1
|
Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: Need of subtyping. World J Gastrointest Pathophysiol 2024; 15:92791. [PMID: 38845820 PMCID: PMC11151879 DOI: 10.4291/wjgp.v15.i2.92791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread global disease with significant health burden. Unhealthy lifestyle, obesity, diabetes mellitus (DM), insulin resistance, and genetics have been implicated in the pathogenesis of MASLD. A significant degree of heterogeneity exists among each of above-mentioned risk factors. Heterogeneity of these risk factors translates into the heterogeneity of MASLD. On the other hand, MASLD can itself lead to insulin resistance and DM. Such heterogeneity makes it difficult to assess the natural course of an individual with MASLD in clinical practice. At present MASLD is considered as one disease despite the variability of etiopathogenic processes, and we lack the consensus definitions of unique subtypes of MASLD. In this review, pathogenic processes of MASLD are discussed and a need of subtyping is recommended.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85716, United States
| |
Collapse
|
2
|
Rizzetti DA, Corrales P, Uranga-Ocio JA, Medina-Gómez G, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Potential benefits of egg white hydrolysate in the prevention of Hg-induced dysfunction in adipose tissue. Food Funct 2022; 13:5996-6007. [PMID: 35575219 DOI: 10.1039/d2fo00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 μg kg-1, subsequent doses 0.07 μg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Patricia Corrales
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - José Antonio Uranga-Ocio
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain. .,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain
| | - Gema Medina-Gómez
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil.
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
SRISUKSAI K, PARUNYAKUL K, PHAONAKROP N, ROYTAKUL S, FUNGFUANG W. The effect of cordycepin on brain oxidative stress and protein expression in streptozotocin-induced diabetic mice. J Vet Med Sci 2021; 83:1425-1434. [PMID: 34334512 PMCID: PMC8498841 DOI: 10.1292/jvms.21-0268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic disorders and psychological deficits, including cognitive decline. Here, we investigated the effect of cordycepin on oxidative stress and protein expression in the brains of diabetic mice. Twenty-four mice were divided into four groups, one comprising untreated healthy mice (N); one comprising healthy mice treated with cordycepin (24 mg/kg body weight) (N+Cor); one comprising untreated DM mice; and one comprising DM mice treated with cordycepin (24 mg/kg body weight) (DM+Cor). After 14 days of treatment, cognitive behavior was assessed using the novel object recognition (NOR) test. The brain levels of oxidative stress markers (glutathione, catalase, and superoxide dismutase) were examined using the respective detection kits. Protein expression in brain tissues was assessed by liquid chromatography with tandem mass spectrometry (LC-MS/MS); the functions of the identified proteins were annotated by PANTHER, while major protein-protein interactions were assessed using STITCH. We found that cordycepin treatment significantly decreased body weight and food and water intake in the DM+Cor group compared with that in the DM group; however, no differences in blood glucose levels were found between the two groups. Cordycepin treatment significantly reversed cognitive decline in diabetic mice in the NOR test and ameliorated antioxidant defenses. Additionally, we identified ULK1 isoform 2, a protein associated with cognitive function via the activated AMPK and autophagic pathways, as being uniquely expressed in the DM+Cor group. Our findings provide novel insights into the cellular mechanisms underlying how cordycepin improves cognitive decline in diabetic mice.
