1
|
Liu R, Ma R, Zhou X, Wang X, Wu J, Chu F, Wang M, Liu X, Wang Y, Zhu K, Zhang S, Yin T, Liu Z. Cortical Plasticity Induced by Pairing Primary Motor Cortex Transcranial Magnetic Stimulation With Subthalamic Nucleus Magneto-Acoustic Coupling Stimulation. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1751-1762. [PMID: 40299729 DOI: 10.1109/tnsre.2025.3565258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Paired cortical and deep stimulation has the potential to induce enhanced cortical plasticity. Ideally, such stimulation should be noninvasive and precisely controlled. A novel paired stimulation method, combining transcranial magnetic stimulation (TMS) with transcranial magneto-acoustic coupled stimulation (TMAS), named TMS-TMAS, was proposed to achieve such stimulations. Although the primary motor cortex (M1) is stimulated using TMS, the pulsed magnetic field is coupled with a focused ultrasound field to achieve TMAS-based focused electrical stimulation of the subthalamic nucleus (STN) via the magneto-acoustic coupling effect. Cortical plasticity is induced by precisely controlling the timing of magnetic pulse and ultrasound emissions based on spike timing-dependent plasticity (STDP). The experimental system achieved cortical-focused magnetic stimulation with a transverse resolution of 4.3 mm, a longitudinal resolution of 2.8 mm, and a magnetic field intensity of 1.6 T in the M1 region. Additionally, deep-focused electrical stimulation with a transverse resolution of 1.6 mm, a longitudinal resolution of 9.9 mm, and a coupled electric field intensity of 280 mV/m in the STN region was realized. In vivo animal experiments demonstrated that TMS-TMAS enhanced the amplitude of motor evoked potential (MEP) and reduced response latency. Simulation and experimental results confirmed that TMS-TMAS achieves high spatial resolution, noninvasive paired stimulation of the cortex and deep nuclei, and induces enhanced cortical plasticity when the stimulation sequence satisfies the STDP criteria. This method provides a promising approach for noninvasive paired stimulation and is expected to advance brain science research and the rehabilitation of neuropsychiatric disorders involving deep brain structures.
Collapse
|
2
|
Zhang JQ, Li SY, Yin C, Ji Y, Zhang X, Liu DY, Yang H, Niu Y, Cui GY, Zhou CY, Xiao C. Dysfunction of subthalamic dopaminergic circuitry contributes to anxiety- and depression-like behaviors in 6-OHDA lesion-induced hemiparkinsonian mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01570-2. [PMID: 40329003 DOI: 10.1038/s41401-025-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Anxiety and depression are common non-motor symptoms severely affecting the quality of life in patients with Parkinson's disease, but the underlying pathophysiological mechanisms remain elusive. As dopaminergic (DA) system and the subthalamic nucleus (STN) are involved in motor control and emotional processing, we herein investigated the role of DA circuitry in the STN in regulating depression in parkinsonian mice. A hemi-parkinsonian mouse model was established by injection of 6-OHDA into the right medial forebrain bundle (MFB), desipramine (20 mg/kg, i.p.) was injected 30 min before the intracranial injection. Motor function was monitored in open field test and apomorphine-induced contra-lesional rotation and rotarod tests; anxiety- and depression-like behaviors were assessed with the open field test, elevated plus maze, tail suspension test and forced swim test. We found that the hemi-parkinsonian mice displayed motor dysfunction and depression-like behaviors at different time points. Fiber photometry recording revealed that STN neurons were hypersensitive to anxiety- and depression-like stimulation; chemogenetic inhibition of STN neurons mitigated anxiety- and depression-like behaviors. While dopamine release was significantly reduced in the STN of the parkinsonian mice in response to anxiety- and depression-like stimulation, the expression of D1- and D2-like dopamine receptors was time-dependently changed. Intracranial injection of either D1- or D2-like dopamine receptor agonist into the STN mitigated anxiety- and depression-like behaviors in the parkinsonian mice. We conclude that STN DA circuitry may be promising targets to treat anxiety and depression in PD.
