1
|
Otieno MO, Powrózek T, Garcia-Foncillas J, Martinez-Useros J. The crosstalk within tumor microenvironment and exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189308. [PMID: 40180303 DOI: 10.1016/j.bbcan.2025.189308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer is one of the most malignant tumors with a grim prognosis. Patients develop chemoresistance that drastically decreases their survival. The chemoresistance is mainly attributed to deficient vascularization of the tumor, intratumoral heterogeneity and pathophysiological barrier due to the highly desmoplastic tumor microenvironment. The interactions of cells that constitute the tumor microenvironment change its architecture into a cancer-permissive environment and stimulate cancer development, metastasis and treatment response. The cell-cell communication in the tumor microenvironment is often mediated by exosomes that harbour a diverse repertoire of molecular cargo, such as proteins, lipids, and nucleic acid, including messenger RNAs, non-coding RNAs and DNA. Therefore, exosomes can serve as potential targets as biomarkers and improve the clinical management of pancreatic cancer to overcome chemoresistance. This review critically elucidates the role of exosomes in cell-cell communication within the tumor microenvironment and how these interactions can orchestrate chemoresistance.
Collapse
Affiliation(s)
- Michael Ochieng' Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Tomasz Powrózek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos Univer-Sity, 28922 Madrid, Spain.
| |
Collapse
|
2
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
3
|
Sharma R, Komal K, Kumar S, Ghosh R, Pandey P, Gupta GD, Kumar M. Advances in pancreatic cancer diagnosis: from DNA methylation to AI-assisted imaging. Expert Rev Mol Diagn 2025:1-13. [PMID: 40388321 DOI: 10.1080/14737159.2025.2509022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/22/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
INTRODUCTION Pancreatic Cancer (PC) is a highly aggressive tumor that is mainly diagnosed at later stages. Various imaging technologies, such as CT, MRI, and EUS, possess limitations in early PC diagnosis. Therefore, this review article explores the various innovative biomarkers for PC detection, such as DNA methylation, Noncoding RNAs, and proteomic biomarkers, and the role of AI in PC detection at early stages. AREA COVERED Innovative biomarkers, such as DNA methylation genes, show higher specificity and sensitivity in PC diagnosis. Additionally, various non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs, show high diagnostic accuracy and serve as diagnostic and prognostic biomarkers. Additionally, proteomic biomarkers retain higher diagnostic accuracy in different body fluids. Apart from this, the utilization of AI showed that AI surpassed the radiologist's diagnostic performance in PC detection. EXPERT OPINION The combination of AI and advanced biomarkers can revolutionize early PC detection. However, large-scale, prospective studies are needed to validate its clinical utility. Further. standardization of biomarker panels and AI algorithms is a vital step toward their reliable applications in early PC detection, ultimately improving patient outcomes. [Figure: see text].
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Prachi Pandey
- Department of Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
4
|
Liu J, Gao S, Liu X, Dong J, Zhen D, Liu T. Exosomes: their role and therapeutic potential in overcoming drug resistance of gastrointestinal cancers. Front Oncol 2025; 15:1540643. [PMID: 40432919 PMCID: PMC12106034 DOI: 10.3389/fonc.2025.1540643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Gastrointestinal cancers are prevalent malignant neoplasms in clinical medicine. The development of drug resistance in gastrointestinal cancers result in tumor recurrence and metastasis and greatly diminish the efficacy of treatment. Exosomes, as the shuttle of intercellular molecular cargoes in tumor micro-environment, secreted from tumor and stromal cells mediate drug resistance by regulating epithelial-mesenchymal transition, drug efflux, stem-like phenotype and cell metabolism. Meanwhile, exosomes have already received tremendous attention in biomedical study as potential drug resistant biomarkers as well as treatment strategy in gastrointestinal cancers. Primary challenge to implement this potential is the ability to obtain high-grade exosomes efficiently; however, exosomes lack standard protocols for their processing and characterization. Furthermore, this field suffers from insufficient standardized reference materials and workflow for purification, detection and analysis of exosomes with defined biological properties. This review summarize the unique biogenesis, composition and novel detection methods of exosomes and informed the underlying correlation between exosomes and drug resistance of gastrointestinal cancers. Moreover, the clinical applications of exosomes are also summarized, might providing novel therapy for the individual treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiulian Liu
- Department of Anorectal Surgery, The Fourth People’s Hospital of Jinan, Jinan, China
| | - Shanyu Gao
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Liu
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxin Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dingwei Zhen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| |
Collapse
|
5
|
Powrózek T, Otieno MO, Maffeo D, Frullanti E, Martinez-Useros J. Blood circulating miRNAs as pancreatic cancer biomarkers: An evidence from pooled analysis and bioinformatics study. Int J Biol Macromol 2025; 308:142469. [PMID: 40180095 DOI: 10.1016/j.ijbiomac.2025.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, characterized by a poor prognosis. Currently, there are no screening programs for the early detection of PC, and existing diagnostic methods are primarily limited to high-risk individuals. Biomarkers such as CA19-9 have not significantly improved early diagnosis, making the identification of new potential biomarkers crucial for routine clinical practice. Among the candidate biomarkers, miRNAs have been most extensively studied due to their role in regulating gene expression (either as oncomiRs or tumor suppressor miRNAs) and their potential for minimally invasive analysis through liquid biopsy techniques. This review aims to summarize the current literature on blood-circulating miRNAs and their diagnostic value in PC detection, considering the context of CA19-9 and benign pancreatic diseases. The data from the collected studies were curated through both statistical and bioinformatics analyses to identify the most promising miRNAs with optimal diagnostic accuracy for PC detection and to assess their role in the molecular processes leading to tumor development.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Michael Ochieng' Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
6
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous Process for Isolation of Gut-Derived Extracellular Vesicles (EVs) and the Effect on Latent HIV. Cells 2025; 14:568. [PMID: 40277894 PMCID: PMC12025545 DOI: 10.3390/cells14080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is lacking. Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate EVs from colonic content (ColEVs). PVPP facilitates the isolation of pure, non-toxic, and functionally active ColEVs that were internalized by cells and functionally activate HIV LTR promoter. ColEVs isolated without PVPP have a reductive effect on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) without living cells, suggesting that ColEVs contain reductases capable of catalyzing the reduction of MTT to formazan. The assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ~12 h (5 h preprocessing, 7 h isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. This protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Additionally, GI-derived EVs may serve as a window into the pathogenesis of diseases.
