic Biol Med 2024; 224:600-617. [PMID: 39288846 DOI: 10.1016/j.freeradbiomed.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is an important regulator of glycolipid metabolism. However, whether the gut microbiota is related to the anti-diabetic and obesity effects of FGF21 remains unclear. METHODS Our research used KO/KO db/db male mice and streptozotocin (STZ)-induced to simulate the construction of two type II diabetic mellitus (T2DM) models, and detected impaired glucose tolerance in the model by using the ipGTT and ITT assays, and collected feces from the model mice for sequencing of the intestinal flora and the content of short-chain fatty acids. H&E staining was used to detect changes in intestinal tissue, the serum levels of LPS and GLP-1 were detected by ELISA. RESULTS In this study, we found that FGF21 significantly improved insulin sensitivity, attenuated intestinal lesions, and decreased serum lipopolysaccharide (LPS) concentrations in T2DM mice. Moreover, FGF21 reshaped the gut microbiota and altered their metabolic pathways in T2DM mice, promoting the production of short-chain fatty acids (SCFAs) and the secretion of glucagon-like peptide 1 (GLP-1). Fecal transplantation experiments further confirmed that feces from FGF21-treated diabetic mice demonstrated similar effects as FGF21 in terms of anti-diabetic activity and regulation of gut microbiota dysbiosis. Additionally, the antibiotic depletion of gut microbiota abolished the beneficial effects of FGF21, including increased GLP-1 secretion and fecal SCFA concentration. Additionally, the FGF21 effects of ameliorating intestinal damage and suppressing plasma LPS secretion were suppressed. All these findings suggest that FGF21 prevents intestinal lesions by modifying the gut microbiota composition. Furthermore, FGF21 affected bile acid synthesis by inhibiting CYP7A1, the key enzyme of bile acid synthesis. CONCLUSSION Therefore, FGF21 enriched beneficial bacteria by preventing bile acid synthesis and stimulating the secretion of the intestinal hormone GLP-1 via the increased production of gut microbiota metabolites, thereby exerting its anti-diabetic effects.
Collapse
Affiliation(s)
- Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Wenwen Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Jiangnan Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Changxing Chi
- Department of Endocrinology, Yanbian University Hospital, Yanji, 136200, China
| | - Mengyi Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Chenbei He
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China.
| | - Fanghua Gong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| |
Collapse
|
20
|
Guo P, Zeng M, Zhang Y, Zhang Z, Wu Y, Ye K, Chang F, Wang Y, Zheng X, Feng W. Integration strategies involving 16S rDNA sequencing combined with untargeted metabolomics revealed the mechanism of Selaginella tamariscina (Beauv.) Spring in db/db diabetic mice. Biomed Pharmacother 2024; 180:117546. [PMID: 39405904 DOI: 10.1016/j.biopha.2024.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Selaginella tamariscina extracts (STS), total flavonoids of Selaginella tamariscina (TFST) and the main active component amentoflavone (AMT) have hypoglycaemic-mitigating effects, but their efficacy and mechanism of action in db/db mice are unknown. This study aimed to evaluate the hypoglycaemic effects of Selaginella tamariscina and its extracts in db/db diabetic mice and explore their mechanisms through gut microbiota modulation and metabolomics. Sixty male db/db mice were divided into model (db/db), STS (1.1 g/kg), TFST (140 mg/kg), AMT (60 mg/kg), mulberry twig alkaloid tablets (MTA, 24 mg/kg), and metformin (Met, 160 mg/kg) groups. Another 10 db/m mice served as controls. Treatments lasted 4 weeks. Blood glucose, body weight, diabetes symptoms, lipid levels, pathological changes, oxidative stress markers and liver damage levels were assessed. The gut microbiota composition was analyzed via 16S rDNA sequencing, and urinary metabolomics was conducted to understand metabolic changes. Selaginella tamariscina and its extracts significantly improved hyperglycaemia, insulin sensitivity, lipid metabolism, oxidative stress and liver injury in db/db mice, among which TFST was the most effective, with an effect comparable to that of Met and superior to that of MTA. TFST regulates gut microbiota disorders and metabolic profiles in db/db diabetic mice and modulates Alloprevotella levels, affecting butyric acid content and, thus, exerting a hypoglycaemic effect. These findings suggest that TFST modulates Alloprevotella, influencing butyric acid levels, which improves glycaemic control, enhances insulin sensitivity, and prevents oxidative stress and tissue damage. In conclusion, TFST has potential as a natural therapeutic agent for the control of T2DM.
