1
|
Konar GJ, Lingan AL, Vallone KT, Nguyen TD, Flickinger ZR, Patton JG. Depletion of Polypyrimidine tract binding protein 1 (ptbp1) activates Müller glia-derived proliferation during zebrafish retina regeneration via modulation of the senescence secretome. Exp Eye Res 2025; 257:110420. [PMID: 40355064 DOI: 10.1016/j.exer.2025.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Polypyrimidine Tract Binding protein 1 (PTB) is an alternative splicing factor linked to neuronal induction and maturation. Previously, knockdown experiments supported a model in which PTB can function as a potent reprogramming factor, able to elicit direct glia-to-neuron conversion in vivo, in both the brain and retina. However, later lineage tracing and genetic knockouts of PTB did not support direct neuronal reprogramming. Nevertheless, consistent with the PTB depletion experiments, we show that antisense knockdown of PTB (ptbp1a) in the zebrafish retina can activate Müller glia-derived proliferation and that depletion of PTB can further enhance proliferation when combined with acute NMDA damage. The effects of PTB are consistent with a role in controlling key senescence and pro-inflammatory genes that are part of the senescence secretome that initiates retina regeneration.
Collapse
Affiliation(s)
- Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey L Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kyle T Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tu D Nguyen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
3
|
Gandhi M, Haider S, Chang HZY, Kazlauskas A. The Role of Endothelial Senescence in the Pathogenesis of Diabetic Retinopathy. Int J Mol Sci 2025; 26:5211. [PMID: 40508021 PMCID: PMC12154289 DOI: 10.3390/ijms26115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 06/16/2025] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM). Key drivers of DR include mitochondrial dysfunction, oxidative stress, and chronic inflammation, which lead to premature senescence of cells within the retinal vasculature. Senolytics improve outcomes in both animal models and in patients with severe forms of DR. In this review, we discuss (i) the role of endothelial senescence in each stage of DR pathogenesis, (ii) methods for detecting senescence in cultured endothelial cells and retinal vessels, and (iii) potential mechanistic explanations for how cells within retinal vessels resist DM-driven senescence.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; (M.G.); (H.Z.Y.C.)
| | - Shahzaib Haider
- Chicago School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Helena Zin Ying Chang
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; (M.G.); (H.Z.Y.C.)
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; (M.G.); (H.Z.Y.C.)
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Zhang S, Liu J, Zhao H, Gao Y, Ren C, Zhang X. What do You Need to Know after Diabetes and before Diabetic Retinopathy? Aging Dis 2025:AD.2025.0289. [PMID: 40354381 DOI: 10.14336/ad.2025.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes mellitus. Current clinical diagnostic criteria mainly base on visible vascular structure changes, which are insufficient to identify diabetic patients without clinical DR (NDR) but with dysfunctional retinopathy. This review focuses on retinal endothelial cells (RECs), the first cells to sense and respond to elevated blood glucose. As blood glucose rises, RECs undergo compensatory and transitional phases, and the correspondingly altered molecules are likely to become biomarkers and targets for early prediction and treatment of NDR with dysfunctional retinopathy. This article elaborated the possible pathophysiological processes focusing on RECs and summarized recently published and reliable biomarkers for early screening and emerging intervention strategies for NDR patients with dysfunctional retinopathy. Additionally, references for clinical medication selection and lifestyle recommendations for this population are provided. This review aims to deepen the understanding of REC biology and NDR pathophysiology, emphasizes the importance of early detection and intervention, and points out future directions to improve the diagnosis and treatment of NDR with dysfunctional retinopathy and to reduce the occurrence of DR.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Laboratory for Clinical Medicine, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Laboratory for Clinical Medicine, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Xuxiang Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Klier S, Dananberg J, Masaki L, Bhisitkul RB, Khanani AM, Maturi R, Salehi-Had H, Mallinckrodt CH, Rathmell JM, Ghosh A, Sapieha P. Safety and Efficacy of Senolytic UBX1325 in Diabetic Macular Edema. NEJM EVIDENCE 2025; 4:EVIDoa2400009. [PMID: 40261111 DOI: 10.1056/evidoa2400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND We tested the ability of a single intravitreal injection of foselutoclax (hereafter UBX1325), a novel senolytic small molecule inhibitor of antiapoptotic protein B-cell lymphoma-extra large, to mitigate the impact of diabetic macular edema. METHODS Patients with diabetic macular edema with prior suboptimal response to anti-vascular endothelial growth factor treatment were randomly assigned (1:1) to either a single intravitreal injection of 10 μg of UBX1325 or sham and were followed for up to 48 weeks. The primary trial objective was to evaluate the safety and side-effect profile of UBX1325 as assessed by ocular and systemic treatment-emergent adverse events (TEAEs). Our secondary objective was to probe efficacy, defined as mean changes from baseline for UBX1325 versus sham in best corrected visual acuity measured in Early Treatment of Diabetic Retinopathy Study (ETDRS) letters (range, 0-100 letters, higher scores indicate better vision) and retinal structure. RESULTS Between June 2021 and April 2022, 65 participants (32.3% women) were randomly assigned to either UBX1325 (n=32) or sham (n=33). There were four TEAEs of Grade 3 or greater in the sham group, of which three were considered serious, while there were five in the UBX1325 group of Grade 3 or greater and considered serious. There were no apparent between-group differences with respect to vital signs, electrocardiograms, or routine blood chemistries. For the secondary outcome of efficacy, the difference between UBX1325 and sham in mean change to week 48 in best corrected visual acuity was 5.6 more ETDRS letters (95% confidence interval, -1.5 to 12.7). CONCLUSIONS In this sham-controlled trial there were no TEAEs that led to discontinuation of treatment with UBX1325 compared with sham. There were trends suggestive of potential efficacy; larger trials are needed to further evaluate these findings. (Funded by UNITY Biotechnology; ClinicalTrials.gov number, NCT04857996.).