Collapse
Affiliation(s)
- Nneoma C. J. Anyanwu
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Lakmini S. Premadasa
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Bryson C. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Mohan Mahesh
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
7
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
8
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous process for isolation of gut-derived extracellular vesicles and the effect on latent HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632234. [PMID: 39829800 PMCID: PMC11741325 DOI: 10.1101/2025.01.09.632234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aim Extracellular particles (EPs) are produced/secreted by cells from all domains of life and are present in all body fluids, brain, and gut. EPs consist of extracellular vesicles (EVs) made up of exosomes, microvesicles, and other membranous vesicles; and extracellular condensates (ECs) that are non-membranous carriers of lipid-protein-nucleic acid aggregates. The purity of EVs|ECs, which ultimately depends on the isolation method used to obtain them is critical, particularly EVs|ECs from the gastrointestinal (GI) tract that is colonized by a huge number of enteric bacteria. Therefore, identifying GI derived EVs|ECs of bacterial and host origin may serve as a window into the pathogenesis of diseases and as a potential therapeutic target. Methods Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate GI-derived EPs. Results and Conclusion PVPP facilitates isolation of pure and functionally active, non-toxic EVs ColEVs from colonic contents. ColEVs are internalized by cells and they activate HIV LTR promoter. In the absence of PVPP, ColEVs have a direct reductive potential of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) absorbance in a cell-free system. Assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ∼12 hours (5 hours preprocessing, 7 hours isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. Additionally, this protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Highlight ColEVs but not ColECs are present in colonic content (GI tract) and can be isolated with gradient or single bead PPLC column.ColEVs isolated without PVPP are toxic to cells and they have a direct reductive potential of MTT. Addition of PVPP treatment in the isolation protocol results in clean and non-toxic ColEVs that transactivate the HIV LTR promoter.
Collapse
|
10
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Moni ZA, Hasan Z, Alam MS, Roy N, Islam F. Diagnostic and Prognostic Significance of Exosomes and Their Components in Patients With Cancers. Cancer Med 2025; 14:e70569. [PMID: 39757782 DOI: 10.1002/cam4.70569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Cancer is the second leading cause of human mortality worldwide. Extracellular vesicles (EVs) from liquid biopsy samples are used in early cancer detection, characterization, and surveillance. Exosomes are a subset of EVs produced by all cells and present in all body fluids. They play an important role in the development of cancer because they are active transporters capable of carrying the contents of any type of cell. The objective of this review was to provide a brief overview of the clinical implication of exosomes or exosomal components in cancer diagnosis and prognosis. METHODS An extensive review of the current literature of exosomes and their components in cancer diagnosis and prognosis were carried out in the current study. RESULTS Tumor cells release exosomes that contribute to the formation of the pre-metastatic microenvironment, angiogenesis, invasion, and treatment resistance. On the contrary, tumor cells release more exosomes than normal cells, and these tumor-specific exosomes can carry the genomic and proteomic signature contents of the tumor cells, which can act as tools for the diagnosis and prognosis of patients with cancers. CONCLUSION This information may help clinicians to improve the management of cancer patients in clinical settings in the future.
