1
|
Xie K, Zhang Y, Ou X, Xiao Y, Luo J, Tan S. Taurine ameliorates liver fibrosis by repressing Fpr2-regulated macrophage M1 polarization. Eur J Pharmacol 2025; 997:177614. [PMID: 40216178 DOI: 10.1016/j.ejphar.2025.177614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Liver fibrosis is a reversible pathophysiological condition characterized by excessive extracellular matrix deposition that can progress to cirrhosis and liver failure if left untreated. Taurine, a sulfur-containing amino acid, protects the liver from damage. However, the effects of taurine on liver fibrogenesis have not been completely elucidated. In this study, we used amino acid metabolomics, gene expression microanalysis, and single-cell RNA sequencing (scRNA-seq) to investigate the roles of taurine, formyl peptide receptor 2 (Fpr2), and proinflammatory macrophages in liver fibrosis in human fibrotic sections and two distinct mouse models of liver fibrosis. Taurine transporter SLC6A6 wild-type and knockout littermate models and critical element inhibitors were also used. We found that taurine levels were significantly reduced in both human and murine fibrotic sections and that exogenous taurine supplementation alleviated fibrosis via SLC6A6. Furthermore, gene expression microarray analysis and scRNA-seq analyses demonstrated that exogenous taurine mitigated liver fibrosis, mainly by regulating Fpr2-related macrophage status. WRW4-mediated inhibition of Fpr2 ameliorated M1 macrophage polarization and alleviated liver fibrosis. Additionally, exogenous taurine suppressed Fpr2-modulated macrophage M1 polarization and the production of associated proinflammatory cytokines by repressing NF-κBp65 phosphorylation; moreover, SLC6A6 deficiency or treatment of liver fibrosis mouse models with an NF-κB inhibitor, BAY, impaired this protective effect of taurine. Therefore, taurine exerts a protective effect against liver fibrosis by repressing Fpr2/NF-κBp65-regulated macrophage M1 polarization, highlighting its potential therapeutic agent.
Collapse
Affiliation(s)
- Kaiduan Xie
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xingtong Ou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yuelin Xiao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jiajie Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
2
|
Hu Y, Kuang M, Song H, Tan Y, Zhou F, Pei G, Jiao L. Astragaloside IV prevents liver fibrosis by blocking glycolysis-mediated macrophage M1 polarization. Eur J Pharmacol 2025; 995:177353. [PMID: 39971227 DOI: 10.1016/j.ejphar.2025.177353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Hepatic fibrosis is a late-stage process of many chronic liver diseases. Blocking the fibrosis process will be beneficial to the treatment and recovery of the disease. Hepatic macrophages are a remarkably heterogeneous population of immune cells that play multiple functions in homeostasis and are central to liver fibrosis. Glycolysis-mediated macrophage metabolic reprogramming leads to an increase in the proportion of M1 macrophages and the release of pro-inflammatory cytokines. The present study aimed to investigate the therapeutic effect and mechanism of Astragaloside IV (AS-IV) against carbon tetrachloride (CCl4)-induced liver fibrosis. The study found that AS-IV is an effective agent for reducing the production of inflammatory factors in CCl4-induced liver fibrosis. It was also found that AS-IV blocks macrophage M1 polarization and relieves liver fibrosis. Mechanistically, AS-IV reduces the methylation level of the FoxO1 promoter region and then upregulates its expression. FoxO1 can inhibit the expression of key enzymes in the glycolysis pathway and block glycolysis-mediated macrophage M1 polarization. Our findings indicate that AS-IV is an attractive option for treating liver fibrosis.
Collapse
Affiliation(s)
- Yutong Hu
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Ming Kuang
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Hao Song
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Yang Tan
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Feng Zhou
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Gang Pei
- Hunan University of Chinese Medicine, Changsha, 410000, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410000, China.
| | - Luojia Jiao
- Hunan University of Chinese Medicine, Changsha, 410000, China.
| |
Collapse
|
3
|
Xia LY, Yu NR, Huang SL, Qu H, Qin L, Zhao QS, Leng Y. Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01569-9. [PMID: 40329004 DOI: 10.1038/s41401-025-01569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a prevalent chronic liver disease with a huge unmet clinical need. A few studies have reported the beneficial effects of Poria cocos Wolf (P. cocos) extract on NASH mice, but the active components were still unknown. In this study we investigated the therapeutic effects of dehydrotrametenolic acid methyl ester (ZQS5029-1), a lanosterol-7,9(11)-diene triterpenes in P. cocos, in a high-fat diet plus CCl4 induced murine NASH model and a GAN diet induced ob/ob murine NASH model. The NASH mice were treated with ZQS5029-1 (75 mg·kg-1·d-1, i.g.) for 6 and 8 weeks, respectively. We showed that ZQS5029-1 treatment markedly relieved liver injury, inflammation and fibrosis in both the murine NASH models. We found that ZQS5029-1 treatment significantly suppressed hepatic NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in both the NASH murine models, and blocked lipopolysaccharides (LPS)+adenosine 5'-triphosphate (ATP)/Nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) and Kupffer cells in vitro. We demonstrated that ZQS5029-1 directly bound to the H236 residue of mouse Caspase-1, thereby inhibiting NLRP3 inflammasome activation. The effects of ZQS5029-1 on macrophage-hepatocyte/HSC crosstalk were analyzed using the supernatants from macrophages preconditioned with LPS + ATP introduced into hepatocytes and hepatic stellate cells (HSCs). We found that the conditioned medium from the BMDMs induced injury and death, as well as lipid accumulation in hepatocytes, and activation of HSCs; these effects were blocked by conditioned medium from BMDMs treated with ZQS5029-1. Moreover, the protective effects of ZQS5029-1 on hepatocytes and HSCs were eliminated by H236A-mutation of Caspase-1. We conclude that ZQS5029-1 is a promising lead compound for the treatment of NASH by inhibiting NLRP3 inflammasome activation through targeting Caspase-1 and regulating the macrophage-hepatocyte/HSC crosstalk.
Collapse
Affiliation(s)
- Ling-Yan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Rong Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin-Shi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhan X, Bai Y, Zhu Q, Gao Y, Li F, Bu Q, Zhu Z, Rao Z, Zhou H. Macrophage ATG16L1 promotes liver regeneration after partial hepatectomy. JHEP Rep 2025; 7:101330. [PMID: 40290519 PMCID: PMC12023798 DOI: 10.1016/j.jhepr.2025.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background & Aims Autophagy plays an important role in liver regeneration. However, most studies are limited to hepatocytes, and the function and mechanism of macrophage autophagy in liver regeneration remain unclear. This study investigated the role of the essential autophagy gene encoding autophagy-related 16-like 1 (ATG16L1), which regulates the macrophage phenotype in liver regeneration. Methods We generated FloxP-Atg16l1 (Atg16l1 FL/FL ), Lyz2-Cre Atg16l1 knockout (KO) (Atg16l1 M-KO ), and myeloid-specific Atg16l1-overexpression-knock-in (Atg16l1 OE ) mice. These mice were subjected to 70% partial hepatectomy to demonstrate the role of ATG16L1 in macrophages during liver regeneration. Results ATG16L1 expression was significantly upregulated in macrophages during the early stages of liver regeneration. ATG16L1 deletion in macrophages substantially delayed liver regeneration in mice and caused a marked imbalance in Ly6Chi and Ly6Clo macrophage proportions in the liver. RNA-sequencing analysis revealed that, compared with macrophages isolated from Atg16l1 FL/FL mice, those from Atg16l1 M-KO mice exhibited significant downregulation of genes associated with oxidative phosphorylation and upregulation of proinflammatory gene expression. Mechanistically, ATG16L1 loss impaired mitophagy in macrophages, leading to the accumulation of mitochondrial damage and a metabolic shift that promoted proinflammatory macrophage polarization. ATG16L1 deficiency not only promoted macrophage mitochondrial (mt)DNA release and cyclic GMP-AMP synthase-stimulator of interferon genes (STING) activation, but also suppressed STING degradation. Sustained STING hyperactivation and subsequent increased release of downstream interferons further contributed to the inhibition of liver regeneration. Notably, pharmacological activation or genetic overexpression of ATG16L1 significantly enhanced liver regeneration in mice. Conclusions ATG16L1 has a pivotal role in liver regeneration by affecting the phenotype and function of macrophages. Thus, targeting ATG16L1 in macrophages could present a novel strategy for promoting liver regeneration. Impact and implications The autophagy-related gene ATG16L1 mediates mitophagy, facilitating the clearance of damaged mitochondria in macrophages following partial hepatectomy and maintaining a reparative macrophage phenotype. ATG16L1 deficiency triggers excessive STING activation and inhibits its degradation, thereby suppressing liver regeneration. Thus, targeting ATG16L1 in macrophages could represent a novel strategy to promote liver regeneration.