Collapse
Affiliation(s)
- Krittika SRISUKSAI
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kongphop PARUNYAKUL
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narumon PHAONAKROP
- Functional Ingredient and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
Development Agency, Pathum Thani 12120, Thailand
| | - Sittiruk ROYTAKUL
- Functional Ingredient and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
Development Agency, Pathum Thani 12120, Thailand
| | - Wirasak FUNGFUANG
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Granados A, Beach EA, Christiansen AJ, Patterson BW, Wallendorf M, Arbeláez AM. The association between body composition, leptin levels and glucose dysregulation in youth with cystic fibrosis. J Cyst Fibros 2021; 20:796-802. [PMID: 34183284 PMCID: PMC8552309 DOI: 10.1016/j.jcf.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Optimization of nutritional status is recommended in patients with cystic fibrosis (CF) given the association between lower body mass index (BMI) and poor clinical outcomes. However, higher BMI and body fat correlate with glucose impairment and higher leptin levels in the general population. Differences in body composition and leptin levels between the categories of glucose tolerance were assessed in youth with CF and healthy controls. METHODS In a cross-sectional study, 59 adolescents and young adults with CF and 15 healthy controls matched by age and gender, underwent body composition analysis using dual energy X-ray absorptiometry (DXA) and a 2-hour oral glucose tolerance test (OGTT). Measures of insulin sensitivity, β-cell insulin secretion and fasting leptin levels were obtained. RESULTS Of the participants with CF, 62% were classified as abnormal glucose tolerant and 22% with cystic fibrosis related diabetes (CFRD). Patients with CFRD had a lower fat mass index (FMI) z-score, wt z-score and leptin levels compared to the control group (-1.86 vs. - 0.59, p=0.01; -1.86 vs 0.44, p=<0.001 and 7.9 vs vs. 27.7 µg/L, p=0.01). Leptin correlated positively with FMI z-score, BMI, weight z-score and indices of insulin secretion. FMI z-score correlated positively with higher insulin resistance (HOMA-IR), and lower insulin sensitivity (Matsuda index) (r=0.31; p =0.01 and r=-0.29; p=0.02, respectively) in the CF group. CONCLUSIONS This study shows that despite new therapeutic strategies, youth with CF have lower body fat, weight z-score and leptin levels, particularly in subjects with early onset CFRD.
Collapse
Affiliation(s)
- Andrea Granados
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO. USA.
| | - Elizabeth A Beach
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO. USA
| | - Andrew J Christiansen
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO. USA
| | - Bruce W Patterson
- University of Nebraska Medical Center, Department of Surgery, Omaha, NE. USA
| | - Michael Wallendorf
- Washington University School of Medicine, Department of Medicine, St. Louis, MO. USA; Washington University School of Medicine, Division of Biostatistics, St. Louis, MO. USA
| | - Ana María Arbeláez
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO. USA
| |
Collapse
|
5
|
Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 2020; 22:603-611. [PMID: 32468027 PMCID: PMC7339764 DOI: 10.3892/mmr.2020.11175] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6‑phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.
Collapse
Affiliation(s)
- Saizhi Jiang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Jamie L. Young
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Kai Wang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Yan Qian
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Cai
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Radiation Oncology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Sarvestani FS, Zare MA, Saki F, Koohpeyma F, Al-Abdullah IH, Azarpira N. The effect of human wharton's jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:214-223. [PMID: 32405365 PMCID: PMC7211357 DOI: 10.22038/ijbms.2019.39582.9387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Type 1 diabetes (T1D) is an autoimmune disease resulting from inflammatory destruction of islets β-cells. Nowadays, progress in cell therapy, especially mesenchymal stem cells (MSCs) proposes numerous potential remedies for T1D. We aimed to investigate the combination therapeutic effect of these cells with insulin and metformin on neuropeptide Y, melanocortin-4 receptor, and leptin receptor genes expression in TID. MATERIALS AND METHODS One hundreds male rats were randomly divided into seven groups: the control, diabetes, insulin (Ins.), insulin+metformin (Ins.Met.), Wharton's Jelly-derived MSCs (WJ-MSCs), insulin+metformin+WJ-MSCs (Ins.Met.MSCs), and insulin+WJ-MSCs (Ins.MSCs). Treatment was performed from the first day after diagnosis as diabetes. Groups of the recipient WJ-MSCs were intraportally injected with 2× 10⁶ MSCs/kg at the 7th and 28th days of study. Fasting blood sugar was monitored and tissues and genes analysis were performed. RESULTS The blood glucose levels were slightly decreased in all treatment groups within 20th and 45th days compared to the diabetic group. The C-peptide level enhanced in these groups compared to the diabetic group, but this increment in Ins.MSCs group on the 45th days was higher than other groups. The expression level of melanocortin-4 receptor and leptin receptor genes meaningfully up-regulated in the treatment groups, while the expression of neuropeptide Y significantly down-regulated in the treatment group on both times of study. CONCLUSION Our data exhibit that infusion of MSCs and its combination therapy with insulin might ameliorate diabetes signs by changing the amount of leptin and subsequent changes in the expression of neuropeptide Y and melanocortin-4 receptor.
