1
|
Calabresi MFF, Tanimoto A, Próspero AG, Mello FPF, Soares G, Di Stasi LC, Miranda JRA. Changes in colonic contractility in response to inflammatory bowel disease: Long-term assessment in a model of TNBS-induced inflammation in rats. Life Sci 2019; 236:116833. [PMID: 31491456 DOI: 10.1016/j.lfs.2019.116833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
AIMS Inflammatory bowel disease is a chronic relapsing inflammation that affects the gastrointestinal tract, causing changes in colonic motility. The evolution of these changes is not completely understood and possibly related to symptoms that appear in different degrees of the intestinal inflammation. Therefore, our aim is evaluate during 14 days of assessment aspects of colonic contractility using 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammation in rats and associate the inflammatory process with colonic motility. METHODS Contractility and inflammatory parameters were assessed in the same animal in six different moments: before intestinal inflammation induction, 2, 5, 8, 11, and 14 days after induction. The mechanical activity was determined by alternating current biosusceptometry (ACB) and subdivided into rhythmic propagating ripples (RPR) and rhythmic propulsive motor complexes (RPMC). We assessed inflammation by determining myeloperoxidase activity in feces. RESULTS Transient and permanent changes were observed in colonic motility as a function of the inflammatory process evaluated through myeloperoxidase activity. We identified two contraction profiles: RPR and RPMC. The microscopic analysis demonstrated a depth of damage caused by an injury that was associated with changes in motility. CONCLUSIONS We implemented a robust and adequate (specific) signal processing to quantify two measured colonic frequency patterns. Thus, we performed a detailed temporal analysis of the consequences of TNBS-induced inflammation on colonic motility in rats. Our approach enables further long-term assessments in the same animal with different mechanisms and duration of injury, remission, treatments and their motor consequences.
Collapse
Affiliation(s)
- Marcos F F Calabresi
- Laboratory of Biomagnetism, Department of Physics and Biophysics, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Alexandre Tanimoto
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - André G Próspero
- Laboratory of Biomagnetism, Department of Physics and Biophysics, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Fabio P F Mello
- Laboratory of Biomagnetism, Department of Physics and Biophysics, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Guilherme Soares
- Laboratory of Biomagnetism, Department of Physics and Biophysics, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - José R A Miranda
- Laboratory of Biomagnetism, Department of Physics and Biophysics, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
James SL, van Langenberg DR, Taylor KM, Gibson PR. Characterization of ulcerative colitis-associated constipation syndrome (proximal constipation). JGH Open 2018; 2:217-222. [PMID: 30483593 PMCID: PMC6207018 DOI: 10.1002/jgh3.12076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The syndrome of constipation with other abdominal symptoms ("proximal constipation") in ulcerative colitis (UC) is commonly recognized by practitioners but is poorly described, with no recognized definition and little understanding with regard to prevalence and effect of therapies on disease outcomes. This study aimed to address these issues in a cross-sectional, consecutive series of patients with UC. METHODS A working definition of proximal constipation was established. Consecutive patients were recruited, and their disease activity, recent medications, and investigations plus abdominal symptoms were assessed at a study visit. Relevant clinical data were also extracted from medical records. RESULTS Of 125 patients with UC, (mean age 47, range 14-84 years, 61 male), 58 (46%) fulfilled the definition of proximal constipation. The main symptoms were reduced stool frequency (69%), hard stools (43%), abdominal pain (40%), excessive flatus (29%), straining (24%), and sensation of incomplete emptying (14%). Proximal constipation was associated with female gender (OR 3.45 [1.45-8.24]), left-sided (OR 2.84 [1.14-7.11]) and concurrently active disease (OR 5.56 [1.96-16.67]), but not age, disease duration or therapy. A total of 88% had an increase in anti-inflammatory therapy, with the use of laxatives or fiber supplements in 63% compared with 1.4% of those without proximal constipation. CONCLUSIONS Proximal constipation is common, and its risk increases in active and distal disease, especially in women. Validation of its definition and evaluation of therapeutic strategies are needed. A new term "ulcerative colitis-associated constipation syndrome" is proposed to more accurately depict its nature.
Collapse
Affiliation(s)
- Sally L James
- Eastern Health Clinical School, Monash UniversityBox Hill HospitalBox HillVictoriaAustralia
| | | | - Kirstin M Taylor
- Department of GastroenterologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| | - Peter R Gibson
- Department of GastroenterologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Maselli MA, Ignazzi A, Pezzolla F, Scirocco A, Lorusso D, De Ponti F, Severi C. Gender-differences of in vitro colonic motility after chemo- and radiotherapy in humans. BMC Pharmacol Toxicol 2018; 19:49. [PMID: 30075817 PMCID: PMC6090764 DOI: 10.1186/s40360-018-0238-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/17/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The aim of the present in vitro study was to investigate, in different genders, motor responses in surgical colonic specimens from patients with rectal cancer undergoing and not undergoing chemotherapy with capecitabine and radiotherapy. METHODS This in vitro study was conducted from October 2015 to August 2017 at the Experimental Pharmacology Laboratory at the National Institute "S. de Bellis" after collecting samples at the Department of Surgery. Segments of sigmoid colon were obtained from 15 patients (Male (M)/Female (F) = 8/7; control group, CG) operated on for elective colorectal resection for rectal cancer without obstruction and 14 patients (M/F = 7/7; study group, SG) operated on for elective colorectal resection for rectal cancer who also received chemotherapy, based on capecitabine twice daily, and radiotherapy. Isometric tension was measured on colonic circular muscle strips exposed to increasing carbachol or histamine concentrations to obtain concentration-response curves. The motor responses to electrically evoked stimulation were also investigated. RESULTS In males, carbachol and histamine caused concentration-dependent contractions in the CG and SG. An increased sensitivity and a higher response to carbachol and histamine were observed in SG than CG (P < 0.01). On the contrary, in females, the response to carbachol was not significantly different in CG from the SG and the maximal responses to carbachol were greater in CG than in SG (P < 0.001). The same applied to histamine for half-maximal effective concentrations and maximal response in that they were not significantly different in CG from the SG. Electrically evoked contractions were significantly more pronounced in males, especially in the SG (P < 0.05). CONCLUSIONS This preliminary in vitro study has shown gender differences in motor responses of colonic circular muscle strips in patients who had received chemotherapy with capecitabine and radiotherapy.