Collapse
Affiliation(s)
- Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Yan Bai
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Qing Zhu
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Fan Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Qingfa Bu
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zeyu Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Zhuqing Rao
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| |
Collapse
|
5
|
Chen J, Guo Y, Zhang X, Zhou D, Zhou Y, Pan Q, Chai J, Gao J. Disruption of Hepatic Sinusoidal Homeostasis Leads to Hepatopulmonary Syndrome. J Cell Mol Med 2025; 29:e70585. [PMID: 40344298 PMCID: PMC12061640 DOI: 10.1111/jcmm.70585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Hepatopulmonary syndrome (HPS) is a pulmonary vascular complication of liver disease and/or portal hypertension. HPS manifests as impaired gas exchange and hypoxemia due to intrapulmonary vascular dilatations and shunts. In response to primary liver disease, the abnormal adaptation of respiratory epithelial cells, pulmonary endothelial cells and immune cells leads to pulmonary microenvironment disequilibrium and HPS. In this review, we explore the pathophysiologic mechanisms of HPS, including vascular dilation, angiogenesis and alveolar dysfunction. The liver is the primary contributor to HPS, and liver transplantation is the only treatment that generally reverses HPS. We then discuss how disruption of hepatic sinusoidal homeostasis may impact the progression of HPS, mainly focusing on hepatocytes, cholangiocytes, LSECs and macrophages. As HPS occurs more commonly in advanced liver cirrhosis, we also discuss that normalisation of liver dysfunction and portal hypertension is crucial for the resolution of HPS. In conclusion, liver-targeted therapies may be effective in treating HPS.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Yangkun Guo
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Dengcheng Zhou
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life SciencesSichuan UniversityChengduChina
| | - Yongfang Zhou
- Department of Respiratory CareWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Jinhang Gao
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Zhang B, Li X, Zhou QY, Zhang C, Bian ZR, Ren XX, Yu Q, Hua H, Jiang Z, Zhang B, Li XY, Chen MX, Zheng KY, Yan C. Clonorchis sinensis extracellular vesicles associated with Csi-let-7a-5p activate pro-inflammatory macrophages to induce biliary injury. PLoS Negl Trop Dis 2025; 19:e0013080. [PMID: 40359194 PMCID: PMC12074333 DOI: 10.1371/journal.pntd.0013080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
During Clonorchis sinensis (C. sinensis) infection, pro-inflammatory macrophages (M1 macrophages) are highly activated, yet their role in the disease remains poorly understood. Previous studies have demonstrated that extracellular vesicles from C. sinensis (CsEVs) can activate these macrophages, and inhibiting a specific miRNA (Csi-let-7a-5p) in CsEVs (InCsEVs) can reduce this activation. In the present study, liver macrophages in mice were removed using clodronate liposomes (Clodlip). Subsequently, different types of bone marrow-derived macrophages (BMDMs) were adoptively transferred into the mice lacking liver macrophages: untreated (PBS-BMDM), treated with CsEVs (CsEVs-BMDM), treated with a control (ScrCsEVs-BMDM), or treated with InCsEVs (InCsEVs-BMDM). Biliary damages were then evaluated. The results indicated that the transferred macrophages successfully repopulated the mice. CsEVs-BMDM led to significant inflammation and bile duct damage, accompanied by higher levels of inflammatory cytokines (TNF-α and IL-1β). However, when macrophages were treated with InCsEVs, the damage and inflammation were alleviated, and the levels of TNF-α and IL-1β decreased. These findings suggest that pro-inflammatory macrophages activated by CsEVs, especially through Csi-let-7a-5p, play a crucial role in biliary damage during C. sinensis infection. Although other immune cells may also be involved, this study emphasizes the significance of pro-inflammatory macrophages in clonorchiasis.
Collapse
Affiliation(s)
- Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zheng-Rui Bian
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xin-Xin Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Hui Hua
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zhihua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xiang-Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Mu-Xin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People’s Republic of China
- Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou, People’s Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
7
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Xu Y, Fan Y, Zhao Z, Hu W, Qian Y, Hu Y. Circularized Supramolecular Spherical Nucleic Acids Alleviates Liver Fibrosis through Blocking Upstream Activation and Reversing Activation State of Hepatic Stellate Cells. ACS NANO 2025; 19:15444-15456. [PMID: 40228167 DOI: 10.1021/acsnano.4c15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Inhibition of hepatic stellate cell (HSC) activation and reversal of its activation state represent two distinct yet complementary strategies in antifibrotic therapy. While synergy of those two strategies is anticipated to improve the therapeutic outcomes, synergism through nanomedicine remains elusive. Herein, we report a circular spherical nucleic acid (cSNA) with a supramolecular core comprising collagenase I and ML-290 and a surface attached with circular PDGF-BB aptamer instead of the stereotypical linear counterpart. Unlike conventional inert SNA, this cSNA core dissociates in response to elevated ROS levels in the fibrotic liver so that collagenase I is released to disrupt the collagen barrier to promote the penetration of ensuing nanoparticles. Of significant importance is that the PDGF-BB aptamer after circularization exhibits enhanced nuclease resistance and improved molecular recognition, thereby demonstrating superior capability in blocking HSC activation mediated by PDGF-BB/PDGFR-β signaling. Meanwhile, relaxin family peptide receptor 1 (RXFP1) agonist ML-290 initially transforms pro-fibrogenic macrophages into pro-resolution macrophages by activating RXFP1 signaling, facilitating the secretion of pro-resolution factors for the reversal of the activated state of HSCs. This work thus presents a proof-of-concept demonstration of a supramolecular SNA that undergoes structural and functional refinements, enabling concurrent upstream etiological blockade and downstream pathological restoration in liver fibrosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yu Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zinan Zhao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Wei Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yuyan Qian
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|
9
|
Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2025; 26:3988. [PMID: 40362227 PMCID: PMC12071881 DOI: 10.3390/ijms26093988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) play a crucial role in maintaining liver homeostasis, regulating immune responses, and fibrosis in liver diseases. This review explores the unique functions of LSECs in liver pathology, particularly their roles in immune tolerance, antigen presentation, and the modulation of hepatic stellate cells (HSCs) during fibrosis. LSECs act as key regulators of immune balance in the liver by preventing excessive immune activation while also filtering antigens and interacting with immune cells, including Kupffer cells and T cells. Metabolic Dysfunction-Associated Fatty Liver Disease(MAFLD) is significant because it can lead to advanced liver dysfunction, such as cirrhosis and liver cancer. The prevalence of Metabolic Associated Steatohepatitis (MASH) is increasing globally, particularly in the United States, and is closely linked to rising rates of obesity and type 2 diabetes. Early diagnosis and intervention are vital to prevent severe outcomes, highlighting the importance of studying LSECs in liver disease. However, during chronic liver diseases, LSECs undergo dysfunction, leading to their capillarization, loss of fenestrations, and promotion of pro-fibrotic signaling pathways such as Transforming growth factor-beta (TGF-β), which subsequently activates HSCs and contributes to the progression of liver fibrosis. The review also discusses the dynamic interaction between LSECs, HSCs, and other hepatic cells during the progression of liver diseases, emphasizing how changes in LSEC phenotype contribute to liver scarring and fibrosis. Furthermore, it highlights the potential of LSECs as therapeutic targets for modulating immune responses and preventing fibrosis in liver diseases. By restoring LSECs' function and targeting pathways associated with their dysfunction, novel therapies could be developed to halt or reverse liver disease progression. The findings of this review reinforce the importance of LSECs in liver pathology and suggest that they hold significant promises as targets for future treatment strategies aimed at addressing chronic liver diseases.
Collapse
Affiliation(s)
- Munish Puri
- Onco-Immunology, Magnit Global, Folsom, CA 95630, USA
| | - Snehal Sonawane
- Department of Pathology, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
10
|
Liu J, Hu J, Yao X, Xu M, Yuan A, Guo J, Wang C, Le Y, Yuan X, Lu D. CLICs Inhibitor IAA94 Alleviates Inflammation and Injury in Septic Liver by Preventing Pyroptosis in Macrophages. Inflammation 2025:10.1007/s10753-025-02304-6. [PMID: 40259192 DOI: 10.1007/s10753-025-02304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Macrophage pyroptosis represents a pivotal mechanism underlying acute liver injury during sepsis. Chloride intracellular channel proteins (CLICs) have been linked to inflammatory reflexes, with IAA94 serving as an inhibitor of channel formation characteristic of CLICs. In a mouse model, IAA94 demonstrated efficacy in reducing pro-inflammatory cytokines in liver tissues, decreasing macrophage in the liver, inhibiting the development of the pro-fibrosis phenotype, and alleviating tissue injury. Additionally, IAA94 exhibited inhibitory effects on the activation of NLRP3 inflammasome, leading to the suppression of pyroptosis in J774A.1 cells and the liver. Additionally, IAA94 was observed to impede the interaction between NEK7 and NLRP3. Furthermore, it was observed that the conditioned medium of pyroptotic macrophages treated with IAA94 induced an attenuated inflammatory response in hepatocytes in comparison to that induced by the conditioned medium of pyroptotic macrophages. However, NLRP3 overexpression impeded the beneficial effects of IAA94. In conclusion, IAA94 has the capacity to impede NLRP3 inflammasome formation-mediated pyroptosis by blocking CLICs-mediated chloride efflux and the inhibition of NEK7-NLRP3 interactions, thereby establishing CLICs as a promising therapeutic target against liver inflammation.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingwen Hu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xulei Yao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengting Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xingyu Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients 2025; 17:1373. [PMID: 40284236 PMCID: PMC12030243 DOI: 10.3390/nu17081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin (CUR), a bioactive compound found in turmeric, has garnered attention for its potential anti-inflammatory properties and impact on liver health. Numerous studies suggest that CUR may be crucial in mitigating liver inflammation. The compound's anti-inflammatory effects are believed to be attributed to its ability to modulate various molecular pathways involved in the inflammatory response. Research indicates that CUR may suppress the activation of inflammatory cells and the production of pro-inflammatory cytokines in the liver. Additionally, it has been observed to inhibit the activity of transcription factors that play a key role in inflammation. By targeting these molecular mechanisms, CUR may help alleviate the inflammatory burden on the liver. Moreover, CUR's antioxidant properties are thought to contribute to its protective effects on the liver. Oxidative stress is closely linked to inflammation, and CUR's ability to neutralize free radicals may further support its anti-inflammatory action. While the evidence is promising, it is essential to note that more research is needed to fully understand the precise mechanisms through which CUR influences liver inflammation. Nevertheless, these findings suggest that CUR could be a potential therapeutic agent in managing liver inflammatory conditions. In this review, we explore the potential impact of CUR on inflammation, highlighting the key mechanisms involved, as reported in the literature.
Collapse
Affiliation(s)
- Olga Obrzut
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Karolina Kustrzyńska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
12
|
Huang J, Zou W, Lv Z, Han H, Huang J, Su H. Immune cell phenotypes as causal factors in liver disease progression revealed by Mendelian randomization. Sci Rep 2025; 15:12685. [PMID: 40221542 PMCID: PMC11993735 DOI: 10.1038/s41598-025-97429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Immune cells are central mediators of the immune response and play critical roles in the pathogenesis and progression of liver diseases. Understanding the specific contributions of immune cells to liver disease progression is essential for developing targeted therapeutic strategies. In this study, we employed a two-sample Mendelian randomization (MR) approach to explore potential causal relationships between peripheral immune cell phenotypes and liver diseases, using genetic instrumental variables from large-scale genome-wide association studies (GWAS). Applying the inverse variance weighted (IVW) methods, we identified that monocyte count(odds ratio (OR) 0.81; 95% confidence interval (CI) 0.74-0.90; P = 5.95 × 10- 5, PFDR = 3.57 × 10- 4), CD3- lymphocyte/lymphocyte (OR 0.59, 95% CI 0.45-0.79; P = 3.29 × 10- 4, PFDR = 5.92 × 10- 3) and SSC-A (Side Scatter Area) on Natural Killer (NK) cells (OR 0.89, 95% CI 0.82-0.95; P = 1.37 × 10- 3, PFDR = 0.0396) acted as protective factors against alcoholic liver disease. Similarly, the trait HLA DR++ monocyte/monocyte was associated with a lower risk of autoimmune hepatitis (OR 0.56, 95% CI 0.41-0.79; P = 7.42 × 10- 4, PFDR = 0.0475). Conversely, an elevated blood monocytic Myeloid-Derived Suppressor Cells (MDSCs) count was associated with a higher risk of chronic hepatitis (OR 1.23, 95% CI 1.11-1.37; P = 1.13 × 10- 4, PFDR = 1.58 × 10- 3). Similarly, higher levels of HLA DR on CD14- CD16+ monocyte (OR 0.84, 95% CI 0.78-0.91; P = 2.07 × 10- 5, PFDR = 1.32 × 10- 3) conferred lower risk for cirrhosis of liver. In hepatic failure, CD39+ resting CD4 regulatory T cell count (OR 0.85, 95% CI 0.79-0.92; P = 1.70 × 10- 5, PFDR = 5.25 × 10- 3) played a protective role and CD28+ CD45RA- CD8dim T cell/CD8dim T cell (OR 1.14, 95% CI 1.06-1.22; P = 2.63 × 10- 4, PFDR = 0.0406) exhibited a risk function. Our findings highlight key immune pathways in liver disease progression and underscore potential immunomodulatory targets for future therapeutic interventions. Further research is warranted to clarify the mechanistic underpinnings of these associations.