Collapse
Affiliation(s)
- Jia-Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Shu-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Yang Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hang Yang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Gui-Yun Cui
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Choi IS, Kim J, Choi JH, Kim EM, Choi JW, Rah JC. Modulation of premotor cortex excitability mitigates the behavioral and electrophysiological abnormalities in a Parkinson's disease mouse model. Prog Neurobiol 2025; 249:102761. [PMID: 40258455 DOI: 10.1016/j.pneurobio.2025.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
The subthalamic nucleus (STN) plays a crucial role in suppressing prepotent response tendency. The prefrontal regions innervating the STN exhibit increased activity during the stop-signal responses, and the optogenetic activation of these neurons suppresses ongoing behavior. High-frequency electrical stimulation of the STN effectively treats the motor symptoms of Parkinson's disease (PD), yet its underlying circuit mechanisms remain unclear. Here, we investigated the involvement of STN-projecting premotor (M2) neurons in PD mouse models and the impact of deep brain stimulation targeting the STN (DBS-STN). We found that the M2 neurons exhibited enhanced burst firing and synchronous oscillations in the PD mouse model. Remarkably, high-frequency stimulation of STN-projecting M2 neurons, simulating antidromic activation during DBS-STN relieved motor symptoms and hyperexcitability. These changes were attributed to reduced firing frequency vs. current relationship through normalized hyperpolarization-activated inward current (Ih). The M2 neurons in the PD model mouse displayed increased Ih, which was reversed by high-frequency stimulation. Additionally, the infusion of ZD7288, an HCN channel blocker, into the M2 replicated the effects of high-frequency stimulation. In conclusion, our study reveals excessive excitability and suppressive motor control through M2-STN synapses in a PD mouse model. Antidromic excitation of M2 neurons during DBS-STN alleviates this suppression, thereby improving motor impairment. These findings provide insights into the circuit-level dynamics underlying deep brain stimulation's therapeutic effects in PD, suggesting that M2-STN synapses could serve as potential targets for future therapeutic strategies.
Collapse
Affiliation(s)
- In Sun Choi
- Laboratory of Neurophysiology, Sensory and Motor Neuroscience Group, Korea Brain Research Institute, Daegu 41602, Republic of Korea; Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinmo Kim
- Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea
| | - Joon Ho Choi
- Laboratory of Neurophysiology, Sensory and Motor Neuroscience Group, Korea Brain Research Institute, Daegu 41602, Republic of Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan 31172, Republic of Korea
| | - Ji-Woong Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea.
| | - Jong-Cheol Rah
- Laboratory of Neurophysiology, Sensory and Motor Neuroscience Group, Korea Brain Research Institute, Daegu 41602, Republic of Korea; Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
4
|
Xu Z, Duan W, Yuan S, Zhang X, You C, Yu JT, Wang J, Li JD, Deng S, Shu Y. Deep brain stimulation alleviates Parkinsonian motor deficits through desynchronizing GABA release in mice. Nat Commun 2025; 16:3726. [PMID: 40253429 PMCID: PMC12009282 DOI: 10.1038/s41467-025-59113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
High-frequency deep brain stimulation (DBS) at subthalamic nucleus (STN) is an effective therapy for Parkinson's disease (PD), but the underlying mechanisms remain unclear. Here we find an important role of asynchronous release (AR) of GABA induced by high-frequency stimulation (HFS) in alleviating motor functions of dopamine-depleted male mice. Electrophysiological recordings reveal that 130-Hz HFS causes an initial inhibition followed by desynchronization of STN neurons, largely attributable to presynaptic GABA release. Low-frequency stimulation at 20 Hz, however, produces much weaker AR and negligible effects on neuronal firing. Further optogenetic and cell-ablation experiments demonstrate that activation of parvalbumin axons, but not non-parvalbumin axons, from external globus pallidus (GPe) is both necessary and sufficient for DBS effects. Reducing AR diminishes the high-frequency DBS effect, while increasing AR allows low-frequency DBS to achieve a therapeutic benefit. Therefore, asynchronous GABA release from GPe PV neurons may contribute significantly to the therapeutic effects of high-frequency DBS.
