1
|
Dongre DS, Saha UB, Saroj SD. Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med 2025; 57:2478317. [PMID: 40096354 PMCID: PMC11915737 DOI: 10.1080/07853890.2025.2478317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND/INTRODUCTION Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation.
Collapse
Affiliation(s)
- Devyani S. Dongre
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Ujjayni B. Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
4
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Deng ZC, Cao KX, Huang YX, Peng Z, Zhao L, Yi D, Liu M, Sun LH. Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens. SCIENCE CHINA. LIFE SCIENCES 2025; 68:836-845. [PMID: 39607604 DOI: 10.1007/s11427-024-2735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 11/29/2024]
Abstract
Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.
Collapse
Affiliation(s)
- Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Abdelqader EM, Mahmoud WS, Gebreel HM, Kamel MM, Abu-Elghait M. Correlation between gut microbiota dysbiosis, metabolic syndrome and breast cancer. Sci Rep 2025; 15:6652. [PMID: 39994329 PMCID: PMC11850770 DOI: 10.1038/s41598-025-89801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a widespread cancer with a high death rate globally. The incidence of breast cancer is expected to increase, particularly in low and middle-income countries due to environmental factors and lifestyle changes. Several risk factors, such as age, family history, hormonal and reproductive factors, have been identified to influence breast cancer development. Metabolic syndrome, is a metabolic disorder that has also been linked to breast cancer risk. The gut microbiome has been suggested as one of the environmental factors leading to breast cancer. The human microbiome is mainly colonized in the intestine by various bacterial species, including Lactobacillus, Bifidobacterium, and Streptococcus and protect the host against pathogenic microorganisms and regulate the immune system. This study included 50 female breast cancer patients and 50 healthy controls with matched ages. Stool fresh samples were taken from test and control groups and stored at - 20 °C until further investigations. DNA of the bacteria in stool samples was extracted using reverse transcription-quantitative polymerase chain reaction to check for the bacterial 16s rRNA gene. The exclusion criteria included other malignancies, recent intestinal surgery, infectious diarrhea, prolonged use of antibiotics, substance addiction, and pregnancy or lactation. Our findings exhibited that breast cancer patients had a higher incidence of metabolic syndrome (60%) compared to cancer-free controls (40%). Furthermore, breast cancer patients had significantly lower Bifidobacterium and Lactobacillus counts than the controls. No significant difference was found in Streptococcus counts between groups. These findings support the relationship between breast cancer and metabolic syndrome and suggest the potential involvement of Lactobacillus and Bifidobacterium in breast cancer pathophysiology. Our study supports the relation between breast cancer and disorder of metabolic syndrome and suggests the potential involvement of Lactobacillus and Bifidobacterium in breast cancer pathophysiology. Further research is necessary to investigate the complex interactions between genes, the environment, and the gut microbiome in breast cancer development. Understanding these interactions could lead to the progress of novel strategies for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Eslam M Abdelqader
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Walaa S Mahmoud
- Biological Anthropology Department National Research Centre, Dokki, Giza, Egypt
| | - Hassan M Gebreel
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Development, National Cancer Institute Cairo University, Cairo, Egypt
- Laboratory Development Bahyea Centre for Early Detection and Cancer Treatment, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
7
|
Arnone AA, Ansley K, Heeke AL, Howard-McNatt M, Cook KL. Gut microbiota interact with breast cancer therapeutics to modulate efficacy. EMBO Mol Med 2025; 17:219-234. [PMID: 39820166 PMCID: PMC11822015 DOI: 10.1038/s44321-024-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
The gut microbiome, or the community of microorganisms residing in the gastrointestinal tract, has emerged as an important factor in breast cancer etiology and treatment. Specifically, the impact of gut bacterial populations on breast cancer therapeutic outcomes is an emerging area of research. The microbiota's role in modifying the pharmacokinetics of chemotherapy and endocrine-targeting therapies can alter drug efficacy and toxicity profiles. In addition, the gut microbiome's capacity to regulate systemic inflammation and immune responses may influence the effectiveness of both conventional and immunotherapeutic strategies for the treatment of breast cancer. Overall, while the bidirectional interactions between the gut microbiome and breast cancer therapies are still being studied, its impact is increasingly recognized. Future research may provide more definitive insights and help develop personalized therapeutic strategies to harness the microbiome to improve breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine Ansley
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Arielle L Heeke
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Marissa Howard-McNatt
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Oh S, Kim J, Shin CM, Lee HJ, Lee HS, Park KU. Metagenomic characterization of oral microbiome signatures to predict upper gastrointestinal and pancreaticobiliary cancers: a case-control study. J Transl Med 2025; 23:20. [PMID: 39762979 PMCID: PMC11702046 DOI: 10.1186/s12967-024-05989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) and pancreaticobiliary cancers. METHODS Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis. RESULTS Significant dissimilarities in microbial composition were observed between cancer patients and controls across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups (R2 = 0.067, = 0.075, = 0.068, and = 0.044; p = 0.001, = 0.001, = 0.002, and = 0.004, respectively). Additionally, the oral microbiome composition significantly differed by the four cancer sites (p = 0.001 for EC vs. GC, EC vs. BC, EC vs. PC, GC vs. BC, and GC vs. PC; p = 0.013 for BC vs. PC). We built oral metagenomic classifiers to predict cancer and selected specific microbial taxa with diagnostic properties. For EC, the classifier differentiated cancer patients and controls with good accuracy (area under the curve [AUC] = 0.791) and included three genera: Akkermansia, Escherichia-Shigella, and Subdoligranulum. For GC, the classifier exhibited high discriminative power (AUC = 0.961); it included five genera (Escherichia-Shigella, Gemella, Holdemanella, Actinomyces, and Stomatobaculum) and three species (Eubacterium sp. oral clone EI074, Ruminococcus sp. Marseille-P328, and Leptotrichia wadei F0279). However, microbial taxa with diagnostic features for BC and PC were not identified. CONCLUSIONS These findings suggested that the oral microbiome composition may serve as an indicator of tumorigenesis in upper GI and pancreaticobiliary cancers. The development of oral metagenomic classifiers for EC and GC demonstrates the potential value of microbial biomarkers in cancer screening.
Collapse
Affiliation(s)
- Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
9
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
10
|
Li L, Zhi M, Wang S, Deng J, Cai Q, Feng D. The effect of workplace environment on coal miners' gut microbiota in a mouse model. Front Microbiol 2024; 15:1453798. [PMID: 39723143 PMCID: PMC11668784 DOI: 10.3389/fmicb.2024.1453798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules. CEBS mice showed increased fecal water content, shortened colon length, significant activation of MPO+ and CD11b+ numbers, and significant changes in IL-1b, IL-6, and IL-12 expression levels. In addition, we also found an imbalance in the proportions of Firmicutes, Bacteroidetes, Lactobacillus, and Parabacteroides in CEBS mice, resulting in significant changes in gut microbial diversity. After intervention with compound probiotics, the intestinal function of CEBS + Mix mice was improved and inflammation levels were reduced. Results indicated that stress in the coal mine workplace environment can lead to intestinal dysfunction and inflammatory damage of the colon and use of compound probiotics can improve intestinal dysfunction in CBES mice. In our study, we revealed that there is a correlation between coal mine workplace environment and diversity disorders of gut microbiota. This discovery has enhanced the relevant theories on the causes of intestinal dysfunction in coal miners and has suggested a new approach to intervention.