Collapse
Affiliation(s)
- Maria Antonietta Maselli
- Experimental Pharmacology Laboratory, National Institute of Gastroenterology “S. de Bellis”, Research Hospital - Castellana Grotte (BA), 70013 Castellana Grotte, Italy
| | - Antonia Ignazzi
- Experimental Pharmacology Laboratory, National Institute of Gastroenterology “S. de Bellis”, Research Hospital - Castellana Grotte (BA), 70013 Castellana Grotte, Italy
| | - Francesco Pezzolla
- Department of Surgery, National Institute of Gastroenterology “S. de Bellis”, Research Hospital - Castellana Grotte (BA), 70013 Castellana Grotte, Italy
| | - Annunziata Scirocco
- Experimental Pharmacology Laboratory, National Institute of Gastroenterology “S. de Bellis”, Research Hospital - Castellana Grotte (BA), 70013 Castellana Grotte, Italy
| | - Dionigi Lorusso
- Department of Surgery, National Institute of Gastroenterology “S. de Bellis”, Research Hospital - Castellana Grotte (BA), 70013 Castellana Grotte, Italy
| | - Fabrizio De Ponti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialities, University Sapienza, 00161 Rome, Italy
| |
Collapse
|
4
|
Contraction of gut smooth muscle cells assessed by fluorescence imaging. J Pharmacol Sci 2015; 127:344-51. [DOI: 10.1016/j.jphs.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022] Open
|
5
|
Han TY, Lourenssen S, Miller KG, Blennerhassett MG. Intestinal smooth muscle phenotype determines enteric neuronal survival via GDNF expression. Neuroscience 2015; 290:357-68. [PMID: 25655216 DOI: 10.1016/j.neuroscience.2015.01.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Intestinal inflammation causes initial axonal degeneration and neuronal death, as well as the proliferation of intestinal smooth muscle cells (ISMC), but subsequent axonal outgrowth leads to re-innervation. We recently showed that expression of glial cell-derived neurotrophic factor (GDNF), the critical neurotrophin for the post-natal enteric nervous system (ENS) is upregulated in ISMC by inflammatory cytokines, leading us to explore the relationship between ISMC growth and GDNF expression. In co-cultures of myenteric neurons and ISMC, GDNF or fetal calf serum (FCS) was equally effective in supporting neuronal survival, with neurons forming extensive axonal networks among the ISMC. However, only GDNF was effective in low-density cultures where neurons lacked contact with ISMC. In early-passage cultures of colonic circular smooth muscle cells (CSMC), polymerase chain reaction (PCR) and western blotting showed that proliferation was associated with expression of GDNF, and the successful survival of neonatal neurons co-cultured on CSMC was blocked by vandetanib or siGDNF. In tri-nitrobenzene sulfonic acid (TNBS)-induced colitis, immunocytochemistry showed the selective expression of GDNF in proliferating CSMC, suggesting that smooth muscle proliferation supports the ENS in vivo as well as in vitro. However, high-passage CSMC expressed significantly less GDNF and failed to support neuronal survival, while expressing reduced amounts of smooth muscle marker proteins. We conclude that in the inflamed intestine, smooth muscle proliferation supports the ENS, and thus its own re-innervation, by expression of GDNF. In chronic inflammation, a compromised smooth muscle phenotype may lead to progressive neural damage. Intestinal stricture formation in human disease, such as inflammatory bowel disease (IBD), may be an endpoint of failure of this homeostatic mechanism.
Collapse
Affiliation(s)
- T Y Han
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - S Lourenssen
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - K G Miller
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - M G Blennerhassett
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Aldini R, Micucci M, Cevenini M, Fato R, Bergamini C, Nanni C, Cont M, Camborata C, Spinozzi S, Montagnani M, Roda G, D'Errico-Grigioni A, Rosini F, Roda A, Mazzella G, Chiarini A, Budriesi R. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One 2014; 9:e108112. [PMID: 25268769 PMCID: PMC4182327 DOI: 10.1371/journal.pone.0108112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/18/2014] [Indexed: 01/04/2023] Open
Abstract
Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.
Collapse
Affiliation(s)
- Rita Aldini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Monica Cevenini
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Massimiliano Cont
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cecilia Camborata
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Silvia Spinozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Marco Montagnani
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Giulia Roda
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | | | - Francesca Rosini
- DIMES Department, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Giuseppe Mazzella
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Alberto Chiarini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Nair DG, Miller KG, Lourenssen SR, Blennerhassett MG. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ. J Cell Mol Med 2014; 18:444-54. [PMID: 24417820 PMCID: PMC3955151 DOI: 10.1111/jcmm.12193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB. CSMC were enzymatically isolated from Sprague–Dawley rats, and the effect of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF), IL-17A and IL-2 on CSMC growth and responsiveness to PDGF-BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid-induced colitis. Neither CM alone nor cytokines caused proliferation of early-passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF-BB. IL-1β, TNF-α and IL-17A, but not other cytokines, increased the effect of PDGF-BB because of up-regulation of mRNA and protein for PDGF-Rβ without change in receptor phosphorylation. PDGF-BB was identified in adult rat serum (RS) and RS-induced CSMC proliferation was inhibited by imatinib, suggesting that blood-derived PDGF-BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL-1β and TNF-α induced the early expression of PDGF-Rβ, while imatinib blocked subsequent RS-induced cell proliferation. Thus, pro-inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF-Rβ and serum-derived PDGF-BB, and control of PDGF-Rβ expression may be beneficial in chronic intestinal inflammation.
Collapse
Affiliation(s)
- Dileep G Nair
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Bautista-Cruz F, Nair DG, Lourenssen S, Miller DV, Blennerhassett MG, Paterson WG. Impaired platelet-derived growth factor receptor expression and function in cultured lower esophageal sphincter circular smooth muscle cells from W/W(v) mutant mice. Can J Physiol Pharmacol 2013; 92:34-41. [PMID: 24383871 DOI: 10.1139/cjpp-2013-0254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that lower esophageal sphincter (LES) circular smooth muscle (CSM) is functionally impaired in W/W(v) mutant mice that lack interstitial cells of Cajal, and speculated that this could be due to altered smooth muscle differentiation. Platelet-derived growth factor (PDGF) is involved in the maturation and differentiation of smooth muscle. To determine whether PDGF expression and (or) function is altered in W/W(v) mutant mice, PDGF-Rβ expression was measured using RT-PCR, qPCR, and immunocytochemistry, and Ca(2+) imaging and perforated patch clamp recordings performed in isolated LES CSM cells. RT-PCR and immunocytochemistry showed significantly reduced PDGF-Rβ expression in the LES from mutant as opposed to wild-type mice. Quantitative comparison of CSM cell numbers in histological specimens revealed a significantly increased average cell size in the mutant tissue. The specific PDGF-Rβ ligand, PDGF-BB, caused a significant increase in intracellular Ca(2+) in cells from the wild-type mice compared with the mutants. Using a ramp protocol, PDGF-BB caused a 2-fold increase in outward K(+) currents in cells from the wild-type mice, whereas no significant increase was measured in the cells from the mutants. We conclude that the expression and function of PDGF-Rβ in LES CSM from W/W(v) mice is impaired, providing further evidence that LES CSM is abnormal in W/W(v) mutants.
Collapse
Affiliation(s)
- Francisco Bautista-Cruz
- a Gastrointestinal Disease Research Unit, Kingston General Hospital, 76 Stuart Street, Kingston ON K7L 2V7, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Kiss B, Schöndorf D, Studer UE, Roth B. Stricture of the Afferent Isoperistaltic Tubular Segment: A Late and Rare Cause of Bilateral Dilation of the Upper Urinary Tract After Ileal Bladder Substitution. Urology 2013; 82:466-70. [DOI: 10.1016/j.urology.2013.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/02/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
10
|
Shiina T, Gurung YB, Suzuki Y, Takewaki T, Shimizu Y. Alteration of neuromuscular transmissions in the hamster colon following the resolution of TNBS-induced colitis. J Physiol Sci 2013; 63:241-9. [PMID: 23568479 PMCID: PMC10717828 DOI: 10.1007/s12576-013-0256-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine whether trinitrobenzene sulfonic acid-induced colitis leads to alterations in enteric neuronal transmission in hamsters. We assessed the mechanical responses induced by the application of electrical field stimulation (EFS) in isolated segments of the distal colon. The EFS-induced relaxation and contraction were blocked by a nitric oxide synthase inhibitor and by the combination of antagonists for tachykinin NK1 and NK2 receptors and muscarinic acetylcholine receptors, respectively. The mechanical responses to EFS were attenuated in the inflamed colon at 7 days and were recovered by 30 days after inflammation treatment. In addition, we found that purinergic and opioidergic excitatory neural components are expressed following the resolution of colitis. These results suggest that colonic inflammation causes indiscriminate damage to enteric neurons but that neuronal components are restored and that new excitatory neural components, compensating for the contractile responses in smooth muscle after colitis, are expressed.