Collapse
Affiliation(s)
- Zongyi Xu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Duan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Shuyu Yuan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Chong You
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Suixin Deng
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Binns TS, Köhler RM, Vanhoecke J, Chikermane M, Gerster M, Merk T, Pellegrini F, Busch JL, Habets JGV, Cavallo A, Beyer JC, Al-Fatly B, Li N, Horn A, Krause P, Faust K, Schneider GH, Haufe S, Kühn AA, Neumann WJ. Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson's disease. Nat Commun 2025; 16:3587. [PMID: 40234441 PMCID: PMC12000430 DOI: 10.1038/s41467-025-58825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Deep brain stimulation is a brain circuit intervention that can modulate distinct neural pathways for the alleviation of neurological symptoms in patients with brain disorders. In Parkinson's disease, subthalamic deep brain stimulation clinically mimics the effect of dopaminergic drug treatment, but the shared pathway mechanisms on cortex - basal ganglia networks are unknown. To address this critical knowledge gap, we combined fully invasive neural multisite recordings in patients undergoing deep brain stimulation surgery with normative MRI-based whole-brain connectomics. Our findings demonstrate that dopamine and stimulation exert distinct mesoscale effects through modulation of local neural population activity. In contrast, at the macroscale, stimulation mimics dopamine in its suppression of excessive interregional network synchrony associated with indirect and hyperdirect cortex - basal ganglia pathways. Our results provide a better understanding of the circuit mechanisms of dopamine and deep brain stimulation, laying the foundation for advanced closed-loop neurostimulation therapies.
Collapse
Affiliation(s)
- Thomas S Binns
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Richard M Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jojo Vanhoecke
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meera Chikermane
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Moritz Gerster
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Pellegrini
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Johannes L Busch
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jeroen G V Habets
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessia Cavallo
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Jean-Christin Beyer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Haufe
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Asimakidou E, Sidiropoulos C. Immunomodulatory effects of invasive and non-invasive brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2025; 133:107314. [PMID: 39956706 DOI: 10.1016/j.parkreldis.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Accumulating evidence points to a critical role of the immune system in the neurodegenerative process in Parkinson's disease (PD). This late knowledge has revolutionised our understanding of the pathogenetic mechanisms underlying PD and has opened new avenues toward disease-modifying rather than dopamine-replacement therapeutic approaches. When pharmacological treatments fail to adequately alleviate clinical symptoms, brain stimulation techniques are taken into consideration. Deep brain stimulation (DBS) constitutes the most common method for invasive brain stimulation, while the non-invasive brain stimulation paradigms comprise among others repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). How each brain stimulation paradigm interferes with disease pathogenesis still remains elusive. In light of recent evidence supporting the involvement of the immune system in PD, a question that arises is whether brain stimulation techniques have an immunomodulatory potential. Here, we summarize the existing knowledge and provide mechanistic insights that should foster future research. Overall, it appears that DBS and rTMS can modulate both the central and the peripheral component of the immune system and can lead to clinical improvement through immunosuppressive/anti-inflammatory mechanisms. The paucity of evidence for tDCS and tACS precludes any conclusions and highlights the necessity of more mechanistic studies focusing on their immunomodulatory potential, if any. Any pre-clinical findings warrant further clinical validation using human in vivo markers and post-mortem human brain tissue. Unravelling the mechanisms that underpin the beneficial therapeutic effects of brain stimulation in PD patients can contribute substantially to the fine-tuning of the current stimulation protocols and pave the way for more efficient and clinically meaningful neuromodulation paradigms.
Collapse
Affiliation(s)
| | - Christos Sidiropoulos
- Department of Neurology, Michigan State University, East Lansing, MI 48824-7015, USA.
| |
Collapse
|
7
|
Sachse EM, Widge AS. Neurostimulation to Improve Cognitive Flexibility. Curr Opin Behav Sci 2025; 62:101484. [PMID: 39925871 PMCID: PMC11804887 DOI: 10.1016/j.cobeha.2025.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Cognitive flexibility, the capacity to adapt behaviors in response to changing environments, is impaired across mental illnesses, including depression, anxiety, addiction, and obsessive-compulsive disorder. Cortico-striatal-cortical circuits are integral to cognition and goal-directed behavior and disruptions in these circuits are linked to cognitive inflexibility in mental illnesses. We review evidence that neurostimulation of these circuits can improve cognitive flexibility and ameliorate symptoms, and that this may be a mechanism of action of current clinical therapies. Further, we discuss how animal models can offer insights into the mechanisms underlying cognitive flexibility and effects of neurostimulation. We review research from animal studies that may, if translated, yield better approaches to modulating flexibility. Future research should focus on refining definitions of cognitive flexibility, improving detection of impaired flexibility, and developing new methods for optimizing neurostimulation parameters. This could enhance neurostimulation therapies through more personalized treatments that leverage cognitive flexibility to improve patient outcomes.