Collapse
Affiliation(s)
- Lei Li
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Mei Zhi
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
- Safety Supervision Department, Nanhai Department of Transportation, Foshan, China
| | - Jun Deng
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Razavi S, Amirmozafari N, Zahedi bialvaei A, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Sedighi M. Gut microbiota composition and type 2 diabetes: Are these subjects linked Together? Heliyon 2024; 10:e39464. [PMID: 39469674 PMCID: PMC11513563 DOI: 10.1016/j.heliyon.2024.e39464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Evidence suggests that changes in the composition of gut microbiota may be linked to metabolic disorders including type 2 diabetes (T2D). The present study aims to evaluate the compositional changes of the intestinal microbiota in patients with T2D as compared to healthy individuals. Methods In this case-control study, there were 18 T2D patients and 18 healthy individuals who served as controls. To profile the gut microbiota in both groups, bacterial DNA was extracted from fecal samples and analyzed using quantitative real-time polymerase chain reaction (qPCR). Results The study discovered that diabetics had significantly greater frequencies of the genus Bacteroides and the phylum Bacteroidetes than did controls (P = 0.03 and P < 0.001, respectively). Conversely, the Actinobacteria and Firmicutes phyla were significantly more abundant in the controls (P=0.01 for both). No significant differences were observed in the fecal populations of the genus Enterococcus, Clostridium clusters IV and XIVa, phylum Proteobacteria, and all bacteria between the studied groups (P=0.88, P=0.56, P=0.8, P=0.99, and P=0.7, respectively). Conclusions Our findings confirm that T2D may be associated with the gut microbiota fluctuations. These findings may be valuable for developing strategies to control or treatment T2D by restoring the intestinal microbiota through the strategic administration of specific probiotics/prebiotics and lifestyle and dietary modifications.
Collapse
Affiliation(s)
- Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi bialvaei
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Navab-Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Sedighi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
13
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024; 68:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Li M, Wang L, Lin D, Liu Z, Wang H, Yang Y, Sun C, Ye J, Liu Y. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation. ACS NANO 2024; 18:20886-20933. [PMID: 39080827 DOI: 10.1021/acsnano.4c05013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gut microbiota plays a crucial role in maintaining host homeostasis, impacting the progression and therapeutic outcomes of diseases, including inflammatory bowel disease, cancer, hepatic conditions, obesity, cardiovascular pathologies, and neurologic disorders, via immune, neural, and metabolic mechanisms. Hence, the gut microbiota is a promising target for disease therapy. The safety and precision of traditional microbiota regulation methods remain a challenge, which limits their widespread clinical application. This limitation has catalyzed a shift toward the development of multifunctional delivery systems that are predicated on microbiota modulation. Guided by bioinspired strategies, an extensive variety of naturally occurring materials and mechanisms have been emulated and harnessed for the construction of platforms aimed at the monitoring and modulation of gut microbiota. This review outlines the strategies and advantages of utilizing bioinspired principles in the design of gut microbiota intervention systems based on traditional regulation methods. Representative studies on the development of bioinspired therapeutic platforms are summarized, which are based on gut microbiota modulation to confer multiple pharmacological benefits for the synergistic management of diseases. The prospective avenues and inherent challenges associated with the adoption of bioinspired strategies in the refinement of gut microbiota modulation platforms are proposed to augment the efficacy of disease treatment.
Collapse
Affiliation(s)
- Muqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - LuLu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Demin Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunmeng Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
15
|
Ishizawa K, Tamahara T, Suzuki S, Hatayama Y, Li B, Abe M, Aoki Y, Arita R, Saito N, Ohsawa M, Kaneko S, Ono R, Takayama S, Shimada M, Kumada K, Koike T, Masamune A, Onodera K, Ishii T, Shimizu R, Kanno T. Sequential Sampling of the Gastrointestinal Tract to Characterize the Entire Digestive Microbiome in Japanese Subjects. Microorganisms 2024; 12:1324. [PMID: 39065094 PMCID: PMC11279317 DOI: 10.3390/microorganisms12071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract harbors trillions of microorganisms known to influence human health and disease, and next-generation sequencing (NGS) now enables the in-depth analysis of their diversity and functions. Although a significant amount of research has been conducted on the GI microbiome, comprehensive metagenomic datasets covering the entire tract are scarce due to cost and technical challenges. Despite the widespread use of fecal samples, integrated datasets encompassing the entire digestive process, beginning at the mouth and ending with feces, are lacking. With this study, we aimed to fill this gap by analyzing the complete metagenome of the GI tract, providing insights into the dynamics of the microbiota and potential therapeutic avenues. In this study, we delved into the complex world of the GI microbiota, which we examined in five healthy Japanese subjects. While samples from the whole GI flora and fecal samples provided sufficient bacteria, samples obtained from the stomach and duodenum posed a challenge. Using a principal coordinate analysis (PCoA), clear clustering patterns were identified; these revealed significant diversity in the duodenum. Although this study was limited by its small sample size, the flora in the overall GI tract showed unwavering consistency, while the duodenum exhibited unprecedented phylogenetic diversity. A visual heat map illustrates the discrepancy in abundance, with Fusobacteria and Bacilli dominating the upper GI tract and Clostridia and Bacteroidia dominating the fecal samples. Negativicutes and Actinobacteria were found throughout the digestive tract. This study demonstrates that it is possible to continuously collect microbiome samples throughout the human digestive tract. These findings not only shed light on the complexity of GI microbiota but also provide a basis for future research.
Collapse
Affiliation(s)
- Kota Ishizawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
| | - Toru Tamahara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Suguo Suzuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Yutaka Hatayama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Bin Li
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Ryutaro Arita
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Natsumi Saito
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Minoru Ohsawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Soichiro Kaneko
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Rie Ono
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Shin Takayama
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Muneaki Shimada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Ko Onodera
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Takeshi Kanno
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
- R & D Division of Career Education for Medical Professionals, Medical Education Center, Jichi Medical University, Shimotsuke 329-0431, Japan
| |
Collapse
|
16
|
Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, Ramanathan G. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod Sci 2024; 31:1508-1520. [PMID: 38228976 DOI: 10.1007/s43032-023-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Ganesh
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - G Usha Rani
- Department of Obstetrics And Gynecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Song HS, Kim YB, Kim JY, Roh SW, Whon TW. Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery. J Microbiol Biotechnol 2024; 34:757-764. [PMID: 38379289 DOI: 10.4014/jmb.2311.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Despite considerable advancements achieved using next-generation sequencing technologies in exploring microbial diversity, several species of the gut microbiome remain unknown. In this transformative era, culturomics has risen to prominence as a pivotal approach in unveiling realms of microbial diversity that were previously deemed inaccessible. Utilizing innovative strategies to optimize growth and culture medium composition, scientists have successfully cultured hard-to-cultivate microbes. This progress has fostered the discovery and understanding of elusive microbial entities, highlighting their essential role in human health and disease paradigms. In this review, we emphasize the importance of culturomics research on the gut microbiome and provide new theories and insights for expanding microbial diversity via the optimization of cultivation conditions.