Collapse
Affiliation(s)
- Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Yam B. Gurung
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Yuji Suzuki
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Tadashi Takewaki
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Yasutake Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| |
Collapse
|
11
|
Abstract
Intestinal inflammation causes initial axonal degeneration and neuronal death but subsequent axon outgrowth from surviving neurons restores innervation density to the target smooth muscle cells. Elsewhere, the pro-inflammatory cytokines TNFα and IL-1β cause neurotoxicity, leading us to test their role in promoting enteric neuron death. In a rat coculture model, TNFα or IL-1β did not affect neuron number but did promote significant neurite outgrowth to twofold that of control by 48 h, while other cytokines (e.g., IL-4, TGFβ) were without effect. TNFα or IL-1β activated the NFκB signaling pathway, and inhibition of NFκB signaling blocked the stimulation of neurite growth. However, nuclear translocation of NFκB in smooth muscle cells but not in adjacent neurons suggested a dominant role for smooth muscle cells. TNFα or IL-1β sharply increased both mRNA and protein for GDNF, while the neurotrophic effects of TNFα or IL-1β were blocked by the RET-receptor blocker vandetanib. Conditioned medium from cytokine-treated smooth muscle cells mimicked the neurotrophic effect, inferring that TNFα and IL-1β promote neurite growth through NFκB-dependent induction of glial cell line-derived neurotrophic factor (GDNF) expression in intestinal smooth muscle cells. In vivo, TNBS-colitis caused early nuclear translocation of NFκB in smooth muscle cells. Conditioned medium from the intact smooth muscle of the inflamed colon caused a 2.5-fold increase in neurite number in cocultures, while Western blotting showed a substantial increase in GDNF protein. Pro-inflammatory cytokines promote neurite growth through upregulation of GDNF, a novel process that may facilitate re-innervation of smooth muscle cells and a return to homeostasis following initial damage.
Collapse
|
12
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shi XZ, Sarna SK. Cell culture retains contractile phenotype but epigenetically modulates cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2013; 304:G337-45. [PMID: 23238936 PMCID: PMC3566616 DOI: 10.1152/ajpgi.00369.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/11/2012] [Indexed: 01/31/2023]
Abstract
Smooth muscle cell cultures are used frequently to investigate the cellular mechanisms of contraction. We tested the hypothesis that cell culture alters the expression of select cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells without altering the contractile phenotype. We used muscularis externa (ME) tissues, freshly dispersed cells (FC), primary cell cultures (PC), and resuspensions of cell cultures (RC). Colon smooth muscle cells retained their phenotype in all states. We investigated expression of 10 cell-signaling proteins of excitation-contraction coupling in all four types of tissue. Expression of all these proteins did not differ between ME and FC (P > 0.05). However, expression of the α(1C)-subunit of Ca(v)1.2b, myosin light chain kinase, myosin phosphatase target subunit 1, and 17-kDa C kinase-potentiated protein phosphatase-1 inhibitor (CPI-17) decreased in PC and RC vs. ME and FC (all P < 0.05). Expression of Gα(i3), serine/threonine protein phosphatase-1 β-catalytic subunit, and Rho kinase 1 increased in PC and RC vs. ME and FC (all P < 0.05). Cell culture and resuspension downregulated expression of α-actin and calponin, but not myosin heavy chain. The net effect of these molecular changes was suppression of cell reactivity to ACh in RC vs. FC. Overexpression of CPI-17 in PC partially reversed the suppression of contractility in resuspended cells. Methylation-specific PCR showed increased methylation of the Cpi-17 gene promoter in PC vs. ME (P < 0.05). We concluded that smooth muscle cells retain their contractile phenotype in culture. However, reactivity to ACh declines because of altered expression of specific cell-signaling proteins involved in excitation-contraction coupling. DNA methylation of the Cpi-17 promoter may contribute to its gene suppression.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | |
Collapse
|
14
|
Wadie W, Abdel-Aziz H, Zaki HF, Kelber O, Weiser D, Khayyal MT. STW 5 is effective in dextran sulfate sodium-induced colitis in rats. Int J Colorectal Dis 2012; 27:1445-53. [PMID: 22562255 PMCID: PMC3474908 DOI: 10.1007/s00384-012-1473-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE An herbal preparation, STW 5, used clinically in functional dyspepsia and irritable bowel syndrome, has been shown to possess properties that may render it useful in inflammatory bowel disease (IBD). The present work was conducted to study its effectiveness in a rat model of IBD. METHODS An experimental model reflecting ulcerative colitis in man was adopted, whereby colitis was induced in Wistar rats by feeding them 5 % dextran sulfate sodium (DSS) in drinking water for one week. STW 5 and sulfasalazine (as a reference standard) were administered orally daily for 1 week before colitis induction and continued during DSS feeding. The animals were then sacrificed, and the severity of colitis was evaluated macroscopically and microscopically. Colon samples were homogenized for determination of reduced glutathione, tumor necrosis factor-α, and cytokine-induced neutrophil chemoattractant-3 as well as myeloperoxidase, glutathione peroxidase, and superoxide dismutase. In addition, colon segments were suspended in an organ bath to test their reactivity towards carbachol, KCl, and trypsin. RESULTS STW 5 and sulfasalazine were both effective in preventing the shortening of colon length and the increase in both colon mass index and total histology score as well as the changes in biochemical parameters measured except changes in dismutase activity. DSS-induced colitis led to marked depression in colonic responsiveness to the agents tested ex vivo, an effect which was normalized by both drugs. CONCLUSIONS The findings point to a potential usefulness of STW 5 in the clinical setting of ulcerative colitis.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abdel-Aziz
- Department of Pharmacology, Institute of Pharmaceutical Chemistry, University of Münster, Münster, Germany
| | - Hala F. Zaki
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olaf Kelber
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Dieter Weiser
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Mohamed T. Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Akiho H, Ihara E, Motomura Y, Nakamura K. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders. World J Gastrointest Pathophysiol 2011; 2:72-81. [PMID: 22013552 PMCID: PMC3196622 DOI: 10.4291/wjgp.v2.i5.72] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammation and immune activation in the gut are usually accompanied by alteration of gastrointestinal (GI) motility. In infection, changes in motor function have been linked to host defense by enhancing the expulsion of the infectious agents. In this review, we describe the evidence for inflammation and immune activation in GI infection, inflammatory bowel disease, ileus, achalasia, eosinophilic esophagitis, microscopic colitis, celiac disease, pseudo-obstruction and functional GI disorders. We also describe the possible mechanisms by which inflammation and immune activation in the gut affect GI motility. GI motility disorder is a broad spectrum disturbance of GI physiology. Although several systems including central nerves, enteric nerves, interstitial cells of Cajal and smooth muscles contribute to a coordinated regulation of GI motility, smooth muscle probably plays the most important role. Thus, we focus on the relationship between activation of cytokines induced by adaptive immune response and alteration of GI smooth muscle contractility. Accumulated evidence has shown that Th1 and Th2 cytokines cause hypocontractility and hypercontractility of inflamed intestinal smooth muscle. Th1 cytokines downregulate CPI-17 and L-type Ca2+ channels and upregulate regulators of G protein signaling 4, which contributes to hypocontractility of inflamed intestinal smooth muscle. Conversely, Th2 cytokines cause hypercontractilty via signal transducer and activator of transcription 6 or mitogen-activated protein kinase signaling pathways. Th1 and Th2 cytokines have opposing effects on intestinal smooth muscle contraction via 5-hydroxytryptamine signaling. Understanding the immunological basis of altered GI motor function could lead to new therapeutic strategies for GI functional and inflammatory disorders.