Collapse
Affiliation(s)
- Pengli Guo
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuhan Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ziyu Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yanxing Wu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Kaili Ye
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Fangzhuo Chang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuanyuan Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| |
Collapse
|
21
|
Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2709-2719. [PMID: 39040013 PMCID: PMC11479700 DOI: 10.1210/clinem/dgae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The gut microbiota (GM), comprising trillions of microorganisms in the gastrointestinal tract, is a key player in the development of obesity and related metabolic disorders, such as type 2 diabetes (T2D), metabolic syndrome (MS), and cardiovascular diseases. This mini-review delves into the intricate roles and mechanisms of the GM in these conditions, offering insights into potential therapeutic strategies targeting the microbiota. The review elucidates the diversity and development of the human GM, highlighting its pivotal functions in host physiology, including nutrient absorption, immune regulation, and energy metabolism. Studies show that GM dysbiosis is linked to increased energy extraction, altered metabolic pathways, and inflammation, contributing to obesity, MS, and T2D. The interplay between dietary habits and GM composition is explored, underscoring the influence of diet on microbial diversity and metabolic functions. Additionally, the review addresses the impact of common medications and therapeutic interventions like fecal microbiota transplantation on GM composition. The evidence so far advocates for further research to delineate the therapeutic potential of GM modulation in mitigating obesity and metabolic diseases, emphasizing the necessity of clinical trials to establish effective and sustainable treatment protocols.
Collapse
Affiliation(s)
- Sabitha Sasidharan Pillai
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Christy Foster
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ambika P Ashraf
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Salehi S, Allahverdy J, Pourjafar H, Sarabandi K, Jafari SM. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics Antimicrob Proteins 2024; 16:1553-1565. [PMID: 38421576 DOI: 10.1007/s12602-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
Collapse
Affiliation(s)
- Samaneh Salehi
- Department of Food Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box 91895, Mashhad, 157-356, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
23
|
Sansonetti PJ, Doré J. [The human microbiome proofed by the Anthropocene: from correlation to causality and intervention]. Med Sci (Paris) 2024; 40:757-765. [PMID: 39450961 DOI: 10.1051/medsci/2024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
The deleterious effects of human activities on biodiversity in the vegetal and animal world, and on climate changes are now well-established facts. However, little is yet known on the impact of human activities on microbial diversity on the planet and more specifically on the human microbiota Large implementation of metagenomics allows exaustive microbial cataloguing with broad spatio-temporal resolution of human microbiota. A reduction in bacterial richness and diversity in the human microbiota, particularly in the intestinal tract, is now established and particularly obvious in the most industrialized regions of the planet. Massive, uncontrolled use of antibiotics, drastic changes in traditional food habits and some elements of the "global exposome" that remain to identify are usually considered as stressors accounting for this situation of "missing microbes". As a consequence, a dysbiotic situation develops, a "dysbiosis" being characterized by the erosion of the central core of shared bacterial species across individuals and the development of opportunistic "pathobionts" in response to a weaker barrier capacity of these impoverished microbiota. The current challenge is to establish a causality link between the extension of these dysbiotic situations and the steady emergence of epidemic, non-communicable diseases such as asthma, allergy, obesity, diabetes, autoimmune diseases and some cancers. Experimental animal models combined with controlled, prospective clinical interventions are in demand to consolidate causality links, with the understanding that in the deciphering of the mechanisms of alteration of the human-microbiome symbiosis resides a novel exciting chapter of medicine: "microbial medicine".