Collapse
Affiliation(s)
- Hye Seon Song
- Division of Environmental Materials, Honam National Institute of Biological Resource (HNIBR), Mokpo 58762, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Joon Yong Kim
- Microbiome Research Institute, LISCure Biosciences Inc., Gyeonggi-do 13486, Republic of Korea
| | - Seong Woon Roh
- Microbiome Research Institute, LISCure Biosciences Inc., Gyeonggi-do 13486, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
18
|
Wu D, Zhao P, Wang C, Huasai S, Chen H, Chen A. Differences in the intestinal microbiota and association of host metabolism with hair coat status in cattle. Front Microbiol 2024; 15:1296602. [PMID: 38711970 PMCID: PMC11071169 DOI: 10.3389/fmicb.2024.1296602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The hair coat status of cattle serves as an easily observed indicator of economic value in livestock production; however, the underlying mechanism remains largely unknown. Therefore, the objective of the current study was to determine differences in the intestinal microbiota and metabolome of cattle based on a division of with either slick and shining (SHC) or rough and dull (MHC) hair coat in Simmental cows. Methods Eight SHC and eight MHC late-pregnancy Simmental cows (with similar parities, body weights, and body conditions) were selected based on their hair coat status, and blood samples (plasma) from coccygeal venipuncture and fecal samples from the rectum were collected. The intestinal microbiota (in the fecal samples) was characterized by employing 16S rRNA gene sequencing targeting the V3-V4 hypervariable region on the Illumina MiSeq PE300 platform, and plasma samples were subjected to LC-MS/MS-based metabolomics with Progenesis QI 2.3. Plasma macromolecular metabolites were examined for differences in the metabolism of lipids, proteins, mineral elements, and hormones. Results Notable differences between the SHC and MHC groups related to host hair coat status were observed in the host metabolome and intestinal microbiota (P < 0.05). The host metabolome was enriched in histidine metabolism, cysteine and methionine metabolism, and purine metabolism in the SHC group, and the intestinal microbiota were also enriched in histidine metabolism (P < 0.05). In the MHC group, the symbiotic relationship transitioned from cooperation to competition in the MHC group, and an uncoupling effect was present in the microbe-metabolite association of intestine microbiota-host interactions. The hubs mediating the relationships between intestinal microbiota and plasma metabolites were the intestinal bacterial genus g__norank_f__Eubacterium_coprostanoligenes_group, plasma inosine, triiodothyronine, and phosphorus, which could be used to differentiate cows' hair coat status (P < 0.05). Conclusion Overall, the present study identified the relationships between the features of the intestinal microbiota and host hair coat status, thereby providing evidence and a new direction (intestine microbiota-host interplay) for future studies aimed at understanding the hair coat status of cattle.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengfei Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
19
|
Filardo S, Di Pietro M, Sessa R. Current progresses and challenges for microbiome research in human health: a perspective. Front Cell Infect Microbiol 2024; 14:1377012. [PMID: 38638832 PMCID: PMC11024239 DOI: 10.3389/fcimb.2024.1377012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
It is becoming increasingly clear that the human microbiota, also known as "the hidden organ", possesses a pivotal role in numerous processes involved in maintaining the physiological functions of the host, such as nutrient extraction, biosynthesis of bioactive molecules, interplay with the immune, endocrine, and nervous systems, as well as resistance to the colonization of potential invading pathogens. In the last decade, the development of metagenomic approaches based on the sequencing of the bacterial 16s rRNA gene via Next Generation Sequencing, followed by whole genome sequencing via third generation sequencing technologies, has been one of the great advances in molecular biology, allowing a better profiling of the human microbiota composition and, hence, a deeper understanding of the importance of microbiota in the etiopathogenesis of different pathologies. In this scenario, it is of the utmost importance to comprehensively characterize the human microbiota in relation to disease pathogenesis, in order to develop novel potential treatment or preventive strategies by manipulating the microbiota. Therefore, this perspective will focus on the progress, challenges, and promises of the current and future technological approaches for microbiome profiling and analysis.
Collapse
Affiliation(s)
| | | | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
20
|
Yan Y, Zhao QH, Xu C, Wei RQ, Jiang H, Liu SJ. Anaerolentibacter hominis gen. nov. sp. nov., Diplocloster hominis sp. nov. and Pilosibacter fragilis gen. nov. sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2024; 74. [PMID: 38687183 DOI: 10.1099/ijsem.0.006359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Three Gram-positive, obligately anaerobic bacterial strains, namely CSJ-1T, CSJ-3T, and CSJ-4T, were isolated from faeces of healthy persons. They were characterized through a combination of whole-genome sequencing, phenotypic traits, and metabolomic analysis. The genome sizes of CSJ-1T, CSJ-4T, and CSJ-3T were 3.3, 3.8, and 6.1 Mbp, with DNA G+C contents of 47.2, 48.3, and 48.8 mol%, respectively. Strain CSJ-3T was identified as representing a novel species, Diplocloster hominis (type strain CSJ-3T=CGMCC 1.18033T=JCM 36512T) of the genus Diplocloster. The 16S rRNA gene sequence similarity and whole genome average nucleotide identity (gANI) of CSJ-4T to its closest related species, Diplocloster modestus ASD 4241T, were 98.3 and 91.4 %, respectively. Comparative analysis of 16S rRNA gene sequences showed 91.6 % similarity between CSJ-1T and its closest phylogenetic neighbour, Catenibacillus scindens DSM 106146T, and 93.3 % similarity between CSJ-4T and its closest relative strain, Clostridium fessum SNUG30386T. Based on the polyphasic taxonomic results, we proposed two novel genera and three novel species. Strain CSJ-1T was identified as representing a novel species of novel genus, Anaerolentibacter hominis gen. nov. sp. nov. (type strain CSJ-1T=CGMCC 1.18046T=JCM 36511T) of the family Lachnospiraceae, and strain CSJ-4T was identified as representing a novel species of novel genus Pilosibacter fragilis gen. nov. sp. nov. (type strain CSJ-4T=CGMCC 1.18026T= JCM 36513T) of the family Clostridiaceae.
Collapse
Affiliation(s)
- Yang Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qing-Hua Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Rui-Qi Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
21
|
Aroniadis OC, Grinspan AM. The Gut Microbiome: A Primer for the Clinician. Am J Gastroenterol 2024; 119:S2-S6. [PMID: 38153219 DOI: 10.14309/ajg.0000000000002583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Olga C Aroniadis
- Division of Gastroenterology and Hepatology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ari M Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
An R, Wilms E, Gerritsen J, Kim HK, Pérez CS, Besseling-van der Vaart I, Jonkers DM, Rijkers GT, de Vos WM, Masclee AA, Zoetendal EG, Troost FJ, Smidt H. Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic. Gut Microbes 2024; 16:2350173. [PMID: 38738780 PMCID: PMC11093041 DOI: 10.1080/19490976.2024.2350173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.