Collapse
Affiliation(s)
- Jingtao Huang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wenlu Zou
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Zhihua Lv
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Huan Han
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang, Liaoning, China.
| | - Hanwen Su
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
13
|
Liu Q, Liu P, Li C, Zhao Z, Wang D, Liu Q, Yang H. Effects of Chinese Medicine on modulating interleukin-17-regulated macrophages in coronary heart disease. Front Pharmacol 2025; 16:1499786. [PMID: 40276600 PMCID: PMC12018881 DOI: 10.3389/fphar.2025.1499786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/10/2025] [Indexed: 04/26/2025] Open
Abstract
Coronary atherosclerotic heart disease (CHD) is one of the leading causes of death from cardiovascular disease worldwide and has significant inflammatory features. Macrophages play an important role in atherosclerotic plaque formation and inflammation. IL-17, as a pro-inflammatory cytokine, further exacerbates the development of CHD by interacting with macrophages. In recent years, there has been increasing evidence that traditional Chinese medicine (CM) has a wide range of applications in regulating the immune system and treating CHD. This article reviewed the role of CM in the regulation of IL-17-regulated macrophages, discussed the core components and targets of CM in the treatment of CHD, and laid a theoretical foundation for its clinical application. The results show that CM can effectively inhibit the formation of foam cells, stabilize vulnerable plaque and delay the progression of atherosclerosis by inhibiting inflammation, regulating the polarization of macrophages and promoting cholesterol outflow. In addition, CM can also regulate the expression and signaling pathway of IL-17, further inhibit inflammatory response and improve the symptoms of CHD, providing a new idea and method for the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peizhong Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangpeng Li
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huawei Yang
- Guangdong Provincial Hospital of Chinese Medicine‐Zhuhai Hospital, State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Sharma S, Tiwari N, Tanwar SS. The current findings on the gut-liver axis and the molecular basis of NAFLD/NASH associated with gut microbiome dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04069-z. [PMID: 40202676 DOI: 10.1007/s00210-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Recent research has highlighted the complex relationship between gut microbiota, metabolic pathways, and nonalcoholic fatty liver disease (NAFLD) progression. Gut dysbiosis, commonly observed in NAFLD patients, impairs intestinal permeability, leading to the translocation of bacterial products like lipopolysaccharides, short-chain fatty acids, and ethanol to the liver. These microbiome-associated mechanisms contribute to intestinal and hepatic inflammation, potentially advancing NAFLD to NASH. Dietary habits, particularly those rich in saturated fats and fructose, can modify the microbiome composition, leading to dysbiosis and fatty liver development. Metabolomic approaches have identified unique profiles in NASH patients, with specific metabolites like ethanol linked to disease progression. While bariatric surgery has shown promise in preventing NAFLD progression, the role of gut microbiome and metabolites in this improvement remains to be proven. Understanding these microbiome-related pathways may provide new diagnostic and therapeutic targets for NAFLD and NASH. A comprehensive review of current literature was conducted using multiple medical research databases, including PubMed, Scopus, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, ScienceDirect, Medline, ProQuest, and Google Scholar. The review focused on studies that examine the relationship between gut microbiota composition, metabolic pathways, and NAFLD progression. Key areas of interest included microbial dysbiosis, endotoxin production, and the influence of diet on gut microbiota. The analysis revealed that gut dysbiosis contributes to NAFLD through several mechanisms, diet significantly influences gut microbiota composition, which in turn affects liver function through the gut-liver axis. High-fat diets can lead to dysbiosis, altering microbial metabolic activities and promoting liver inflammation. Specifically, gut microbiota-mediated generation of saturated fatty acids, such as palmitic acid, can activate liver macrophages and increase TNF-α expression, contributing to NASH development. Different dietary components, including cholesterol, fiber, fat, and carbohydrates, can modulate the gut microbiome and influence NAFLD progression. This gut-liver axis plays a crucial role in maintaining immune homeostasis, with the liver responding to gut-derived bacteria by activating innate and adaptive immune responses. Microbial metabolites, such as bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis, contributing to NASH pathogenesis. Additionally, the microbiome of NASH patients shows an elevated capacity for alcohol production, suggesting similarities between alcoholic steatohepatitis and NASH. These findings indicate that targeting the gut microbiota may be a promising approach for NASH treatment and prevention. Recent research highlights the potential of targeting gut microbiota for managing nonalcoholic fatty liver disease (NAFLD). The gut-liver axis plays a crucial role in NAFLD pathophysiology, with dysbiosis contributing to disease progression. Various therapeutic approaches aimed at modulating gut microbiota have shown promise, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and dietary interventions. Probiotics have demonstrated efficacy in human randomized controlled trials, while other interventions require further investigation in clinical settings. These microbiota-targeted therapies may improve NAFLD outcomes through multiple mechanisms, such as reducing inflammation and enhancing metabolic function. Although lifestyle modifications remain the primary recommendation for NAFLD management, microbiota-focused interventions offer a promising alternative for patients struggling to achieve weight loss targets.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
| | - Nishant Tiwari
- Acropolis Institute of Pharmaceutical Education and Research, Indore, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
15
|
Park SJ, Garcia Diaz J, Comlekoglu T, Hahn YS. Type I IFN receptor blockade alleviates liver fibrosis through macrophage-derived STAT3 signaling. Front Immunol 2025; 16:1528382. [PMID: 40260261 PMCID: PMC12009845 DOI: 10.3389/fimmu.2025.1528382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Liver macrophages play a role in the development of liver fibrosis progression via the regulation of inflammatory signaling. However, the precise mechanisms of macrophages contributing to liver fibrosis progression remain unclear. Using a preclinical model of CCl4-treated mice, we determined the composition of immune cells and the alteration of inflammatory gene expression. Our findings revealed a significant increase in liver macrophages, particularly those derived from infiltrating blood monocytes, in fibrotic mice. Moreover, the expression levels of type I IFN signature genes such as IFNα, IFNβ, ISG15, USP18, Ifi44, Ifit1, Ifit2, IRF3, and IRF7 were elevated in fibrotic mice. To determine the role of type I IFN signaling in liver fibrosis, we administered an IFNAR-1 antibody to block this pathway for 3 days prior to harvesting the liver. Notably, IFNAR-1 blockade reduced macrophage numbers compared to control mice and alleviated liver fibrosis in mice with increased hepatocyte proliferation and apoptosis. The ratio of P-STAT3/P-STAT1 in monocyte-derived macrophages was increased in the IFNAR-1 blockade group compared to fibrotic mice, and this was related to the appearance of M2 macrophage differentiation. Additionally, single-cell RNA-seq analysis indicated that IFNAR blockade affected inflammatory pathways involved in hepatocyte regeneration and fibrosis prevention. Taken together, IFNAR-1 blockade alleviates liver fibrosis progression by modulating macrophage inflammatory responses. These results provide insights for developing anti-fibrotic therapies against type I IFN signaling.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Josefina Garcia Diaz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Tina Comlekoglu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
16
|
Coombes JD, Manka PP, Swiderska-Syn M, Vannan DT, Riva A, Claridge LC, Moylan C, Suzuki A, Briones-Orta MA, Younis R, Kitamura N, Sydor S, Bittencourt S, Mi Z, Kuo PC, Diehl AM, van Grunsven LA, Chokshi S, Canbay A, Abdelmalek MF, Aspichueta P, Papa S, Eksteen B, Syn WK. Osteopontin Promotes Cholangiocyte Secretion of Chemokines to Support Macrophage Recruitment and Fibrosis in MASH. Liver Int 2025; 45:e16131. [PMID: 39422353 PMCID: PMC11893260 DOI: 10.1111/liv.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND AIMS Osteopontin (OPN) promotes the ductular reaction and is a major driver of chronic liver disease (CLD) progression. Although CLD is characterised by the accumulation of inflammatory cells including macrophages around the peri-portal regions, the influence of OPN on recruitment is unclear. We investigated the role of OPN in cholangiocyte chemokine production and macrophage recruitment by combining in vivo, in vitro, and in silico approaches. METHODS The effects of OPN on cholangiocyte chemokine production and macrophage migration were assessed in culture, alongside RNA-sequencing to identify genes and pathways affected by OPN depletion. Murine liver injury models were used to assess liver chemokine expression and liver macrophage/monocyte recruitment. OPN and chemokine expression were analysed in liver tissue and plasma from biopsy-proven metabolic dysfunction-associated alcoholic steatohepatitis (MASH) patients. RESULTS OPN-knockdown in cholangiocytes reduced chemokine secretion. RNA-sequencing showed OPN-related effects clustered around immunity, chemotaxis and chemokine production. Macrophage exposure to cholangiocyte-conditioned media showed OPN-supported migration via chemokines chemokine (C-C motif) ligand (CCL)2, CCL5 and chemokine (C-X-C motif) ligand (CXCL)1. These effects were related to NF-κB signalling. Murine liver fibrosis was accompanied by upregulated liver OPN, CCL2, CCL5 and CXCL1 mRNA, and accumulation of liver cluster of differentiation (CD)11b/F4/80+CC chemokine receptors (CCR2)high macrophages but treatment with OPN-specific neutralising aptamers reduced fibrosis, chemokine mRNAs and accumulation of liver CD11b/F4/80+CCR2high/lymphocyte antigen 6 complexhigh inflammatory monocytes. In human MASH, liver OPN correlated with chemokines CCL2 and IL8 in association with portal injury and fibrosis. Plasma OPN, serum CCL2 and IL8 also increased with fibrosis stage. CONCLUSIONS OPN promotes cholangiocyte chemokine secretion and the accumulation of pro-inflammatory monocytes. These data support neutralisation of OPN as an anti-inflammatory and anti-fibrotic strategy.