Collapse
|
16
|
Nair DG, Han TY, Lourenssen S, Blennerhassett MG. Proliferation modulates intestinal smooth muscle phenotype in vitro and in colitis in vivo. Am J Physiol Gastrointest Liver Physiol 2011; 300:G903-13. [PMID: 21311027 DOI: 10.1152/ajpgi.00528.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal inflammation causes an increased intestinal wall thickness, in part, due to the proliferation of smooth muscle cells, which impairs the contractile phenotype elsewhere. To study this, cells from the circular muscle layer of the rat colon (CSMC) were isolated and studied, both in primary culture and after extended passage, using quantitative PCR, Western blot analysis, and immunocytochemistry. By 4 days in vitro, both mRNA and protein for the smooth muscle marker proteins α-smooth muscle actin, desmin, and SM22-α were reduced by >50%, and mRNA for cyclin D1 was increased threefold, evidence for modulation to a proliferative phenotype. Continued growth caused significant further decrease in expression, evidence that phenotypic loss in CSMC was proportional to the extent of proliferation. In CSMC isolated at day 2 of trinitrobenzene sulfonic acid-induced colitis, flow cytometry and Western blotting showed that these differentiated markers were reduced in mitotic CSMC, while similar to control in nonmitotic CSMC. By day 35 post-trinitrobenzene sulfonic acid, when inflammation has resolved, CSMC were hypertrophic, but, nonetheless, showed markedly decreased expression of smooth muscle protein markers per cell. In vitro, day 35 CSMC displayed an accelerated loss of phenotype and increased thymidine uptake in response to serum or PDGF-BB. Furthermore, carbachol-induced expression of phospho-AKT (a marker of cholinergic response) was lost from day 35 CSMC in vitro, while retained in control cells. Therefore, proliferation reduces the expression of smooth-muscle-specific markers in CSMC, possibly leading to altered contractility. However, inflammation-induced proliferation in vivo also causes lasting changes that include unexpected priming for an exaggerated response to proliferative stimuli. Identification of the molecular mechanisms of intestinal smooth muscle cell phenotypic modulation will be helpful in reducing the detrimental effects of inflammation.
Collapse
Affiliation(s)
- Dileep G Nair
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Awwad O, Bin A, Zoppellaro C, Castagliuolo I, Gaion RM, Giron MC, Blandizzi C. Control of enteric neuromuscular functions by purinergic A(3) receptors in normal rat distal colon and experimental bowel inflammation. Br J Pharmacol 2010; 161:856-71. [PMID: 20860664 DOI: 10.1111/j.1476-5381.2010.00917.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine A(3) receptors mediate beneficial effects in experimental colitis, but their involvement in enteric neuromuscular functions during bowel inflammation is undetermined. This study investigated the regulatory role of A(3) receptors on colonic motility in the presence of experimental colitis. EXPERIMENTAL APPROACH Colitis was induced in rats by 2,4-dinitrobenzenesulfonic acid. A(3) receptors and adenosine deaminase (ADA, adenosine catabolic enzyme) mRNA were examined by RT-PCR. Tissue distribution of A(3) receptors was detected by confocal immunofluorescence. The effects of 2,3-ethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS1523) (MRS, A(3) receptor antagonist), 2-chloro-N(6) -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (2Cl-IB-MECA) (CIB, A(3) receptor agonist), dipyridamole (DIP, adenosine transport inhibitor) and ADA were assayed on contractile responses evoked by electrical stimulation (ES) or carbachol in colonic longitudinal muscle preparations (LMP). KEY RESULTS RT-PCR showed A(3) receptors and ADA mRNA in normal colon and their increased level in inflamed tissues. Immunofluorescence showed a predominant distribution of A(3) receptors in normal myenteric ganglia and an increased density during colitis. MRS enhanced ES-induced cholinergic contractions in normal LMP, but was less effective in inflamed tissues. After pretreatment with dipyridamole plus ADA, to reduce extracellular adenosine, CIB decreased cholinergic motor responses of normal LMP to ES, with enhanced efficacy in inflamed LMP. A(3) receptor ligands did not affect carbachol-induced contractions in LMP from normal or inflamed colon. CONCLUSIONS AND IMPLICATIONS Normally, adenosine modulated colonic cholinergic motility via activation of A(3) receptors in the myenteric plexus. A(3) receptor-mediated tonic inhibitory control by adenosine was impaired in inflamed bowel, despite increased density of functioning and pharmacologically recruitable A(3) receptors.
Collapse
Affiliation(s)
- L Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stanzel RDP, Lourenssen S, Nair DG, Blennerhassett MG. Mitogenic factors promoting intestinal smooth muscle cell proliferation. Am J Physiol Cell Physiol 2010; 299:C805-17. [PMID: 20631246 DOI: 10.1152/ajpcell.00086.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal smooth muscle cells are normally quiescent, but in the widely studied model of trinitrobenzene sulfonic acid (TNBS)-induced colitis in the rat, the onset of inflammation causes proliferation that leads to increased cell number and an altered phenotype. The factors that drive this are unclear and were studied in primary cultures of circular smooth muscle cells (CSMC) from the rat colon. While platelet-derived growth factor (PDGF)-AA, fibroblast growth factor (FGF), and epidermal growth factor (EGF) were ineffective, PDGF-BB and insulin-like growth factor-1 (IGF-1) caused significant increase in [(3)H]thymidine incorporation, bromodeoxyuridine uptake, and increased CSMC number, with PDGF-BB (≥0.2 nM) substantially more effective than IGF-1. Surprisingly, CSMC lacked expression of PDGF receptor-β (PDGF-Rβ) upon isolation but by 4 days in vitro, CSMC gained expression of PDGF-Rβ as shown by quantitative PCR, Western blot analysis, and immunocytochemistry; these CSMC responded to PDGF-BB but not IGF-1. PDGF-BB caused PDGF-Rβ phosphorylation and mobilization from the surface membrane, leading to activation of both Akt and ERK signaling pathways, which were essential for subsequent proliferation. In contrast, PDGF-AA, FGF, EGF, and IGF-1 were ineffective. In vivo, control CSMC lacked expression of PDGF-Rβ. However, this changed rapidly with TNBS-colitis, and by day 2 when CSMC proliferation in vivo is maximal, freshly isolated CSMC showed on-going PDGF-Rβ phosphorylation that was further increased by exogenous PDGF-BB. This suggests that the onset of PDGF-Rβ expression is a key factor in CSMC growth in vitro and in vivo, where inflammation may damage intrinsic inhibitory mechanisms and thus lead to hyperplasia.