Collapse
Affiliation(s)
| | | | | | | | - Arshad M Khanani
- Sierra Eye Associates, Reno, NV, and Reno School of Medicine, The University of Nevada, Reno, NV
| | - Raj Maturi
- Midwest Eye Institute, Indianapolis
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis
| | - Hani Salehi-Had
- Retina Associates of Southern California, Huntington Beach, CA
| | | | | | | | - Przemyslaw Sapieha
- UNITY Biotechnology, San Francisco
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal
| |
Collapse
|
6
|
Tartau CG, Boboc IKS, Mititelu-Tartau L, Bogdan M, Buca BR, Pavel LL, Amalinei C. Exploring the Protective Effects of Traditional Antidiabetic Medications and Novel Antihyperglycemic Agents in Diabetic Rodent Models. Pharmaceuticals (Basel) 2025; 18:670. [PMID: 40430489 PMCID: PMC12114790 DOI: 10.3390/ph18050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 Diabetes (T2D) is a complex metabolic disorder that affects multiple organs, leading to severe complications in the pancreas, kidneys, liver, and heart. Prolonged hyperglycemia, along with oxidative stress and chronic inflammation, plays a crucial role in accelerating tissue damage, significantly increasing the risk of diabetic complications such as nephropathy, hepatopathy, and cardiovascular disease. This review evaluates the protective effects of various antidiabetic treatments on organ tissues affected by T2D, based on findings from experimental animal models. Metformin, a first-line antidiabetic agent, has been widely recognized for its ability to reduce inflammation and oxidative stress, thereby mitigating diabetes-induced organ damage. Its protective role extends beyond glucose regulation, offering benefits such as improved mitochondrial function and reduced fibrosis in affected tissues. In addition to traditional therapies, new classes of antidiabetic drugs, including sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists not only improve glycemic control but also exhibit nephroprotective and cardioprotective properties by reducing glomerular hyperfiltration, oxidative stress, and inflammation. Similarly, GLP-1 receptor agonists have been associated with reduced hepatic steatosis and enhanced cardiovascular function. Preclinical studies suggest that tirzepatide, a dual GLP-1/gastric inhibitory polypeptide receptor agonist may offer superior metabolic benefits compared to conventional GLP-1 agonists by improving β-cell function, enhancing insulin sensitivity, and reducing fatty liver progression. Despite promising preclinical results, differences between animal models and human physiology pose a challenge. Further clinical research is needed to confirm these effects and refine treatment strategies. Future T2D management aims to go beyond glycemic control, emphasizing organ protection and long-term disease prevention.
Collapse
Affiliation(s)
- Cosmin Gabriel Tartau
- Department of Morphofunctional Sciences I, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.G.T.); (C.A.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Beatrice Rozalina Buca
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.)
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.G.T.); (C.A.)
| |
Collapse
|
7
|
Yuan J, Huang R, Nao J, Dong X. The role of semaphorin 3A in the pathogenesis and progression of Alzheimer's disease and other aging-related diseases: A comprehensive review. Pharmacol Res 2025; 215:107732. [PMID: 40222695 DOI: 10.1016/j.phrs.2025.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Aging serves as a pivotal factor in the etiology of numerous diseases, such as Alzheimer's disease (AD), Parkinson's disease, diabetes, osteoarthritis, atherosclerosis and aging-related macular degeneration. Notably, these diseases often interact with AD through various pathways, facilitating the onset or progression of one another. Semaphorin 3 A (Sema3A), a protein that is essential for axonal guidance during neural development, has recently been identified as a novel regulator in the pathogenesis and progression of multiple aging-related diseases. This article provides a comprehensive review of the expression patterns and mechanisms of action of Sema3A in these diseases. Specifically, Sema3A influences the occurrence and development of aging-related diseases by participating in oxidative stress, inflammatory responses, apoptosis, and synaptic plasticity. Therefore, therapeutic strategies targeting Sema3A present promising avenues for delaying the progression of aging-related diseases and offer novel insights and strategies for their treatment.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
8
|
Fickweiler W, Sampani K, Markel DS, Levine SR, Sun JK, Gardner TW. Advancing Toward a World Without Vision Loss From Diabetes: Insights From The Mary Tyler Moore Vision Initiative Symposium 2024 on Curing Vision Loss From Diabetes. Transl Vis Sci Technol 2025; 14:12. [PMID: 40338731 PMCID: PMC12077579 DOI: 10.1167/tvst.14.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 05/10/2025] Open
Abstract
The Mary Tyler Moore Vision Initiative (MTM Vision) honors Mary Tyler Moore's commitment to ending vision loss from diabetes. Founded by Moore's husband, Dr. S. Robert Levine, MTM Vision aims to accelerate breakthroughs in diabetic retinal disease (DRD). At the MTM Vision Symposium 2024 on Curing Vision Loss from Diabetes, experts highlighted the urgent need for updated DRD staging systems, clinically relevant endpoints, and novel biomarkers to detect early disease changes. MTM Vision is advancing two clinical trials in collaboration with the DRCR Retina Network, launching a public awareness campaign, and welcoming Boehringer Ingelheim as the first founding industry member of its pre-competitive Consortium. Speakers emphasized big-data strategies and artificial intelligence (AI)-driven tools to improve DRD diagnosis, risk prediction, and personalized treatment. They also showcased new efforts to bridge academic discoveries with industry expertise, illustrating promising work on vascular regeneration and cellular senescence that may yield future therapies. The MTM Vision Biorepository and Resource Center is expanding tissue collections, enabling multi-omics analyses to study DRD mechanisms. Patient voices were central to the discussion, with calls for enhanced patient-reported outcomes, caregiver support, and broader education on DRD's risks. The symposium also underscored the importance of integrating mental health, quality of life measures, and ongoing patient input to guide clinical research.
Collapse
Affiliation(s)
- Ward Fickweiler
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Ma Y, Zhang Z, Cao X, Guo D, Huang S, Xie L, Wu M, Li J, Li C, Chu Y, Jiang S, Hao Y, Wang C, Zhong X, Ju R, Zhang F, Liu C, Wei Y. Semaphorin 6A phase separation sustains a histone lactylation-dependent lactate buildup in pathological angiogenesis. Proc Natl Acad Sci U S A 2025; 122:e2423677122. [PMID: 40244673 PMCID: PMC12036978 DOI: 10.1073/pnas.2423677122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
Ischemic retinal diseases are major causes of blindness worldwide and are characterized by pathological angiogenesis. Epigenetic alterations in response to metabolic shifts in endothelial cells (ECs) suffice to underlie excessive angiogenesis. Lactate accumulation and its subsequent histone lactylation in ECs contribute to vascular disorders. However, the regulatory mechanism of establishing and sustaining lactylation modification remains elusive. Here, we showed that lactate accumulation induced histone lactylations on H3K9 and H3K18 in neovascular ECs in the proliferative stage of oxygen-induced retinopathy. Joint CUT&Tag and scRNA-seq analyses identified Prmt5 as a target of H3K9la and H3K18la in isolated retinal ECs. EC-specific deletion of Prmt5 since the early stage of revascularization suppressed a positive feedback loop of lactate production and histone lactylation, thus inhibiting neovascular tuft formation. Mechanistically, the C-terminal intrinsically disorder region (IDR) of the transmembrane semaphorin 6A (SEMA6A) forms liquid-liquid phase separation condensates to recruit RHOA and P300, facilitating P300 phosphorylation and histone lactylation cycle. Deletion of endothelial Sema6A reduced H3K9la and H3K18la at the promoter of PRMT5 and diminished its expression. The induction of histone lactylation by SEMA6A-IDR and its pro-angiogenic effect were abrogated by deletion of Prmt5. Our study illustrates a sustainable histone lactylation machinery driven by phase separation-dependent lactyltransferase activation in dysregulated vascularization.