Collapse
Affiliation(s)
- Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Hye Kyong Kim
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Celia Seguí Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
- Infectious Diseases & Immunology, University of Utrecht, Utrecht, The Netherland
| | | | - Daisy M.A.E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger T. Rijkers
- Science Department, University College Roosevelt, Middelburg, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ad A.M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy J. Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
23
|
Purdel C, Margină D, Adam-Dima I, Ungurianu A. The Beneficial Effects of Dietary Interventions on Gut Microbiota-An Up-to-Date Critical Review and Future Perspectives. Nutrients 2023; 15:5005. [PMID: 38068863 PMCID: PMC10708505 DOI: 10.3390/nu15235005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Different dietary interventions, especially intermittent fasting, are widely used and promoted by physicians; these regimens have been studied lately for their impact on the gut microbiota composition/function and, consequently, on the general physiopathological processes of the host. Studies are showing that dietary components modulate the microbiota, and, at the same time, the host metabolism is deeply influenced by the different products resulting from nutrient transformation in the microbiota compartment. This reciprocal relationship can potentially influence even drug metabolism for chronic drug regimens, significantly impacting human health/disease. Recently, the influence of various dietary restrictions on the gut microbiota and the differences between the effects were investigated. In this review, we explored the current knowledge of different dietary restrictions on animal and human gut microbiota and the impact of these changes on human health.
Collapse
Affiliation(s)
- Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ines Adam-Dima
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
24
|
Motei DE, Beteri B, Hepsomali P, Tzortzis G, Vulevic J, Costabile A. Supplementation with postbiotic from Bifidobacterium Breve BB091109 improves inflammatory status and endocrine function in healthy females: a randomized, double-blind, placebo-controlled, parallel-groups study. Front Microbiol 2023; 14:1273861. [PMID: 38075921 PMCID: PMC10702524 DOI: 10.3389/fmicb.2023.1273861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2025] Open
Abstract
This study evaluated the effects of dietary supplementation with a postbiotic extract of Bifidobacterium breve BB091109 on pro-inflammatory cytokines levels and markers of endocrine function. A prospective, double-blind, placebo-controlled, randomized, single-centered, parallel study was conducted on a group of 40-55-year-old females. The study included 30 healthy females, divided into two groups: a supplement (n = 20) and a placebo (n = 10) groups. Blood and saliva samples were collected at baseline (wk0), after 4 weeks (wk 4) and 12 weeks (12wk) of daily supplementation (500 mg), and 4 weeks (wk 16) after termination of supplementation. The levels of fasting CRP, IL-6, IL-10, TNF-α, IFN-γ, DHEA, estradiol, estriol, progesterone, cortisol and human growth hormone were analysed. The results revealed a significant effect of the 90-day supplementation with B. breve postbiotic extract on changes in CRP, IL-6 levels, DHEA, estradiol and estriol. In conclusion, the supplementation with the B. breve postbiotic extract improved endocrine function in females over 40 years old and induced protective changes in inflammatory markers. These findings highlight the potential health benefits of this supplementation in promoting hormonal balance and reducing inflammation in this population.
Collapse
Affiliation(s)
- Diana Elena Motei
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Beyda Beteri
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | | | | | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
25
|
Zhang Y, Chen Y, Mei Y, Xu R, Zhang H, Feng X. Causal effects of gut microbiota on erectile dysfunction: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1257114. [PMID: 37928685 PMCID: PMC10620728 DOI: 10.3389/fmicb.2023.1257114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Background Several observational studies have reported the correlation between gut microbiota and the risk of erectile dysfunction (ED). However, the causal association between them remained unestablished owing to intrinsic limitations, confounding factors, and reverse causality. Therefore, the two-sample Mendelian randomization (MR) study was performed to determine the causal effect of gut microbiota on the risk of ED. Methods The MR analysis utilized the publicly available genome-wide association study (GWAS) summary-level data to explore the causal associations between gut microbiota and ED. The gut microbiota data were extracted from the MiBioGen study (N = 18,340), and the ED data were extracted from the IEU Open GWAS (6,175 ED cases and 217,630 controls). The single nucleotide polymorphisms (SNPs) served as instrumental variables (IVs) by two thresholds of P-values, the first P-value setting as <1e-05 (locus-wide significance level) and the second P-value setting as <5e-08 (genome-wide significance level). The inverse variance weighted approach was used as the primary approach for MR analysis, supplemented with the other methods. In addition, sensitivity analyses were performed to evaluate the robustness of the MR results, including Cochran's Q test for heterogeneity, the MR-Egger intercept test for horizontal pleiotropy, the Mendelian randomization pleiotropy residual sum, and outlier (MR-PRESSO) global test for outliers, and the forest test and leave-one-out test for strong influence SNPs. Results Our results presented that the increased abundance of Lachnospiraceae at family level (OR: 1.265, 95% CI: 1.054-1.519), Senegalimassilia (OR: 1.320, 95% CI: 1.064-1.638), Lachnospiraceae NC2004 group (OR: 1.197, 95% CI: 1.018-1.407), Tyzzerella3 (OR: 1.138, 95% CI: 1.017-1.273), and Oscillibacter (OR: 1.201, 95% CI: 1.035-1.393) at genus level may be risk factors for ED, while the increased abundance of Ruminococcaceae UCG013 (OR: 0.770, 95% CI: 0.615-0.965) at genus level may have a protective effect on ED. No heterogeneity or pleiotropy was found based on the previously described set of sensitivity analyses. Conclusion Our MR analysis demonstrated that the gut microbiota had inducing and protective effects on the risk of ED. The results provide clinicians with novel insights into the treatment and prevention of ED in the future. Furthermore, our study also displays novel insights into the pathogenesis of microbiota-mediated ED.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuxi Chen
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Urology, First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Xingliang Feng
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Urology, First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
26
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
27
|
Lim EY, Song EJ, Shin HS. Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2023; 33:1111-1118. [PMID: 37164760 PMCID: PMC10580882 DOI: 10.4014/jmb.2301.01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Ji Song
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
28
|
Zhao J, Pan X, Hao D, Zhao Y, Chen Y, Zhou S, Peng H, Zhuang Y. Causal associations of gut microbiota and metabolites on sepsis: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1190230. [PMID: 37781358 PMCID: PMC10537222 DOI: 10.3389/fimmu.2023.1190230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Background Sepsis stands as a dire medical condition, arising when the body's immune response to infection spirals into overdrive, paving the way for potential organ damage and potential mortality. With intestinal flora's known impact on sepsis but a dearth of comprehensive data, our study embarked on a two-sample Mendelian randomization analysis to probe the causal link between gut microbiota and their metabolites with severe sepsis patients who succumbed within a 28-day span. Methods Leveraging data from Genome-wide association study (GWAS) and combining it with data from 2,076 European descendants in the Framingham Heart Study, single-nucleotide polymorphisms (SNPs) were employed as Instrumental Variables (IVs) to discern gene loci affiliated with metabolites. GWAS summary statistics for sepsis were extracted from the UK Biobank consortium. Results In this extensive exploration, 93 distinct genome-wide significant SNPs correlated with gut microbial metabolites and specific bacterial traits were identified for IVs construction. Notably, a substantial link between Coprococcus2 and both the incidence (OR of 0.80, 95% CI: 0.68-0.94, P=0.007) and the 28-day mortality rate (OR 0.48, 95% CI: 0.27-0.85, P=0.013) of sepsis was observed. The metabolite α-hydroxybutyrate displayed a marked association with sepsis onset (OR=1.08, 95% CI: 1.02-1.15, P=0.006) and its 28-day mortality rate (OR=1.17, 95% CI: 1.01-1.36, P=0.029). Conclusion This research unveils the intricate interplay between the gut microbial consortium, especially the genus Coprococcus, and the metabolite α-hydroxybutyrate in the milieu of sepsis. The findings illuminate the pivotal role of intestinal microbiota and their metabolites in sepsis' pathogenesis, offering fresh insights for future research and hinting at novel strategies for sepsis' diagnosis, therapeutic interventions, and prognostic assessments.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Pan
- Department of Gerontology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Hao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Xu J, Molin G, Davidson S, Roth B, Sjöberg K, Håkansson Å. CRP in Outpatients with Inflammatory Bowel Disease Is Linked to the Blood Microbiota. Int J Mol Sci 2023; 24:10899. [PMID: 37446076 DOI: 10.3390/ijms241310899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The circulation is a closed system that has been assumed to be free from bacteria, but evidence for the existence of a low-density blood microbiota is accumulating. The present study aimed to map the blood microbiota of outpatients with Crohn's disease (CD) or with ulcerative colitis (UC) by 16S metagenomics. A diverse microbiota was observed in the blood samples. Regardless of the type of disease, the alpha diversity of the microbiota was positively associated with C-reactive protein (CRP). The blood microbiota had a surprisingly high proportion of Proteobacteria in comparison with human oral and colonic microbiotas. There was no clear difference in the overall pattern of the microbiota between CD and UC. A non-template control (NTC) was included in the whole process to control for the potential contamination from the environment and reagents. Certain bacterial taxa were concomitantly detected in both blood samples and NTC. However, Acinetobacter, Lactobacillus, Thermicanus and Paracoccus were found in blood from both CD and UC patients but not in NTC, indicating the existence of a specific blood-borne microbiota in the patients. Achromobacter dominated in all blood samples, but a minor amount was also found in NTC. Micrococcaceae was significantly enriched in CD, but it was also detected in high abundance in NTC. Whether the composition of the blood microbiota could be a marker of a particular phenotype in inflammatory bowel disease (IBD) or whether the blood microbiota could be used for diagnostic or therapeutic purposes deserves further attention.