Collapse
Affiliation(s)
- Zinnat Ara Moni
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zahid Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shaheen Alam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Nitai Roy
- Department of Biochemistry and Molecular Biology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
Li D, Chu X, Ma Y, Zhang F, Tian X, Yang Y, Yang Y. Tumor-derived exosomes: Unravelling the pathogenesis of pancreatic cancer with liver metastases and exploring the potential for clinical translation. Cancer Lett 2024; 611:217403. [PMID: 39709178 DOI: 10.1016/j.canlet.2024.217403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer (PC) is one of the most malignant solid cancers, and PC metastasis, particularly liver metastasis, is a major cause of cancer mortality. A key event in tumor metastasis is the formation of pre-metastatic niche (PMN), which provides a microenvironment conducive to tumor cells colonization and progression. Various molecules loaded in tumor-derived exosomes (TDEs) contribute to PMN formation and distant tumor metastasis, by regulating immune and stromal cell function, inducing angiogenesis, and promoting metabolic reprogramming. Therefore, therapies targeting PMN may offer novel advantages to prevent tumor metastasis at an earlier stage. In this review, we summarize multifaceted mechanisms underlying hepatic PMN formation, with a focus on how PC TDEs participate in angiogenesis and vascular permeability, create immune suppressive microenvironment, remodel the extracellular matrix, and regulate metabolic reprogramming. In addition, we highlight the promise of TDEs for early diagnosis and effective therapy of PC liver metastases.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
13
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
14
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, Minami R, Marui S, Yamauchi Y, Nakai Y, Takada Y, Ikuta K, Yoshioka T, Mizukoshi K, Iwane K, Yamakawa G, Namikawa M, Sono M, Nagao M, Maruno T, Nakanishi Y, Hirai M, Kanda N, Shio S, Itani T, Fujii S, Kimura T, Matsumura K, Ohana M, Yazumi S, Kawanami C, Yamashita Y, Marusawa H, Watanabe T, Ito Y, Kudo M, Seno H. Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer 2024; 131:1158-1168. [PMID: 39198617 PMCID: PMC11442445 DOI: 10.1038/s41416-024-02794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. METHODS We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. RESULTS The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). CONCLUSIONS We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Shunsuke Obata
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masanori Asada
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Nobuhiro Hieda
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryuki Minami
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshitaka Nakai
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kozo Ikuta
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Naoki Kanda
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Seiji Shio
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Toshinao Itani
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Toshiyuki Kimura
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Masaya Ohana
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Chiharu Kawanami
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Yukitaka Yamashita
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Zhou X, Yan Y, Shen Y, Xu M, Xu W. Exosomes: Emerging Insights into the Progression of Pancreatic Cancer. Int J Biol Sci 2024; 20:4098-4113. [PMID: 39113699 PMCID: PMC11302877 DOI: 10.7150/ijbs.97076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Pancreatic cancer is a very aggressive and fatal malignancy with few therapeutic choices and a poor prognosis. Understanding the molecular pathways that drive its growth is critical for developing effective therapeutic strategies. Exosomes, small extracellular vesicles secreted by numerous cell types, have recently emerged as essential intercellular communication mediators, with implications for tumor growth and metastasis. In this article, we present a review of current knowledge about exosomes and their role in pancreatic cancer progression We discuss the biogenesis and characteristics of exosomes, as well as their cargo and functional significance in tumor growth, immune evasion, angiogenesis, invasion, and metastasis. We further emphasize the potential of exosomes as diagnostic biomarkers and therapeutic targets for pancreatic cancer. Finally, we discuss the challenges and future perspectives in using exosomes to improve patient outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, China
| | - Ye Shen
- Department of Hepatobiliary Pancreas Surgery, Aoyang Hospital Affiliated to Jiangsu University, Suzhou, 215000, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wenrong Xu
- Jiangsu University School of Medicine, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
16
|
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y, Wang W. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int 2024; 24:264. [PMID: 39054529 PMCID: PMC11271018 DOI: 10.1186/s12935-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
18
|
Liu DSK, Puik JR, Patel BY, Venø MT, Vahabi M, Prado MM, Webber JP, Rees E, Upton FM, Bennett K, Blaker C, Immordino B, Comandatore A, Morelli L, Sivakumar S, Swijnenburg RJ, Besselink MG, Jiao LR, Kazemier G, Giovannetti E, Krell J, Frampton AE. Unlocking the diagnostic power of plasma extracellular vesicle miR-200 family in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2024; 43:189. [PMID: 38978141 PMCID: PMC11229220 DOI: 10.1186/s13046-024-03090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease. METHODS Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma). RESULTS Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC. CONCLUSIONS This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.
Collapse
Affiliation(s)
- Daniel S K Liu
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Jisce R Puik
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Bhavik Y Patel
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey, GU2 7WG, UK
- HPB Surgical Unit, Royal Surrey County Hospital, Guildford, Surrey, UK
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Omiics ApS, 8200 Aarhus N, Aarhus, Denmark
| | - Mahrou Vahabi
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Jason P Webber
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Eleanor Rees
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Flora M Upton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Kate Bennett
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Catherine Blaker
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Benoit Immordino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy
| | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56100, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56100, Italy
| | - Shivan Sivakumar
- Oncology Department, Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marc G Besselink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Long R Jiao
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56016, Italy.
- Laboratory of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey, GU2 7WG, UK.
- HPB Surgical Unit, Royal Surrey County Hospital, Guildford, Surrey, UK.
| |
Collapse
|
19
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
Chen X, Hu X, Liu T. Development of liquid biopsy in detection and screening of pancreatic cancer. Front Oncol 2024; 14:1415260. [PMID: 38887233 PMCID: PMC11180763 DOI: 10.3389/fonc.2024.1415260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Pancreatic cancer is a highly lethal malignant tumor, which has the characteristics of occult onset, low early diagnosis rate, rapid development and poor prognosis. The reason for the high mortality is partly that pancreatic cancer is usually found in the late stage and missed the best opportunity for surgical resection. As a promising detection technology, liquid biopsy has the advantages of non-invasive, real-time and repeatable. In recent years, the continuous development of liquid biopsy has provided a new way for the detection and screening of pancreatic cancer. The update of biomarkers and detection tools has promoted the development of liquid biopsy. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA) and extracellular vesicles (EVs) provide many biomarkers for liquid biopsy of pancreatic cancer, and screening tools around them have also been developed. This review aims to report the application of liquid biopsy technology in the detection of pancreatic cancer patients, mainly introduces the biomarkers and some newly developed tools and platforms. We have also considered whether liquid biopsy technology can replace traditional tissue biopsy and the challenges it faces.