Collapse
Affiliation(s)
| | - Mohammad Ali Zare
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Saki
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Jiang S, Tang X, Wang K, Liang Y, Qian Y, Lu C, Cai L. Hepatic functional and pathological changes of type 1 diabetic mice in growing and maturation time. J Cell Mol Med 2019; 23:5794-5807. [PMID: 31222979 PMCID: PMC6652934 DOI: 10.1111/jcmm.14504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
To detect the changes in the liver function in both male and female OVE26 mice from young to adults for better understanding of type 1 diabetes-induced hepatic changes, OVE26 mice and wild-type FVB mice were raised in the same environment without any intervention, and then killed at 4, 12, 24 and 36 weeks for examining liver's general properties, including pathogenic and molecular changes. The influence of diabetes on the bodyweight of male and female mice was different. Both male and female OVE26 mice did not obtain serious liver injury or non-alcoholic fatty liver disease, manifested by mild elevation of plasma alanine transaminase, and less liver lipid content along with significantly suppressed lipid synthesis. Uncontrolled diabetes also did not cause hepatic glycogen accumulation in OVE26 mice after 4 weeks. Oxidative stress test showed no change in lipid peroxidation, but increased protein oxidation. Changed endoplasmic reticulum stress and apoptosis along with increased antioxidant capacity was observed in OVE26 mice. In conclusion, uncontrolled type 1 diabetes did not cause hepatic lipid deposition most likely because of reduced lipids synthesis in response to insulin deficiency. Enhanced antioxidant capacity might not only prevent the occurrence of severe acute liver injury but also the self-renewal, leading to liver dysfunction.
Collapse
Affiliation(s)
- Saizhi Jiang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentucky
| | - Xiaoqiang Tang
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentucky
- The Center of Cardiovascular DisordersThe First Hospital of Jilin UniversityChangchunChina
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentucky
| | - Yaqing Liang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentucky
| | - Yan Qian
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| | - Lu Cai
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentucky
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
| |
Collapse
|
8
|
Leptin and HPA axis activity in diabetic rats: Effects of adrenergic agonists. Brain Res 2019; 1707:54-61. [DOI: 10.1016/j.brainres.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022]
|
9
|
Palhinha L, Liechocki S, Hottz ED, Pereira JADS, de Almeida CJ, Moraes-Vieira PMM, Bozza PT, Maya-Monteiro CM. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front Endocrinol (Lausanne) 2019; 10:841. [PMID: 31920961 PMCID: PMC6923660 DOI: 10.3389/fendo.2019.00841] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Leptin is an adipokine with well-known effects on the central nervous system including the induction of energy expenditure and satiety. Leptin also has major relevance when activating immune cells and modulating inflammatory response. In obesity, increases in white adipose tissue accumulation and leptin levels are accompanied by hypothalamic resistance to leptin. Even though the adipose tissue is a leptin-rich environment, the local actions of leptin regarding adipogenesis were not thoroughly investigated until now. Here we evaluate the contributions of leptins direct signaling in preadipocytes and adipose tissue-derived stromal cells (ASCs) for adipogenesis. Methods: Adipocytes were differentiated from the murine lineage of preadipocytes 3T3-L1 or ASCs from subcutaneous and visceral (retroperitoneal) fat depots from C57Bl/6J mice. Differentiating cells were treated with leptin in addition to or in replacement of insulin. The advance of adipogenesis was assessed by the expression and secretion of adipogenesis- and