Collapse
Affiliation(s)
- Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Xiaolian Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Shuting Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Lijing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Mingjuan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Junru Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Chenxin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Yu Chu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Shuxin Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Yu Hao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou510060, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou510080, China
| |
Collapse
|
10
|
Konar GJ, Vallone KT, Nguyen TD, Patton JG. Analysis of the senescence secretome during zebrafish retina regeneration. FRONTIERS IN AGING 2025; 6:1569422. [PMID: 40308558 PMCID: PMC12040975 DOI: 10.3389/fragi.2025.1569422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Introduction Zebrafish possess the innate ability to regenerate any lost or damaged retinal cell type with Müller glia serving as resident stem cells. Recently, we discovered that this process is aided by a population of damage-induced senescent immune cells. As part of the Senescence Associated Secretory Phenotype (SASP), senescent cells secrete numerous factors that can play a role in the modulation of inflammation and remodeling of the retinal microenvironment during regeneration. However, the identity of specific SASP factors that drive initiation and progression of retina regeneration remains unclear. Materials and Methods We mined the SASP Atlas and publicly available RNAseq datasets to identify common, differentially expressed SASP factors after retina injury. These datasets included two distinct acute damage regimens, as well as two chronic, genetic models of retina degeneration. We identified overlapping factors between these models and used genetic knockdown experiments, qRT/PCR and immunohistochemical staining to test a role for one of these factors (npm1a). Results We discovered an overlapping set of 31 SASP-related regeneration factors across all data sets and damage paradigms. These factors are upregulated after damage with functions that span the innate immune system, autophagic processing, cell cycle regulation, and cellular stress responses. From among these, we show that depletion of Nucleophosmin 1 (npm1a) inhibits retina regeneration and decreases senescent cell detection after damage. Discussion Our data suggest that differential expression of SASP factors promotes initiation and progression of retina regeneration after both acute and chronic retinal damage. The existence of a common, overlapping set of 31 factors provides a group of novel therapeutic targets for retina regeneration studies.
Collapse
Affiliation(s)
| | | | | | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Song WQ, Zhong WF, Li ZH, Liu D, Ren JJ, Shen D, Gao J, Chen PL, Yang J, Wang XM, You FF, Li C, Chen H, Xie JH, Mao C. Biological Age Acceleration, Genetic Susceptibility, and Incident Glaucoma Risk. Invest Ophthalmol Vis Sci 2025; 66:47. [PMID: 40244607 PMCID: PMC12013680 DOI: 10.1167/iovs.66.4.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose To evaluate the association of biological age acceleration with incident glaucoma risk and examine whether genetic predisposition modifies it. Methods We included 318,556 UK Biobank participants without baseline glaucoma. Biological age was calculated using the Klemera-Doubal method Biological Age (KDM-BA) and PhenoAge algorithms. Hazard ratios (HRs) and 95% confidence intervals (CIs) of the association between biological age acceleration and incident glaucoma, and their interaction with genetic risk were analyzed by Cox regression models. Mendelian randomization analyses investigated causal associations. Results After a median follow-up of 13.5 years, 6553 participants developed glaucoma. Biological age acceleration was associated with an increased glaucoma risk. Each 5-year increment in biological age acceleration was linked to higher glaucoma risk (KDM-BA acceleration: HR, 1.12, 95% CI, 1.07-1.16; PhenoAge acceleration, HR, 1.09, 95% CI, 1.06-1.13). Biologically older participants had a higher glaucoma risk than younger participants (KDM-BA acceleration, HR, 1.10, 95% CI, 1.05-1.16; PhenoAge acceleration, HR, 1.07, 95% CI, 1.02-1.13). Genetic risk modified these relationships (all P for interactions < 0.05). Biologically older participants with high genetic risk had the highest glaucoma risk (KDM-BA acceleration, HR, 2.33, 95% CI, 2.15-2.52; PhenoAge acceleration, HR, 2.21, 95% CI, 2.05-2.38). No causal relationships were found in the Mendelian randomization analysis. Conclusions Biological age acceleration was associated with an increased glaucoma risk, and this relationship was modified by genetic risk. However, no causal relationship was established, and further research is needed to investigate the nature of the association.
Collapse
Affiliation(s)
- Wei-Qi Song
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Fang Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiao-Jiao Ren
- School of Health Services Management, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Shen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei-Liang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Yang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Meng Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuan Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Hao Xie
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ge Q, Yang J, Huang F, Dai X, Chen C, Guo J, Wang M, Zhu M, Shao Y, Xia Y, Zhou Y, Peng J, Deng S, Shi J, Hu Y, Zhang H, Wang Y, Wang X, Li XM, Chen Z, Shu Y, Zhu JM, Zhang J, Shen Y, Duan S, Xu S, Shen L, Chen J. Multimodal single-cell analyses reveal molecular markers of neuronal senescence in human drug-resistant epilepsy. J Clin Invest 2025; 135:e188942. [PMID: 40026248 PMCID: PMC11870744 DOI: 10.1172/jci188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
The histopathological neurons in the brain tissue of drug-resistant epilepsy exhibit aberrant cytoarchitecture and imbalanced synaptic circuit function. However, the gene expression changes of these neurons remain unknown, making it difficult to determine the diagnosis or to dissect the mechanism of drug-resistant epilepsy. By integrating whole-cell patch clamp recording and single-cell RNA-seq approaches, we identified a transcriptionally distinct subset of cortical pyramidal neurons. These neurons highly expressed genes CDKN1A (P21), CCL2, and NFKBIA, which associate with mTOR pathway, inflammatory response, and cellular senescence. We confirmed the expression of senescent marker genes in a subpopulation of cortical pyramidal neurons with enlarged soma size in the brain tissue of drug-resistant epilepsy. We further revealed the expression of senescent cell markers P21, P53, COX2, γ-H2AX, and β-Gal, and reduction of nuclear integrity marker Lamin B1 in histopathological neurons in the brain tissue of patients with drug-resistant epilepsy with different pathologies, but not in control brain tissue with no history of epilepsy. Additionally, chronic, but not acute, epileptic seizures induced senescent marker expression in cortical neurons in mouse models of drug-resistant epilepsy. These results provide important molecular markers for histopathological neurons and what we believe to be new insights into the pathophysiological mechanisms of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiachao Yang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yijie Shao
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxian Xia
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiachen Shi
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yiqi Hu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Center for Brain Science and Brain-inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Brain Health Center, the Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Shumin Duan
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shengjin Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Li YC, Huang KH, Yang Y, Gau SY, Tsai TH, Lee CY. Dose-Dependent Relationship Between Long-Term Metformin Use and the Risk of Diabetic Retinopathy: A Population-Based Cohort Study. Clin Drug Investig 2025; 45:125-136. [PMID: 39939507 PMCID: PMC11876261 DOI: 10.1007/s40261-025-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND OBJECTIVE Recent research has raised concerns about the association between metformin treatment in patients with diabetes mellitus (DM) and an increased risk of diabetic retinopathy. We sought to investigate this relationship, specifically examining if metformin use affects diabetic retinopathy risk in a dose-dependent manner. METHODS This study was a secondary data analysis based on a nationwide population database in Taiwan. Patients with new-onset DM, an age of 20 years or older, and a diagnosis of type 2 DM received at any time during 2002-2013 were included in the study. Patients diagnosed with new-onset type 2 DM between 2002 and 2013 were enrolled as the study population. We divided them into two groups: those treated with metformin and those treated with sulfonylureas. A Cox proportional hazards model was employed to estimate the risk of diabetic retinopathy after 5 years of follow-up, including cumulative defined daily dose and intensity of metformin treatment. RESULTS A total of 241,231 patients received treatment with metformin, while 152,617 patients were treated with sulfonylureas. Compared with patients treated with sulfonylureas, patients who received metformin treatment, at a cumulative defined daily dose < 30, had a lower risk of diabetic retinopathy (adjusted hazard ratio = 0.77; 95% confidence interval 0.60-0.98). However, those with varying defined daily doses, especially at a higher metformin treatment level (> 25 defined daily dose), had a 2.43 times higher risk of diabetic retinopathy (95% confidence interval 1.37-4.30) compared with patients treated with sulfonylureas. CONCLUSIONS Patients with DM treated with a lower cumulative dosage of metformin showed beneficial effects that were associated with a lower risk of diabetic retinopathy. In contrast, a higher intensity of metformin use had a greater risk of diabetic retinopathy.