Collapse
Affiliation(s)
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS Jouy-en-Josas France
| |
Collapse
|
24
|
Su Q, Tang Q, Ma C, Wang K. Advances in the study of the relationship between gut microbiota and erectile dysfunction. Sex Med Rev 2024; 12:664-669. [PMID: 38984896 DOI: 10.1093/sxmrev/qeae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION In recent years, in-depth research has revealed that gut microbiota has an inseparable relationship with erectile dysfunction (ED) in men. OBJECTIVES (1) To review the correlation between gut microbiota and ED from the perspective of its impact on men's mental health, metabolism, immunity, and endocrine regulation and (2) to provide reference to further explore the pathogenesis of ED and the improvement of clinical treatment plans. METHODS PubMed was used for the literature search to identify publications related to ED and gut microbiota. RESULTS Gut microbiota may induce depression and anxiety through the microbiota-gut-brain axis, leading to the occurrence of psychological ED. It may also cause vascular endothelial dysfunction and androgen metabolism disorder by interfering with lipid metabolism, immunity, and endocrine regulation, leading to the occurrence of organic ED. CONCLUSION Gut microbiota and its metabolites play an important role in the occurrence and development of ED. As a new influencing factor of ED, gut microbiota disorder is expected to become a target for treatment.
Collapse
Affiliation(s)
- Quanxin Su
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Qizhen Tang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Kenan Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
25
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Zhang L, Li Z, Liu X, He P, Gu Y, Liu L, Jin Y, Cheng S, Zhou F, Jia Y. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155320. [PMID: 38901285 DOI: 10.1016/j.phymed.2023.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 06/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyu Liu
- Pingshan General Hospital (Shenzhen Pingshan District Medical Healthcare Group), Southern Medical University, Shenzhen, Guangdong Province, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - LinLing Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
27
|
Chen M, Gao M, Wang H, Chen Q, Liu X, Mo Q, Huang X, Ye X, Zhang D. Jingangteng capsules ameliorate liver lipid disorders in diabetic rats by regulating microflora imbalances, metabolic disorders, and farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155806. [PMID: 38876009 DOI: 10.1016/j.phymed.2024.155806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The plant Smilax china L., also known as Jingangteng, is suspected of regulating glucose and lipid metabolism. Jingangteng capsules (JGTCs) are commonly used to treat gynecological inflammation in clinical practice. However, it is not clear whether JGTCs can regulate glucose and lipid metabolism, and the mechanism is unclear. PURPOSE To investigate the impact and mechanism of action of JGTCs on diabetes and liver lipid disorders in rats. METHODS The chemical constituents of JGTCs were examined using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. A high-fat diet and streptozotocin-induced diabetes model was used to evaluate anti-diabetic effects by assessing blood glucose and lipid levels and liver function. The mechanism was explored using fecal 16S rRNA gene sequencing and metabolomics profiling, reverse transcription-quantiative polymerase chain reaction (RT-qPCR), and Western blot analysis. RESULTS Thirty-three components were identified in JGTCs. The serological and histomorphological assays revealed that JGTC treatment reduced levels of blood glucose and lipids, aspartate aminotransferase, alanine aminotransferase, and lipid accumulation in the liver of diabetic rats. According to 16S rDNA sequencing, JGTCs improved species richness and diversity in diabetic rats' intestinal flora and restored 22 dysregulated bacteria to control levels. Fecal metabolomics analysis showed that the altered fecal metabolites were rich in metabolites, such as histidine, taurine, low taurine, tryptophan, glycerophospholipid, and arginine. Serum metabolomics analysis indicated that serum metabolites were enriched in the metabolism of glycerophospholipids, fructose and mannose, galactose, linoleic acid, sphingolipids, histidine, valine, leucine and isoleucine biosynthesis, and tryptophan metabolism. Heatmaps revealed a strong correlation between metabolic parameters and gut microbial phylotypes. Molecular biology assays showed that JGTC treatment reversed the decreased expression of farnesoid X receptor (FXR) in the liver of diabetic rats and inhibited the expression of lipogenic genes (Srebp1c and FAS) as well as inflammation-related genes (interleukin (IL)-β, tumor necrosis factor (TNF)-α, and IL-6). Liver metabolomics analysis indicated that JGTC could significantly regulate a significant number of bile acid metabolites associated with FXR, such as glyco-beta-muricholic acid, glycocholic acid, tauro-beta-muricholic acid, and tauro-gamma-muricholic acid. CONCLUSIONS This was the first study to investigate the mechanisms of JGTCs' effects on liver lipid disorders in diabetic rats. JGTCs inhibited liver lipid accumulation and inflammatory responses in diabetic rats by affecting intestinal flora and metabolic disorders and regulating FXR-fat synthesis-related pathways to alleviate diabetic lipid disorders.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Manjun Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Hao Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, No. 16 West Huangjiahu Road, Hongshan District, Wuhan, Hubei Province 430065, PR China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Qigui Mo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, No. 16 West Huangjiahu Road, Hongshan District, Wuhan, Hubei Province 430065, PR China.