Collapse
Affiliation(s)
- Elizabeth M Sachse
- University of Minnesota, Department of Psychiatry, 2312 6 Street South, Floor 2, Suite F-275, Minneapolis+, MN 55454
- University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455
| | - Alik S Widge
- University of Minnesota, Department of Psychiatry, 2312 6 Street South, Floor 2, Suite F-275, Minneapolis+, MN 55454
| |
Collapse
|
8
|
Jackson J, Loughlin H, Looman C, Yu C. Pallidothalamic Circuit-Selective Manipulation Ameliorates Motor Symptoms in a Rat Model of Parkinsonian. J Neurosci 2025; 45:e0555242025. [PMID: 39837660 PMCID: PMC11905351 DOI: 10.1523/jneurosci.0555-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homolog of GPi, in a unilateral 6-hydroxydopamine lesioned female Sprague Dawley rat model of PD. We quantified behavioral effects of optogenetic EP DBS on motor symptoms and conducted single-unit recordings in EP and ventral lateral motor thalamus (VL) to examine changes in neural activity. High-frequency optogenetic EP DBS (75, 100, 130 Hz) reduced ipsilateral turning and corrected forelimb stepping, while low-frequency stimulation (5 and 20 Hz) had no effect. EP and VL neurons exhibited mixed response during stimulation, with both increased and decreased firing. The average firing rate of all recorded neurons in the EP and VL significantly increased at 130 Hz but not at other frequencies. Beta-band oscillatory activity was reduced in most EP neurons across high frequencies (75, 100, 130 Hz), while reductions in beta-band oscillations in VL occurred only at 130 Hz. These findings suggest that the neural firing rates within EP and VL circuits were differentially modulated by EP DBS; they may not fully explain the frequency-dependent behavioral effect. Instead, high-frequency optogenetic EP DBS at 130 Hz may ameliorate parkinsonian motor symptoms by reducing abnormal oscillatory activity in the EP-VL circuits. This study underscores the therapeutic potential of circuit-specific modulation in the pallidothalamic pathway using optogenetic EP DBS to alleviate motor deficits in a PD rat model.
Collapse
Affiliation(s)
- Jacob Jackson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Hannah Loughlin
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Chloe Looman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| |
Collapse
|
9
|
Lakunina A, Socha KZ, Ladd A, Bowen AJ, Chen S, Colonell J, Doshi A, Karsh B, Krumin M, Kulik P, Li A, Neutens P, O'Callaghan J, Olsen M, Putzeys J, Tilmans HA, Ye Z, Welkenhuysen M, Häusser M, Koch C, Ting JT, Dutta B, Harris TD, Steinmetz NA, Svoboda K, Siegle JH, Carandini M. Neuropixels Opto: Combining high-resolution electrophysiology and optogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636286. [PMID: 39975326 PMCID: PMC11838571 DOI: 10.1101/2025.02.04.636286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
High-resolution extracellular electrophysiology is the gold standard for recording spikes from distributed neural populations, and is especially powerful when combined with optogenetics for manipulation of specific cell types with high temporal resolution. We integrated these approaches into prototype Neuropixels Opto probes, which combine electronic and photonic circuits. These devices pack 960 electrical recording sites and two sets of 14 light emitters onto a 1 cm shank, allowing spatially addressable optogenetic stimulation with blue and red light. In mouse cortex, Neuropixels Opto probes delivered high-quality recordings together with spatially addressable optogenetics, differentially activating or silencing neurons at distinct cortical depths. In mouse striatum and other deep structures, Neuropixels Opto probes delivered efficient optotagging, facilitating the identification of two cell types in parallel. Neuropixels Opto probes represent an unprecedented tool for recording, identifying, and manipulating neuronal populations.
Collapse
Affiliation(s)
- Anna Lakunina
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Karolina Z Socha
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alexander Ladd
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anna J Bowen
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anjal Doshi
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Pavel Kulik
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Anna Li
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | - Meghan Olsen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | | | - Zhiwen Ye
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Jonathan T Ting
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Steinmetz
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
10
|
Asadi A, Koirala N, Muthuraman M. Navigating neural pathways: how stimulation polarity shapes deep brain stimulation efficacy. Brain Commun 2025; 7:fcaf061. [PMID: 39980738 PMCID: PMC11839837 DOI: 10.1093/braincomms/fcaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
This scientific commentary refers to 'Neural pathway activation in the subthalamic region depends on stimulation polarity' by Borgheai et al. (https://doi.org/10.1093/braincomms/fcaf006).