Collapse
Affiliation(s)
- Yu-Ching Li
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Division of Family Medicine, Yuan Rung Hospital, Changhua, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Yih Yang
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, 110 Jian-Guo North Road, Section 1, Taichung, 40242, Taiwan.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Chi H, Ma L, Zeng F, Wang X, Peng P, Bai X, Zhang T, Yin W, Yu Y, Yang L, Zhou Q, Wei C, Shi W. Senolytic Treatment Alleviates Corneal Allograft Rejection Through Upregulation of Angiotensin-Converting Enzyme 2 (ACE2). Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39913165 PMCID: PMC11806429 DOI: 10.1167/iovs.66.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Allograft rejection remains a major cause of failure in high-risk corneal transplants, but the underlying mechanisms are not fully understood. This study aimed to investigate the contribution of transplantation stress-induced cellular senescence to corneal allograft rejection and to elucidate the associated molecular mechanisms. Methods Age-matched murine corneal transplantation models were established. Cellular senescence was evaluated using senescence-associated β-galactosidase (SA-β-Gal) staining, western blot, and immunofluorescence staining. The role of cellular senescence in corneal allograft rejection was analyzed using p16 knockout mice and adoptive transfer experiments. Senolytic treatment with ABT-263 was administered intraperitoneally to evaluate its effects on corneal allograft rejection. RNA sequencing and pharmacological approaches were employed to identify the underlying mechanisms. Results Surgical injury induced a senescence-like phenotype in both donor corneas and recipient corneal beds, characterized by an increased accumulation of SA-β-Gal-positive cells in the corneal endothelium and stroma and elevated expression of senescence markers p16 and p21. Using genetic and adoptive transfer models, transplantation stress-induced senescence was shown to exacerbate corneal allograft rejection. Importantly, clearance of senescent cells by ABT-263 significantly suppressed ocular alloresponses and immune rejection. Mechanistically, RNA sequencing and loss-of-function experiments demonstrated that the anti-rejection effects of senolytic treatment were closely dependent on angiotensin-converting enzyme 2 (ACE2). Conclusions These findings highlight transplantation stress-induced senescence as a pivotal pathogenic factor in corneal allograft rejection. Senolytic therapy emerges as a potential novel strategy to mitigate transplant rejection and improve corneal allograft survival.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Fanxing Zeng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Wenhui Yin
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Russo L, Babboni S, Andreassi MG, Daher J, Canale P, Del Turco S, Basta G. Treating Metabolic Dysregulation and Senescence by Caloric Restriction: Killing Two Birds with One Stone? Antioxidants (Basel) 2025; 14:99. [PMID: 39857433 PMCID: PMC11763027 DOI: 10.3390/antiox14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase. The dysregulation of these pathways contributes to insulin resistance, impaired autophagy, exacerbated oxidative stress, and mitochondrial dysfunction, further enhancing cellular senescence and systemic metabolic derangements. On the other hand, dysfunctional endothelial cells and adipocytes contribute to systemic inflammation, reduced nitric oxide production, and altered lipid metabolism. Numerous factors, including extracellular vesicles, mediate pathological communication between the vascular system and adipose tissue, amplifying metabolic imbalances. Meanwhile, caloric restriction (CR) emerges as a potent intervention to counteract overnutrition effects, improve mitochondrial function, reduce oxidative stress, and restore metabolic balance. CR modulates pathways such as IIS, mTOR, and sirtuins, enhancing glucose and lipid metabolism, reducing inflammation, and promoting autophagy. CR can extend the health span and mitigate age-related diseases by delaying cellular senescence and improving healthy endothelial-adipocyte interactions. This review highlights the crosstalk between endothelial cells and adipocytes, emphasizing CR potential in counteracting overnutrition-induced senescence and restoring vascular homeostasis.
Collapse
Affiliation(s)
- Lara Russo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura 100, Lebanon;
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| |
Collapse
|
16
|
Lin JB, Apte RS. The Landscape of Vascular Endothelial Growth Factor Inhibition in Retinal Diseases. Invest Ophthalmol Vis Sci 2025; 66:47. [PMID: 39836404 PMCID: PMC11756608 DOI: 10.1167/iovs.66.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
17
|
Stürzbecher L, Strauss O. Associations of the Adaptive Immune System and Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:3-7. [PMID: 39930164 DOI: 10.1007/978-3-031-76550-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
In recent years, the adaptive immune system has gained a significant amount of attention due to its potential role in age-related macular degeneration (AMD). Orthologous approaches including cellular and animal models as well as pilot clinical trials have paved the way to understand the occurrence, alterations, and interactions of T cell populations in the retina. Interestingly, the notions of the involvement of the adaptive immune system in AMD have also gained support through recent findings in various neurodegenerative and chronic low-grade diseases, including multiple sclerosis, Parkinson's disease, or arteriosclerosis. In this group of pathologies, cells of the adaptive immune system bypass immune barriers and fuel inflammatory processes at immune-privileged sites. These findings have pointed at immunosenescence as a critical pro-inflammatory process involving T cell biology. Using a murine model relevant to the pathophysiology of geographic atrophy, we have demonstrated that specific populations of memory T cells are recruited to the retina prior to neurodegeneration. The investigation of these retinas at later degenerative stages revealed the presence of activated cytotoxic T cells at the injury site. These compelling results support the participation of the adaptive immune system in retina degeneration and highlight the potential of T cell populations as an early therapeutic target to slow the progression of AMD.