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei Province 437100, PR China.
| |
Collapse
|
28
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
29
|
Bar Ziv O, Cahn A, Jansen T, Istomin V, Kedem E, Olshtain-Pops K, Israel S, Oster Y, Orenbuch-Harroch E, Korem M, Strahilevitz J, Levy I, Valdés-Mas R, Ivanova V, Elinav E, Shahar E, Elinav H. Diagnosis and Risk Factors of Prediabetes and Diabetes in People Living With Human Immunodeficiency Virus: Evaluation of Clinical and Microbiome Parameters. J Infect Dis 2024; 230:411-420. [PMID: 38557867 DOI: 10.1093/infdis/jiae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Diabetes mellitus (DM) is more common among people living with human immunodeficiency virus (PLWH) compared with healthy individuals. In a prospective multicenter study (N = 248), we identified normoglycemic (48.7%), prediabetic (44.4%), and diabetic (6.9%) PLWH. Glycosylated hemoglobin (HbA1c) and fasting blood glucose (FBG) sensitivity in defining dysglycemia was 96.8%, while addition of oral glucose tolerance test led to reclassification of only 4 patients. Inclusion of 93 additional PLWH with known DM enabled identification of multiple independent predictors of dysglycemia or diabetes: older age, higher body mass index, Ethiopian origin, HIV duration, lower integrase inhibitor exposure, and advanced disease at diagnosis. Shotgun metagenomic microbiome analysis revealed 4 species that were significantly expanded with hyperglycemia/hyperinsulinemia, and 2 species that were differentially more prevalent in prediabetic/diabetic PLWH. Collectively, we uncover multiple potential host and microbiome predictors of altered glycemic status in PLWH, while demonstrating that FBG and HbA1c likely suffice for diabetes screening. These potential diabetic predictors merit future prospective validation.
Collapse
Affiliation(s)
- Omer Bar Ziv
- Department of Military Medicine and "Zameret," Faculty of Medicine, Hebrew University, and Israel and Medical Corps, Israel Defense Forces
| | - Avivit Cahn
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center
- Faculty of Medicine, Hebrew University, Jerusalem
| | - Tallulah Jansen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot
| | | | - Eynat Kedem
- Allergy, Immunology and AIDS Unit, Rambam Medical Center, Haifa
| | - Karen Olshtain-Pops
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Sarah Israel
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Yonatan Oster
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Efrat Orenbuch-Harroch
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Maya Korem
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Jacob Strahilevitz
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| | - Itzchak Levy
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot
| | - Valeria Ivanova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot
- Division of Microbiome and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Eduardo Shahar
- Allergy, Immunology and AIDS Unit, Rambam Medical Center, Haifa
| | - Hila Elinav
- Faculty of Medicine, Hebrew University, Jerusalem
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem
| |
Collapse
|
30
|
Li F, Ming J. Mulberry polyphenols restored both small and large intestinal microflora in db/ db mice, potentially alleviating type 2 diabetes. Food Funct 2024; 15:8521-8543. [PMID: 39058305 DOI: 10.1039/d4fo01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Polyphenols in mulberry fruit have potential anti-diabetic effects by targeting the gut microbiota. This study investigated how mulberry polyphenols (MPs) influence the microbiota of the small and large intestines and their effects on type 2 diabetes symptoms. The results showed lower microbiota densities in the small intestine. MP treatments improved microbiota richness and diversity in both intestines, similar to metformin. In particular, at a 400 mg kg-1 dose, mulberry polyphenols decreased Firmicutes, Lactobacillus, and Bacilli, while increasing Bacteroidetes, leading to elevated propionate and butyrate levels. Less abundant small intestinal microbiota, like Enterobacterales, Mycoplasmatales, Enterobacteriaceae, and Ureaplasma, were involved in regulating blood glucose and insulin levels. Functional analysis suggested that mulberry polyphenols reshaped the small intestinal microbiota to influence blood glucose balance via unknown pathways, while in the large intestine, they primarily affected blood glucose through carbohydrate transport and metabolism. Based on their ability to regulate the composition of intestinal flora, MPs likely improved glucose homeostasis by enhancing glucose utilization, supporting pancreatic tissue health, and increasing serum antioxidant capacity. However, the specific mechanisms underlying this potential are yet to be fully explored. This study provides new insights into the influence of MPs on remodeling the microbiota residing in both the small and large intestines, which thereby may contribute to the improvement of the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| |
Collapse
|
31
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
33
|
Sivaprasadan S, Anila KN, Nair K, Mallick S, Biswas L, Valsan A, Praseedom RK, Nair BKG, Sudhindran S. Microbiota and Gut-Liver Axis: An Unbreakable Bond? Curr Microbiol 2024; 81:193. [PMID: 38805045 DOI: 10.1007/s00284-024-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.