Collapse
Affiliation(s)
- Jie Xu
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden
| | - Göran Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden
| | - Sanna Davidson
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Bodil Roth
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Åsa Håkansson
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| |
Collapse
|
30
|
Luo M, Sun M, Wang T, Zhang S, Song X, Liu X, Wei J, Chen Q, Zhong T, Qin J. Gut microbiota and type 1 diabetes: a two-sample bidirectional Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1163898. [PMID: 37313342 PMCID: PMC10258312 DOI: 10.3389/fcimb.2023.1163898] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
Objective The real causal relationship between human gut microbiota and T1D remains unclear and difficult to establish. Herein, we adopted a two-sample bidirectional mendelian randomization (MR) study to evaluate the causality between gut microbiota and T1D. Methods We leveraged publicly available genome-wide association study (GWAS) summary data to perform MR analysis. The gut microbiota-related GWAS data from 18,340 individuals from the international consortium MiBioGen were used. The summary statistic data for T1D (n = 264,137) were obtained from the latest release from the FinnGen consortium as the outcome of interest. The selection of instrumental variables conformed strictly to a series of preset inclusion and exclusion criteria. MR-Egger, weighted median, inverse variance weighted (IVW), and weighted mode methods were used to assess the causal association. The Cochran's Q test, MR-Egger intercept test, and leave-one-out analysis were conducted to identify heterogeneity and pleiotropy. Results At the phylum level, only Bacteroidetes was indicated to have causality on T1D (OR = 1.24, 95% CI = 1.01-1.53, P = 0.044) in the IVW analysis. When it comes to their subcategories, Bacteroidia class (OR = 1.28, 95% CI = 1.06-1.53, P = 0.009, P FDR = 0.085), Bacteroidales order (OR = 1.28, 95% CI = 1.06-1.53, P = 0.009, P FDR = 0.085), and Eubacterium eligens group genus (OR = 0.64, 95% CI = 0.50-0.81, P = 2.84×10-4, P FDR = 0.031) were observed to have a causal relationship with T1D in the IVW analysis. No heterogeneity and pleiotropy were detected. Conclusions The present study reports that Bacteroidetes phylum, Bacteroidia class, and Bacteroidales order causally increase T1D risk, whereas Eubacterium eligens group genus, which belongs to the Firmicutes phylum, causally decreases T1D risk. Nevertheless, future studies are warranted to dissect the underlying mechanisms of specific bacterial taxa's role in the pathophysiology of T1D.
Collapse
Affiliation(s)
- Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoying Liu
- Changsha Medical University Public Health Institute, Changsha, China
- The Hospital of Trade-Business in Hunan Province, Changsha, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Taowei Zhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
31
|
Chen JH, Zeng LY, Zhao YF, Tang HX, Lei H, Wan YF, Deng YQ, Liu KX. Causal effects of gut microbiota on sepsis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1167416. [PMID: 37234519 PMCID: PMC10206031 DOI: 10.3389/fmicb.2023.1167416] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Recent studies had provided evidence that the gut microbiota is associated with sepsis. However, the potential causal relationship remained unclear. METHODS The present study aimed to explore the causal effects between gut microbiota and sepsis by performing Mendelian randomization (MR) analysis utilizing publicly accessible genome-wide association study (GWAS) summary-level data. Gut microbiota GWAS (N = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for sepsis were gained from the UK Biobank (sepsis, 10,154 cases; 452,764 controls). Two strategies were used to select genetic variants, i.e., single nucleotide polymorphisms (SNPs) below the locus-wide significance level (1 × 10-5) and the genome-wide statistical significance threshold (5 × 10-8) were chosen as instrumental variables (IVs). The inverse variance weighted (IVW) was used as the primary method for MR study, supplemented by a series of other methods. Additionally, a set of sensitivity analysis methods, including the MR-Egger intercept test, Mendelian randomized polymorphism residual and outlier (MR-PRESSO) test, Cochran's Q test, and leave-one-out test, were carried out to assess the robustness of our findings. RESULTS Our study suggested that increased abundance of Deltaproteobacteria, Desulfovibrionales, Catenibacterium, and Hungatella were negatively associated with sepsis risk, while Clostridiaceae1, Alloprevotella, LachnospiraceaeND3007group, and Terrisporobacter were positively correlated with the risk of sepsis. Sensitivity analysis revealed no evidence of heterogeneity and pleiotropy. CONCLUSION This study firstly found suggestive evidence of beneficial or detrimental causal associations of gut microbiota on sepsis risk by applying MR approach, which may provide valuable insights into the pathogenesis of microbiota-mediated sepsis and strategies for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Jie-Hai Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Ying Zeng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Feng Zhao
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Xuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Lei
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Fei Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Qiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
33
|
Gai Z, Dong Y, Xu F, Zhang J, Yang Y, Wang Y. Changes in the gut microbiota composition of healthy young volunteers after administration of Lacticaseibacillus rhamnosus LRa05: A placebo-controlled study. Front Nutr 2023; 10:1105694. [PMID: 36998912 PMCID: PMC10043436 DOI: 10.3389/fnut.2023.1105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The gut microbiota promotes gastrointestinal health in humans; however, the effect of probiotics on the gut microbiota of healthy adults has not been documented clearly. This placebo-controlled study was conducted to assess the effect of Lacticaseibacillus rhamnosus LRa05 supplementation on the gut microbiota of healthy adults. The subjects (N = 100) were randomized 1:1 to receive (1) maltodextrin (placebo, CTL group) and (2) maltodextrin + strain LRa05 (1 × 1010 colony-forming units/day, LRa05 group). The duration of the intervention was 4 weeks, and changes in the gut microbiota from before to after the intervention were investigated using 16S rRNA high-throughput sequencing. In terms of alpha diversity, no significant difference in the composition of the gut microbiota was found between the LRa05 and CTL groups. 16S rRNA sequencing analysis showed that the relative abundance of Lacticaseibacillus significantly increased after supplementation with LRa05. Furthermore, a decreasing trend in the abundance of Sellimonas and a significant decrease in the salmonella infection pathway were observed in the LRa05 group compared with the CTL group. These findings indicate the potential of LRa05 to colonize the human gut and reduce the abundance of harmful bacteria in the microbiota.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Yao Dong