Collapse
Affiliation(s)
- Roger D P Stanzel
- Gastrointestinal Diseases Research Unit, Queen's Univ., Kingston General Hospital, 76 Stuart St., Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 2010; 7:37. [PMID: 20615234 PMCID: PMC2909178 DOI: 10.1186/1742-2094-7-37] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/08/2010] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease is a chronic intestinal inflammatory condition, the pathology of which is incompletely understood. Gut inflammation causes significant changes in neurally controlled gut functions including cramping, abdominal pain, fecal urgency, and explosive diarrhea. These symptoms are caused, at least in part, by prolonged hyperexcitability of enteric neurons that can occur following the resolution of colitis. Mast, enterochromaffin and other immune cells are increased in the colonic mucosa in inflammatory bowel disease and signal the presence of inflammation to the enteric nervous system. Inflammatory mediators include 5-hydroxytryptamine and cytokines, as well as reactive oxygen species and the production of oxidative stress. This review will discuss the effects of inflammation on enteric neural activity and potential therapeutic strategies that target neuroinflammation in the enteric nervous system.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | |
Collapse
|
20
|
Pelletier AM, Venkataramana S, Miller KG, Bennett BM, Nair DG, Lourenssen S, Blennerhassett MG. Neuronal nitric oxide inhibits intestinal smooth muscle growth. Am J Physiol Gastrointest Liver Physiol 2010; 298:G896-907. [PMID: 20338922 DOI: 10.1152/ajpgi.00259.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hyperplasia of smooth muscle contributes to the thickening of the intestinal wall that is characteristic of inflammation, but the mechanisms of growth control are unknown. Nitric oxide (NO) from enteric neurons expressing neuronal NO synthase (nNOS) might normally inhibit intestinal smooth muscle cell (ISMC) growth, and this was tested in vitro. In ISMC from the circular smooth muscle of the adult rat colon, chemical NO donors inhibited [(3)H]thymidine uptake in response to FCS, reducing this to baseline without toxicity. This effect was inhibited by the guanylyl cyclase inhibitor ODQ and potentiated by the phosphodiesterase-5 inhibitor zaprinast. Inhibition was mimicked by 8-bromo (8-Br)-cGMP, and ELISA measurements showed increased levels of cGMP but not cAMP in response to sodium nitroprusside. However, 8-Br-cAMP and cilostamide also showed inhibitory actions, suggesting an additional role for cAMP. Via a coculture model of ISMC and myenteric neurons, immunocytochemistry and image analysis showed that innervation reduced bromodeoxyuridine uptake by ISMC. Specific blockers of nNOS (7-NI, NAAN) significantly increased [(3)H]thymidine uptake in response to a standard stimulus, showing that nNOS activity normally inhibits ISMC growth. In vivo, nNOS axon number was reduced threefold by day 1 of trinitrobenzene sulfonic acid-induced rat colitis, preceding the hyperplasia of ISMC described earlier in this model. We conclude that NO can inhibit ISMC growth primarily via a cGMP-dependent mechanism. Functional evidence that NO derived from nNOS causes inhibition of ISMC growth in vitro predicts that the loss of nNOS expression in colitis contributes to ISMC hyperplasia in vivo.
Collapse
Affiliation(s)
- Anne-Marie Pelletier
- Gastrointestinal Diseases Research Unit, Queen's Univ., 76 Stuart St., Kingston, Ontario K7L 2V6
| | | | | | | | | | | | | |
Collapse
|
21
|
Jamontt JM, Molleman A, Pertwee RG, Parsons ME. The effects of Delta-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. Br J Pharmacol 2010; 160:712-23. [PMID: 20590574 PMCID: PMC2931570 DOI: 10.1111/j.1476-5381.2010.00791.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/24/2010] [Accepted: 02/17/2010] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis. EXPERIMENTAL APPROACH The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug. KEY RESULTS Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not. CONCLUSIONS AND IMPLICATIONS In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.
Collapse
Affiliation(s)
- J M Jamontt
- School of Life Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | | | | | | |
Collapse
|
22
|
Lubbad AS, Oriowo MA, Khan I. Curcumin reverses attenuated carbachol-induced contraction of the colon in a rat model of colitis. Scand J Gastroenterol 2009; 44:187-94. [PMID: 18830899 DOI: 10.1080/00365520802449302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Curcumin ameliorates colitis whether it reverses colitis-induced reduction in colonic contractility remains to be investigated. OBJECTIVES To investigate the effect of curcumin on colitis-induced reduction of carbachol-induced contraction in colon segments from rats treated with trinitrobenzenesulphonic acid. METHODS Colitis was induced in rats by intra rectal administration of trinitrobenzenesulphonic acid and followed for 5 days. A group of animals which received trinitobenzene sulphonic acids was treated with curcumin (100 mg/Kg and 200 mg/kg body weight) 2 hrs prior to induction of colitis. The controls received phosphate buffered saline in a similar fashion. Markers of inflammation and contractility of colon were assayed using standard procedures. RESULTS Induction of colitis was associated with increased myeloperoxidase activity and malondialdehyde levels, gross histological changes characterized by infiltration of inflammatory cells. All these changes were prevented by treatment with curcumin (100 mg/kg). Treatment with curcumin also reduced the histological scores from 3.34+/-0.40 to 1.75+/-0.30 confirming an anti-inflammatory effect of curcumin in this experimental model of colitis. Colonic reactivity to carbachol was decreased in colitis affecting the maximum response but not sensitivity. Treatment with curcumin had no effect on sensitivity of the colon to carbachol in any of the preparations. Curcumin however reversed the decrease in carbachol-induced contraction associated with trinitrobenzenesulphonic acid treatment. The same dose of curcumin had no effect on either the potency of or the maximum response to carbachol in control rats. Tissue expression of NF-kB was increased in colon segments from trinitrobenzenesulphonic acid -treated rats and this was inhibited in rats treated with curcumin. CONCLUSIONS Based on these findings it is concluded that curcumin prevented the reduction in carbachol-induced contraction in trinitrobenzenesulphonic acid -treated rats by modulating NF-kB signaling pathway.
Collapse
Affiliation(s)
- Asmaa S Lubbad
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | | | | |
Collapse
|
23
|
Lynn PA, Chen BN, Zagorodnyuk VP, Costa M, Brookes SJH. TNBS-induced inflammation modulates the function of one class of low-threshold rectal mechanoreceptors in the guinea pig. Am J Physiol Gastrointest Liver Physiol 2008; 295:G862-71. [PMID: 18755810 PMCID: PMC2575914 DOI: 10.1152/ajpgi.00585.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of trinitrobenzene sulfonic acid (TNBS)-induced inflammation on specialized, low-threshold, slowly adapting rectal mechanoreceptors were investigated in the guinea pig. Under isoflurane anesthesia, 300 microl saline or TNBS (15 mg/ml) in 30% ethanol was instilled 7 cm from the anal sphincter. Six or 30 days later, single unit extracellular recordings were made from rectal nerve trunks in flat-sheet in vitro preparations attached to a mechanical tissue stretcher. TNBS treatment caused macroscopic ulceration of the rectal mucosa at 6 days, which fully resolved by 30 days. Muscle contractility was unaffected by TNBS treatment. At 6 days posttreatment, responses of low-threshold rectal mechanoreceptors to circumferential stretch were increased, and the proportion of afferents responding with von Frey hair thresholds <or=0.1 mN and mechanoreceptor excitability in response to electrical stimulation were increased in TNBS-treated tissue, suggesting increased sensitivity of the mechanotransducer. Mechanoreceptor function at 30 days posttreatment was in most cases unchanged. The inflammatory mediator prostaglandin E(2) (1 microM) activated mechanoreceptors (6 days) in conjunction with contractile activity, but capsaicin (1 microM) failed to activate mechanoreceptors. Bradykinin (1 microM) activated mechanoreceptors independently of contractile activity and responses to stretch were increased in the presence of bradykinin. Both capsaicin and bradykinin activated unidentified stretch-insensitive afferents independently of contractile activity. Mechanoreceptor function is modulated at 6 days posttreatment but not at 30 days, suggesting a moderate increase in mechanoreceptor sensitivity in inflamed tissue but not after recovery. Other unclassified stretch-insensitive afferents are responsive to inflammatory mediators and capsaicin and may be involved in aspects of visceral sensation.