Collapse
Affiliation(s)
- Jason D. Coombes
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Division of Gastroenterology and Hepatology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Paul P Manka
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Gastroenterology and Hepatology, University Clinic Bochum, Bochum, Germany
| | - Marzena Swiderska-Syn
- Division of Gastroenterology and Hepatology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Danielle T Vannan
- Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Canada
- Aspen Woods Clinic, Calgary, Alberta, Canada
| | - Antonio Riva
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Viral Hepatitis and Alcohol Research Group, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Lee C Claridge
- Department of Hepatology, Leeds Teaching Hospital NHS Trust, UK
| | - Cynthia Moylan
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Ayako Suzuki
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Marco A Briones-Orta
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rasha Younis
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Naoto Kitamura
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Svenja Sydor
- Gastroenterology and Hepatology, University Clinic Bochum, Bochum, Germany
| | | | - Zhiyong Mi
- Department of Surgery, University of South Florida, Tampa, Florida
| | - Paul C. Kuo
- Department of Surgery, University of South Florida, Tampa, Florida
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | | | - Shilpa Chokshi
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Viral Hepatitis and Alcohol Research Group, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Ali Canbay
- Gastroenterology and Hepatology, University Clinic Bochum, Bochum, Germany
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, EPV/EHU, Leioa
| | - Salvatore Papa
- Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Bertus Eksteen
- Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Canada
- Aspen Woods Clinic, Calgary, Alberta, Canada
| | - Wing-Kin Syn
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, EPV/EHU, Leioa
- Division of Gastroenterology and Hepatology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
17
|
Feng X, Feng B, Zhou J, Yang J, Pan Q, Yu J, Shang D, Li L, Cao H. Mesenchymal stem cells alleviate mouse liver fibrosis by inhibiting pathogenic function of intrahepatic B cells. Hepatology 2025; 81:1211-1227. [PMID: 38546278 PMCID: PMC11902620 DOI: 10.1097/hep.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND AIMS The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH AND RESULTS Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas, and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (μMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in μMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the Mitogen-activated protein kinase and Nuclear factor kappa B signaling pathways. CONCLUSIONS Intrahepatic B cells serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.
Collapse
Affiliation(s)
- Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
- National Medical Center for Infectious Diseases, Hangzhou City, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou City, China
| |
Collapse
|
18
|
Jia H, Li J, Chen X, Liu Z, Wu C, Liu C, Zhang J, Luo M, Huang M, Huang S, Cai M, Gao L. ErTao decoction alleviates liver fibrosis by suppressing STING-mediated macrophages and NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156489. [PMID: 39954622 DOI: 10.1016/j.phymed.2025.156489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological process in the progression of multiple chronic liver diseases to cirrhosis, affecting millions of people worldwide annually. The incomplete understanding of its mechanisms has led to a lack of clinically effective therapeutic options. ErTao decoction (ETD, ), a derivative combining the components of Erchen Decoction and Taohong Siwu Decoction, is rooted in the traditional Chinese medicine theory of "phlegm-dampness-blood stasis". However, the precise mechanism by which ETD exerts its therapeutic effects in LF remains unclear. PURPOSE The purpose of study was to investigate the protective effect of ETD and elucidate its underlying molecular mechanism on LF. METHODS In this study, we employed a multifaceted approach to evaluate the effects of ETD on LF. We used H&E staining, Sirius red staining, immunofluorescence, immunohistochemical analysis, and Western blotting to assess the protective effects of ETD in a CCl4-induced fibrosis mouse model. In vitro validation was conducted using macrophages and hepatic stellate cells to further elucidate the mechanisms involved. STING-deficient mice were used to assess its regulatory effects on liver injury, inflammatory and activation through immunohistochemical staining and Western blotting. Furthermore, UHPLCHRMS detection and computer-aided drug analysis were employed to identify and validate potential effective components of ETD for responsible for its therapeutic effects in treating LF. RESULTS In our in vivo and in vitro experiments, we found that ETD effectively reduced collagen fiber deposition and alleviated LF pathological changes by inhibiting macrophage inflammatory activation and suppressing NLRP3 and STING signaling. Notably, STING deficiency exhibited a protective effect against liver tissue injury and inhibited inflammatory activation of hepatic macrophages in LF model mice. Additionally, comprehensive analysis of the active ingredients in ETD strongly suggested that Naringin served as a pivotal bioactive constituent within ETD responsible for modulating STING signaling. CONCLUSIONS Our study highlighted the protective effects of ETD on LF by inhibiting STING-mediated macrophage activation and NLRP3 inflammasome signaling. Notably, Naringin might serve as a promising novel STING inhibitor to effectively counteract the progression of LF. These findings represented significant advances in LF research and paved the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zepeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Luo
- The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Manping Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Min Cai
- Hainan Provincial Hospital of Chinese Medicine, Haikou, Hainan, China.
| | - Lei Gao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Chen J, Liu H, Fu Y, Chen X, Zhang S, Yang Y, Li S, Wang G, Lan T. Kaempferol attenuates macrophage M1 polarization and liver fibrosis by inhibiting mitogen-activated protein kinase/nuclear factor κB signaling pathway. J Pharmacol Exp Ther 2025; 392:103533. [PMID: 40139075 DOI: 10.1016/j.jpet.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic liver inflammation is a major cause of death in patients with liver fibrosis and cirrhosis, which pose a serious health threat worldwide, and there is no effective anti-hepatic fibrosis drug. Kaempferol (KA), a flavonoid polyphenol extracted from many edible plants and traditional Chinese medicine, has been reported to possess anti-inflammatory, antioxidant, and antitumor activities and has an ameliorating effect on liver fibrosis or other fibroproliferative diseases. However, the specific regulatory mechanism of KA-reversed macrophage M1 polarization is still obscure. This study aimed to investigate the protective effects of KA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice through M1 polarization. C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly to induce liver fibrosis. Male mice were randomly divided into 4 groups (n = 5): the oil group, the CCl4 group, the low-dose KA-treatment CCl4 group (50 mg/kg/day KA), and the high-dose KA-treatment CCl4 group (100 mg/kg/day KA). An equal amount of solvent was given to each group by intraperitoneal injection. The results indicated that KA decreased liver pathologic changes, hepatic macrophage recruitment, and serum alanine aminotransferase levels. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and inducible nitric oxide synthase, was also decreased. The core targets, signaling pathways, and possible mechanisms related to the M1 polarization of KA were analyzed by network pharmacology and molecular docking. Further analysis revealed that KA regulated mitogen-activated protein kinase (MAPK)/nuclear factor κB (NF-κB) signaling pathways. Finally, the results indicated that KA regulates M1 macrophage activation by modulating the MAPK/NF-κB signaling pathways. This study revealed that KA ameliorated liver injury, inflammation, and fibrosis by inhibiting macrophage M1 polarization through the MAPK/NF-κB signaling pathway, highlighting KA as a potential novel agent for the prevention and treatment of liver fibrosis. SIGNIFICANCE STATEMENT: Chronic liver inflammation is a leading cause of mortality in patients with liver fibrosis and cirrhosis, presenting a significant global health threat. Kaempferol, as a traditional Chinese medicine, effectively suppresses M1 polarization of macrophages through the mitogen-activated protein kinase/nuclear factor κB signaling pathway, thereby ameliorating liver injury, inflammation, and fibrosis. These findings underscore the potential of kaempferol as an innovative therapeutic agent for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huanle Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiqin Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongqi Yang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shengwen Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Zhai X, He X, Huang A, Liu Z, Chen S, Chang B, Zhu Y, Xie H, Bai Z, Xiao X, Sun Y, Wang J, Lu Y, Zou Z. Analysis of Immunometabolic Profiles in Patients With Chronic Drug-Induced Liver Injury and Validation in Mice to Reveal Potential Mechanisms. J Gastroenterol Hepatol 2025; 40:987-1003. [PMID: 39797719 DOI: 10.1111/jgh.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression. METHODS Plasma and peripheral blood mononuclear cells from patients with chronic DILI were analyzed using multiplex immunoassays and untargeted metabolomics to reveal their immunometabolic profile. The effects and potential mechanisms of chronic DILI-related metabolite on acute or chronic liver injury induced by LPS or CCl4 in mice were investigated. RESULTS Patients with chronic DILI exhibited elevated plasma IL-6, IL-12p70, IL-15 and reduced IL-10 levels. The percentage of IL-12+ monocytes was higher, while that of CD206+ monocytes, IL-10+ monocytes, Th2, Treg, and IL-10+ CD4+ T cells were lower in patients with chronic DILI compared to those with acute DILI. We identified the most significantly increased metabolite in patients with chronic DILI was cis-aconitic acid (CAA). Administration of CAA can attenuate liver injury in mice with acute liver injury induced by LPS or CCl4 and promote the spontaneous resolution of liver fibrosis in mice with chronic live injury induced by CCl4. The protective mechanism of CAA against liver injury is associated with the inhibition of hepatic macrophage infiltration and polarization, which is achieved by inhibiting the secretion of neutrophil-derived IL-33 and subsequent phosphorylation of GATA3. CONCLUSIONS CAA, which is elevated in patients with chronic DILI, protects against liver injury by inhibiting hepatic macrophage infiltration and polarization through the suppression of the IL-33/GATA3 pathway, suggesting that CAA may serve as a potential target for regulating tissue repair in liver injury.