Collapse
Affiliation(s)
- Lucas Stürzbecher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Ophthalmology, Berlin, Germany
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Olaf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Ophthalmology, Berlin, Germany.
| |
Collapse
|
18
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
19
|
Das T, Takkar B, Padakandala SR, Shivaji S. Gut and intraocular fluid dysbiosis in people with type 2 diabetes-related retinopathy in India: A case for further research. Indian J Ophthalmol 2025; 73:S144-S150. [PMID: 39446808 PMCID: PMC11834920 DOI: 10.4103/ijo.ijo_966_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE To explore the relationship between gut microbiome, gut mycobiome, and intraocular (aqueous humor) microbiome dysbiosis in people with type 2 diabetes (T2DM) and diabetic retinopathy (DR). DESIGN Multiple case-control studies. METHODS We evaluated three groups of people: healthy controls (HC), people with T2DM without retinopathy, and those with DR. The study samples included fecal matter (30-50 g) and aqueous humor (0.05-0.1 mL). After amplicon sequencing, we analyzed microbiome profiles (V3-V4 region of bacterial 16S rRNA gene) and mycobiome (ITS2 region of fungal rRNA gene). The main outcome measures were relative abundance, α and β diversity, and dysbiotic bacteria and fungi, analyzed based on the inferred functions of the taxa. RESULTS We recruited 82 people for gut microbiome (30 HC, 24 DM, and 28 DR); 75 people for gut mycobiome (30 HC, 21 DM, and 24 DR); and 12 people for aqueous humor microbiome (4 each HC, DM, and DR) studies. Generally, there was an increased abundance of pro-inflammatory and pathogenic microorganisms and a decreased abundance of anti-inflammatory and probiotic microorganisms. The differences were higher between HC and DM/DR than between DM and DR. In aqueous humor, there was a wider separation in microbiome profiles of people with DR than their gut microbiome. CONCLUSION The gut and aqueous humor microbiota of people with diabetes and DR may differ from those without diabetes. Given these unique observations in individuals living in one region of India, further research involving people from different regions is required to identify indices for possible regional or global use.
Collapse
Affiliation(s)
- Taraprasad Das
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, LV Prasad Eye Institute, Hyderabad, Telangana, India
- IHOPE Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalem R Padakandala
- Professor Brien Holen Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Medical Biotechnology, Malla Reddy University, Hyderabad, Telangana, India
| | - Sisinthy Shivaji
- Professor Brien Holen Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Hata M, Hata M, Dejda A, Pilon F, Diaz-Marin R, Fournier F, Joyal JS, Cagnone G, Ochi Y, Crespo-Garcia S, Wilson AM, Sapieha P. Corticosteroids reduce pathological angiogenesis yet compromise reparative vascular remodeling in a model of retinopathy. Proc Natl Acad Sci U S A 2024; 121:e2411640121. [PMID: 39693344 DOI: 10.1073/pnas.2411640121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy. In a mouse model of oxygen-induced retinopathy, we report that dexamethasone, a broad-spectrum corticosteroid, suppresses initial formation of pathological preretinal neovascularization in early stages of disease, yet blunts reparative inflammation by impairing distinct myeloid cell populations, and hence reduces beneficial vascular remodeling in later stages of disease. Using genetic depletion of distinct components of the innate immune response, we demonstrate that CX3C chemokine receptor 1-expressing microglia contribute to angiogenesis. Conversely, myeloid cells expressing lysozyme 2 are recruited to sites of damaged blood vessels and pathological neovascularization where they partake in a reparative process that ultimately restores circulatory homeostasis to the retina. Hence, the Janus-faced properties of anti-inflammatory drugs should be considered, particularly in stages associated with persistent neovascularization.
Collapse
Affiliation(s)
- Masayuki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Maki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Agnieszka Dejda
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérique Pilon
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérik Fournier
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Gael Cagnone
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | - Sergio Crespo-Garcia
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Ariel M Wilson
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
21
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Xiao JF, Luo W, Mani A, Barba H, Solanki A, Droho S, Lavine JA, Skondra D. Intravitreal Metformin Protects Against Choroidal Neovascularization and Light-Induced Retinal Degeneration. Int J Mol Sci 2024; 25:11357. [PMID: 39518910 PMCID: PMC11545389 DOI: 10.3390/ijms252111357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD), a leading cause of blindness in older adults, presents a challenging pathophysiology involving choroidal neovascularization (CNV) and retinal degeneration. Current treatments relying on intravitreal (IVT) administration of anti-angiogenic agents are costly and of moderate effectiveness. Metformin, the common anti-diabetic drug, has been associated with decreased odds of developing AMD. Studies have shown that metformin can mitigate cellular aging, neoangiogenesis, and inflammation across multiple diseases. This preclinical study assessed metformin's impact on vessel growth using choroidal explants before exploring IVT metformin's effects on laser-induced CNV and light-induced retinal degeneration in C57BL/6J and BALB/cJ mice, respectively. Metformin reduced new vessel growth in choroidal explants in a dose-dependent relationship. Following laser induction, IVT metformin suppressed CNV and decreased peripheral infiltration of IBA1+ macrophages/microglia. Furthermore, IVT metformin protected against retinal thinning in response to light-induced degeneration. IVT metformin downregulated genes in the choroid and retinal pigment epithelium which are associated with angiogenesis and inflammation, two key processes that drive nAMD progression. These findings underscore metformin's capacity as an anti-angiogenic and neuroprotective agent, demonstrating this drug's potential as an accessible option to help manage nAMD.
Collapse
Affiliation(s)
- Jason F. Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Wendy Luo
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Amir Mani
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Hugo Barba
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | | | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| |
Collapse
|
23
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
24
|
Macha N, Yu M, Sapieha P, Klier S, Ghosh A, White L, Maturi RK. Multifocal Electroretinography Changes after UBX1325 (Foselutoclax) Treatment in Neovascular Age-Related Macular Degeneration. J Clin Med 2024; 13:5540. [PMID: 39337030 PMCID: PMC11433175 DOI: 10.3390/jcm13185540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: The objective of this study was to determine the treatment effect of foselutoclax in neovascular age-related macular degeneration (AMD) by multifocal electroretinography (mfERG) and evaluate mfERG as a potential clinical endpoint in AMD studies. Methods: A total of five subjects were included in the study who had active choroidal neovascularization and a history of at least two anti-vascular endothelial growth factor (VEGF) injections in the last 6 months. Subjects received a 50 µL intravitreal injection of foselutoclax at the baseline visit and Weeks 4, 24, and 28 of the study period. Results: After foselutoclax treatment, the largest improvement in the mfERG N1-P1 response density occurred at Week 8 as three of five subjects achieved a ≥20% gain. In addition, three of five subjects demonstrated a BCVA improvement of ≥5 ETDRS letters over baseline at Weeks 4, 8, and 24. The mean change in BCVA demonstrated statistical significance in Weeks 4 and 8, showing increases of 5 (p = 0.02) and 6.2 (p = 0.02) letters, respectively. Conclusions: Foselutoclax treatment was shown to have the potential to recover outer retinal function as determined by mfERG and BCVA at approximately Week 8 of treatment.