Collapse
Affiliation(s)
- P. A. Lynn
- Department of Human Physiology and Centre for Neuroscience Flinders University, Bedford Park, Australia
| | - B. N. Chen
- Department of Human Physiology and Centre for Neuroscience Flinders University, Bedford Park, Australia
| | - V. P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience Flinders University, Bedford Park, Australia
| | - M. Costa
- Department of Human Physiology and Centre for Neuroscience Flinders University, Bedford Park, Australia
| | - S. J. H. Brookes
- Department of Human Physiology and Centre for Neuroscience Flinders University, Bedford Park, Australia
| |
Collapse
|
24
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120:233-53. [PMID: 18848843 DOI: 10.1016/j.pharmthera.2008.08.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 12/20/2022]
Abstract
The wide distribution of ATP and adenosine receptors as well as enzymes for purine metabolism in different gut regions suggests a complex role for these mediators in the regulation of gastrointestinal functions. Studies in rodents have shown a significant involvement of adenosine in the control of intestinal secretion, motility and sensation, via activation of A1, A2A, A2B or A3 purinergic receptors, as well as the participation of ATP in the regulation of enteric functions, through the recruitment of P2X and P2Y receptors. Increasing interest is being focused on the involvement of ATP and adenosine in the pathophysiology of intestinal disorders, with particular regard for inflammatory bowel diseases (IBDs), intestinal ischemia, post-operative ileus and related dysfunctions, such as gut dysmotility, diarrhoea and abdominal discomfort/pain. Current knowledge suggests that adenosine contributes to the modulation of enteric immune and inflammatory responses, leading to anti-inflammatory actions. There is evidence supporting a role of adenosine in the alterations of enteric motor and secretory activity associated with bowel inflammation. In particular, several studies have highlighted the importance of adenosine in diarrhoea, since this nucleoside participates actively in the cross-talk between immune and epithelial cells in the presence of diarrhoeogenic stimuli. In addition, adenosine exerts complex regulatory actions on pain transmission at peripheral and spinal sites. The present review illustrates current information on the role played by adenosine in the regulation of enteric functions, under normal or pathological conditions, and discusses pharmacological interventions on adenosine pathways as novel therapeutic options for the management of gut disorders and related abdominal symptoms.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Stanzel RD, Lourenssen S, Blennerhassett MG. Inflammation causes expression of NGF in epithelial cells of the rat colon. Exp Neurol 2008; 211:203-13. [DOI: 10.1016/j.expneurol.2008.01.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/15/2008] [Accepted: 01/24/2008] [Indexed: 12/21/2022]
|
26
|
Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in TNBS-induced colitis in rats. Dig Dis Sci 2008; 53:429-35. [PMID: 17703363 PMCID: PMC2807888 DOI: 10.1007/s10620-007-9881-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/14/2007] [Indexed: 12/30/2022]
Abstract
Inflammation of visceral structures in rats has been shown to produce visceral/somatic hyperalgesia. Our objectives were to determine if trinitrobenzene sulfonic acid (TNBS) induced colitis in rats leads to visceral/somatic hypersensitivity. Male Sprague-Dawley rats (200-250 g) were treated with 20 mg of TNBS in 50% ethanol (n = 40) or an equivalent volume of ethanol (n = 40) or saline (n = 25) via the colon. Colonic distension, Von Frey, Hargreaves, and tail reflex tests were used to evaluate for visceral, mechanical, and thermal sensitivity. The rats demonstrated visceral hypersensitivity at 2-28 days following TNBS administration (P < 0.0001). The ethanol-treated rats also demonstrated visceral hypersensitivity that resolved after day 14. TNBS-treated rats demonstrated somatic hypersensitivity at days 14-28 (P < 0.0001) in response to somatic stimuli of the hind paw. TNBS colitis is associated with visceral and somatic hypersensitivity in areas of somatotopic overlap. This model of colitis should allow further investigation into the mechanisms of visceral and somatic hypersensitivity.
Collapse
Affiliation(s)
- QiQi Zhou
- Department of Medicine, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
| | - Donald D. Price
- Department of Oral and Maxillofacial Surgery, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
- Department of Neuroscience, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
| | - Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
- Department of Neuroscience, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
| | - G. Nicholas Verne
- Department of Medicine, University of Florida Colleges of Medicine and Dentistry, Gainesville, FL
- North Florida/South Georgia VA Medical System, USA
| |
Collapse
|
27
|
Impaired acetylcholine-induced smooth muscle contraction in colitis involves altered calcium mobilization and AKT phosphorylation. Pflugers Arch 2008; 456:507-17. [DOI: 10.1007/s00424-007-0415-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 12/26/2022]
|
28
|
Krauter EM, Strong DS, Brooks EM, Linden DR, Sharkey KA, Mawe GM. Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterol Motil 2007; 19:990-1000. [PMID: 17973636 DOI: 10.1111/j.1365-2982.2007.00986.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Persistent changes in gastrointestinal motility frequently accompany the resolution of colitis, through mechanisms that remain to be determined. Trinitrobenzene sulfonic acid (TNBS) colitis in the guinea pig decreases the rate of propulsive motility, causes hyperexcitability of AH neurons, and induces synaptic facilitation. The changes in motility and AH neurons are sensitive to cyclooxygenase-2 (COX-2) inhibition. The aim of this investigation was to determine if the motility and neurophysiological changes persist following recovery from colitis. Evaluations of inflammation, colonic motility and intracellular electrophysiology of myenteric neurons 8 weeks after TNBS administration were performed and compared to matched control conditions. Myeloperoxidase levels in the colons were comparable to control levels 56 days after TNBS treatment. At this time point, the rate of colonic motility was decreased relative to controls following treatment with TNBS alone or TNBS plus a COX-2 inhibitor. Furthermore, the electrical properties of AH neurons and fast synaptic potentials in S neurons were significantly different from controls and comparable to those detected during active inflammation. Collectively, these data suggest that altered myenteric neurophysiology initiated during active colitis persists long term, and provide a potential mechanism underlying altered gut function in individuals during remission from inflammatory bowel disease.