Collapse
Affiliation(s)
- Saraswathy Sivaprasadan
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - K N Anila
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Krishnanunni Nair
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shweta Mallick
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Kochi, India
| | - Arun Valsan
- Department of Hepatology & Gastroenterology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Surendran Sudhindran
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India.
| |
Collapse
|
34
|
Wang Q, Xiong J, He Y, He J, Cai M, Luo Z, Zhang T, Zhou X. Effect of L-arabinose and lactulose combined with Lactobacillus plantarum on obesity induced by a high-fat diet in mice. Food Funct 2024; 15:5073-5087. [PMID: 38656276 DOI: 10.1039/d4fo00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jialu Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yalun He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Juncheng He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zexian Luo
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
35
|
Gao KX, Peng X, Wang JY, Wang Y, Pei K, Meng XL, Zhang SS, Hu MB, Liu YJ. In vivo absorption, in vitro simulated digestion and fecal fermentation properties of polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and their effects on human gut microbiota. Int J Biol Macromol 2024; 266:131391. [PMID: 38582456 DOI: 10.1016/j.ijbiomac.2024.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine (PPA) have various biological activities, but their properties after oral administration are not clear. In this study, the absorption, digestion and fermentation properties of PPA were studied using in vivo fluorescence tracking, in vitro simulated digestion and fecal fermentation experiments. The absorption experiment showed that fluorescence was only observed in the gastrointestinal system, indicating that PPA could not be absorbed. Simulated digestion results showed that there were no significant changes in the molecular weight, Fourier transform infrared spectroscopy (FT-IR) spectrum, monosaccharides and reducing sugar of PPA during the digestion process, showing that the overall structure of PPA was not damaged. However, the carbohydrate gel electrophoresis bands of PPA enzymatic hydrolysates after simulated digestion were significantly changed, indicating that simulated digestion might impact the configuration of PPA. In vitro fermentation showed that PPA could be degraded by microorganisms to produce short chain fatty acids, leading to a decrease in pH value. PPA can promote the proliferation of Bacteroideaceae, Megasphaera, Bacteroideaceae, and Bifidobacteriaceae, and inhibit the growth of Desulfobacteriota and Enterobacteriaceae. The results indicated that PPA could treat diseases by regulating gut microbiota, providing a scientific basis for the application and development of PPA.
Collapse
Affiliation(s)
- Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Ke Pei
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Xiang-Long Meng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Shuo-Sheng Zhang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China,.
| | - Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China,.
| |
Collapse
|
36
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
37
|
Lin Y, Zeng H, Lin J, Peng Y, Que X, Wang L, Chen L, Bai N. Evaluating the therapeutic potential of moxibustion on polycystic ovary syndrome: a rat model study on gut microbiota and metabolite interaction. Front Cell Infect Microbiol 2024; 14:1328741. [PMID: 38665877 PMCID: PMC11043641 DOI: 10.3389/fcimb.2024.1328741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.