Collapse
Affiliation(s)
- Xingran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Xian He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ang Huang
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zherui Liu
- Peking University 302 Clinical Medical School, Beijing, China
| | - Shaoting Chen
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Binxia Chang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yun Zhu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huan Xie
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Sun
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yawen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Castanho Martins M, Dixon ED, Lupo G, Claudel T, Trauner M, Rombouts K. Role of PNPLA3 in Hepatic Stellate Cells and Hepatic Cellular Crosstalk. Liver Int 2025; 45:e16117. [PMID: 39394864 PMCID: PMC11891384 DOI: 10.1111/liv.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
AIMS Since its discovery, the patatin-like phospholipase domain containing 3 (PNPLA3) (rs738409 C>G p.I148M) variant has been studied extensively to unravel its molecular function. Although several studies proved a causal relationship between the PNPLA3 I148M variant and MASLD development and particularly fibrosis, the pathological mechanisms promoting this phenotype have not yet been fully clarified. METHODS We summarise the latest data regarding the PNPLA3 I148M variant in hepatic stellate cells (HSCs) activation and macrophage biology or the path to inflammation-induced fibrosis. RESULTS Elegant but contradictory studies have ascribed PNPLA3 a hydrolase or an acyltransferase function. The PNPLA3 I148M results in hepatic lipid accumulation, which predisposes the hepatocyte to lipotoxicity and lipo-apoptosis, producing DAMPs, cytokines and chemokines leading to recruitment and activation of macrophages and HSCs, propagating fibrosis. Recent studies showed that the PNPLA3 I148M variant alters HSCs biology via attenuation of PPARγ, AP-1, LXRα and TGFβ activity and signalling. CONCLUSIONS The advent of refined techniques in isolating HSCs has made PNPLA3's direct role in HSCs for liver fibrosis development more apparent. However, many other mechanisms still need detailed investigations.
Collapse
Affiliation(s)
- Maria Castanho Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Giulia Lupo
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| |
Collapse
|
22
|
Chen N, Luo P, Tang Y, Liu P, Wang J, Fan Y, Han L, Wang K. Accelerators of chronic hepatitis B fibrosis cirrhosis CCND1 gene expression and promoter hypomethylation. Sci Rep 2025; 15:10630. [PMID: 40148411 PMCID: PMC11950333 DOI: 10.1038/s41598-025-93778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the relationship between Cyclin D1 (CCND1) gene and promoter methylation and liver fibrosis (LF)/liver cirrhosis (LC)induced by chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) are collected from patients diagnosed with chronic hepatitis B (CHB) and hepatitis B-related LF/LC, as well as from healthy individuals. The mRNA levels and promoter methylation of the CCND1 gene are measured. Single-cell analysis is performed to determine the cell types primarily expressing the CCND1 gene in LF/LC. The GSE84044 dataset is utilized to validate the experimental results. Single-gene GSEA and immune infiltration analyses are conducted to identify significant pathways and immune characteristics associated with the CCND1 gene. The mRNA level of CCND1 in PBMCs from patients with hepatitis B-related LF/LC is elevated compared to those with chronic hepatitis B (CHB) and healthy individuals, while the promoter methylation level of CCND1 is reduced. Single-cell analysis indicates high expression of CCND1 in M2 macrophages (M2) and T cells. The GSE84044 dataset confirms higher CCND1 mRNA levels in liver tissues from patients with CHB-related LF/LC compared to CHB patients. Single-gene GSEA analysis associates CCND1 expression with natural killer cell-mediated cytotoxicity, T cell receptor signaling, and B cell receptor signaling pathways. Increased expression of CCND1 enhances immune infiltration during the fibrosis/cirrhosis process of CHB. The CCND1 expression and promoter methylation may be involved in the process of LF/LC in CHB and may be related to the immune response in the course of the disease.
Collapse
Affiliation(s)
- Nan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Pengyu Luo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuna Tang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Pei Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jing Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China
| | - Liyan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
23
|
Ning M, Lu D, Liang D, Ren PG. Single-cell RNA sequencing advances in revealing the development and progression of MASH: the identifications and interactions of non-parenchymal cells. Front Mol Biosci 2025; 12:1513993. [PMID: 40201243 PMCID: PMC11976672 DOI: 10.3389/fmolb.2025.1513993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Developing drugs for the treatment of Metabolic Associated Steatohepatitis (MASH) has always been a significant challenge. Researchers have been dedicated to exploring drugs and therapeutic strategies to alleviate disease progression, but treatments remain limited. This is partly due to the complexity of the pathophysiological processes, and inadequate knowledge of the cellular and molecular mechanisms in MASH. Especially, the liver non-parenchymal cells (NPCs) like Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells which play critical roles in live function, immune responses, fibrosis and disease progression. Deciphering how these cells function in MASH, would help understand the pathophysiological processes and find potential drug targets. In recent years, new technologies have been developed for single-cell transcriptomic sequencing, making cell-specific transcriptome profiling a reality in healthy and diseased livers. In this review, we discussed how the use of single-cell transcriptomic sequencing provided us with an in-depth understanding of the heterogeneous, cellular interactions among non-parenchymal cells and tried to highlight recent discoveries in MASH by this technology. It is hoped that the summarized features and markers of various subclusters in this review could provide a technical reference for further experiments and a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Meng Ning
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong Liang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Kim JH, Yeo IJ, Son DJ, Han SB, Yoon DY, Lee DH, Hong JT. Chitinase 3-like protein 1 deficiency ameliorates drug-induced acute liver injury by inhibition of neutrophil recruitment through lipocalin-2. Front Pharmacol 2025; 16:1548832. [PMID: 40196357 PMCID: PMC11973357 DOI: 10.3389/fphar.2025.1548832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Chitinase-3-like protein 1 (Chi3l1) is a member of the mammalian Chitinase-like protein family, and several studies reported that Chi3l1 is associated with various inflammatory diseases as well as liver diseases. Acetaminophen (APAP) is usually used for antipyretic drug, but its overdose induces acute liver injury (ALI). Several studies reported that subsequent inflammatory responses of the immune system play a critical role in the severity and outcome of APAP-induced ALI. In the present study, we investigated the role of Chi3l1 and its mechanism during APAP-induced ALI using Chi3l1 knock-out (KO) mice. We explored the function of Chi3l1 using APAP-injected KO mice and sought proteins associated with Chi3l1 through biological research data program for investigating mechanism. Liver histological analysis revealed that APAP-induced ALI was attenuated in KO mice compared to wild-type (WT) mice. We observed that APAP-induced neutrophil infiltration was decreased in the liver of KO mice compared to WT mice. To investigate this mechanism, we sought proteins potentially associated with Chi3l1 by mRNA sequencing and protein correlation analysis data. We found lipocalin-2 (Lcn2) and examined Chi3l1, Lcn2, and their relationship in the APAP-induced ALI model using recombinant proteins and antibodies. Our results suggest that Chi3l1 deficiency ameliorates APAP-induced liver injury through abrogating Lcn2-mediated neutrophil infiltration in the liver.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
25
|
Zhang J, Wang Q, Zhou N, Liu J, Tao L, Peng Z, Hu G, Wang H, Fu L, Peng S. Fluorofenidone attenuates choline-deficient, l-amino acid-defined, high-fat diet-induced metabolic dysfunction-associated steatohepatitis in mice. Sci Rep 2025; 15:9863. [PMID: 40118958 PMCID: PMC11928590 DOI: 10.1038/s41598-025-94401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves hepatic lipid accumulation, inflammation, and fibrosis. It can progress to cirrhosis or hepatocellular carcinoma without timely treatment. Current treatment options for MASH are limited. This study explores the therapeutic effects of fluorofenidone (AKF-PD), a novel small-molecule compound with antifibrotic and anti-inflammatory properties, on MASH in mouse model. Mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) were treated with AKF-PD, resulting in reduced serum ALT, AST, hepatic lipid accumulation, liver inflammation, and fibrosis. Network pharmacology and RNA-sequencing analyses suggested that AKF-PD influenced multiple metabolic, inflammatory, and fibrosis-related pathways. Further experiments verified that AKF-PD activated hepatic AMPK signaling, leading to the inhibition of the downstream SREBF1/SCD1 pathway and the activation of autophagy. Additionally, AKF-PD suppressed the expression of various inflammatory factors, reduced macrophage infiltration, and inhibited NLRP3 inflammasome activation. Moreover, AKF-PD attenuated liver fibrosis by inhibiting TGFβ1/SMAD signaling. In conclusion, this study reveals that AKF-PD effectively decreases hepatic lipid accumulation, liver inflammation and fibrosis in a CDAHFD-induced MASH model, positioning AKF-PD as a promising candidate for the treatment of MASH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Niu X, Chang G, Xu N, Li R, Niu B, Mao R, Wang S, Li G, Jiang J, Wang L. Vitamin A-Integrated Cinnamaldehyde Nanoemulsion: A Nanotherapeutic Approach To Counteract Liver Fibrosis via Gut-Liver Axis Modulation. ACS NANO 2025; 19:10433-10451. [PMID: 40045827 DOI: 10.1021/acsnano.5c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Liver fibrosis, a complex process resulting from most chronic liver diseases, remains devoid of effective treatments. An increasing body of evidence links liver fibrosis to the "gut-liver axis", with disruptions in the gut microbiota-host balance emerging as a critical contributor to its progression. Cinnamaldehyde (Cin), a natural compound with antioxidant, anti-inflammatory, and anticytotoxic properties, has shown potential in counteracting hepatic stellate cell (HSC) activation. Additionally, Cin has been shown to promote probiotics in the intestine, thereby restoring a healthy microbial community. These characteristics position Cin as a promising candidate for liver fibrosis treatment through modulation of the gut-liver axis. In this study, a Vitamin A (Va)-formulated Cin Nanoemulsion (Va-Cin@NM) was developed to enhance the physicochemical stability of Cin while preserving intestinal homeostasis and facilitating targeted liver deposition. In bile duct ligation (BDL)-induced liver fibrosis in rats, Va-Cin@NM intervention significantly reduced bile duct-like structure proliferation and collagen deposition in the liver. These effects are likely attributed to the restoration of gut microbiota, increased short-chain fatty acid (SCFA) concentrations, and improved intestinal integrity. Moreover, Va-Cin@NM treatment suppressed harmful bacterial populations in the liver, thus mitigating immune injury and inflammatory cell recruitment. Consequently, oxidative stress and HSC activation were attenuated. Overall, Va-Cin@NM demonstrates significant potential as a nanotherapeutic approach for liver fibrosis by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Xia Niu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ge Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingyu Niu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Mao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guiling Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Codotto G, Blarasin B, Tiribelli C, Bellarosa C, Licastro D. Decoding Liver Fibrosis: How Omics Technologies and Innovative Modeling Can Guide Precision Medicine. Int J Mol Sci 2025; 26:2658. [PMID: 40141300 PMCID: PMC11942424 DOI: 10.3390/ijms26062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The burden of chronic liver disease (CLD) is dramatically increasing. It is estimated that 20-30% of the population worldwide is affected by CLD. Hepatic fibrosis is a symptom common to all CLDs. Although it affects liver functional activities, it is a reversible stage if diagnosed at an early stage, but no resolutive therapy to contrast liver fibrosis is currently available. Therefore, efforts are needed to study the molecular insights of the disease. Emerging cutting-edge fields in cellular and molecular biology are introducing innovative strategies. Spatial and single-cell resolution approaches are paving the way for a more detailed understanding of the mechanisms underlying liver fibrosis. Cellular models have been generated to recapitulate the in-a-dish pathophysiology of liver fibrosis, yielding remarkable results that not only uncover the underlying molecular mechanisms but also serve as patient-specific avatars for precision medicine. Induced pluripotent stem cells (iPSC) and organoids are incredible tools to reshape the modeling of liver diseases, describe their architecture, and study the residents of hepatic tissue and their heterogeneous population. The present work aims to give an overview of innovative omics technologies revolutionizing liver fibrosis research and the current tools to model this disease.