Collapse
Affiliation(s)
- Xiangcheng Chen
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyi Hu
- School of The First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int J Mol Sci 2024; 25:3914. [PMID: 38612727 PMCID: PMC11011772 DOI: 10.3390/ijms25073914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.
Collapse
Affiliation(s)
| | | | - Juan Cui
- School of Computing, University of Nebraska—Lincoln, Lincoln, NE 68588, USA; (R.M.); (T.A.)
| |
Collapse
|
22
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
23
|
Pu X, Zhang C, Ding G, Gu H, Lv Y, Shen T, Pang T, Cao L, Jia S. Diagnostic plasma small extracellular vesicles miRNA signatures for pancreatic cancer using machine learning methods. Transl Oncol 2024; 40:101847. [PMID: 38035445 PMCID: PMC10730862 DOI: 10.1016/j.tranon.2023.101847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Identifying biomarkers may lead to easier detection and a better understanding of pathogenesis of pancreatic ductal adenocarcinoma (PDAC). METHODS Plasma small extracellular vesicles (sEV) from 106 participants, including 20 healthy controls (HC), 12 chronic pancreatitis (CP) patients, 12 benign pancreatic tumour (BPT) patients, and 58 PDAC patients, were profiled for microRNA (miRNA) sequencing. Three machine learning methods were applied to establish and evaluate the diagnostic model. RESULTS The plasma sEV miRNA diagnostic signature (d-signature) selected using the three machine learning methods could distinguish PDAC patients from non-PDAC individuals, HC, and benign pancreatic disease (BPD, CP plus BPT) both in training and validation cohort. Combining the d-signature with carbohydrate antigen 19-9 (CA19-9) performed better than with each model alone. Plasma sEV miR-664a-3p was selected by all methods and used to predict PDAC diagnosis with high accuracy combined with CA19-9. Plasma sEV miR-664a-3p was significantly positively associated with the presence of vascular invasion, lower surgery ratio, and poor differentiation. MiR-664a-3p was mainly distributed in the PDAC cancer stroma, including fibers and vessels, and was accompanied by VEGFA expression. Overexpression of miR-664a-3p could promote the epithelial-mesenchymal transition (EMT) and angiogenesis. CONCLUSION In conclusion, our study demonstrated the potential utility of the sEV-miRNA d-signature in the diagnosis of PDAC via machine learning methods. A novel sEV biomarker, miR-664a-3p, was identified for the diagnosis of PDAC. It can also potentially promote angiogenesis and metastasis, provide insight into PDAC pathogenesis, and reveal novel regulators of this disease.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongpeng Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Lv
- Department of Emergency Medicine, Sir Run Run Shaw Hospital Xiasha Campus, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Shen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianshu Pang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
25
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Stosic K, Senar OA, Tarfouss J, Bouchart C, Navez J, Van Laethem JL, Arsenijevic T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023; 13:3. [PMID: 38201207 PMCID: PMC10778087 DOI: 10.3390/cells13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant diseases, with a mortality rate being close to incidence. Due to its heterogeneity and plasticity, as well as the lack of distinct symptoms in the early phases, it is very often diagnosed at an advanced stage, resulting in poor prognosis. Traditional tissue biopsies remain the gold standard for making a diagnosis, but have an obvious disadvantage in their inapplicability for frequent sampling. Blood-based biopsies represent a non-invasive method which potentially offers easy and repeated sampling, leading to the early detection and real-time monitoring of the disease and hopefully an accurate prognosis. Given the urgent need for a reliable biomarker that can estimate a patient's condition and response to an assigned treatment, blood-based biopsies are emerging as a potential new tool for improving patients' survival and surveillance. In this article, we discuss the current advances and challenges in using liquid biopsies for pancreatic cancer, focusing on circulating tumour DNA (ctDNA), extracellular vesicles (EVs), and circulating tumour cells (CTCs), and compare the performance and reliability of different biomarkers and combinations of biomarkers.
Collapse
Affiliation(s)
- Kosta Stosic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Jawad Tarfouss
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Christelle Bouchart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Julie Navez
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
27
|
Yan H, Wen Y, Tian Z, Hart N, Han S, Hughes SJ, Zeng Y. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat Biomed Eng 2023; 7:1583-1601. [PMID: 37106152 PMCID: PMC11108682 DOI: 10.1038/s41551-023-01033-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
The use of microRNAs as clinical cancer biomarkers is hindered by the absence of accurate, fast and inexpensive assays for their detection in biofluids. Here we report a one-step and one-pot isothermal assay that leverages rolling-circle amplification and the endonuclease Cas12a for the accurate detection of specific miRNAs. The assay exploits the cis-cleavage activity of Cas12a to enable exponential rolling-circle amplification of target sequences and its trans-cleavage activity for their detection and for signal amplification. In plasma from patients with pancreatic ductal adenocarcinoma, the assay detected the miRNAs miR-21, miR-196a, miR-451a and miR-1246 in extracellular vesicles at single-digit femtomolar concentrations with single-nucleotide specificity. The assay is rapid (sample-to-answer times ranged from 20 min to 3 h), does not require specialized instrumentation and is compatible with a smartphone-based fluorescence detection and with the lateral-flow format for visual readouts. Simple assays for the detection of miRNAs in blood may aid the development of miRNAs as biomarkers for the diagnosis and prognosis of cancers.