lipogenesis-related proteins by Western blot and immunoenzimatic assays, and the accumulation of lipid droplets by fluorescence microscopy. Results: Leptin treatment in 3T3-L1 preadipocytes or ASCs increased the production of the adipogenesis- and lipogenesis-related proteins PLIN1, CAV-1, PPARγ, SREBP1C, and/or adiponectin at earlier stages of differentiation. In 3T3-L1 preadipocytes, we found that leptin induced lipid droplets' formation in an mTOR-dependent manner. Also, leptin induced a proinflammatory cytokine profile in 3T3-L1 and ASCs, modulating the production of TNF-α, IL-10, and IL-6. Since insulin is considered an essential factor for preadipocyte differentiation, we asked whether leptin would support adipogenesis in the absence of insulin. Importantly, leptin induced the formation of lipid droplets and the expression of adipogenesis-related proteins independently of insulin during the differentiation of 3T3-L1 cells and ASCs. Conclusions: Our results demonstrate that leptin induces intracellular signaling in preadipocytes and adipocytes promoting adipogenesis and modulating the secretion of inflammatory mediators. Also, leptin restores adipogenesis in the absence of insulin. These findings contribute to the understanding of the local signaling of leptin in precursor and mature adipose cells. The proadipogenic role of leptin unraveled here may be of especial relevance during obesity, when its central signaling is defective.
Collapse
Affiliation(s)
- Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Glycoconjugates Analysis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Post-Graduate Program in Immunology, Institute of Biological Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Cecília J. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Pedro Manoel M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Post-Graduate Program in Immunology, Institute of Biological Sciences, University of Sao Paulo, São Paulo, Brazil
- Experimental Medicine Research Cluster, EMRC, University of Cammpinas, Campinas, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Clarissa Menezes Maya-Monteiro ;
| |
Collapse
|
10
|
Liśkiewicz AD, Kasprowska-Liśkiewicz D, Sługocka A, Nowacka-Chmielewska MM, Wiaderkiewicz J, Jędrzejowska-Szypułka H, Barski JJ, Lewin-Kowalik J. The modification of the ketogenic diet mitigates its stunting effects in rodents. Appl Physiol Nutr Metab 2017; 43:203-210. [PMID: 29045796 DOI: 10.1139/apnm-2017-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The high-fat and low-carbohydrate ketogenic diet (HFKD) is extensively studied within the fields of numerous diseases, including cancer and neurological disorders. Since most studies incorporate animal models, ensuring the quality of ketogenic rodent diets is important, both in the context of laboratory animal welfare as well as for the accuracy of the obtained results. In this study we implemented a modification to a commonly used ketogenic rodent chow by replacing non-resorbable cellulose with wheat bran. We assessed the effects of month-long treatment with either the unmodified or the modified HFKD on the growth and development of young male rats. Daily body weight, functional performance, and brain morphometric parameters were assessed to evaluate the influence of both applied diets on rodent development. Our results revealed that the unmodified ketogenic chow induced strong side effects that included weakness, emaciation, and brain undergrowth concomitant to growth inhibition. However, application of the ketogenic chow supplemented with wheat bran suppressed these adverse side effects, which was associated with the restoration of insulin-like growth factor 1 and a decrease in corticosterone levels. We have also shown that the advantageous results of the modified HFKD are not species- or sex-specific. Our data indicate that the proposed HFKD modification even allows for its application in young animals, without causing detrimental side effects.