Collapse
Affiliation(s)
- Gabriele Codotto
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
- AREA Science Park, 34149 Trieste, Italy
| | - Benedetta Blarasin
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | | |
Collapse
|
28
|
Tuffs C, Dupovac M, Richter K, Holten S, Schaschinger T, Marg O, Poljo A, Tasdemir AN, Harnoss JM, Billeter A, Schneider M, Strowitzki MJ. Genetic Loss of HIF-Prolyl-Hydroxylase 1, but Not Pharmacological Inhibition, Mitigates Hepatic Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:480-493. [PMID: 39566823 DOI: 10.1016/j.ajpath.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Liver fibrosis is characterized by excessive deposition of extracellular matrix due to chronic inflammation of the liver. Hepatic stellate cells (HSCs) become activated and produce increased amounts of extracellular matrix. Loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. Herein, the protective effect of PHD1 deficiency (PHD1-/-) in an additional (toxic) model of liver fibrosis was validated and the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis, was evaluated. Liver fibrosis was induced utilizing carbon tetrachloride in wild-type (WT) and PHD1-/- mice treated with either vehicle or DMOG. To assess fibrosis development, expression of profibrotic genes in the livers was analyzed by Sirius red staining. When compared with WT mice, PHD1-/- mice developed less-severe liver fibrosis. DMOG treatment did not prevent this liver fibrosis. PHD1-/- mice had fewer α-SMA+ cells and less macrophage infiltration compared with WT mice. Expression of profibrogenic and proinflammatory genes was reduced in livers from carbon tetrachloride-exposed PHD1-/- mice. In vitro analyses of PHD1-deficient human HSCs revealed attenuated mRNA levels of profibrotic genes, as well as impaired migration and invasion. Although PHD1 deficiency attenuated activation of HSCs, pharmacologic PHD inhibition did not ameliorate fibrosis development. These data indicate that selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Christopher Tuffs
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Mareen Dupovac
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Katrin Richter
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany; Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Sophia Holten
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Thomas Schaschinger
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Oliver Marg
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adisa Poljo
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Ayse Nur Tasdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adrian Billeter
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Martin Schneider
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany.
| |
Collapse
|
29
|
Zhao B, Li M, Zhang H, Wang J, Zhao W, Yang Y, Usman M, Loor JJ, Xu C. M1 polarization of hepatic macrophages in cows with subclinical ketosis is an important cause of liver injury. J Dairy Sci 2025; 108:2933-2946. [PMID: 39647630 DOI: 10.3168/jds.2024-25500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Subclinical ketosis (SCK) is highly prevalent and easily overlooked, with insidious and slow progression of hepatic injury, often characterized by an imbalance in immune homeostasis. In nonruminants, macrophage polarization plays an important regulatory role in hepatic lipid accumulation, fibrosis, and inflammatory processes. Thus, we aimed to investigate the status of hepatic macrophage polarization in SCK cows and to corroborate its association with liver injury and inflammation. Twelve Holstein dairy cows (parity 2-4) were selected, and liver biopsy and blood were collected on the second week postpartum (10-14 d DIM). On the basis of serum beta-hydroxybutyric acid (BHBA) concentrations, selected cows were categorized into healthy (n = 6; BHBA <1.0 mM) and SCK (n = 6; 1.2 mM ≤ BHBA < 3.0 mM) groups. Serum biochemical parameters were measured using an automatic biochemical analyzer, which indicated higher serum levels of BHBA and nonesterified fatty acids and an upregulation of liver injury indicators (aspartate aminotransferase [AST], alanine aminotransferase [ALT], total protein, globulin) in SCK cows compared with healthy cows. The ELISA assays revealed that SCK cows displayed systemic low-grade inflammation, as demonstrated by increased serum levels of haptoglobin, serum amyloid A, TGF-β, IFN-γ, and IL-1β. Liver biopsies revealed pathological histological alterations, hepatic inflammation, and macrophage polarization status. Oil Red staining indicated steatosis, whereas Sirius red staining demonstrated mild extracellular matrix deposition in the liver of SCK cows. The expression of inflammatory response-related proteins (TLR4, p-NFκB, p-I-κB, NLRP3, and Caspase 1) was elevated in the liver of SCK cows, with the increased mean fluorescence intensity of NFκB further confirming the activation of the inflammatory pathway. Furthermore, the levels of pro-inflammatory factors, TNF-α and IFN-γ, were elevated in the tissue homogenate. Macrophage phenotypic changes in SCK cows were further explored based on the results of liver injury and inflammation. Compared with healthy cows, the protein and mRNA abundance of the macrophage marker CD68 in the liver of SCK cows was higher, along with an increased mean fluorescence intensity of CD68. The SCK cows also exhibited reduced mRNA expression of the Kupffer cell marker CLEC4F and elevated chemokine levels (CXCL1 and CCL2). As evidenced by greater protein and mRNA abundance of macrophage M1 polarization markers (iNOS, IL-1β, CD86, IL-6, IL-12b, and CCL3), higher fluorescence intensity of iNOS and CD86, and an increased number of CD68+/CD86+-positive cells observed via immunofluorescence, the macrophage polarization phenotype in the liver of SCK cows was predominantly M1. In contrast, the protein and mRNA abundances of M2 polarization markers (CD206, IL-10, and Arg1) were lower in SCK cows, accompanied by a reduced fluorescence intensity of CD206 and a lower number of CD68+/CD206+-positive cells. Overall, the present study revealed that the number of macrophages in liver is enhanced during subclinical ketosis and is dominated by pro-inflammatory macrophages (M1 macrophages). This could partly explain the increased risk of steatosis, fibrosis, and inflammatory response processes in these cows.
Collapse
Affiliation(s)
- Bichen Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Huijing Zhang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Wanli Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Muhammad Usman
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
30
|
Wang J, Li P, Li Y, Wang C, Xilizhati K, Ye J. Exploring the mechanism and drug candidates of alveolar echinococcosis affecting liver fibrosis through analysis of existing microarray data. Acta Trop 2025; 263:107532. [PMID: 39863141 DOI: 10.1016/j.actatropica.2025.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Echinococcosis, a zoonotic disease, significantly impacts the liver, with alveolar echinococcosis (AE) often leading to liver fibrosis and, in severe cases, cirrhosis. However, the molecular mechanisms by which AE infection promotes liver fibrosis remain incompletely understood. This study utilized bioinformatic analysis of existing microarray data to explore the shared mechanisms between AE and liver fibrosis and to identify potential therapeutic drug candidates. We analyzed gene expression datasets to identify common differentially expressed genes (DEGs), followed by enrichment analyses using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases to determine biological functions and pathways. A protein-protein interaction network was constructed, and key hub genes were identified using Cytoscape software. Immune cell infiltration was evaluated and correlated with hub gene expression. Transcription factors regulating DEGs were predicted using the TRRUST database, and drug-target interactions were explored using DrugBank. A total of 260 DEGs were identified, primarily associated with cell cycle regulation and immune response pathways. Ten hub genes (DLGAP5, AURKA, MELK, CCNB2, CCNA2, NUF2, BUB1B, BUB1, TOP2A, and CCNB1) were highlighted for their significant interconnectivity and functional relevance. Immune infiltration analysis revealed dysregulation in immune responses, and transcription factor analysis identified E2F3 as a key regulatory factor with decreased expression in both AE and liver fibrosis. Finally, 135 candidate drugs targeting these hub genes were identified, offering new insights into therapeutic strategies. This study provides a foundation for understanding the molecular mechanisms underlying AE-related liver fibrosis and highlights potential drug candidates for clinical exploration.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China; Xinjiang Perioperative Organ Protection Laboratory, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China
| | - Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Yuqian Li
- Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China
| | - Chunsheng Wang
- Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China
| | - Kulaixi Xilizhati
- Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China
| | - Jianrong Ye
- Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China; Xinjiang Perioperative Organ Protection Laboratory, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
31
|
Pang Q, Zhou S, Wang Y, Pan H, Wang Z, Qin X, Zhu C, Chen S, Liu H, Hu X, Jin H. GAMG alleviates liver fibrosis through inducing ferroptosis in inflammatory macrophages via the IRF1/SLC7A11 signaling pathway. Redox Biol 2025; 80:103509. [PMID: 39904190 PMCID: PMC11847116 DOI: 10.1016/j.redox.2025.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025] Open
Abstract
The activation of inflammatory macrophages plays a pivotal role in the development of liver fibrosis (LF). Ferroptosis contributes to the clearance of inflammatory macrophages and the release of profibrotic factors. Glycyrrhetic Acid 3-O-Mono-β-d-glucuronide (GAMG) is a natural compound, the potential role of which on LF remains uncertain. In this study, GAMG treatment significantly reduced hepatocyte steatosis, fibroplasia, inflammatory cell infiltration, and collagen fiber deposition in LF mice. In addition, GAMG remarkably decreased the content of collagen protein and improved liver function indicators. Single-cell RNA sequencing revealed that GAMG significantly affected the changes of macrophage subsets in LF, and Funrich analysis identified IRF1 as a key transcription factor regulating the macrophage genome. IRF1 was significantly increased while ferroptosis related SLC7A11 was significantly down-regulated in GAMG treated inflammatory macrophages. Mass spectrometry metabolomics analysis showed that GAMG significantly affected metabolites associated with LF. In vivo and in vitro experiments further verified that GAMG induced ferroptosis of inflammatory macrophages through the IRF1/SLC7A11 axis, and ultimately alleviated LF. Therefore, GAMG induces ferroptosis of inflammatory macrophages by activating the IRF1/SLC7A11 axis, which provides a new strategy for the treatment of LF.
