1
|
Li Z, Hasson A, Daggumati L, Zhang H, Thorek DLJ. Molecular Imaging of ACE2 Expression in Infectious Disease and Cancer. Viruses 2023; 15:1982. [PMID: 37896761 PMCID: PMC10610869 DOI: 10.3390/v15101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can be used to visualize the expression and distribution of ACE2 in tissues and cells. A variety of techniques including optical, magnetic resonance, and nuclear medicine contrast agents have been developed and employed in the preclinical setting. Positron-emitting radiotracers for highly sensitive and quantitative tomography have also been translated in the context of SARS-CoV-2-infected and control patients. Together this information can be used to better understand the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in homeostasis and disease, and to identify potential therapeutic modulators in infectious disease and cancer. This review summarizes the tools and techniques to detect and delineate ACE2 in this rapidly expanding field.
Collapse
Affiliation(s)
- Zhiyao Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Abbie Hasson
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Lasya Daggumati
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- School of Medicine Missouri, University of Missouri-Kansas City, Kansas, MO 64108, USA
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Romeih M, Mahrous MR, El Kassas M. Incidental radiological findings suggestive of COVID-19 in asymptomatic patients. World J Radiol 2022; 14:1-12. [PMID: 35126873 PMCID: PMC8788167 DOI: 10.4329/wjr.v14.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Despite routine screening of patients for coronavirus disease 2019 (COVID-19) symptoms and signs at hospital entrances, patients may slip between the cracks and be incidentally discovered to have lung findings that could indicate COVID-19 infection on imaging obtained for other reasons. Multiple case reports and case series have been published to identify the pattern of this highly infectious disease. This article addresses the radiographic findings in different imaging modalities that may be incidentally seen in asymptomatic patients who carry COVID-19. In general, findings of COVID-19 infection may appear in computed tomography (CT), magnetic resonance imaging, positron emission tomography-CT, ultrasound, or plain X-rays that show lung or only apical or basal cuts. The identification of these characteristics by radiologists and clinicians is crucial because this would help in the early recognition of cases so that a rapid treatment protocol can be established, the immediate isolation to reduce community transmission, and the organization of close monitoring. Thus, it is important to both the patient and the physician that these findings are highlighted and reported.
Collapse
Affiliation(s)
- Marwa Romeih
- Department of Radiodiagnosis, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Mary R Mahrous
- Department of Radiodiagnosis, National Heart institute, Cairo 11795, Egypt
| | - Mohamed El Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
3
|
Spiro JE, Curta A, Mansournia S, Marschner CA, Maurus S, Weckbach LT, Hedderich DM, Dinkel J. Appearance of COVID-19 pneumonia on 1.5 T TrueFISP MRI. Radiol Bras 2021; 54:211-218. [PMID: 34393286 PMCID: PMC8354185 DOI: 10.1590/0100-3984.2021.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Objective To evaluate the performance of 1.5 T true fast imaging with steady state precession (TrueFISP) magnetic resonance imaging (MRI) sequences for the detection and characterization of pulmonary abnormalities caused by coronavirus disease 2019 (COVID-19). Materials and Methods In this retrospective single-center study, computed tomography (CT) and MRI scans of 20 patients with COVID-19 pneumonia were evaluated with regard to the distribution, opacity, and appearance of pulmonary lesions, as well as bronchial changes, pleural effusion, and thoracic lymphadenopathy. McNemar’s test was used in order to compare the COVID-19-associated alterations seen on CT with those seen on MRI. Results Ground-glass opacities were better visualized on CT than on MRI (p = 0.031). We found no statistically significant differences between CT and MRI regarding the visualization/characterization of the following: consolidations; interlobular/intralobular septal thickening; the distribution or appearance of pulmonary abnormalities; bronchial pathologies; pleural effusion; and thoracic lymphadenopathy. Conclusion Pulmonary abnormalities caused by COVID-19 pneumonia can be detected on TrueFISP MRI sequences and correspond to the patterns known from CT. Especially during the current pandemic, the portions of the lungs imaged on cardiac or abdominal MRI should be carefully evaluated to promote the identification and isolation of unexpected cases of COVID-19, thereby curbing further spread of the disease.