Collapse
Affiliation(s)
- Nathan Macha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Retina Partners Midwest, and Midwest Eye Institute, Carmel, IN 46290, USA
| | - Minzhong Yu
- Department of Ophthalmology, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Przemyslaw Sapieha
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sharon Klier
- UNITY Biotechnology, South San Francisco, CA 94080, USA
| | - Anirvan Ghosh
- UNITY Biotechnology, South San Francisco, CA 94080, USA
| | - Lorraine White
- Retina Partners Midwest, and Midwest Eye Institute, Carmel, IN 46290, USA
| | - Raj K Maturi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Retina Partners Midwest, and Midwest Eye Institute, Carmel, IN 46290, USA
| |
Collapse
|
25
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
26
|
Bai L, Wang Y. Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Exp Cell Res 2024; 441:114170. [PMID: 39019426 DOI: 10.1016/j.yexcr.2024.114170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Diabetic retinopathy (DR) is a major cause of vision loss and blindness in adults. Cellular senescence was involved in the pathogenesis of early-stage DR and is positively correlated with progression. Thus, our study aimed at exploring the effect and potential mechanism of Mesenchymal stem cells-derived exosomes (MSCs-EXOs) on Retinal Pigment Epithelial (RPE) cells senescence at an early stage of DR in vivo and in vitro. ARPE-19 cells were incubated in high glucose (HG) medium mixed with MSCs-EXOs to observe the changes in cell viability. Senescence-associated β-galactosidase (SA-β-gal) staining, Western blot and qRT-PCR were used to assess the expression of senescence-related genes and antioxidant mediators. Quantitative Real-Time polymerase chain reaction (qRT-PCR), Optical coherence tomography (OCT) Hematoxylin and eosin (HE) staining and Electroretinogram (ERG) were respectively used to verify cellular senescence, the structure and function of the retina. Our findings demonstrated that MSCs-EXOs inhibited HG-induced senescence in ARPE-19 cells. Furthermore, MSCs-EXOs reduced HG-induced cell apoptosis and oxidative stress levels while promoting cell proliferation. Mechanistically, HG suppressed PI3K/AKT phosphorylation as well as nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with its downstream target gene expression in ARPE-19 cells. However, MSCs-EXOs reversed these changes by alleviating cellular senescence while enhancing antioxidant activity. In line with our results in vitro, MSCs-EXOs significantly ameliorated hyperglycemia-induced senescence in DR mice by downregulating mRNA expression of P53, P21, P16, and SASP. Additionally, MSCs-EXOs improved the functional and structural integrity of the retina in DR mice. Our study revealed the protective effect of MSCs-EXOs on cellular senescence, offering new insights for the treatment of DR.
Collapse
Affiliation(s)
- Lifang Bai
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, PR China
| | - Ying Wang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, PR China; Liaoning Aier Eye Hospital, Shenyang, Liaoning Province, China.
| |
Collapse
|
27
|
Bientinesi E, Ristori S, Lulli M, Monti D. Quercetin induces senolysis of doxorubicin-induced senescent fibroblasts by reducing autophagy, preventing their pro-tumour effect on osteosarcoma cells. Mech Ageing Dev 2024; 220:111957. [PMID: 38909661 DOI: 10.1016/j.mad.2024.111957] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Cellular senescence contributes to ageing and age-related diseases, and multiple therapeutic strategies are being developed to counteract it. Senolytic drugs are being tested in clinical trials to eliminate senescent cells selectively, but their effects and mechanisms are still unclear. Several studies reveal that the upregulation of senescence-associated secretory phenotype (SASP) factors in senescent cells is accompanied by increased autophagic activity to counteract the endoplasmic reticulum (ER) stress. Our study shows that Doxo-induced senescent fibroblasts yield several SASP factors and exhibit increased autophagy. Interestingly, Quercetin, a bioactive flavonoid, reduces autophagy, increases ER stress, and partially triggers senescent fibroblast death. Given the role of senescent cells in cancer progression, we tested the effect of conditioned media from untreated and quercetin-treated senescent fibroblasts on osteosarcoma cells to determine whether senolytic treatment affected tumour cell behaviour. We report that the partial senescent fibroblast clearance, achieved by quercetin, reduced osteosarcoma cell invasiveness, curbing the pro-tumour effects of senescent cells. The reduction of cell autophagic activity and increased ER stress, an undescribed effect of quercetin, emerges as a new vulnerability of Doxo-induced senescent fibroblasts and may provide a potential therapeutic target for cancer treatment, suggesting novel drug combinations as a promising strategy against the tumour.
Collapse
Affiliation(s)
- Elisa Bientinesi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Sara Ristori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| |
Collapse
|
28
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Wang R, Tan Y, Zhong Z, Rao S, Zhou Z, Zhang L, Zhang C, Chen W, Ruan L, Sun X. Deep Learning-Based Vascular Aging Prediction From Retinal Fundus Images. Transl Vis Sci Technol 2024; 13:10. [PMID: 38984914 PMCID: PMC11238877 DOI: 10.1167/tvst.13.7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/19/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose The purpose of this study was to establish and validate a deep learning model to screen vascular aging using retinal fundus images. Although vascular aging is considered a novel cardiovascular risk factor, the assessment methods are currently limited and often only available in developed regions. Methods We used 8865 retinal fundus images and clinical parameters of 4376 patients from two independent datasets for training a deep learning algorithm. The gold standard for vascular aging was defined as a pulse wave velocity ≥1400 cm/s. The probability of the presence of vascular aging was defined as deep learning retinal vascular aging score, the Reti-aging score. We compared the performance of the deep learning model and clinical parameters by calculating the area under the receiver operating characteristics curve (AUC). We recruited clinical specialists, including ophthalmologists and geriatricians, to assess vascular aging in patients using retinal fundus images, aiming to compare the diagnostic performance between deep learning models and clinical specialists. Finally, the potential of Reti-aging score for identifying new-onset hypertension (NH) and new-onset carotid artery plaque (NCP) in the subsequent three years was examined. Results The Reti-aging score model achieved an AUC of 0.826 (95% confidence interval [CI] = 0.793-0.855) and 0.779 (95% CI = 0.765-0.794) in the internal and external dataset. It showed better performance in predicting vascular aging compared with the prediction with clinical parameters. The average accuracy of ophthalmologists (66.3%) was lower than that of the Reti-aging score model, whereas geriatricians were unable to make predictions based on retinal fundus images. The Reti-aging score was associated with the risk of NH and NCP (P < 0.05). Conclusions The Reti-aging score model might serve as a novel method to predict vascular aging through analysis of retinal fundus images. Reti-aging score provides a novel indicator to predict new-onset cardiovascular diseases. Translational Relevance Given the robust performance of our model, it provides a new and reliable method for screening vascular aging, especially in undeveloped areas.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuhe Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Suyun Rao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ziqing Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lisha Zhang
- Department of Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Chen
- Department of Computer Center, Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
31
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
32
|