Collapse
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Yunjie Wen
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zimu Tian
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Nathan Hart
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
28
|
Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP. Function of macrophage-derived exosomes in chronic liver disease: From pathogenesis to treatment. World J Hepatol 2023; 15:1196-1209. [DOI: 10.4254/wjh.v15.i11.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. Despite substantial research on the pathogenesis of CLD disorders, no optimal treatment is currently available for some diseases, such as liver cancer. Exosomes, which are extracellular vesicles, are composed of various cellular components. Exosomes have unique functions in maintaining cellular homeostasis and regulating cell communication, which are associated with the occurrence of disease. Furthermore, they have application potential in diagnosis and treatment by carrying diverse curative payloads. Hepatic macrophages, which are key innate immune cells, show extraordinary heterogeneity and polarization. Hence, macrophage-derived exosomes may play a pivotal role in the initiation and progression of various liver diseases. This review focuses on the effects of macrophage-derived exosomes on liver disease etiology and their therapeutic potential, which will provide new insights into alleviating the global pressure of CLD.
Collapse
Affiliation(s)
- Shi-Yi Xiang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Kai-Li Deng
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Ping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
29
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
30
|
Guo W, Ying P, Ma R, Jing Z, Ma G, Long J, Li G, Liu Z. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev 2023; 73:69-77. [PMID: 37684117 DOI: 10.1016/j.cytogfr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Pancreatic cancer is characterized by its high malignancy, insidious onset and poor prognosis. Most patients with pancreatic cancer are usually diagnosed at advanced stage or with the distant metastasis due to the lack of an effective early screening method. Liquid biopsy technology is promising in studying the occurrence, progression, and early metastasis of pancreatic cancer. In particular, exosomes are pivotal biomarkers in lipid metabolism and liquid biopsy of blood exosomes is valuable for the evaluation of pancreatic cancer. Lipid metabolism is crucial for the formation and activity of exosomes in the extracellular environment. Exosomes and lipids have a complex relationship of mutual influence. Furthermore, spatial metabolomics can quantify the levels and spatial locations of individual metabolites in cancer tissue, cancer stroma, and para-cancerous tissue in pancreatic cancer. However, the relationship among exosomes, lipid metabolism, and pancreatic cancer is also worth considering. This study mainly updates the research progress of metabolomics in pancreatic cancer, their relationship with exosomes, an important part of liquid biopsy, and their lipometabolic roles in pancreatic cancer. We also discuss the mechanisms by which possible metabolites, especially lipid metabolites through exosome transport and other processes, contribute to the recurrence and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Peiyao Ying
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Gang Ma
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jin Long
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Kim YG, Park J, Park EY, Kim SM, Lee SY. Analysis of MicroRNA Signature Differentially Expressed in Pancreatic Islet Cells Treated with Pancreatic Cancer-Derived Exosomes. Int J Mol Sci 2023; 24:14301. [PMID: 37762604 PMCID: PMC10532014 DOI: 10.3390/ijms241814301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Since the majority of patients with pancreatic cancer (PC) develop insulin resistance and/or diabetes mellitus (DM) prior to PC diagnosis, PC-induced diabetes mellitus (PC-DM) has been a focus for a potential platform for PC detection. In previous studies, the PC-derived exosomes were shown to contain the mediators of PC-DM. In the present study, the response of normal pancreatic islet cells to the PC-derived exosomes was investigated to determine the potential biomarkers for PC-DM, and consequently, for PC. Specifically, changes in microRNA (miRNA) expression were evaluated. The miRNA specimens were prepared from the untreated islet cells as well as the islet cells treated with the PC-derived exosomes (from 50 patients) and the healthy-derived exosomes (from 50 individuals). The specimens were subjected to next-generation sequencing and bioinformatic analysis to determine the differentially expressed miRNAs (DEmiRNAs) only in the specimens treated with the PC-derived exosomes. Consequently, 24 candidate miRNA markers, including IRS1-modulating miRNAs such as hsa-miR-144-5p, hsa-miR-3148, and hsa-miR-3133, were proposed. The proposed miRNAs showed relevance to DM and/or insulin resistance in a literature review and pathway analysis, indicating a potential association with PC-DM. Due to the novel approach used in this study, additional evidence from future studies could corroborate the value of the miRNA markers discovered.
Collapse
Affiliation(s)
- Young-gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Eun Young Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
32
|
Hu R, Jahan MS, Tang L. ExoPD-L1: an assistant for tumor progression and potential diagnostic marker. Front Oncol 2023; 13:1194180. [PMID: 37736550 PMCID: PMC10509558 DOI: 10.3389/fonc.2023.1194180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
The proliferation and function of immune cells are often inhibited by the binding of programmed cell-death ligand 1 (PD-L1) to programmed cell-death 1 (PD-1). So far, many studies have shown that this combination poses significant difficulties for cancer treatment. Fortunately, PD-L1/PD-1 blocking therapy has achieved satisfactory results. Exosomes are tiny extracellular vesicle particles with a diameter of 40~160 nm, formed by cells through endocytosis. The exosomes are a natural shelter for many molecules and an important medium for information transmission. The contents of exosomes are composed of DNA, RNA, proteins and lipids etc. They are crucial to antigen presentation, tumor invasion, cell differentiation and migration. In addition to being present on the surface of tumor cells or in soluble form, PD-L1 is carried into the extracellular environment by tumor derived exosomes (TEX). At this time, the exosomes serve as a medium for communication between tumor cells and other cells or tissues and organs. In this review, we will cover the immunosuppressive role of exosomal PD-L1 (ExoPD-L1), ExoPD-L1 regulatory factors and emerging approaches for quantifying and detecting ExoPD-L1. More importantly, we will discuss how targeted ExoPD-L1 and combination therapy can be used to treat cancer more effectively.