Collapse
Affiliation(s)
- Qing Pang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Shuai Zhou
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Yong Wang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Hongtao Pan
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Zhicheng Wang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Xiliang Qin
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Chao Zhu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Shilei Chen
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Huichun Liu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| | - Xiaosi Hu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| | - Hao Jin
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| |
Collapse
|
32
|
Sabini JH, Timotius KH. Hepatoprotective and Fat-Accumulation-Reductive Effects of Curcumin on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Issues Mol Biol 2025; 47:159. [PMID: 40136412 PMCID: PMC11940900 DOI: 10.3390/cimb47030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Fat accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD). Given the intimidating nature of its treatment, curcumin (CUR) emerges as a potential therapeutic agent due to its proven effectiveness in managing MASLD. This review aimed to evaluate previous reports on the hepatoprotective and fat-accumulation-reductive effects of CUR administration in preventing or treating MASLD. CUR administration can modulate serum liver enzymes and lipid profiles. The fat accumulation of MASLD is the primary cause of oxidative stress and inflammation. By reducing fat accumulation, CUR may attenuate the inflammation and oxidative stress in MASLD. In addition, CUR has been proven to restore the dysfunctional cellular energy metabolism capacity and attenuate fibrogenesis (antifibrotic agent). Their hepatoprotective effects are associated with fat accumulation in MASLD. Lipid metabolism (lipogenesis, lipolysis, and lipophagy) is correlated with their hepatoprotective effects. CUR has prophylactic and therapeutic effects, particularly in early-stage MASLD, primarily when it is used as a fat reducer. It can be considered an excellent natural therapeutic drug for MASLD because it protects the liver and attenuates fat accumulation, especially in the early stage of MASLD development.
Collapse
Affiliation(s)
| | - Kris Herawan Timotius
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia;
| |
Collapse
|
33
|
Zhu C, Cheng Y, Yang L, Lyu Y, Li J, Zhao P, Zhu Y, Xin X, Yin L. Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:486. [PMID: 40002899 PMCID: PMC11853639 DOI: 10.3390/biomedicines13020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD.
Collapse
Affiliation(s)
- Chunli Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
34
|
Li W, Chen L, Zhou Q, Huang T, Zheng W, Luo F, Luo ZG, Zhang J, Liu J. Liver macrophage-derived exosomal miRNA-342-3p promotes liver fibrosis by inhibiting HPCAL1 in stellate cells. Hum Genomics 2025; 19:9. [PMID: 39910671 PMCID: PMC11800645 DOI: 10.1186/s40246-025-00722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The progression of liver fibrosis involves complex interactions between hepatic stellate cells (HSCs) and multiple immune cells in the liver, including macrophages. However, the mechanism of exosomes in the crosstalk between liver macrophages and HSCs remains unclear. METHOD Exosomes were extracted from primary mouse macrophages and cultured with HSCs, and the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-342-3p in exosomes were verified by qPCR and luciferase reporter gene experiments with HSCs. The function of the target gene Hippocalcin-like protein 1 (HPCAL1) in HSCs was verified by Western blotting, qPCR, cellular immunofluorescence and co-IP in vivo and in vitro. RESULTS We demonstrated that exosomal microRNA-342-3p derived from primary liver macrophages could activate HSCs by inhibiting the expression of HPCAL1 in HSCs. HPCAL1, which is a fibrogenesis suppressor, could inhibit TGF-β signaling in HSCs by regulating the ubiquitination of Smad2 through direct interactions with its EF-hand 4 domain. CONCLUSION This study reveals a previously unidentified profibrotic mechanism of crosstalk between macrophages and HSCs in the liver and suggests an attractive novel therapeutic strategy for treating fibroproliferative liver diseases.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Zhou
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tiansheng Huang
- Department of Digestive Diseases, Shanghai Guanghua Hospital of Integrated Traditional Chinese And Western Medicine, Shanghai, 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong Guang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
35
|
Yang T, Zhang Y, Duan C, Liu H, Wang D, Liang Q, Chen X, Ma J, Cheng K, Chen Y, Zhuang R, Yin J. CD300E + macrophages facilitate liver regeneration after splenectomy in decompensated cirrhotic patients. Exp Mol Med 2025; 57:72-85. [PMID: 39741181 PMCID: PMC11799435 DOI: 10.1038/s12276-024-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025] Open
Abstract
Liver cirrhosis is prognostically associated with poor life expectancy owing to subsequent liver failure. Thus, understanding liver regeneration processes during cirrhotic injury is highly important. This study explored the role of macrophage heterogeneity in liver regeneration following splenectomy. We collected detailed clinical information from 54 patients with decompensated cirrhosis before and after splenectomy. Obvious liver regeneration was observed after splenectomy in cirrhotic patients. Single-cell RNA sequencing (scRNA-seq) was performed on three paired liver tissues from patients before and after surgery to explore the immune microenvironment map and the characteristics of liver regeneration-associated macrophages (RAMs). scRNA-seq analysis revealed that the composition of hepatic immune cells changed after splenectomy; among these changes, the proportion of CD300E+ RAMs significantly increased after surgery, and high expression levels of functional genes associated with cell proliferation promoted liver regeneration. Moreover, a mouse model of carbon tetrachloride-induced cirrhosis and a coculture system consisting of primary bone marrow-derived macrophages and hepatocytes were established for validation. We observed a similar phenomenon of liver regeneration in cirrhotic mice and further confirmed that CD300E+ monocyte-derived macrophages facilitated hepatocyte NAD+ synthesis via the secretion of NAMPT, which subsequently promoted hepatocyte proliferation. This study characterized the hepatic immune microenvironment in patients with cirrhosis following splenectomy. Our findings demonstrated that CD300E+ macrophages play a crucial role in remodeling the hepatic immune microenvironment after splenectomy, thereby promoting liver regeneration in patients with decompensated cirrhosis. CD300E+ macrophages are anticipated to emerge as a novel therapeutic strategy for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Tao Yang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hui Liu
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Dong Wang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Qingshan Liang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Xiao Chen
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital of the Air Force Medical University, 15 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Jikai Yin
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
36
|
Ishikawa K, Murao A, Aziz M, Wang P. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury. Surgery 2025; 178:108872. [PMID: 39455391 PMCID: PMC11717596 DOI: 10.1016/j.surg.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells. METHODS We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion. RESULTS The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice. CONCLUSION Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kouhei Ishikawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
37
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2025; 21:69-81. [PMID: 39320433 PMCID: PMC11958897 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
38
|
Zhang H, Gao M, Wang H, Zhang J, Wang L, Dong G, Ma Q, Li C, Dai J, Li Z, Yan F, Xiong H. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization. Sci Rep 2025; 15:4015. [PMID: 39893238 PMCID: PMC11787394 DOI: 10.1038/s41598-025-86977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome with a substantial risk of mortality. A murine model of lipopolysaccharide (LPS)- and D-galactosamine (D-GalN)-induced ALF is widely used to investigate the underlying mechanisms and potential therapeutic drugs for human liver failure. Atractylenolide I (ATR-I) is an active component of the Atractylodes macrocephala rhizome and possesses various pharmacological activities, including anti-tumor, anti-inflammatory, and anti-oxidant properties. Given the key role of oxidative stress and inflammation in ALF pathogenesis, this study investigates the protective effects of ATR-I on LPS/D-GalN-induced ALF in mice. The results suggest that ATR-I pretreatment significantly ameliorates ALF, as evidenced by decreased serum aminotransferase levels and prolonged mice survival. Additionally, ATR-I pretreatment inhibits oxidative stress. Furthermore, the ATR-I pretreatment markedly suppresses M1 macrophage activation in hepatic mononuclear cells. In vitro experiments with bone marrow-derived macrophages indicate that ATR-I regulates macrophage polarization through the mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling pathways. Collectively, ATR-I pretreatment protects mice from LPS/D-GalN-induced ALF partially by regulating M1 macrophage polarization.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
39
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Xu E, Sang M, Xu W, Chen Y, Wang Z, Zhang Y, Lu W, Cao P. Processed Buthus martensii Karsch scorpions ameliorate diet-induced NASH in mice by attenuating Kv1.3-mediated macrophage activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118794. [PMID: 39244178 DOI: 10.1016/j.jep.2024.118794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Processed Buthus martensii Karsch (BmK) scorpion, also known as Quan-Xie, is a traditional Chinese medicine that is clinically used for the treatment of NAFLD due to its Tong-Luo-San-Jie effects. Our previous study showed that aqueous extract of processed BmK scorpion venom gland (pVg AE) inhibited macrophage inflammation by targeting Kv1.3 and identified the thermostable peptide BmKK2 as a potent Kv1.3 blocker. AIM OF THE STUDY This study examined the therapeutic effects of processed BmK scorpions on NASH, specifically focusing on the involvement of their anti-inflammatory effects mediated by macrophage-expressed Kv1.3 in NASH. MATERIALS AND METHODS In the present study, the anti-NASH effects of pVg AE were evaluated in high-fat diet (HFD)-induced NASH mouse models. Additionally, the in vitro anti-inflammatory mechanisms of pVg AE and BmKK2 were assessed using a palmitic acid (PA)-induced mouse bone marrow-derived macrophages (BMDMs) inflammation model. Protein and cytokine expression related to the Kv1.3-NF-κB pathway was analyzed by real-time PCR, immunoblotting and ELISA. The effect of pVg AE and BmKK2 on potassium channels was detected by whole-cell voltage-clamp recordings on transfected HEK293T cells or mouse BMDMs. Calcium ion imaging was used to evaluate intracellular calcium signaling. Furthermore, the study utilized Kv1.3 siRNA and a BMDMs and hepatocytes co-culture model to investigate the specific role of Kv1.3 in mediating the anti-NASH effects of pVg AE and BmKK2. RESULTS Lipid accumulation upregulated Kv1.3 expression in macrophages in vivo and in vitro. However, pVg AE significantly reduced Kv1.3 expression and Kv1.3-positive macrophage infiltration. Treatment with pVg AE improved obesity, insulin resistance (IR), hepatic steatosis (HS), inflammation, and fibrosis in HFD-fed mice. Mechanistically, pVg AE and BmKK2 inhibited macrophage inflammation by targeting Kv1.3, which reduced PA-induced intracellular Ca2+ levels, resulting in the inhibition of the NF-κB pathway and TNFα release. CONCLUSIONS This study demonstrates that Kv1.3-mediated macrophage inflammation is involved in the pathogenesis and treatment of NASH. pVg AE effectively alleviates metabolic stress-induced NASH by inhibiting this inflammation.