Collapse
Affiliation(s)
- Judith Eva Spiro
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Curta
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Shiwa Mansournia
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Stefan Maurus
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Dennis Martin Hedderich
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Radiology, Asklepios Lung Center Munich-Gauting, Gauting, Germany
| |
Collapse
|
4
|
Saha BK, Chong WH, Austin A, Kathuria R, Datar P, Shkolnik B, Beegle S, Chopra A. Pleural abnormalities in COVID-19: a narrative review. J Thorac Dis 2021; 13:4484-4499. [PMID: 34422375 PMCID: PMC8339774 DOI: 10.21037/jtd-21-542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This narrative review aims to provide a detailed overview of pleural abnormalities in patients with coronavirus disease 19 or COVID-19. BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is a novel beta coronavirus responsible for COVID-19. Although pulmonary parenchymal and vascular changes associated with COVID-19 are well established, pleural space abnormalities have not been the primary focus of investigations. METHODS Narrative overview of the medical literature regarding pleural space abnormalities in COVID-19. The appropriate manuscripts were identified by searching electronic medical databases and by hand searching the bibliography of the identified papers. Pleural abnormalities on transverse and ultrasound imaging are discussed. The incidence, clinical features, pathophysiology, and fluid characteristics of pleural effusion are reviewed. Studies reporting pneumothorax and pneumomediastinum are examined to evaluate for pathogenesis and prognosis. A brief comparative analysis of pleural abnormalities among patients with COVID-19, severe acute respiratory syndrome (SARS), and Middle Eastern respiratory syndrome (MERS) has been provided. CONCLUSIONS Radiologic pleural abnormalities are common in COVID-19, but the incidence of pleural effusion appears to be low. Pneumothorax is rare and does not independently predispose the patient to worse outcomes. SARS-CoV-2 infects the pleural space; however, whether the pleural fluid can propagate the infection is unclear.
Collapse
Affiliation(s)
- Biplab K. Saha
- Department of Pulmonary and Critical Care Medicine, Ozarks Medical Center, West Plains, MO, USA
| | - Woon H. Chong
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Adam Austin
- Department of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL, USA
| | - Ritu Kathuria
- Department of Infectious Disease, Ozarks Medical Center, West Plains, MO, USA
| | - Praveen Datar
- Department of Pulmonary and Critical Care Medicine, Ozarks Medical Center, West Plains, MO, USA
| | - Boris Shkolnik
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Scott Beegle
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Amit Chopra
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
5
|
Abstract
Soon after reports of a novel coronavirus capable of causing severe pneumonia surfaced in late 2019, expeditious global spread of the Severe Acute Respiratory Distress Syndrome Coronavirus 2 (SARS-CoV-2) forced the World Health Organization to declare an international state of emergency. Although best known for causing symptoms of upper respiratory tract infection in mild cases and fulminant pneumonia in severe disease, Coronavirus Disease 2019 (COVID-19) has also been associated with gastrointestinal, neurologic, cardiac, and hematologic presentations. Despite concerns over poor specificity and undue radiation exposure, chest imaging nonetheless remains central to the initial diagnosis and monitoring of COVID-19 progression, as well as to the evaluation of complications. Classic features on chest CT include ground-glass and reticular opacities with or without superimposed consolidations, frequently presenting in a bilateral, peripheral, and posterior distribution. More recently, studies conducted with MRI have shown excellent concordance with chest CT in visualizing typical features of COVID-19 pneumonia. For patients in whom exposure to ionizing radiation should be avoided, particularly pregnant patients and children, pulmonary MRI may represent a suitable alternative to chest CT. Although PET imaging is not typically considered among first-line investigative modalities for the diagnosis of lower respiratory tract infections, numerous reports have noted incidental localization of radiotracer in parenchymal regions of COVID-19-associated pulmonary lesions. These findings are consistent with data from Middle East Respiratory Syndrome-CoV cohorts which suggested an ability for 18F-FDG PET to detect subclinical infection and lymphadenitis in subjects without overt clinical signs of infection. Though highly sensitive, use of PET/CT for primary detection of COVID-19 is constrained by poor specificity, as well as considerations of cost, radiation burden, and prolonged exposure times for imaging staff. Even still, decontamination of scanner bays is a time-consuming process, and proper ventilation of scanner suites may additionally require up to an hour of downtime to allow for sufficient air exchange. Yet, in patients who require nuclear medicine investigations for other clinical indications, PET imaging may yield the earliest detection of nascent infection in otherwise asymptomatic individuals. Especially for patients with concomitant malignancies and other states of immunocompromise, prompt recognition of infection and early initiation of supportive care is crucial to maximizing outcomes and improving survivability.
Collapse
Key Words
- sars-cov, severe acute respiratory syndrome coronavirus
- covid-19, coronavirus disease 2019
- ct, computed tomography
- mri, magnetic resonance imaging
- pet, positron emission tomography
- ggo, ground-glass opacity
- rt-pcr, reverse transcription polymerase chain reaction
- 18f-fdg, 18f-labelled fluorodeoxyglucose
- suvmax, maximum standardized uptake
- mip, maximum intensity projection
- 68ga-psma, 68ga-labelled prostate-specific membrane antigen
- 18f-choline, 18f-labelled choline
Collapse
Affiliation(s)
- Brandon K K Fields
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Natalie L Demirjian
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America; Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Habibollah Dadgar
- Razavi Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America; Department of Radiology, University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
6
|
Ogah OS, Umuerri EM, Adebiyi A, Orimolade OA, Sani MU, Ojji DB, Mbakwem AC, Stewart S, Sliwa K. SARS-CoV 2 Infection (Covid-19) and Cardiovascular Disease in Africa: Health Care and Socio-Economic Implications. Glob Heart 2021; 16:18. [PMID: 33833942 PMCID: PMC7977038 DOI: 10.5334/gh.829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic of SARS-COV 2 infection (Covid-19) is challenging health systems and communities worldwide. At the individual level, the main biological system involved in Covid-19 is the respiratory system. Respiratory complications range from mild flu-like illness symptoms to a fatal respiratory distress syndrome or a severe and fulminant pneumonia. Critically, the presence of a pre-existing cardiovascular disease or its risk factors, such as hypertension or type II diabetes mellitus, increases the chance of having severe complications (including death) if infected by the virus. In addition, the infection can worsen an existing cardiovascular disease or precipitate new ones. This paper presents a contemporary review of cardiovascular complications of Covid-19. It also specifically examines the impact of the disease on those already vulnerable and on the poorly resourced health systems of Africa as well as the potential broader consequences on the socio-economic health of this region.