Collapse
Affiliation(s)
- E M Krauter
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
29
|
Noronha R, Akbarali H, Malykhina A, Foreman RD, Greenwood-Van Meerveld B. Changes in urinary bladder smooth muscle function in response to colonic inflammation. Am J Physiol Renal Physiol 2007; 293:F1461-7. [PMID: 17715261 DOI: 10.1152/ajprenal.00311.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Visceral organ “cross talk” is suspected to contribute to multiorgan symptomatology found in conditions such as irritable bowel syndrome and interstitial cystitis. The goal of the present study was to investigate the short- and long-term effects of acute colitis on bladder detrusor muscle contractility. We hypothesized that inflammation of the colon leads to changes in bladder function via direct changes in detrusor smooth muscle contractility. In this study, colonic inflammation was induced in male rats via an enema of trinitrobenzenesulfonic acid (TNBS) (50 mg/kg, 0.5 ml, 25% ethanol). Colitis was confirmed using gross morphology, histology, and measurements of myeloperoxidase activity. Saline enema-treated rats served as controls. Three, 15, and 30 days postenema treatment, bladder detrusor muscle contractility was investigated in response to electrical field stimulation (EFS), cholinergic agonism with carbachol (CCh), and KCl. During active colonic inflammation ( day 3 post-TNBS enema), the bladder detrusor muscle appeared normal and showed no significant inflammation. However, abnormalities in bladder detrusor muscle contractility occurred in response to EFS and CCh but not KCl. During and after recovery from colonic inflammation ( days 15 and 30 post-TNBS enema), changes in bladder detrusor muscle contractility in response to EFS and CCh returned to control levels. We found that a transient colonic inflammatory insult significantly attenuates the amplitude of bladder detrusor muscle contractions in vitro, at least in part, through changes in cholinergic innervation, which are reversible after recovery from the colitis.
Collapse
Affiliation(s)
- R Noronha
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | |
Collapse
|
30
|
Al-Jarallah A, Oriowo MA, Khan I. Mechanism of reduced colonic contractility in experimental colitis: role of sarcoplasmic reticulum pump isoform-2. Mol Cell Biochem 2006; 298:169-78. [PMID: 17131044 DOI: 10.1007/s11010-006-9363-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are inflammatory disorders associated with decreased colonic contractility. Here we show that, in experimental colitis in rat induced by trinitrobenzenesulfonic acid, there is a decrease in contraction in response to carbamoylcholine and the sarco/endoplasmic reticulum Ca(+2) (SERCA) pump inhibitor thapsigargin. However, the decrease in contractility may occur due to decrease in the SERCA pump levels or their inactivation. Therefore, we examined the protein and mRNA levels for SERCA2 isoform, which is predominant isoform in colonic smooth muscle. There was a decrease in the levels of SERCA2 protein and mRNA levels in inflamed colonic muscle. These findings suggest that decreased SERCA pump levels is responsible for a decrease in the Ca(+2) stores in the sarco/endoplasmic reticulum that causes a decrease in the contractility in colonic smooth muscle leading to poor bowel movements.
Collapse
Affiliation(s)
- Aisha Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Jabrya, Safat, 13110, Kuwait
| | | | | |
Collapse
|
31
|
Zhou Q, Caudle RM, Price DD, Del Valle-Pinero AY, Verne GN. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats. Mol Pain 2006; 2:3. [PMID: 16417630 PMCID: PMC1402265 DOI: 10.1186/1744-8069-2-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/17/2006] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND N-methyl-D-aspartic acid (NMDA) spinal cord receptors play an important role in the development of hyperalgesia following inflammation. It is unclear, however, if changes in NMDA subunit receptor gene expression in the colonic myenteric plexus are associated with colonic inflammation. We investigated regulation of NMDA-NR1 receptor gene expression in TNBS induced colitis in rats. Male Sprague-Dawley rats (150 g-250 g) were treated with 20 mg trinitrobenzene sulfonic acid (TNBS) diluted in 50% ethanol. The agents were delivered with a 24 gauge catheter inserted into the lumen of the colon. The animals were sacrificed at 2, 7, 14, 21, and 28 days after induction of the colitis, their descending colon was retrieved for reverse transcription-polymerase chain reaction; a subset of animals' distal colon was used for two-dimensional (2-D) western analysis and immunocytochemistry. RESULTS NR1-exon 5 (N1) and NR1-exon 21 (C1) appeared 14, 21 and 28 days after TNBS treatment. NR1 pan mRNA was up-regulated at 14, 21, and 28 days. The NR1-exon 22 (C2) mRNA did not show significant changes. Using 2-D western analysis, untreated control rats were found to express only NR1001 whereas TNBS treated rats expressed NR1001, NR1011, and NR1111. Immunocytochemistry demonstrated NR1-N1 and NR1-C1 to be present in the myenteric plexus of TNBS treated rats. CONCLUSION These results suggest a role for colonic myenteric plexus NMDA receptors in the development of neuronal plasticity and visceral hypersensitivity in the colon. Up-regulation of NMDA receptor subunits may reflect part of the basis for chronic visceral hypersensitivity in conditions such as post-infectious irritable bowel syndrome.
Collapse
Affiliation(s)
- QiQi Zhou
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Donald D Price
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - G Nicholas Verne
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
- North Florida/South Georgia VA Health System, USA
| |
Collapse
|
32
|
Lourenssen S, Wells RW, Blennerhassett MG. Differential responses of intrinsic and extrinsic innervation of smooth muscle cells in rat colitis. Exp Neurol 2005; 195:497-507. [PMID: 16098965 DOI: 10.1016/j.expneurol.2005.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/02/2005] [Accepted: 06/19/2005] [Indexed: 12/31/2022]
Abstract
Intestinal smooth muscle cells receive neural input from axons that originate within the intestine, as well as from axons of extrinsic origin. In the inflamed intestine, altered motility may arise from damage to the axon/smooth muscle cell relationship, but the extent of change is unknown. Western blotting, histology and immunocytochemistry were used in the TNBS model of colitis in the rat to evaluate intrinsic and extrinsic axon numbers, which were then correlated with circular smooth muscle cell (CSMC) number during the time course from the acute onset of colitis to apparent recovery, at Day 35 post TNBS. Total axon profiles in the circular smooth muscle layer were reduced by nearly 50% on Day 4 of colitis, to 428 +/- 82 axons/section from 757 +/- 125 in control (n = 8-14 animals). The intrinsic innervation density (axon number per CSMC) dropped sharply by Day 2 to less than 30% of control. Although CSMC number nearly tripled during colitis, innervation density was restored to control levels by Day 6 due to a coordinated three-fold increase in axon number. The subpopulation of extrinsic axons expressing tyrosine hydroxylase showed a unique pattern during colitis, with no initial decrease in axon number, followed by axonal proliferation between Days 6 and 16 post-TNBS. We conclude that loss of intrinsic axons is an early event in colitis, and although reversed by axonal proliferation, transient denervation may promote CSMC hyperplasia as seen in earlier work in vitro. Axonal proliferation of both intrinsic and extrinsic axons is identified as a major homeostatic mechanism, with distinct patterns of damage and repair suggesting a structural basis for the altered motility seen in the inflamed colon.