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
- *Correspondence: Fei Xu,
| | - Junli Zhang
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Yujiao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
| | - Yuwen Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
| |
Collapse
|
34
|
Schirò G, Iacono S, Balistreri CR. The Role of Human Microbiota in Myasthenia Gravis: A Narrative Review. Neurol Int 2023; 15:392-404. [PMID: 36976669 PMCID: PMC10053295 DOI: 10.3390/neurolint15010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fluctuating weakness of the skeletal muscles. Although antibodies against the neuromuscular junction components are recognized, the MG pathogenesis remains unclear, even if with a well-known multifactorial character. However, the perturbations of human microbiota have been recently suggested to contribute to MG pathogenesis and clinical course. Accordingly, some products derived from commensal flora have been demonstrated to have anti-inflammatory effects, while other have been shown to possess pro-inflammatory properties. In addition, patients with MG when compared with age-matched controls showed a distinctive composition in the oral and gut microbiota, with a typical increase in Streptococcus and Bacteroides and a reduction in Clostridia as well as short-chain fatty acid reduction. Moreover, restoring the gut microbiota perturbation has been evidenced after the administration of probiotics followed by an improvement of symptoms in MG cases. To highlight the role of the oral and gut microbiota in MG pathogenesis and clinical course, here, the current evidence has been summarized and reviewed.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
35
|
Yuan C, Fan J, Jiang L, Ye W, Chen Z, Wu W, Huang Q, Qian L. Integrated Analysis of Gut Microbiome and Liver Metabolome to Evaluate the Effects of Fecal Microbiota Transplantation on Lipopolysaccharide/D-galactosamine-Induced Acute Liver Injury in Mice. Nutrients 2023; 15:nu15051149. [PMID: 36904149 PMCID: PMC10005546 DOI: 10.3390/nu15051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982171
| |
Collapse
|
36
|
Studying Fungal-Bacterial Relationships in the Human Gut Using an In Vitro Model (TIM-2). J Fungi (Basel) 2023; 9:jof9020174. [PMID: 36836289 PMCID: PMC9963012 DOI: 10.3390/jof9020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The complex microbial community found in the human gut consist of members of multiple kingdoms, among which are bacteria and fungi. Microbiome research mainly focuses on the bacterial part of the microbiota, thereby neglecting interactions that can take place between bacteria and fungi. With the rise of sequencing techniques, the possibilities to study cross-kingdom relationships has expanded. In this study, fungal-bacterial relationships were investigated using the complex, dynamic computer-controlled in vitro model of the colon (TIM-2). Interactions were investigated by disruption of either the bacterial or fungal community by the addition of antibiotics or antifungals to TIM-2, respectively, compared to a control without antimicrobials. The microbial community was analyzed with the use of next generation sequencing of the ITS2 region and the 16S rRNA. Moreover, the production of SCFAs was followed during the interventions. Correlations between fungi and bacteria were calculated to investigate possible cross-kingdom interactions. The experiments showed that no significant differences in alpha-diversity were observed between the treatments with antibiotics and fungicide. For beta-diversity, it could be observed that samples treated with antibiotics clustered together, whereas the samples from the other treatments were more different. Taxonomic classification was done for both bacteria and fungi, but no big shifts were observed after treatments. At the level of individual genera, bacterial genus Akkermansia was shown to be increased after fungicide treatment. SCFAs levels were lowered in samples treated with antifungals. Spearman correlations suggested that cross-kingdom interactions are present in the human gut, and that fungi and bacteria can influence each other. Further research is required to gain more insights in these interactions and their molecular nature and to determine the clinical relevance.
Collapse
|
37
|
Li J, Qu W, Hu C, Liu Z, Yan H. Antidepressants amitriptyline, fluoxetine, and traditional Chinese medicine Xiaoyaosan caused alterations in gut DNA virome composition and function in rats exposed chronic unpredictable mild stress. Front Microbiol 2023; 14:1132403. [PMID: 37125190 PMCID: PMC10140408 DOI: 10.3389/fmicb.2023.1132403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background In clinical practice, antidepressant drugs are widely used to treat depression. Previous studies have attention to the impact of antidepressants on the bacterial microbiome, while the role of these drugs in the gut virome is still unclear. Methods In this study, we estimated the effects of antidepressant amitriptyline (Ami), fluoxetine (Flu), and traditional Chinese medicine Xiaoyaosan (XYS) administration on gut viral composition and function in a chronic unpredictable mild stress (CUMS)-induced depression rat model based on shotgun metagenomic sequencing. Results The results showed that treatment with Ami, Flu, and XYS significantly changed the gut viral composition compared with the CUMS-induced rats. At the family level, the abundance of f_unclassified_Caudovirales in CUMS rats was remarkably lower than in the HC rats, nevertheless, XYS significantly recovered the abundance of Caudovirales. Meanwhile, the abundance of Podoviridae was expanded in CUMS rats compared with the HC rats, and the profile was then significantly reduced after XYS treatment. Furthermore, both antidepressants and XYS increased the abundance of Siphoviridae compared with the CUMS rats, but only Ami treatments had significant differences. Subsequent function annotation further implied that Ami, Flu, and XYS showed to involve an alteration of the diverse viral functions, such as carbohydrate metabolism, xenobiotics biodegradation and metabolism, community-prokaryotes, translation, and neurodegenerative disease. Additionally, the co-occurrence network displayed that there are complex interactions between viral operational taxonomic units (vOTUs) represented by temperate phages and the majority of bacterial genera in the intestine ecosystem. Conclusion Our study proved for the first time that depression is characterized by massive alterations and functional distortion of the gut viruses, and after oral administration of Ami, Flu, and XYS could affect disordered gut virome, which could be a novel target in depression.