Collapse
Affiliation(s)
- Atefeh Asadi
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Nabin Koirala
- Brain Imaging Research Core, University of Connecticut, Storrs, CT 06269, USA
- School of Medicine, Yale University, New Haven, CT 06511, USA
- Center for Biomedical Imaging & Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Muthuraman Muthuraman
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
- Informatics for Medical Technology, Institute of Computer Science, University Augsburg, Augsburg 86159, Germany
| |
Collapse
|
11
|
Skelton H, Grogan D, Kotlure A, Berglund K, Gutekunst CA, Gross R. Adaptive wheel exercise for mouse models of Parkinson's Disease. J Neurosci Methods 2025; 414:110314. [PMID: 39532188 DOI: 10.1016/j.jneumeth.2024.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Physical exercise has been extensively studied for its therapeutic properties in neurological disease, particularly Parkinson's Disease (PD). However, the established techniques for exercise in mice are not well suited to motor-deficient disease-model animals, rely on spontaneous activity or force exercise with aversive stimuli, and do not facilitate active measurement of neurophysiology with tethered assays. Motorized wheel exercise may overcome these limitations, but has not been shown to reliably induce running in mice. NEW METHOD We developed an apparatus and technique for inducing exercise in mice without aversive stimuli, using a motorized wheel that dynamically responds to subject performance. RESULTS A commercially available motorized wheel system did not satisfactorily provide for exercise, as mice tended to avoid running at higher speeds. Our adaptive wheel exercise platform allowed for effective exercise induction in the 6-hydroxydopamine mouse model of PD, including with precise behavioral measurements and synchronized single-unit electrophysiology. COMPARISON WITH EXISTING METHODS Our approach provides a superior physical platform and programming strategy compared to previously described techniques for motorized wheel exercise. Unlike voluntary exercise, this allows for controlled experimental induction of running, without the use of aversive stimuli that is typical of treadmill-based techniques. CONCLUSIONS Adaptive wheel exercise should allow for physical exercise to be better studied as a dynamic, physiological intervention in parkinsonian mice, as well as other neurological disease models.
Collapse
Affiliation(s)
- Henry Skelton
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, United States.
| | - Dayton Grogan
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States.
| | - Amrutha Kotlure
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States.
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States.
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States.
| | - Robert Gross
- Department of Neurosurgery, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, United States.
| |
Collapse
|
12
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
13
|
Borgheai SB, Opri E, Isbaine F, Cole ER, Jafari Deligani R, Laxpati NG, Risk BB, Willie JT, Gross RE, AuYong N, McIntyre CC, Miocinovic S. Neural pathway activation in the subthalamic region depends on stimulation polarity. Brain Commun 2025; 7:fcaf006. [PMID: 39980742 PMCID: PMC11839843 DOI: 10.1093/braincomms/fcaf006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/09/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease; however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic versus anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioural responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 Parkinson's disease patients undergoing DBS implantation. Cortical evoked potentials (cEPs) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEPs) were recorded from non-stimulating contacts, and electromyography activity was recorded from arm and face muscles. We measured (i) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, (ii) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway and (iii) amplitudes of very short-latency cEPs and motor evoked potentials for activation of corticospinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the hyperdirect pathway and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.