Terao R, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Hase K, Yamaguchi S, Du D, Sohn BS, Sasaki Y, Yoshida M, Apte RS. LXR/CD38 activation drives cholesterol-induced macrophage senescence and neurodegeneration via NAD + depletion. Cell Rep 2024; 43:114102. [PMID: 38636518 PMCID: PMC11223747 DOI: 10.1016/j.celrep.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Colasanti
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles W Pfeifer
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph B Lin
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Keitaro Hase
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinobu Yamaguchi
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Du
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Sohn
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitsukuni Yoshida
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
Li C, Zhou L, Sun H, Yang MM. Age-Related Macular Degeneration: A Disease of Cellular Senescence and Dysregulated Immune Homeostasis. Clin Interv Aging 2024; 19:939-951. [PMID: 38807637 PMCID: PMC11130992 DOI: 10.2147/cia.s463297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative ocular disease primarily affecting central vision in the elderly. Its pathogenesis is complex, involving cellular senescence and immune homeostasis dysregulation. This review investigates the interaction between these two critical biological processes in AMD pathogenesis and their impact on disease progression. Initially, cellular senescence is analyzed, with particular emphasis on retinal damage induced by senescent retinal pigment epithelial cells. Subsequently, the occurrence of immune homeostasis dysregulation within the retina and its mechanistic role in AMD areis explored. Furthermore, the paper also discusses in detail the interplay between cellular senescence and immune responses, forming a vicious cycle that exacerbates retinal damage and may influence treatment outcomes. In summary, a deeper understanding of the interrelation between cellular senescence and immune dysregulation is vital for the developing innovative therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Cunzi Li
- The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, 518020, People’s Republic of China
| | - Lan Zhou
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Hongyan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| |
Collapse
|
34
|
Chi MS, Hsieh PH, Huang SH, Hsu HC, Chi KH. Chronic radiation proctitis refractory to steroid enema was successfully treated by metformin and sodium butyrate: a case report. J Med Case Rep 2024; 18:239. [PMID: 38725071 PMCID: PMC11083804 DOI: 10.1186/s13256-024-04551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Radiation proctitis (RP) is a significant complication of pelvic radiation. Effective treatments for chronic RP are currently lacking. We report a case where chronic RP was successfully managed by metformin and butyrate (M-B) enema and suppository therapy. CASE PRESENTATION A 70-year-old Asian male was diagnosed with prostate cancer of bilateral lobes, underwent definitive radiotherapy to the prostate of 76 Gy in 38 fractions and six months of androgen deprivation therapy. Despite a stable PSA nadir of 0.2 ng/mL for 10 months post-radiotherapy, he developed intermittent rectal bleeding, and was diagnosed as chronic RP. Symptoms persisted despite two months of oral mesalamine, mesalamine enema and hydrocortisone enema treatment. Transition to daily 2% metformin and butyrate (M-B) enema for one week led to significant improvement, followed by maintenance therapy with daily 2.0% M-B suppository for three weeks, resulting in continued reduction of rectal bleeding. Endoscopic examination and biopsy demonstrated a good therapeutic effect. CONCLUSIONS M-B enema and suppository may be an effective treatment for chronic RP.
Collapse
Affiliation(s)
- Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Hsun Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Han Huang
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ho-Chi Hsu
- Department of General Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
35
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
36
|
Yang L, Wu X, Bian S, Zhao D, Fang S, Yuan H. SIRT6-mediated vascular smooth muscle cells senescence participates in the pathogenesis of abdominal aortic aneurysm. Atherosclerosis 2024; 392:117483. [PMID: 38490134 DOI: 10.1016/j.atherosclerosis.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND AIMS In this study, we carried out a clinical sample study, and in vivo and in vitro studies to evaluate the effect of SIRT6 and SIRT6-mediated vascular smooth muscle senescence on the development of abdominal aortic aneurysm (AAA). METHOD AND RESULTS AAA specimen showed an increased P16, P21 level and a decreased SIRT6 level compared with control aorta. Time curve study of Ang II infusion AAA model showed similar P16, P21 and SIRT6 changes at the early phase of AAA induction. The in vivo overexpression of SIRT6 significantly prevented AAA formation in Ang II infusion model. The expression of P16 and P21 was significantly reduced after SIRT6 overexpression. SIRT6 overexpression also attenuated chronic inflammation and neo-angiogenesis in Ang II infusion model. The overexpression of SIRT6 could attenuate premature senescence, inflammatory response and neo-angiogenesis in human aortic smooth muscle cells (HASMC) under Ang II stimulation. CONCLUSIONS SIRT6 overexpression could limit AAA formation via attenuation of vascular smooth muscle senescence, chronic inflammation and neovascularity.
Collapse
MESH Headings
- Aged
- Animals
- Humans
- Male
- Middle Aged
- Angiotensin II
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Cellular Senescence/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Disease Models, Animal
- Inflammation
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Sirtuins/metabolism
- Sirtuins/genetics
Collapse
Affiliation(s)
- Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shuai Bian
- Department of Invasive Therapy, Anqing Municipal Hospital (Anqing Hospital Affiliated to Anhui Medical University), Anqing, China
| | - Dongfang Zhao
- Jinan Third Hospital of Jining Medical University, Jinan, China
| | - Sheng Fang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
37
|
Hou L, Du J, Dong Y, Wang M, Wang L, Zhao J. Liraglutide prevents cellular senescence in human retinal endothelial cells (HRECs) mediated by SIRT1: an implication in diabetes retinopathy. Hum Cell 2024; 37:666-674. [PMID: 38438663 PMCID: PMC11016519 DOI: 10.1007/s13577-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/24/2024] [Indexed: 03/06/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder affecting millions of people worldwide, characterized by dysregulated glucose homeostasis and hyperglycemia. Diabetic retinopathy (DR) is one of the serious multisystemic complications. Aging is an important risk factor for DR. Endothelial sirtuin 1 (SIRT1) plays an important role in regulating the pathophysiology of glucose metabolism, cellular senescence, and aging. Liraglutide, an analog of Glucagon-like peptide 1 (GLP-1), has been widely used in the treatment of DM. However, the effects of Liraglutide on DR are less reported. Here, we investigated whether treatment with Liraglutide has beneficial effects on high glucose (HG)-induced injury in human retinal microvascular endothelial cells (HRECs). First, we found that exposure to HG reduced the expression of glucagon-like peptide 1 receptor 1 (GLP-1R). Additionally, Liraglutide ameliorated HG-induced increase in the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin 6 (IL-6). Importantly, Liraglutide ameliorated cellular senescence and increased telomerase activity in HG-challenged HRECs. Liraglutide also reduced the levels of p53 and p21. Mechanistically, Liraglutide restored the expression of SIRT1 against HG. In contrast, the knockdown of SIRT1 abolished the protective effects of Liraglutide in cellular senescence of HRECs. Our findings suggest that Liraglutide might possess a benefit on DR mediated by SIRT1.
Collapse
Affiliation(s)
- Lihua Hou
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Jianying Du
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Yongxiao Dong
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Min Wang
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Libo Wang
- Department of Ophthalmology, Sanyuan Eye Hospital, Xianyang City, 713899, Shanxi, China
| | - Jifei Zhao
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China.