Collapse
Affiliation(s)
- Yong Lin
- Department of Traditional Chinese Medicine Specialty Diagnosis and Treatment, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Huiling Zeng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jieying Lin
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yiwei Peng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyun Que
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lijun Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Ling Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ni Bai
- Department of Traditional Chinese Medicine Specialty Diagnosis and Treatment, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| |
Collapse
|
38
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
39
|
Zhao X, Zhao H, Chen R, Li J, Zhou J, Li N, Yan S, Liu C, Zhou P, Chen Y, Song L, Yan H. A Combined Measure of the Triglyceride Glucose Index and Trimethylamine N-Oxide in Risk Stratification of ST-Segment Elevation Myocardial Infarction Patients with High-Risk Plaque Features Defined by Optical Coherence Tomography: A Substudy of the OCTAMI Registry Study. Vasc Health Risk Manag 2024; 20:141-155. [PMID: 38567028 PMCID: PMC10986628 DOI: 10.2147/vhrm.s443742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Background and Aim An elevated triglyceride-glucose (TyG) level is associated with increased risk of mortality in patients with CAD. Trimethylamine N-oxide (TMAO) has mechanistic links to atherosclerotic coronary artery disease (CAD) pathogenesis and is correlated with adverse outcomes. However, the incremental prognostic value of TMAO and TyG in the cohort of optical coherence tomography (OCT)-defined high-risk ST-segment elevation myocardial infarction (STEMI) patients is unknown. Methods We studied 274 consecutive aged ≥18 years patients with evidence of STEMI and detected on pre-intervention OCT imaging of culprit lesions between March 2017 and March 2019. Outcomes There were 22 (22.68%), 27 (27.84%), 26 (26.80%), and 22 (22.68%) patients in groups A-D, respectively. The baseline characteristics according to the level of TMAO and TyG showed that patients with higher level in both indicators were more likely to have higher triglycerides (p < 0.001), fasting glucose (p < 0.001) and higher incidence of diabetes (p = 0.008). The group with TMAO > median and TyG ≤ median was associated with higher rates of MACEs significantly (p = 0.009) in fully adjusted analyses. During a median follow-up of 2.027 years, 20 (20.6%) patients experienced MACEs. To evaluate the diagnostic value of the TyG index combined with TMAO, the area under the receiver operating characteristic curve for predicting MACEs after full adjustment was 0.815 (95% confidence interval, 0.723-0.887; sensitivity, 85.00%; specificity, 72.73%; cut-off level, 0.577). Among the group of patients with TMAO > median and TyG ≤ median, there was a significantly higher incidence of MACEs (p=0.033). A similar tendency was found in the cohort with hyperlipidemia (p=0.016) and diabetes mellitus (p=0.036). Conclusion This study demonstrated the usefulness of combined measures of the TyG index and TMAO in enhancing risk stratification in STEMI patients with OCT-defined high-risk plaque characteristics. Trial Registration This study was registered at ClinicalTrials.gov as NCT03593928.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, People’s Republic of China
| |
Collapse
|
40
|
Zhang L, Wang P, Huang J, Xing Y, Wong FS, Suo J, Wen L. Gut microbiota and therapy for obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1333778. [PMID: 38596222 PMCID: PMC11002083 DOI: 10.3389/fendo.2024.1333778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
There has been a major increase in Type 2 diabetes and obesity in many countries, and this will lead to a global public health crisis, which not only impacts on the quality of life of individuals well but also places a substantial burden on healthcare systems and economies. Obesity is linked to not only to type 2 diabetes but also cardiovascular diseases, musculoskeletal disorders, and certain cancers, also resulting in increased medical costs and diminished quality of life. A number of studies have linked changes in gut in obesity development. Dysbiosis, a deleterious change in gut microbiota composition, leads to altered intestinal permeability, associated with obesity and Type 2 diabetes. Many factors affect the homeostasis of gut microbiota, including diet, genetics, circadian rhythms, medication, probiotics, and antibiotics. In addition, bariatric surgery induces changes in gut microbiota that contributes to the metabolic benefits observed post-surgery. Current obesity management strategies encompass dietary interventions, exercise, pharmacotherapy, and bariatric surgery, with emerging treatments including microbiota-altering approaches showing promising efficacy. While pharmacotherapy has demonstrated significant advancements in recent years, bariatric surgery remains one of the most effective treatments for