Collapse
Affiliation(s)
| | - Enrico Opri
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Eric R Cole
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Nealen G Laxpati
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nicholas AuYong
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Svjetlana Miocinovic
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Li Z, Wang H, Zhang X, Lu C, Yu S, Yu B, Li Y, Zeng K, Li X. Cross-species characterization of transcranial ultrasound propagation. Brain Stimul 2025; 18:164-172. [PMID: 39809411 DOI: 10.1016/j.brs.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) has shown promising prospects as a non-invasive neuromodulation technique for both animals and humans. However, ultrasonic propagation characteristics within the brain differ significantly from those in free space. There is currently a lack of comprehensive studies on the effects of skull thickness on focal point position, full width at half maximum (FWHM), and acoustic intensity. OBJECTIVE This study investigates the transcranial acoustic field characteristics of 500 kHz focused ultrasound, with a focus on the impact of skull thickness. METHODS The study combined finite element simulations to evaluate the effects of skull thickness on 500 kHz focused ultrasound with experimental investigations across multiple species (mouse, rat, pig, and human). RESULTS The simulation and experimental results indicate that the skull changes focal length (-4.4-4.7 mm) and axial focal region (-7.93-7.59 mm), and the skull causes significant attenuation of acoustic intensity, which increases with skull thickness. The attenuation rate of human skulls is greater than 80 %. We found that the skull thickness has little effect on focal point position (<0.9 mm) and focal region (<1.44 mm) in lateral and vertical directions. CONCLUSION Skull thickness has great influence on focal length, axial focal region and acoustic intensity, but has little effect on focal point position and focal region in lateral and vertical directions. And improving axial spatial resolution is a potential method to reduce changes of axial focal region.
Collapse
Affiliation(s)
- Zhiwei Li
- The School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Hanwen Wang
- The School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaoyu Zhang
- The School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Chengbiao Lu
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shouyang Yu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563000, China
| | - Bin Yu
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yingwei Li
- The School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Ke Zeng
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoli Li
- Pazhou Lab (Guangzhou), Guangzhou, 510335, China; The School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
15
|
Wang X, Yu Y, Wang Q. Modeling the modulation of beta oscillations in the basal ganglia by dual-target optogenetic stimulation. FUNDAMENTAL RESEARCH 2025; 5:82-92. [PMID: 40166095 PMCID: PMC11955041 DOI: 10.1016/j.fmre.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 04/02/2025] Open
Abstract
Optogenetic techniques provide precise control over the activity of specific neurons within the nucleus, offering more accurate regulatory effects compared to deep brain stimulation. The heterogeneity of the globus pallidus externa (GPe) has garnered wide attention, wherein significant differences in pathological changes emphasize its potential as a stimulation target with distinct mechanisms. A basal ganglia-thalamus (BG-Th) network model incorporating heterogeneous GPe is developed to explore potential optogenetic stimulation targets for treating Parkinson's disease (PD). Initially, the modulation mechanisms of single-target optogenetic stimulation on the abnormal rhythmic oscillations of BG nuclei are examined. Excitation of D1 medium spine neuron (MSN), calcium-binding protein parvalbumin (PV) GPe, and inhibition of globus pallidus interna (GPi) can effectively suppress synchronous bursting activity in GPi, while excitation of GPi promotes high-frequency discharge to disrupt beta oscillations. Furthermore, dual-target optogenetic stimulation strategies are devised to reduce energy consumption. Results show that targets with similar mechanisms exhibit additive effects, whereas targets with opposing mechanisms lead to cancellation. The underlying effective mechanisms of dual-target strategies are: enhancing the inhibitory input to GPi thus inhibiting the activity of GPi, or disrupting beta oscillations by restoring high-frequency discharges in GPi. The strategy composed of exciting D1 MSN and inhibiting GPi requires the minimum total light intensity among single-target and dual-target strategies in our simulation. Furthermore, simultaneously enhancing PV GPe and inhibiting D2 MSN achieves the greatest reduction in total energy consumption (40.8% reduction), compared to only enhancing PV GPe. The findings unveil effective circuit mechanisms of optogenetic stimulation and provide novel insights for designing precise regulatory strategies for PD.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
- School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
- Ningxia Basic Science Research Center of Mathematics, Yinchuan 750021, China
| |
Collapse
|
16
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Aquino-Miranda G, Jalloul D, Zhang XO, Li S, Kirouac GJ, Beierlein M, Do Monte FH. Functional properties of corticothalamic circuits targeting paraventricular thalamic neurons. Neuron 2024; 112:4060-4080.e7. [PMID: 39504962 DOI: 10.1016/j.neuron.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Corticothalamic projections to sensorimotor thalamic nuclei show modest firing rates and serve to modulate the activity of thalamic relay neurons. By contrast, here we find that high-order corticothalamic projections from the prelimbic (PL) cortex to the anterior paraventricular thalamic nucleus (aPVT) maintain high-frequency activity and evoke strong synaptic excitation of aPVT neurons in rats. In a significant fraction of aPVT cells, such high-frequency excitation of PL-aPVT projections leads to a rapid decay of action potential amplitudes, followed by a depolarization block (DB) that strongly limits aPVT maximum firing rates, thereby regulating both defensive and appetitive behaviors in a frequency-dependent manner. Strong inhibitory inputs from the anteroventral portion of the thalamic reticular nucleus (avTRN) inhibit the firing rate of aPVT neurons during periods of high-spike fidelity but restore it during prominent DB, suggesting that avTRN activity can modulate the effects of PL inputs on aPVT firing rates to ultimately control motivated behaviors.