| |
Collapse
|
38
|
Cheng YW, Huang YC, Chang KF, Huang XF, Sheu GT, Tsai NM. Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:107-117. [PMID: 38857204 DOI: 10.4103/ejpi.ejpi-d-23-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/05/2024] [Indexed: 06/12/2024]
Abstract
Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Internal Medicine, Lee's General Hospital, Miaoli, Taiwan
| | - Ya-Chih Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan
| |
Collapse
|
39
|
Liu Y, Liu X, Chen X, Yang Z, Chen J, Zhu W, Li Y, Wen Y, Deng C, Gu C, Lv J, Ju R, Zhuo Y, Su W. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc Natl Acad Sci U S A 2024; 121:e2311028121. [PMID: 38657052 PMCID: PMC11067450 DOI: 10.1073/pnas.2311028121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Collapse
Affiliation(s)
- Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Weining Zhu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, People’s Republic of China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
40
|
Wu S, Dai X, Xia Y, Zhao Q, Zhao H, Shi Z, Yin X, Liu X, Zhang A, Yao Z, Zhang H, Li Q, Thorne RF, Zhang S, Sheng W, Hu W, Gu H. Targeting high circDNA2v levels in colorectal cancer induces cellular senescence and elicits an anti-tumor secretome. Cell Rep 2024; 43:114111. [PMID: 38615319 DOI: 10.1016/j.celrep.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The efficacy of immunotherapy against colorectal cancer (CRC) is impaired by insufficient immune cell recruitment into the tumor microenvironment. Our study shows that targeting circDNA2v, a circular RNA commonly overexpressed in CRC, can be exploited to elicit cytotoxic T cell recruitment. circDNA2v functions through binding to IGF2BP3, preventing its ubiquitination, and prolonging the IGF2BP3 half-life, which in turn sustains mRNA levels of the protooncogene c-Myc. Targeting circDNA2v by gene silencing downregulates c-Myc to concordantly induce tumor cell senescence and the release of proinflammatory mediators. Production of CXCL10 and interleukin-9 by CRC cells is elicited through JAK-STAT1 signaling, in turn promoting the chemotactic and cytolytic activities of CD8+ T cells. Clinical evidence associates increased circDNA2v expression in CRC tissues with reductions in CD8+ T cell infiltration and worse outcomes. The regulatory relationship between circDNA2v, cellular senescence, and tumor-infiltrating lymphocytes thus provides a rational approach for improving immunotherapy in CRC.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiangyu Dai
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yang Xia
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qingsong Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Heng Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhimin Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xin Yin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xue Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Aijie Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhihui Yao
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Shangxin Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Wanglai Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
42
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
43
|
Kita A, Yamamoto S, Saito Y, Chikenji TS. Cellular senescence and wound healing in aged and diabetic skin. Front Physiol 2024; 15:1344116. [PMID: 38440347 PMCID: PMC10909996 DOI: 10.3389/fphys.2024.1344116] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Cellular senescence is a biological mechanism that prevents abnormal cell proliferation during tissue repair, and it is often accompanied by the secretion of various factors, such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). SASP-mediated cell-to-cell communication promotes tissue repair, regeneration, and development. However, senescent cells can accumulate abnormally at injury sites, leading to excessive inflammation, tissue dysfunction, and intractable wounds. The effects of cellular senescence on skin wound healing can be both beneficial and detrimental, depending on the condition. Here, we reviewed the functional differences in cellular senescence that emerge during wound healing, chronic inflammation, and skin aging. We also review the latest mechanisms of wound healing in the epidermis, dermis, and subcutaneous fat, with a focus on cellular senescence, chronic inflammation, and tissue regeneration. Finally, we discuss the potential clinical applications of promoting and inhibiting cellular senescence to maximize benefits and minimize detrimental effects.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
44
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
45
|
Budamagunta V, Kumar A, Rani A, Manohar Sindhu S, Yang Y, Zhou D, Foster TC. Senolytic treatment alleviates doxorubicin-induced chemobrain. Aging Cell 2024; 23:e14037. [PMID: 38225896 PMCID: PMC10861213 DOI: 10.1111/acel.14037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
Doxorubicin (Dox), a widely used treatment for cancer, can result in chemotherapy-induced cognitive impairments (chemobrain). Chemobrain is associated with inflammation and oxidative stress similar to aging. As such, Dox treatment has also been used as a model of aging. However, it is unclear if Dox induces brain changes similar to that observed during aging since Dox does not readily enter the brain. Rather, the mechanism for chemobrain likely involves the induction of peripheral cellular senescence and the release of senescence-associated secretory phenotype (SASP) factors and these SASP factors can enter the brain to disrupt cognition. We examined the effect of Dox on peripheral and brain markers of aging and cognition. In addition, we employed the senolytic, ABT-263, which also has limited access to the brain. The results indicate that plasma SASP factors enter the brain, activating microglia, increasing oxidative stress, and altering gene transcription. In turn, the synaptic function required for memory was reduced in response to altered redox signaling. ABT-263 prevented or limited most of the Dox-induced effects. The results emphasize a link between cognitive decline and the release of SASP factors from peripheral senescent cells and indicate some differences as well as similarities between advanced age and Dox treatment.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Sahana Manohar Sindhu
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Yang Yang
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
46
|
Crespo-Garcia S, Fournier F, Diaz-Marin R, Klier S, Ragusa D, Masaki L, Cagnone G, Blot G, Hafiane I, Dejda A, Rizk R, Juneau R, Buscarlet M, Chorfi S, Patel P, Beltran PJ, Joyal JS, Rezende FA, Hata M, Nguyen A, Sullivan L, Damiano J, Wilson AM, Mallette FA, David NE, Ghosh A, Tsuruda PR, Dananberg J, Sapieha P. Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. Nat Med 2024; 30:443-454. [PMID: 38321220 DOI: 10.1038/s41591-024-02802-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- École d'optométrie, University of Montreal, Montreal, Quebec, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sharon Klier
- UNITY Biotechnology, South San Francisco, CA, USA
| | - Derek Ragusa
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | - Gael Cagnone
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ikhlas Hafiane
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rana Rizk
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Chorfi
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Jean-Sebastien Joyal
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Masayuki Hata
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alex Nguyen
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | | | - Ariel M Wilson
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- UNITY Biotechnology, South San Francisco, CA, USA.
| |
Collapse
|
47
|
Wu W, Xia X, Tang L, Luo J, Xiong S, Ma G, Lei H. Phosphoinositide 3-kinase as a therapeutic target in angiogenic disease. Exp Eye Res 2023; 236:109646. [PMID: 37716399 DOI: 10.1016/j.exer.2023.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate lipids that control multitudinous intracellular cell signaling events which participate in cell survival and proliferation. In addition, PI3K signaling also contributes to metabolism, immunity, angiogenesis and cardiovascular homeostasis, and many diseases. The diverse actions of PI3K stem from the existence of their various isoforms and a variety of protein effectors. Hence, PI3K isoform-specific inhibitors have already achieved a wonderful effect on treating cancer. Herein, we summarize the molecular mechanism of PI3K inhibitors in preventing the permeability of vessels and neovascularization. Additionally, we briefly illustrate how PI3K signaling modulates blood vessel growth and discuss the different roles that PI3K isoforms play in angiogenesis.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Luosheng Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoen Ma
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
48
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
50
|
Abstract
Retinopathy of prematurity (ROP) is a complex disease involving development of the neural retina, ocular circulations, and other organ systems of the premature infant. The external stresses of the ex utero environment also influence the pathophysiology of ROP through interactions among retinal neural, vascular, and glial cells. There is variability among individual infants and presentations of the disease throughout the world, making ROP challenging to study. The methods used include representative animal models, cell culture, and clinical studies. This article describes the impact of maternal-fetal interactions; stresses that the preterm infant experiences; and biologic pathways of interest, including growth factor effects and cell-cell interactions, on the complex pathophysiology of ROP phenotypes in developed and emerging countries.
Collapse
|