Collapse
Affiliation(s)
- Arkadiusz Damian Liśkiewicz
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Daniela Kasprowska-Liśkiewicz
- b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Anna Sługocka
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Marta Maria Nowacka-Chmielewska
- b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Jan Wiaderkiewicz
- c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,d Department of Physiology & Biophysics, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Halina Jędrzejowska-Szypułka
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Jarosław Jerzy Barski
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
11
|
Frost PA, Chen S, Mezzles MJ, Voruganti VS, Nava-Gonzalez EJ, Arriaga-Cazares HE, Freed KA, Comuzzie AG, DeFronzo RA, Kent JW, Grayburn PA, Bastarrachea RA. Successful pharmaceutical-grade streptozotocin (STZ)-induced hyperglycemia in a conscious tethered baboon (Papio hamadryas) model. J Med Primatol 2015; 44:202-17. [PMID: 26122701 DOI: 10.1111/jmp.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-human primate (NHP) diabetic models using chemical ablation of β-cells with STZ have been achieved by several research groups. Chemotherapeutic STZ could lead to serious adverse events including nephrotoxicity, hepatotoxicity, and mortality. METHODS We implemented a comprehensive therapeutic strategy that included the tether system, permanent indwelling catheter implants, an aggressive hydration protocol, management for pain with IV nubain and anxiety with IV midazolam, moment-by-moment monitoring of glucose levels post-STZ administration, and continuous intravenous insulin therapy. RESULTS A triphasic response in blood glucose after STZ administration was fully characterized. A dangerous hypoglycemic phase was also detected in all baboons. Other significant findings were hyperglycemia associated with low levels of plasma leptin, insulin and C-peptide concentrations, hyperglucagonemia, and elevated non-esterified fatty acids (NEFA) concentrations. CONCLUSIONS We successfully induced frank diabetes by IV administering a single dose of pharmaceutical-grade STZ safely and without adverse events in conscious tethered baboons.
Collapse
Affiliation(s)
- Patrice A Frost
- Southwest National Primate Research Center, San Antonio, TX, USA
| | | | - Marguerite J Mezzles
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Edna J Nava-Gonzalez
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,University of Nuevo Leon School of Nutrition and Public Health, Monterrey, Mexico
| | - Hector E Arriaga-Cazares
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Hospital Infantil de Tamaulipas, Ciudad Victoria, México
| | - Katy A Freed
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Southwest National Primate Research Center, San Antonio, TX, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ralph A DeFronzo
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paul A Grayburn
- Baylor Research Institute, Dallas, TX, USA.,Baylor University Medical Center, Dallas, TX, USA
| | - Raul A Bastarrachea
- Southwest National Primate Research Center, San Antonio, TX, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
12
|
Procaccini C, Pucino V, Mantzoros CS, Matarese G. Leptin in autoimmune diseases. Metabolism 2015; 64:92-104. [PMID: 25467840 DOI: 10.1016/j.metabol.2014.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
The past twenty years of research on leptin has provided crucial information on the link between metabolic state and immune system function. Adipocytes influence not only the endocrine system but also the immune response, through several cytokine-like mediators known as adipokines, which include leptin. Initially described as an antiobesity hormone, leptin has subsequently been shown also to influence hematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-α). Leptin links nutritional status and proinflammatory T helper 1 (Th1) immune responses and the decrease in leptin plasma concentration during food deprivation leads to impaired immune function. Conversely, elevated circulating leptin levels in obesity appear to contribute to the low-grade inflammatory background which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, diabetes, or degenerative disease including autoimmunity and cancer. In this review, we provide an overview of recent advances on the role of leptin in the pathogenesis of several autoimmune disorders that may be of particular relevance in the modulation of the autoimmune attack through metabolic-based therapeutic approaches.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Christos S Mantzoros
- Section of Endocrinology, Boston VA Healthcare System, Jamaica Plain, MA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Boston Medical Center, Boston University, 72 Evans Street, Boston, MA 02217, USA
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS-MultiMedica, 20138 Milano, Italy.
| |
Collapse
|