Collapse
Affiliation(s)
- Rong Hu
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Md Shoykot Jahan
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lijun Tang
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
33
|
Xia B, Liu Y, Wang J, Lu Q, Lv X, Deng K, Yang J. Emerging role of exosome-shuttled noncoding RNAs in gastrointestinal cancers: From intercellular crosstalk to clinical utility. Pharmacol Res 2023; 195:106880. [PMID: 37543095 DOI: 10.1016/j.phrs.2023.106880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Gastrointestinal cancer remains a significant global health burden. The pursuit of advancing the comprehension of tumorigenesis, along with the identification of reliable biomarkers and the development of precise therapeutic strategies, represents imperative objectives in this field. Exosomes, small membranous vesicles released by most cells, commonly carry functional biomolecules, including noncoding RNAs (ncRNAs), which are specifically sorted and encapsulated by exosomes. Exosome-mediated communication involves the release of exosomes from tumor or stromal cells and the uptake by nearby or remote recipient cells. The bioactive cargoes contained within these exosomes exert profound effects on the recipient cells, resulting in significant modifications in the tumor microenvironment (TME) and distinct alterations in gastrointestinal tumor behaviors. Due to the feasibility of isolating exosomes from various bodily fluids, exosomal ncRNAs have shown great potential as liquid biopsy-based indicators for different gastrointestinal cancers, using blood, ascites, saliva, or bile samples. Moreover, exosomes are increasingly recognized as natural delivery vehicles for ncRNA-based therapeutic interventions. In this review, we elucidate the processes of ncRNA-enriched exosome biogenesis and uptake, examine the regulatory and functional roles of exosomal ncRNA-mediated intercellular crosstalk in gastrointestinal TME and tumor behaviors, and explore their potential clinical utility in diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qing Lu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiuhe Lv
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
34
|
Takahashi K, Takeda Y, Ono Y, Isomoto H, Mizukami Y. Current status of molecular diagnostic approaches using liquid biopsy. J Gastroenterol 2023; 58:834-847. [PMID: 37470859 PMCID: PMC10423147 DOI: 10.1007/s00535-023-02024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and developing an efficient and reliable approach for its early-stage diagnosis is urgently needed. Precancerous lesions of PDAC, such as pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMN), arise through multiple steps of driver gene alterations in KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark mutations play a role in tumor initiation and progression, and their detection in bodily fluids is crucial for diagnosis. Recently, liquid biopsy has gained attention as an approach to complement pathological diagnosis, and in addition to mutation signatures in cell-free DNA, cell-free RNA, and extracellular vesicles have been investigated as potential diagnostic and prognostic markers. Integrating such molecular information to revise the diagnostic criteria for pancreatic cancer can enable a better understanding of the pathogenesis underlying inter-patient heterogeneity, such as sensitivity to chemotherapy and disease outcomes. This review discusses the current diagnostic approaches and clinical applications of genetic analysis in pancreatic cancer and diagnostic attempts by liquid biopsy and molecular analyses using pancreatic juice, duodenal fluid, and blood samples. Emerging knowledge in the rapidly advancing liquid biopsy field is promising for molecular profiling and diagnosing pancreatic diseases with significant diversity.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yohei Takeda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Ono
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
35
|
Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO, dos Santos AP. miRNome expression analysis in canine diffuse large B-cell lymphoma. Front Oncol 2023; 13:1238613. [PMID: 37711209 PMCID: PMC10499539 DOI: 10.3389/fonc.2023.1238613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lymphoma is a common canine cancer with translational relevance to human disease. Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype, contributing to almost fifty percent of clinically recognized lymphoma cases. Identifying new biomarkers capable of early diagnosis and monitoring DLBCL is crucial for enhancing remission rates. This research seeks to advance our knowledge of the molecular biology of DLBCL by analyzing the expression of microRNAs, which regulate gene expression by negatively impacting gene expression via targeted RNA degradation or translational repression. The stability and accessibility of microRNAs make them appropriate biomarkers for the diagnosis, prognosis, and monitoring of diseases. Methods We extracted and sequenced microRNAs from ten fresh-frozen lymph node tissue samples (six DLBCL and four non-neoplastic). Results Small RNA sequencing data analysis revealed 35 differently expressed miRNAs (DEMs) compared to controls. RT-qPCR confirmed that 23/35 DEMs in DLBCL were significantly upregulated (n = 14) or downregulated (n = 9). Statistical significance was determined by comparing each miRNA's average expression fold-change (2-Cq) between the DLCBL and healthy groups by applying the unpaired parametric Welch's 2-sample t-test and false discovery rate (FDR). The predicted target genes of the DEMs were mainly enriched in the PI3K-Akt-MAPK pathway. Discussion Our data point to the potential value of miRNA signatures as diagnostic biomarkers and serve as a guideline for subsequent experimental studies to determine the targets and functions of these altered miRNAs in canine DLBCL.