Collapse
Affiliation(s)
- Okechukwu S. Ogah
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Nigeria/Department of Medicine, University College Hospital Ibadan, NG
- Institute of Advanced Medical Research and Training, College of Medicine, University of Ibadan, NG
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| | - Ejiroghene M. Umuerri
- Department of Medicine, Delta State University, Abraka, Delta State Nigeria/Department of Medicine, Delta State University Teaching Hospital, Oghara, Delta State, NG
| | - Adewole Adebiyi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Nigeria/Department of Medicine, University College Hospital Ibadan, NG
| | - Olanike A. Orimolade
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Nigeria/Department of Medicine, University College Hospital Ibadan, NG
| | - Mahmoud U. Sani
- Department of Medicine Bayero University Kano & Aminu Kano University Teaching Hospital, Kano, NG
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| | - Dike B. Ojji
- Department of Medicine, University of Abuja, Abuja, Nigeria/Department of Medicine, University of Abuja Teaching Hospital, Abuja, NG
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| | - Amam C. Mbakwem
- Department of Medicine, University of Lagos, Akoka, Lagos, Nigeria/Department of Medicine, Lagos University Teaching Hospital, Idi-araba, Lagos, NG
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| | - Simon Stewart
- Torrens University Australia, Adelaide, South Australia, AU
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, ZA
| |
Collapse
|
7
|
Thorax Magnetic Resonance Imaging Findings in Patients with Coronavirus Disease (COVID-19). Acad Radiol 2020; 27:1373-1378. [PMID: 32830031 PMCID: PMC7428769 DOI: 10.1016/j.acra.2020.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Rationale and Objectives The aim of this study was to compare the findings found in thorax computed tomography (CT), which is increasingly used in the diagnosis of the important public health problem of coronavirus disease (COVID-19), and the findings of magnetic resonance imaging (MRI) as an important diagnostic alternative. Materials and Methods Thirty-two patients diagnosed with COVID-19 who underwent thorax CT for COVID pneumonia and MRI for any reason within 24 hours after CT were included in the study. The number of lobes affected, number of lobes containing ground-glass opacities and consolidation, number of nodules, distribution of lesions (central, peripheral, or diffuse), lobes with centrilobular nodular pattern, and the presence of pleural effusion were recorded separately for both imaging methods. Results Seventeen of the patients were female (53%) and 15 were male (47%). The mean age of the patients was 60.5 (range, 20–85) years. A total of 31 patients (96%) had signs of pneumonia on CT. The most common finding in CT was ground-glass opacities in 29 patients (90.6%), followed by consolidation in 14 patients (43.75%). Both consolidation and ground-glass opacities were also observed in MRI in all of these patients. Nodules were detected in 12 patients (37.5%) on CT and 11 patients (34.4%) on MRI. The sensitivity and specificity of MRI in nodule detection were calculated as 91.67% and 100%, respectively. Conclusion Although thorax CT is widely used in the imaging of COVID-19 infection, due to its advantages, MRI can also be used as an alternative diagnostic tool.
Collapse
|
8
|
Smith P, Bilello M, Mohan S. Neuro-Thoracic Radiologists "Corner": Incidental Pulmonary Findings on a Neck MRI Leading to the Diagnosis of COVID-19. AJNR Am J Neuroradiol 2020; 41:E78-E79. [PMID: 32723748 DOI: 10.3174/ajnr.a6699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- P Smith
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphia, Pennsylvania
| | - M Bilello
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphia, Pennsylvania
| | - S Mohan
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphia, Pennsylvania
| |
Collapse
|
9
|
Younes N, Al-Sadeq DW, AL-Jighefee H, Younes S, Al-Jamal O, Daas HI, Yassine HM, Nasrallah GK. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020; 12:582. [PMID: 32466458 PMCID: PMC7354519 DOI: 10.3390/v12060582] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadeel AL-Jighefee
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Hanin I. Daas
- College of Dental Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Hadi. M. Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| |
Collapse
|