Collapse
Affiliation(s)
- Jialin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wan Qu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chengcheng Hu
- Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Zongbao Liu
- Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
- *Correspondence: Zongbao Liu,
| | - He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
- He Yan,
| |
Collapse
|
38
|
Sanz Morales P, Wijeyesekera A, Robertson MD, Jackson PPJ, Gibson GR. The Potential Role of Human Milk Oligosaccharides in Irritable Bowel Syndrome. Microorganisms 2022; 10:microorganisms10122338. [PMID: 36557589 PMCID: PMC9781515 DOI: 10.3390/microorganisms10122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is the most common gastrointestinal (GI) disorder in Western populations and therefore a major public health/economic concern. However, despite extensive research, psychological and physiological factors that contribute to the aetiology of IBS remain poorly understood. Consequently, clinical management of IBS is reduced to symptom management through various suboptimal options. Recent evidence has suggested human milk oligosaccharides (HMOs) as a potential therapeutic option for IBS. Here, we review literature concerning the role of HMOs in IBS, including data from intervention and in vitro trials. HMO supplementation shows promising results in altering the gut microbiota and improving IBS symptoms, for instance by stimulating bifidobacteria. Further research in adults is required into HMO mechanisms, to confirm the preliminary results available to date and recommendations of HMO use in IBS.
Collapse
Affiliation(s)
- Patricia Sanz Morales
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
- Correspondence: ; Tel.: +44-7843865554
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Margaret Denise Robertson
- Department of Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Peter P. J. Jackson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Glenn R. Gibson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| |
Collapse
|
39
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
40
|
Tan C, Zhao W, Wen W, Chen X, Ma Z, Yu G. Unraveling the effects of sulfamethoxazole on the composition of gut microbiota and immune responses in Stichopus variegatus. Front Microbiol 2022; 13:1032873. [DOI: 10.3389/fmicb.2022.1032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this work was to reveal the changes in gut microbiota composition and immune responses of sea cucumber (Stichopus variegatus) after being affected by different doses of sulfamethoxazole. In this study, the bacterial 16S rRNA of gut microbiota were analyzed by high-throughput sequencing, and the activities of immune enzymes [lysozyme (LZM), phenoloxidase (PO), alkaline phosphatase (AKP), and acid phosphatase (ACP)] in the gut of S. variegatus were determined. The results showed that the gut microbiota presented a lower richness in the antibiotic treatment groups compared with the control group, and there were significant differences among the dominant bacteria of different concentration treatments. At the genus level, the abundance of Escherichia, Exiguobacterium, Acinetobacter, Pseudomonas, and Thalassotalea were significantly decreased in the 3 mg/L treatment group, while Vibrio was significantly increased. Furthermore, the 6 mg/L treatment group had less effect on these intestinal dominant bacteria, especially Vibrio. The changes in relative abundance of Vibrio at the species level indicated that lower concentrations of sulfamethoxazole could enhance the enrichment of Vibrio mediterranei and Vibrio fortis in S. variegatus more than higher concentrations of sulfamethoxazole. Meanwhile, the 3 mg/L treatment group significantly increased the activities of PO, AKP, and ACP, and decreased the activity of LZM. These results suggested that lower doses of sulfamethoxazole have a greater effect on the gut microbiota composition and immune responses in S. variegatus and may increase the risk of host infection.
Collapse
|
41
|
Brown G, Hoedt EC, Keely S, Shah A, Walker MM, Holtmann G, Talley NJ. Role of the duodenal microbiota in functional dyspepsia. Neurogastroenterol Motil 2022; 34:e14372. [PMID: 35403776 PMCID: PMC9786680 DOI: 10.1111/nmo.14372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common and debilitating gastrointestinal disorder attributed to altered gut-brain interactions. While the etiology of FD remains unknown, emerging research suggests the mechanisms are likely multifactorial and heterogenous among patient subgroups. Small bowel motor disturbances, visceral hypersensitivity, chronic microinflammation, and increased intestinal tract permeability have all been linked to the pathogenesis of FD. Recently, alterations to the gut microbiome have also been implicated to play an important role in the disease. Changes to the duodenal microbiota may either trigger or be a consequence of immune and neuronal disturbances observed in the disease, but the mechanisms of influence of small intestinal flora on gastrointestinal function and symptomatology are unknown. PURPOSE This review summarizes and synthesizes the literature on the link between the microbiota, low-grade inflammatory changes in the duodenum and FD. This review is not intended to provide a complete overview of FD or the small intestinal microbiota, but instead outline some of the key conceptual advances in understanding the interactions between altered gastrointestinal bacterial communities; dietary factors; host immune activation; and stimulation of the gut-brain axes in patients with FD versus controls. Current and emerging treatment approaches such as dietary interventions and antibiotic or probiotic use that have demonstrated symptom benefits for patients are reviewed, and their role in modulating the host-microbiota is discussed. Finally, suggested opportunities for diagnostic and therapeutic improvements for patients with this condition are presented.
Collapse
Affiliation(s)
- Georgia Brown
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia
| | - Emily C. Hoedt
- AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia,School of Biomedical Sciences and PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia,Hunter Medical Research InstituteNew Lambton HeightsNewcastleNew South WalesAustralia
| | - Simon Keely
- AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia,School of Biomedical Sciences and PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia,Hunter Medical Research InstituteNew Lambton HeightsNewcastleNew South WalesAustralia
| | - Ayesha Shah
- AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia,Faculty of Medicine and Faculty of Health and Behavioural SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Marjorie M. Walker
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia
| | - Gerald Holtmann
- AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia,Faculty of Medicine and Faculty of Health and Behavioural SciencesThe University of QueenslandSt. LuciaQueenslandAustralia,Department of Gastroenterology & HepatologyPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Nicholas J. Talley
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,AGIRA (Australian Gastrointestinal Research Alliance)NewcastleNew South WalesAustralia,NHMRC Centre of Research Excellence in Digestive HealthNewcastleNew South WalesAustralia,Hunter Medical Research InstituteNew Lambton HeightsNewcastleNew South WalesAustralia
| |
Collapse
|
42
|
Jeong MK, Min BH, Choi YR, Hyun JY, Park HJ, Eom JA, Won SM, Jeong JJ, Oh KK, Gupta H, Ganesan R, Sharma SP, Yoon SJ, Choi MR, Kim DJ, Suk KT. Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods 2022; 11:2703. [PMID: 36076888 PMCID: PMC9455821 DOI: 10.3390/foods11172703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut-liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
43
|
Puhlmann ML, de Vos WM. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front Immunol 2022; 13:954845. [PMID: 36059540 PMCID: PMC9434118 DOI: 10.3389/fimmu.2022.954845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary fibers contribute to structure and storage reserves of plant foods and fundamentally impact human health, partly by involving the intestinal microbiota, notably in the colon. Considerable attention has been given to unraveling the interaction between fiber type and gut microbiota utilization, focusing mainly on single, purified fibers. Studying these fibers in isolation might give us insights into specific fiber effects, but neglects how dietary fibers are consumed daily and impact our digestive tract: as intrinsic structures that include the cell matrix and content of plant tissues. Like our ancestors we consume fibers that are entangled in a complex network of plants cell walls that further encapsulate and shield intra-cellular fibers, such as fructans and other components from immediate breakdown. Hence, the physiological behavior and consequent microbial breakdown of these intrinsic fibers differs from that of single, purified fibers, potentially entailing unexplored health effects. In this mini-review we explain the difference between intrinsic and isolated fibers and discuss their differential impact on digestion. Subsequently, we elaborate on how food processing influences intrinsic fiber structure and summarize available human intervention studies that used intrinsic fibers to assess gut microbiota modulation and related health outcomes. Finally, we explore current research gaps and consequences of the intrinsic plant tissue structure for future research. We postulate that instead of further processing our already (extensively) processed foods to create new products, we should minimize this processing and exploit the intrinsic health benefits that are associated with the original cell matrix of plant tissues.