Collapse
Affiliation(s)
- Erjin Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Ming Sang
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wenhao Xu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yonggen Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhiheng Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yuxin Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wuguang Lu
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China.
| | - Peng Cao
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; Shandong Academy of Chinese Medicine, Jinan, 250014, China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
41
|
Deng Y, Liu L, Li Y, Ma H, Li C, Yan K, Tian J, Li C. pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis. Drug Deliv Transl Res 2025:10.1007/s13346-025-01791-2. [PMID: 39881105 DOI: 10.1007/s13346-025-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment. The current nano-drug delivery system (NDDS) for AS treatment is mainly focused on anti-inflammatory therapy, while ignoring the potential value of suppressing inflammation and simultaneously improving vascular endothelial function. In this study, a pH-responsive dual-targeted NDDS based on plaque microenvironment, BC@CS/cRGD NPs, was prepared by combining baicalin (BC) with chondroitin sulfate (CS) through amidation reaction, and further modified with a targeting group cRGD peptide. In vitro release experiments illustrated a faster release of the nanoparticle at pH 5.0 than at pH 7.4. Meanwhile, in vitro cellular experiments demonstrated its ability to target activated endothelial cells and macrophages. In a mouse model of AS, BC@CS/cRGD NPs accumulated at plaque sites and effectively attenuated the plaque progression. In conclusion, this pH-sensitive BC@CS/cRGD NPs offered a very potential strategy for modulating endothelial dysfunction and inflammatory microenvironment for the treatment of AS.
Collapse
Affiliation(s)
- Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- Department of Anaesthesiology, The affiliated hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Science and Technology Department, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Huan Ma
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
42
|
Gao Z, Chen S, Ye W. Cuproptosis related lncRNA signature as a prognostic and therapeutic biomarker in osteosarcoma immunity. Sci Rep 2025; 15:221. [PMID: 39747262 PMCID: PMC11696132 DOI: 10.1038/s41598-024-84024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Osteosarcoma is one of the most common malignant bone tumours in children. In this study, we aimed to construct a cuproptosis-related lncRNAs signature to predict the prognosis and immune landscape of osteosarcoma patients. Databases from TARGET were used to acquire osteosarcoma patient datasets, which included clinical information and RNA sequencing data. Cuproptosis-related lncRNAs was obtained by correlation analysis. Through univariate Cox regression analysis, prognosis-related lncRNAs were obtained. We used nonnegative matrix factorization clustering to identify potential molecular subgroups with different cuproptosis-related lncRNA expression patterns. The least absolute shrinkage and selection operator algorithm and multivariate Cox regression analysis were used to construct the prognostic signature. The ESTIMATE algorithm, Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes were applied to explore the underlying mechanisms in the immune landscape of osteosarcoma. We used gene set enrichment analysis to compare the different enrichments in the high-risk group and the low-risk group. Furthermore, we predicted the response to targeted drugs in patients with different risk groups. Using multivariable analysis, we developed a risk scoring model based on 7 long noncoding RNAs and calculated two molecular subgroups from osteosarcoma patients from the database. There is a better immune microenvironment in the low-risk group compared to the high-risk group. At the same time, the gene functional enrichment analysis based on the differently expressed genes obtained by grouping showed they were mainly related to immunity, indicating that cuproptosis-related lncRNAs may affect the prognosis of osteosarcoma by regulating immunity. Moreover, these patients in high-risk group were more susceptible to targeted drugs than the low-risk group. We identified a cuproptosis-related lncRNA prognostic signature for osteosarcoma and showed a close connection in terms of immunity. Moreover, we provided some potential targeted drugs for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ziwei Gao
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Siqi Chen
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Ran J, Yin S, Issa R, Zhao Q, Zhu G, Zhang H, Zhang Q, Wu C, Li J. Key role of macrophages in the progression of hepatic fibrosis. Hepatol Commun 2025; 9:e0602. [PMID: 39670853 PMCID: PMC11637753 DOI: 10.1097/hc9.0000000000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024] Open
Abstract
Liver fibrosis is a pathological change characterized by excessive deposition of extracellular matrix caused by chronic liver injury, and the mechanisms underlying its development are associated with endothelial cell injury, inflammatory immune cell activation, and HSC activation. Furthermore, hepatic macrophages exhibit remarkable heterogeneity and hold central functions in the evolution of liver fibrosis, with different subgroups exerting dual effects of promotion and regression. Currently, targeted macrophage therapy for reversing hepatic fibrosis has been extensively studied and has shown promising prospects. In this review, we will discuss the dual role of macrophages in liver fibrosis and provide new insights into reversing liver fibrosis based on macrophages.
Collapse
Affiliation(s)
- Jinqiu Ran
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rahma Issa
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Qianwen Zhao
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Guangqi Zhu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Huan Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of Infectious Diseases, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
45
|
Zheng J, Xiao J, Fan Y, Zheng H, Liu H, Xiang J, Hai L, Wang Y, Zhang X. CD24 regulates liver immune response and ameliorates acute hepatic injury through controlling hepatic macrophages. Eur J Immunol 2024; 54:e2451178. [PMID: 39444061 DOI: 10.1002/eji.202451178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Liver injury releases danger-associated molecular patterns, which trigger the immune response. CD24 negatively regulates the immune response by binding with danger-associated molecular patterns, but the specific role of CD24 in modulating macrophage-related inflammation during liver injury remains largely unexplored. Here, we aimed to investigate the mechanisms of macrophage CD24 in the development of liver injury. Our results show that CD24 expression is upregulated primarily in hepatic macrophages (HMs) during acute liver injury. CD24-deficient mice exhibited more severe liver injury and showed a significantly higher frequency and number of HMs, particularly Ly6Chi monocyte-derived macrophages. Mechanistically, the CD24-Siglec-G interaction plays a vital role in mitigating acute liver injury. CD24-mediated inhibitory signaling in HMs primarily limits downstream NF-κB and p38 MAPK activation through the recruitment of SHP1. Our work unveils the critical role of macrophage CD24 in negatively regulating innate immune responses and protecting against acute liver injury, thus providing potential therapeutic targets for liver-associated diseases.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Jun Xiao
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yatong Fan
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Honggang Zheng
- Department of Pathology, Tianjin Jinyu Medical Laboratory Co LTD, Tianjin, P. R. China
| | - Hongyu Liu
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Jie Xiang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Lei Hai
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Wang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Xuejun Zhang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
46
|
Zhou Y, Lin X, Jiao Y, Yang D, Li Z, Zhu L, Li Y, Yin S, Li Q, Xu S, Tang D, Zhang S, Yu W, Gao P, Yang L. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat Commun 2024; 15:10361. [PMID: 39609433 PMCID: PMC11605118 DOI: 10.1038/s41467-024-54827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
As the ability of liver regeneration is pivotal for liver disease patients, it will be of high significance and importance to identify the missing piece of the jigsaw influencing the liver regeneration. Here, we report that chronic stress impairs the liver regeneration capacity after partial hepatectomy with increased mortality in male mice. Anatomical tracing and functional mapping identified a neural circuit from noradrenergic neurons in the locus coeruleus (LC) to serotonergic neurons in the rostral medullary raphe region (rMR), which critically contributes to the inhibition of liver regeneration under chronic stress. In addition, hepatic sympathetic nerves were shown to be critical for the inhibitory effects on liver regeneration by releasing norepinephrine (NE), which acts on adrenergic receptor β2 (ADRB2) to block the proinflammatory macrophage activation. Collectively, we reveal a "brain-to-liver" neural connection that mediates chronic stress-evoked deficits in liver regeneration, thus shedding important insights into hepatic disease therapy.
Collapse
Affiliation(s)
- Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhengyu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Suqing Yin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
47
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
48
|
Roca Suarez AA, Plissonnier ML, Grand X, Michelet M, Giraud G, Saez-Palma M, Dubois A, Heintz S, Diederichs A, Van Renne N, Vanwolleghem T, Daffis S, Li L, Kolhatkar N, Hsu YC, Wallin JJ, Lau AH, Fletcher SP, Rivoire M, Levrero M, Testoni B, Zoulim F. TLR8 agonist selgantolimod regulates Kupffer cell differentiation status and impairs HBV entry into hepatocytes via an IL-6-dependent mechanism. Gut 2024; 73:2012-2022. [PMID: 38697771 DOI: 10.1136/gutjnl-2023-331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maria Saez-Palma
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Anaëlle Dubois
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Sarah Heintz
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Nicolaas Van Renne
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Thomas Vanwolleghem
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Li Li
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | - Yao-Chun Hsu
- Center for Liver Diseases, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Audrey H Lau
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | | | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
49
|
Mao Y, Yao C, Zhang S, Zeng Q, Wang J, Sheng C, Chen S. Targeting fibroblast activation protein with chimeric antigen receptor macrophages. Biochem Pharmacol 2024; 230:116604. [PMID: 39489223 DOI: 10.1016/j.bcp.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Under the rapid advancement of chimeric antigen receptor T cell (CAR-T) technology, CAR-macrophages (CAR-Ms) are also being developed currently in the pre-clinical stage and have been shown to inhibit tumor growth in several mouse tumor models. Fibroblast activation protein (FAP) is a type II transmembrane serine protease, which is expressed in stromal fibroblasts of over 90 % of common human epithelial cancers and is upregulated in fibrotic diseases of the liver, lung and colon, etc. In this study, we firstly constructed FAP-CAR macrophages to target FAP+ cells through in vitro phagocytosis assays. In subsequent in vivo assays, we discovered that FAP-CAR-ΔZETA bone marrow-derived macrophages (BMDMs) rather than FAP-CAR BMDMs, exhibited a pronounced anti-tumor effect in mouse subcutaneous MC38 colon cancer model. In addition, FAP-CAR and FAP-CAR-ΔZETA BMDMs therapy could effectively improve CCl4-induced liver fibrosis in mice. Collectively, CAR-Ms targeting FAP demonstrated great therapeutic potential in cancer and liver fibrosis therapy.
Collapse
Affiliation(s)
- Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Shimeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Qi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
50
|
Martins B, Mossemann J, Aguilar F, Zhao S, Bilan PJ, Sayed BA. Liver Transplantation: A Test of Cellular Physiology, Preservation, and Injury. Physiology (Bethesda) 2024; 39:401-411. [PMID: 39078382 DOI: 10.1152/physiol.00020.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Liver transplantation has evolved into a mature clinical field, but scarcity of usable organs poses a unique challenge. Expanding the donor pool requires novel approaches for protecting hepatic physiology and cellular homeostasis. Here we define hepatocellular injury during transplantation, with an emphasis on modifiable cell death pathways as future therapeutics.
Collapse
Affiliation(s)
- B Martins
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - J Mossemann
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - F Aguilar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Zhao
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - P J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - B A Sayed
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of General Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|