sustainable weight loss. However, access to this is generally limited to those living with severe obesity. This underscores the need for non-surgical interventions, particularly for adolescents and mildly obese patients. In this comprehensive review, we assess longitudinal alterations in gut microbiota composition and functionality resulting from the two currently most effective anti-obesity treatments: pharmacotherapy and bariatric surgery. Additionally, we highlight the functions of gut microbiota, focusing on specific bacteria, their metabolites, and strategies for modulating gut microbiota to prevent and treat obesity. This review aims to provide insights into the evolving landscape of obesity management and the potential of microbiota-based approaches in addressing this pressing global health challenge.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Mirfakhraee H, Sabaei M, Niksolat M, Faraji F, Saghafian Larijani S, Rahmani Fard S, Zandieh Z, Minaeian S. Comparison of gut microbiota profiles between patients suffering from elderly frailty syndrome and non-frail elderly individuals. Mol Biol Rep 2024; 51:321. [PMID: 38393485 DOI: 10.1007/s11033-024-09271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Frailty syndrome is a state of increased vulnerability to stressors, marked by lowered physical strength and increased dependence on others. The well-established changes in gut microbiota associated with old age suggest a probable relationship between gut microbiota and frailty. METHODS AND RESULTS This study was aimed at finding the relationship between gut microbiota and frailty syndrome, by comparing the sociodemographic data and the gut microbiota profiles of 23 non-frail and 14 frail elderly individuals. We used the quantitative polymerase chain reaction method (qPCR) to determine the bacterial loads of Bifidobacteria, Lactobacillus, Bacteroidetes, Prevotella, and Escherichia coli in stool samples from test subjects. We discovered a significant increase in the bacterial load of Prevotella in frail elderly individuals aged 70 or above. Other bacterial loads and ratios were not significantly different between the two groups. CONCLUSIONS More comprehensive studies with larger sample sizes and encompassing a wider range of inflammation-related bacteria need to be performed to discover the existence and exact nature of these relations.
Collapse
Affiliation(s)
- Hosna Mirfakhraee
- Department of Internal Medicine, School of Medicine, Firoozabadi Clinical and Research Development Unit, Iran University of Medical Science, Tehran, Iran
| | - Milad Sabaei
- School of Systems Biology, George Mason University, VA, USA
| | - Maryam Niksolat
- Department of Geriatric Medicine, School of Medicine, Firoozabadi Clinical and Research Development Unit, Iran University of Medical Science, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Saghafian Larijani
- Department of Obstetrics and Gynecology, Firoozabadi Clinical and Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zhale Zandieh
- Iranian Research Center on Ageing, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Mansour S, Alkhaaldi SMI, Sammanasunathan AF, Ibrahim S, Farhat J, Al-Omari B. Precision Nutrition Unveiled: Gene-Nutrient Interactions, Microbiota Dynamics, and Lifestyle Factors in Obesity Management. Nutrients 2024; 16:581. [PMID: 38474710 PMCID: PMC10935146 DOI: 10.3390/nu16050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Obesity is a complex metabolic disorder that is associated with several diseases. Recently, precision nutrition (PN) has emerged as a tailored approach to provide individualised dietary recommendations. AIM This review discusses the major intrinsic and extrinsic components considered when applying PN during the management of obesity and common associated chronic conditions. RESULTS The review identified three main PN components: gene-nutrient interactions, intestinal microbiota, and lifestyle factors. Genetic makeup significantly contributes to inter-individual variations in dietary behaviours, with advanced genome sequencing and population genetics aiding in detecting gene variants associated with obesity. Additionally, PN-based host-microbiota evaluation emerges as an advanced therapeutic tool, impacting disease control and prevention. The gut microbiome's composition regulates diverse responses to nutritional recommendations. Several studies highlight PN's effectiveness in improving diet quality and enhancing adherence to physical activity among obese patients. PN is a key strategy for addressing obesity-related risk factors, encompassing dietary patterns, body weight, fat, blood lipids, glucose levels, and insulin resistance. CONCLUSION PN stands out as a feasible tool for effectively managing obesity, considering its ability to integrate genetic and lifestyle factors. The application of PN-based approaches not only improves current obesity conditions but also holds promise for preventing obesity and its associated complications in the long term.