Collapse
Affiliation(s)
- Marie-Luise Puhlmann
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Marie-Luise Puhlmann,
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
45
|
La Barbera L, Macaluso F, Fasano S, Grasso G, Ciccia F, Guggino G. Microbiome Changes in Connective Tissue Diseases and Vasculitis: Focus on Metabolism and Inflammation. Int J Mol Sci 2022; 23:ijms23126532. [PMID: 35742974 PMCID: PMC9224234 DOI: 10.3390/ijms23126532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The microbial community acts as an active player in maintaining homeostasis and immune functions through a continuous and changeable cross-talk with the host immune system. Emerging evidence suggests that altered microbial composition, known as dysbiosis, might perturb the delicate balance between the microbiota and the immune system, triggering inflammation and potentially contributing to the pathogenesis and development of chronic inflammatory diseases. This review will summarize the current evidence about the microbiome-immunity cross-talk, especially focusing on the microbiota alterations described in patients with rheumatic diseases and on the recent findings concerning the interaction between microbiota, metabolic function, and the immune system.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Federica Macaluso
- Rheumatology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, AUSL-IRCCS, Via Giovanni Amendola, 2, 42122 Reggio Emilia, Italy;
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Serena Fasano
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Francesco Ciccia
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
- Correspondence: ; Tel.: +39-091-655-2148
| |
Collapse
|
46
|
Watane A, Raolji S, Cavuoto K, Galor A. Microbiome and immune-mediated dry eye: a review. BMJ Open Ophthalmol 2022; 7:e000956. [PMID: 36161855 PMCID: PMC9214397 DOI: 10.1136/bmjophth-2021-000956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022] Open
Abstract
In this review, we aim to summarise key articles that explore relationships between the gut and ocular surface microbiomes (OSMs) and immune-mediated dry eye. The gut microbiome has been linked to the immune system by way of stimulating or mitigating a proinflammatory or anti-inflammatory lymphocyte response, which may play a role in the severity of autoimmune diseases. Although the 'normal' gut microbiome varies among individuals and demographics, certain autoimmune diseases have been associated with characteristic gut microbiome changes. Less information is available on relationships between the OSM and dry eye. However, microbiome manipulation in multiple compartments has emerged as a therapeutic strategy, via diet, prebiotics and probiotics and faecal microbial transplant, in individuals with various autoimmune diseases, including immune-mediated dry eye.
Collapse
Affiliation(s)
- Arjun Watane
- Department of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, USA
| | - Shyamal Raolji
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Kara Cavuoto
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| |
Collapse
|
47
|
Wang Y, Li L, Zhao X, Sui S, Wang Q, Shi G, Xu H, Zhang X, He Y, Gu J. Intestinal Microflora Changes in Patients with Mild Alzheimer's Disease in a Chinese Cohort. J Alzheimers Dis 2022; 88:563-575. [PMID: 35662119 DOI: 10.3233/jad-220076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Understanding the relationship between Alzheimer's disease (AD) and intestinal flora is still a major scientific topic that continues to advance. OBJECTIVE To determine characterized changes in the intestinal microbe community of patients with mild AD. METHODS Comparison of the 16S ribosomal RNA (rRNA) high-throughput sequencing data was obtained from the Illumina MiSeq platform of fecal microorganisms of the patients and healthy controls (HC) which were selected from cohabiting caregivers of AD patients to exclude environmental and dietary factors. RESULTS We found that the abundance of several bacteria taxa in AD patients was different from that in HC at the genus level, such as Anaerostipes, Mitsuokella, Prevotella, Bosea, Fusobacterium, Anaerotruncus, Clostridium, and Coprobacillus. Interestingly, the abundance of Akkermansia, an emerging probiotic, increased significantly in the AD group compared with that in the HC group. Meanwhile, the quantity of traditional probiotic Bifidobacteria of the AD group also rose. CONCLUSION These alterations in fecal microbiome of the AD group indicate that patients with mild AD have unique gut microbial characteristics. These specific AD-associated intestinal microbes could serve as novel potential targets for early intervention of AD.
Collapse
Affiliation(s)
- Yilin Wang
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Xiaodong Zhao
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Shaomei Sui
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Qi Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Guizhi Shi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huilian Xu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiujun Zhang
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan He
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
48
|
Shah A, Talley NJ, Holtmann G. Current and Future Approaches for Diagnosing Small Intestinal Dysbiosis in Patients With Symptoms of Functional Dyspepsia. Front Neurosci 2022; 16:830356. [PMID: 35600619 PMCID: PMC9121133 DOI: 10.3389/fnins.2022.830356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The development and application of next generation sequencing technologies for clinical gastroenterology research has provided evidence that microbial dysbiosis is of relevance for the pathogenesis of gastrointestinal and extra-intestinal diseases. Microbial dysbiosis is characterized as alterations of diversity, function, and density of the intestinal microbes. Emerging evidence suggests that alterations of the gastrointestinal microbiome are important for the pathophysiology of a variety of functional gastrointestinal conditions, e.g., irritable bowel syndrome (IBS) and functional dyspepsia (FD), also known as disorders of brain-gut axis interaction. Clinicians have for many years recognized that small intestinal bacterial overgrowth (SIBO) is typified by a microbial dysbiosis that is underpinned by abnormal bacterial loads in these sites. SIBO presents with symptoms which overlap with symptoms of FD and IBS, point toward the possibility that SIBO is either the cause or the consequence of functional gastrointestinal disorders (FGIDs). More recently, new terms including "intestinal methanogen overgrowth" and "small intestinal fungal overgrowth" have been introduced to emphasize the contribution of methane production by archea and fungi in small intestinal dysbiosis. There is emerging data that targeted antimicrobial treatment of SIBO in patients with FD who simultaneously may or may not have IBS, results in symptom improvement and normalization of positive breath tests. However, the association between SIBO and FGIDs remains controversial, since widely accepted diagnostic tests for SIBO are lacking. Culture of jejunal fluid aspirate has been proposed as the "traditional gold standard" for establishing the diagnosis of SIBO. Utilizing jejunal fluid culture, the results can potentially be affected by cross contamination from oropharyngeal and luminal microbes, and there is controversy regarding the best cut off values for SIBO diagnosis. Thus, it is rarely used in routine clinical settings. These limitations have led to the development of breath tests, which when compared with the "traditional gold standard," have sub-optimal sensitivity and specificity for SIBO diagnosis. With newer diagnostic approaches-based upon applications of the molecular techniques there is an opportunity to characterize the duodenal and colonic mucosa associated microbiome and associated gut microbiota dysbiosis in patients with various gastrointestinal and extraintestinal diseases. Furthermore, the role of confounders like psychological co-morbidities, medications, dietary practices, and environmental factors on the gastrointestinal microbiome in health and disease also needs to be explored.
Collapse
Affiliation(s)
- Ayesha Shah
- Faculty of Medicine and Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Gerald Holtmann
- Faculty of Medicine and Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
| |
Collapse
|
49
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
50
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|