Collapse
Affiliation(s)
- Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dounya Jalloul
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Xu O Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Sa Li
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Berling D, Baroni L, Chaffiol A, Gauvain G, Picaud S, Antolík J. Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner. J Neurosci 2024; 44:e1215242024. [PMID: 39424369 PMCID: PMC11622177 DOI: 10.1523/jneurosci.1215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024] Open
Abstract
Single-photon optogenetics enables precise, cell-type-specific modulation of neuronal circuits, making it a crucial tool in neuroscience. Its miniaturization in the form of fully implantable wide-field stimulator arrays enables long-term interrogation of cortical circuits and bears promise for brain-machine interfaces for sensory and motor function restoration. However, achieving selective activation of functional cortical representations poses a challenge, as studies show that targeted optogenetic stimulation results in activity spread beyond one functional domain. While recurrent network mechanisms contribute to activity spread, here we demonstrate with detailed simulations of isolated pyramidal neurons from cats of unknown sex that already neuron morphology causes a complex spread of optogenetic activity at the scale of one cortical column. Since the shape of a neuron impacts its optogenetic response, we find that a single stimulator at the cortical surface recruits a complex spatial distribution of neurons that can be inhomogeneous and vary with stimulation intensity and neuronal morphology across layers. We explore strategies to enhance stimulation precision, finding that optimizing stimulator optics may offer more significant improvements than the preferentially somatic expression of the opsin through genetic targeting. Our results indicate that, with the right optical setup, single-photon optogenetics can precisely activate isolated neurons at the scale of functional cortical domains spanning several hundred micrometers.
Collapse
Affiliation(s)
- David Berling
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | - Luca Baroni
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | | | - Gregory Gauvain
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| |
Collapse
|
19
|
Kimoto Y, Tani N, Emura T, Matsuhashi T, Yamamoto T, Fujita Y, Oshino S, Hosomi K, Khoo HM, Miura S, Fujinaga T, Yanagisawa T, Kishima H. Beta-gamma phase-amplitude coupling of scalp electroencephalography during walking preparation in Parkinson's disease differs depending on the freezing of gait. Front Hum Neurosci 2024; 18:1495272. [PMID: 39606789 PMCID: PMC11599176 DOI: 10.3389/fnhum.2024.1495272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Despite using beta oscillations within the subthalamic nucleus as a biomarker of akinesia or rigidity in Parkinson's disease, a specific biomarker for freezing of gait (FOG) remains unclear. Recently, scalp phase-amplitude coupling (PAC) measured through scalp electroencephalography (EEG) has emerged as a promising tool for analyzing brain function. In this study, we examined whether PAC could be a biomarker for FOG. Methods We enrolled 11 patients with Parkinson's disease and recorded scalp EEG in preparation for and during gait while simultaneously assessing motor function, including FOG. We investigated changes in cortical PAC during walking with and without FOG and examined its correlation with the postural instability and gait difficulty (PIGD) score. Results Patient characteristics were as follows: mean age 59.1 ± 6.9 years, disease duration 13.9 ± 4.1 years, and seven men. Four trials were excluded from the analysis owing to artifacts. In the trials without FOG (n = 18), beta-gamma PAC in the sensorimotor area decreased during gait preparation (p = 0.011; linear mixed-effects model), which was not the case in trials with FOG (n = 6) (p = 0.64; linear mixed-effects model). Using a support vector machine, machine learning of PAC during preparation for walking predicted the presence of FOG with an accuracy of 71.2%. Conversely, PAC increased during walking in trials with FOG (p = 0.0042; linear mixed-effects model), and PAC 20 s after the start of walking was positively correlated with the PIGD score (correlation coefficient = 0.406, p = 0.032; Pearson's rank correlation). Conclusion Beta-gamma PAC in the sensorimotor area during preparation for walking differs depending on the emergence of FOG. As gait symptoms worsened, beta-gamma PAC in the sensorimotor area during walking gradually increased. Cortical PAC may be a biomarker for FOG in Parkinson's disease and may lead to the development of strategies to prevent falls in the future.