Collapse
Affiliation(s)
- Samy Mansour
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saif M. I. Alkhaaldi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Ashwin F. Sammanasunathan
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saleh Ibrahim
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
- Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Joviana Farhat
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Basem Al-Omari
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
43
|
Abstract
In order to improve bioavailability, stability, control release, and target delivery of active pharmaceutical ingredients (APIs), as well as to mask their bitter taste, to increase their efficacy, and to minimize their side effects, a variety of microencapsulation (including nanoencapsulation, particle size <100 nm) technologies have been widely used in the pharmaceutical industry. Commonly used microencapsulation technologies are emulsion, coacervation, extrusion, spray drying, freeze-drying, molecular inclusion, microbubbles and microsponge, fluidized bed coating, supercritical fluid encapsulation, electro spinning/spray, and polymerization. In this review, APIs are categorized by their molecular complexity: small APIs (compounds with low molecular weight, like Aspirin, Ibuprofen, and Cannabidiol), medium APIs (compounds with medium molecular weight like insulin, peptides, and nucleic acids), and living microorganisms (such as probiotics, bacteria, and bacteriophages). This article provides an overview of these microencapsulation technologies including their processes, matrix, and their recent applications in microencapsulation of APIs. Furthermore, the advantages and disadvantages of these common microencapsulation technologies in terms of improving the efficacy of APIs for pharmaceutical treatments are comprehensively analyzed. The objective is to summarize the most recent progresses on microencapsulation of APIs for enhancing their bioavailability, control release, target delivery, masking their bitter taste and stability, and thus increasing their efficacy and minimizing their side effects. At the end, future perspectives on microencapsulation for pharmaceutical applications are highlighted.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
44
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
45
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
46
|
He X, Gao X, Hong Y, Zhong J, Li Y, Zhu W, Ma J, Huang W, Li Y, Li Y, Wang H, Liu Z, Bao Y, Pan L, Zheng N, Sheng L, Li H. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:230-244. [PMID: 38079533 DOI: 10.1021/acs.jafc.3c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, β diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.
Collapse
Affiliation(s)
- Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
Patel N, Dinesh S, Sharma S. From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management. Curr Diabetes Rev 2024; 20:e111023222081. [PMID: 37861021 DOI: 10.2174/0115733998266653231005072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices. OBJECTIVE This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment. CONCLUSION This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| |
Collapse
|
48
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
49
|
Debnath N, Yadav P, Mehta PK, Gupta P, Kumar D, Kumar A, Gautam V, Yadav AK. Designer probiotics: Opening the new horizon in diagnosis and prevention of human diseases. Biotechnol Bioeng 2024; 121:100-117. [PMID: 37881101 DOI: 10.1002/bit.28574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Probiotic microorganisms have been used for therapeutic purposes for over a century, and recent advances in biotechnology and genetic engineering have opened up new possibilities for developing therapeutic approaches using indigenous probiotic microorganisms. Diseases are often related to metabolic and immunological factors, which play a critical role in their onset. With the help of advanced genetic tools, probiotics can be modified to produce or secrete important therapeutic peptides directly into mucosal sites, increasing their effectiveness. One potential approach to enhancing human health is through the use of designer probiotics, which possess immunogenic characteristics. These genetically engineered probiotics hold promise in providing novel therapeutic options. In addition to their immunogenic properties, designer probiotics can also be equipped with sensors and genetic circuits, enabling them to detect a range of diseases with remarkable precision. Such capabilities may significantly advance disease diagnosis and management. Furthermore, designer probiotics have the potential to be used in diagnostic applications, offering a less invasive and more cost-effective alternative to conventional diagnostic techniques. This review offers an overview of the different functional aspects of the designer probiotics and their effectiveness on different diseases and also, we have emphasized their limitations and future implications. A comprehensive understanding of these functional attributes may pave the way for new avenues of prevention and the development of effective therapies for a range of diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen K Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
50
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|