Collapse
Affiliation(s)
- Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nathanael I. Lichti
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Ekramy. E. Sayedahmed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
36
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
37
|
Yan H, Han S, Hughes S, Zeng Y. Extraction-free, one-pot CRISPR/Cas12a detection of microRNAs directly from extracellular vesicles. Chem Commun (Camb) 2023; 59:10165-10168. [PMID: 37531174 PMCID: PMC10478011 DOI: 10.1039/d3cc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Current methods for extracellular vesicle (EV) miRNA analysis mostly require RNA extraction, which results in a multi-step, time-consuming workflow. This study reports an extraction-free method that combines thermolysis treatment of EVs with a one-pot EXTRA-CRISPR assay, enabling the vastly simplified analysis of EV miRNAs with a comparable performance to that of the extraction-based assays.
Collapse
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Steven Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- University of Florida Health Cancer Center, Gainesville, FL 32611, USA
| |
Collapse
|
38
|
Kandeel M, Morsy MA, Alkhodair KM, Alhojaily S. Mesenchymal Stem Cell-Derived Extracellular Vesicles: An Emerging Diagnostic and Therapeutic Biomolecules for Neurodegenerative Disabilities. Biomolecules 2023; 13:1250. [PMID: 37627315 PMCID: PMC10452295 DOI: 10.3390/biom13081250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of versatile adult stem cells present in various organs. These cells give rise to extracellular vesicles (EVs) containing a diverse array of biologically active elements, making them a promising approach for therapeutics and diagnostics. This article examines the potential therapeutic applications of MSC-derived EVs in addressing neurodegenerative disorders such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Furthermore, the present state-of-the-art for MSC-EV-based therapy in AD, HD, PD, ALS, and MS is discussed. Significant progress has been made in understanding the etiology and potential treatments for a range of neurodegenerative diseases (NDs) over the last few decades. The contents of EVs are carried across cells for intercellular contact, which often results in the control of the recipient cell's homeostasis. Since EVs represent the therapeutically beneficial cargo of parent cells and are devoid of many ethical problems connected with cell-based treatments, they offer a viable cell-free therapy alternative for tissue regeneration and repair. Developing innovative EV-dependent medicines has proven difficult due to the lack of standardized procedures in EV extraction processes as well as their pharmacological characteristics and mechanisms of action. However, recent biotechnology and engineering research has greatly enhanced the content and applicability of MSC-EVs.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Khalid M. Alkhodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
39
|
Sonbhadra S, Mehak, Pandey LM. Biogenesis, Isolation, and Detection of Exosomes and Their Potential in Therapeutics and Diagnostics. BIOSENSORS 2023; 13:802. [PMID: 37622888 PMCID: PMC10452587 DOI: 10.3390/bios13080802] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
The increasing research and rapid developments in the field of exosomes provide insights into their role and significance in human health. Exosomes derived from various sources, such as mesenchymal stem cells, cardiac cells, and tumor cells, to name a few, can be potential therapeutic agents for the treatment of diseases and could also serve as biomarkers for the early detection of diseases. Cellular components of exosomes, several proteins, lipids, and miRNAs hold promise as novel biomarkers for the detection of various diseases. The structure of exosomes enables them as drug delivery vehicles. Since exosomes exhibit potential therapeutic applications, their efficient isolation from complex biological/clinical samples and precise real-time analysis becomes significant. With the advent of microfluidics, nano-biosensors are being designed to capture exosomes efficiently and rapidly. Herein, we have summarized the history, biogenesis, characteristics, functions, and applications of exosomes, along with the isolation, detection, and quantification techniques. The implications of surface modifications to enhance specificity have been outlined. The review also sheds light on the engineered nanoplatforms being developed for exosome detection and capture.
Collapse
Affiliation(s)
| | | | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (S.S.); (M.)
| |
Collapse
|
40
|
Wang X, Xia J, Yang L, Dai J, He L. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther 2023; 30:1051-1065. [PMID: 37106070 DOI: 10.1038/s41417-023-00617-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Exosomes, a kind of nano-vesicles released by various cell types, carry a variety of "cargos" including proteins, RNAs, DNAs and lipids. There is substantial evidence that exosomes are involved in intercellular communication by exchanging "cargos" among cells and play important roles in cancer development. Because of the different expressions of "cargos" carried by exosomes in biological fluids under physiological and pathological conditions, exosomes have the potential as a minimally invasive method of liquid biopsy for cancer diagnosis and prognosis. In addition, due to their good biocompatibility, safety, biodistribution and low immunogenicity, exosomes also have potential applications in the development of promising cancer treatment methods. In this review, we summarize the recent progress in the isolation and characterization techniques of exosomes. Moreover, we review the biological functions of exosomes in regulating tumor metastasis, drug resistance and immune regulation during cancer development and outline the applications of exosomes in cancer therapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingyi Xia
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Yang
- Department of Pharmacy, The people's hospital of jianyang city, Jianyang, 641400, China
| | - Jingying Dai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
41
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
42
|
Roy JW, Wajnberg G, Ouellette A, Boucher JE, Lacroix J, Chacko S, Ghosh A, Ouellette RJ, Lewis SM. Small RNA sequencing analysis of peptide-affinity isolated plasma extracellular vesicles distinguishes pancreatic cancer patients from non-affected individuals. Sci Rep 2023; 13:9251. [PMID: 37286718 DOI: 10.1038/s41598-023-36370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, mainly due to its asymptomatic nature until late-stage disease and therefore delayed diagnosis that leads to a lack of timely treatment intervention. Consequently, there is a significant need for better methods to screen populations that are at high risk of developing PDAC. Such advances would result in earlier diagnosis, more treatment options, and ultimately better outcomes for patients. Several recent studies have applied the concept of liquid biopsy, which is the sampling of a biofluid (such as blood plasma) for the presence of disease biomarkers, to develop screening approaches for PDAC; several of these studies have focused on analysis of extracellular vesicles (EVs) and their cargoes. While these studies have identified many potential biomarkers for PDAC that are present within EVs, their application to clinical practice is hindered by the lack of a robust, reproducible method for EV isolation and analysis that is amenable to a clinical setting. Our previous research has shown that the Vn96 synthetic peptide is indeed a robust and reproducible method for EV isolation that has the potential to be used in a clinical setting. We have therefore chosen to investigate the utility of the Vn96 synthetic peptide for this isolation of EVs from human plasma and the subsequent detection of small RNA biomarkers of PDAC by Next-generation sequencing (NGS) analysis. We find that analysis of small RNA from Vn96-isolated EVs permits the discrimination of PDAC patients from non-affected individuals. Moreover, analyses of all small RNA species, miRNAs, and lncRNA fragments are most effective at segregating PDAC patients from non-affected individuals. Several of the identified small RNA biomarkers have been previously associated with and/or characterized in PDAC, indicating the validity of our findings, whereas other identified small RNA biomarkers may have novel roles in PDAC or cancer in general. Overall, our results provide a basis for a clinically-amendable detection and/or screening strategy for PDAC using a liquid biopsy approach that relies on Vn96-mediated isolation of EVs from plasma.