Collapse
Affiliation(s)
- Sandra Lourenssen
- Gastrointestinal Diseases Research Unit, Queens University, Hotel Dieu Hospital, 166 Brock Street, Kingston, Ontario, Canada K7L 5G2
| | | | | |
Collapse
|
33
|
Abdel-Latif M, Mosbah A, El Bahnasawy MS, Elsawy E, Shaaban AA. Asymptomatic bacteriuria in men with orthotopic ileal neobladders: possible relationship to nocturnal enuresis. BJU Int 2005; 96:391-6. [PMID: 16042736 DOI: 10.1111/j.1464-410x.2005.05637.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess prospectively the incidence with time of asymptomatic bacteriuria in patients with orthotopic ileal neobladders, and the possible effect on neobladder function. PATIENTS AND METHODS In all, 47 patients (mean age 52.7 years, sd 8.7, range 31-68) with uncomplicated orthotopic ileal neobladders were prospectively evaluated. With no antibiotic manipulation, consecutive urine cultures were assessed monthly. Continence was assessed by direct information from the patients at each follow-up visit. RESULTS Overall, 797 samples were cultured from the 47 patients (mean 17.6, sd 7.1). There was a steady decrease in the incidence of positive cultures, from 74.5%, to 35.6% and 6.7% at 1, 6 and 18 months, respectively. While there was persistently sterile urine in only eight patients (17%), 32 had occasional and seven had persistent bacteriuria. Escherichia coli was the commonest organism (76.6%) followed by Klebsiella pneumonia (15.7%); 54% of E. coli and 38% of K. pneumonia infections were sensitive to nitrofurantoin. Diurnal continence was achieved in 98% of the patients at 6 months after surgery. There was a gradual decrease in the frequency of nocturnal enuresis (NE) with time, from 87%, to 42%, 28% and 27% at 1, 6, 12 and 18 months, respectively. There was a significant correlation between the presence of bacteriuria and NE during the first 6 months, but it was not sustained after that. The age of the patients was also related significantly to the incidence of NE; at 6 months, only one of 18 men aged < or = 50 years had NE, while 19 of 29 aged > 50 years had (P < 0.001). At 1 year all patients aged < or = 50 years were nocturnally continent, while half of those aged > 50 years had NE (P = 0.001). CONCLUSIONS Ileal neobladders are associated with a high incidence of asymptomatic bacteriuria during the first year after surgery. There was spontaneous clearance of bacteriuria with time, with no antimicrobial manipulation. Soon after surgery there was a significant association between bacteriuria and NE. The effect of antimicrobials on patients with NE should be evaluated.
Collapse
|
34
|
Marlow SL, Blennerhassett MG. Deficient innervation characterizes intestinal strictures in a rat model of colitis. Exp Mol Pathol 2005; 80:54-66. [PMID: 15990093 DOI: 10.1016/j.yexmp.2005.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/14/2005] [Indexed: 12/16/2022]
Abstract
Intestinal strictures are a common complication of Crohn's disease leading to serious consequences. With unknown etiology and cellular composition, strictures can be neither prevented nor reversed by current therapeutic strategies, and research has been limited by the lack of a well-developed animal model. We observed the sporadic occurrence of intestinal strictures at Day 35 in the TNBS rat model of colitis, which persisted beyond Day 90. Strictured tissue showed fusion, thickening, and disorganization of the smooth muscle layers. Immunocytochemistry revealed that all strictures were characterized by deficient innervation with a complete loss of intrinsic neurons, and a 92% loss of total axons per area. The number of alpha-smooth muscle actin-positive smooth muscle cells (SMC) increased in strictures, but immunolabeling showed phenotypic modulation of these cells, with the SMC phenotype (desmin-positive, vimentin-negative) entirely replaced by a myofibroblast phenotype (desmin-negative, vimentin-positive). Although cellular structure still predominated in the strictured regions, histochemistry showed increased extracellular matrix collagen, from 6 +/- 0.9% to 22 +/- 4% of total area. With previous evidence for neural loss in colitis, and in vitro studies showing neural regulation of smooth muscle cell (SMC) growth, we conclude that the regional loss of innervation may initiate tissue re-modeling that is characteristic of stricture formation.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/pathology
- Biomarkers/metabolism
- Colitis/complications
- Colitis/pathology
- Collagen/metabolism
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Constriction, Pathologic/physiopathology
- Desmin/metabolism
- Disease Models, Animal
- Enteric Nervous System/pathology
- Intestinal Obstruction/etiology
- Intestinal Obstruction/metabolism
- Intestinal Obstruction/pathology
- Male
- Muscle, Smooth/innervation
- Muscle, Smooth/pathology
- Myoblasts, Smooth Muscle/metabolism
- Myoblasts, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neurons/metabolism
- Neurons/pathology
- Rats
- Rats, Sprague-Dawley
- Vimentin/metabolism
Collapse
Affiliation(s)
- Stacey L Marlow
- Gastrointestinal Diseases Research Unit, Queen's University, Hotel Dieu Hospital, 166 Brock Street, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
35
|
Khan I, Oriowo MA, Anim JT. Amelioration of experimental colitis by Na-H exchanger-1 inhibitor amiloride is associated with reversal of IL-1ss and ERK mitogen-activated protein kinase. Scand J Gastroenterol 2005; 40:578-85. [PMID: 16036511 DOI: 10.1080/00365520510012352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Na-H exchanger-1 (NHE-1) is induced in experimental colitis. It has not yet been established whether its inhibition ameliorates colitis. The effects of amiloride, an inhibitor of NHE-1, on colitis were examined in this study. Levels of mitogen-activated protein (MAP) kinases ERK, p38 and interleukin 1ss which participate in intestinal inflammation were also examined in the colonic smooth muscle of rats with colitis. MATERIAL AND METHODS Colitis was induced in Sprague-Dawley male rats by intrarectal administration of trinitrobenzenesulphonic acid (TNBS) and treated daily with amiloride (3, 5, and 10 mg/kg b.w. (body-weight), orally) starting 1 h before induction of colitis. The animals were sacrificed on day 5 post-TNBS. Controls received phosphate buffered saline in a similar manner. RESULTS The highest dose of amiloride (10 mg/kg) was lethal. The lowest dose (3 mg/kg) was tolerated and was used in this study. Amiloride significantly reversed the colitis-reduced contractility and induction of MPO activity, NHE-1, IL-1ss and ERK, but not of p38 in inflamed colonic smooth muscle. Splenomegaly, increased colonic mass and decreased sodium pump activity were significantly reversed by amiloride treatment. There was no recovery of b.w. loss in the treated colitic animals. Urine output was increased, whereas food and water intake remained unchanged following amiloride treatment. CONCLUSIONS These findings suggest that the beneficial effects of NHE-1 inhibition in experimental colitis are mediated through IL-1ss and ERK MAP kinase.
Collapse
Affiliation(s)
- Islam Khan
- Department of Biochemistry, Kuwait University.
| | | | | |
Collapse
|
36
|
Harrison AP, Bartels EM, Erlwanger KH, Elbrønd VS, Skadhauge E, Unmack MA. Effects of antisecretory factor-derived peptides on contractions in guinea pig colon. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:143-8. [PMID: 15528162 DOI: 10.1016/j.cbpb.2004.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/29/2004] [Accepted: 08/04/2004] [Indexed: 11/26/2022]
Abstract
Two antisecretory factor (AF)-derived peptides have been studied in relation to effects on motility of guinea pig colon. Colon segments were isolated from adult guinea pigs and incubated in Tyrode Ringer. Motility was measured as the force and frequency of contractions upon addition of the derived peptides AF 1 (8 amino acids (aa)) and AF 3 (10 amino acids). At the lowest concentration (5 pM), peptide AF 1 induced a negative effect on the force of contraction in colon segments; an effect that was abolished by the cholinergic agonist carbachol. Peptide AF 3 induced a significant increase in the force of colon contractions at all concentrations (5-180 pM), with carbachol only reducing the effect of peptide AF 3 at a concentration of 15 pM. Both peptides increased contractile frequency, although the overall response was lower for peptide AF 3 than for peptide AF 1. It is concluded that antisecretory factor-derived peptides may play a role in regulating colon motility such that under pathophysiological conditions, they may serve to hasten the evacuation of noxious agents from the large intestine.
Collapse
Affiliation(s)
- A P Harrison
- Department of Anatomy and Physiology, The Royal Veterinary and Agricultural University, Grønnegårdsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|