Collapse
Affiliation(s)
- Jeremy W Roy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
43
|
Otsuka M, Kotani A. Recent advances in extracellular vesicles in gastrointestinal cancer and lymphoma. Cancer Sci 2023; 114:2230-2237. [PMID: 36851868 PMCID: PMC10236630 DOI: 10.1111/cas.15771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Extracellular vesicles (EVs) are intercellular communication agents that transfer microRNAs (miRNAs), other non-coding RNAs (ncRNAs), messenger RNAs (mRNAs), proteins, lipids, metabolites, and other molecules from donor cells (e.g., cancer cells) to recipient cells (e.g., stromal cells). In 2007, miRNAs were reported to be abundant among the ncRNAs present in EVs. Since then, many studies have investigated the functions of miRNAs and have attempted to apply these molecules to aid in the diagnosis and treatment of cancer. Research on EVs has expanded, particularly in the field of cancer, because cancer cells heavily secrete EVs. The cargo of these EVs, especially those in small EVs, such as exosomes, is assumed to work cooperatively and significantly in the tumor microenvironment and to promote metastasis. In this review, we first summarize recent studies on EVs in gastrointestinal cancer and highlight studies on human satellite II RNAs, which are a type of ncRNA found in EVs that possess repetitive sequences. Second, since several recent studies have revealed that phospholipids, which are components of EV membranes, play important roles in intercellular communication and the generation of lipid mediators in the tumor microenvironment, we review the reported roles of these molecules and discuss their potential use in the design of new cancer treatments.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology and HepatologyAcademic Field of Medicine, Density and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ai Kotani
- Department of Innovative Medical ScienceTokai University School of MedicineIseharaJapan
- Division of Hematological MalignancyInstitute of Medical SciencesTokai UniversityIseharaJapan
| |
Collapse
|
44
|
Logozzi M, Orefice NS, Di Raimo R, Mizzoni D, Fais S. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers (Basel) 2023; 15:cancers15112878. [PMID: 37296842 DOI: 10.3390/cancers15112878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels' clinical relevance and well-known biomarkers' overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in influencing both the amount and the characteristics of the exosome released by tumor cells. In fact, acidity significantly increases exosome release by tumor cells, which correlates with the number of exosomes that circulate through the body of a tumor patient.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nicola Salvatore Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
45
|
Zou X, Huang Z, Guan C, Shi W, Gao J, Wang J, Cui Y, Wang M, Xu Y, Zhong X. Exosomal miRNAs in the microenvironment of pancreatic cancer. Clin Chim Acta 2023; 544:117360. [PMID: 37086943 DOI: 10.1016/j.cca.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pancreatic cancer (PC) is highly aggressive having an extremely poor prognosis. The tumor microenvironment (TME) of PC is complex and heterogeneous. Various cellular components in the microenvironment are capable of secreting different active substances that are involved in promoting tumor development. Their release may occur via exosomes, the most abundant extracellular vesicles (EVs), that can carry numerous factors as well as act as a mean of intercellular communication. Emerging evidence suggests that miRNAs are involved in the regulation and control of many pathological and physiological processes. They can also be transported by exosomes from donor cells to recipient cells, thereby regulating the TME. Exosomal miRNAs show promise for use as future targets for PC diagnosis and prognosis, which may reveal new treatment strategies for PC. In this paper, we review the important role of exosomal miRNAs in mediating cellular communication in the TME of PC as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Central hospital of Baoji, Baoji, Shaanxi 721000, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Xu
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
46
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
47
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
48
|
Zhao Y, Tang J, Jiang K, Liu SY, Aicher A, Heeschen C. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim Biophys Acta Rev Cancer 2023; 1878:188868. [PMID: 36842769 DOI: 10.1016/j.bbcan.2023.188868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shin-Yi Liu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Research and Development Center for Immunology, China Medical University, Taichung, Taiwan
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
49
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
50
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|