Collapse
Affiliation(s)
- Yuki Kimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuto Emura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Matsuhashi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuto Yamamoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shimpei Miura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Fujinaga
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Fujimoto S, Fujimoto A, Elorette C, Choi KS, Mayberg H, Russ B, Rudebeck P. What can neuroimaging of neuromodulation reveal about the basis of circuit therapies for psychiatry? Neuropsychopharmacology 2024; 50:184-195. [PMID: 39198580 PMCID: PMC11526173 DOI: 10.1038/s41386-024-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Neuromodulation is increasingly becoming a therapeutic option for treatment resistant psychiatric disorders. These non-invasive and invasive therapies are still being refined but are clinically effective and, in some cases, provide sustained symptom reduction. Neuromodulation relies on changing activity within a specific brain region or circuit, but the precise mechanisms of action of these therapies, is unclear. Here we review work in both humans and animals that has provided insight into how therapies such as deep brain and transcranial magnetic stimulation alter neural activity across the brain. We focus on studies that have combined neuromodulation with neuroimaging such as PET and MRI as these measures provide detailed information about the distributed networks that are modulated and thus insight into both the mechanisms of action of neuromodulation but also potentially the basis of psychiatric disorders. Further we highlight work in nonhuman primates that has revealed how neuromodulation changes neural activity at different scales from single neuron activity to functional connectivity, providing key insight into how neuromodulation influences the brain. Ultimately, these studies highlight the value of combining neuromodulation with neuroimaging to reveal the mechanisms through which these treatments influence the brain, knowledge vital for refining targeted neuromodulation therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Satoka Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
- Department of Psychiatry, New York University at Langone, New York, NY, USA.
| | - Peter Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Glickman B, Wahlstrom KL, Radley JJ, LaLumiere RT. Basolateral amygdala inputs to the nucleus accumbens shell modulate the consolidation of cued-response and inhibitory avoidance learning. Neurobiol Learn Mem 2024; 215:107988. [PMID: 39369810 PMCID: PMC11536963 DOI: 10.1016/j.nlm.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The basolateral amygdala (BLA) modulates different types of memory consolidation via distinct projections to downstream brain regions in multiple memory systems. Prior studies indicate that the BLA projects to the nucleus accumbens shell (NAshell) and that these regions interact to influence some types of behavior. Moreover, previous pharmacological work suggests the BLA and NAshell interact to influence memory. However, the precise role of the BLA-NAshell pathway has never been directly investigated in the consolidation of different types of memory including cued-response, spatial, or inhibitory avoidance (IA) learning. To address this, male and female Sprague-Dawley rats received optogenetic manipulations of the BLA or BLA-NAshell pathway immediately following training in different learning tasks. An initial experiment found that optogenetically inhibiting the BLA itself immediately after training impaired cued-response retention in a Barnes maze task in males and females, confirming earlier pharmacological work in males alone. Subsequent experiments found that BLA-NAshell pathway inhibition impaired retention of cued-response and IA learning but had no effect on retention of spatial learning. However, the present work did not observe any effects of pathway stimulation immediately after cued-response or IA learning. Together, the present findings suggest the BLA modulates the consolidation of cued-response and IA, but not spatial, memory consolidation via NAshell projections.
Collapse
Affiliation(s)
- Bess Glickman
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States.
| | - Krista L Wahlstrom
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| | - Jason J Radley
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Ryan T LaLumiere
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
22
|
Currie AD, Wong JK, Okun MS. A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease. NPJ Parkinsons Dis 2024; 10:195. [PMID: 39443513 PMCID: PMC11500395 DOI: 10.1038/s41531-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this review, we summarize preclinical and clinical trials investigating innovative neuromodulatory approaches for Parkinson disease (PD) motor symptom management. We highlight the following technologies: temporal interference, nanoparticles for drug delivery, blood-brain barrier opening, gene therapy, optogenetics, upconversion nanoparticles, magnetothermal nanoparticles, magnetoelectric nanoparticles, ultrasound-responsive nanoparticles, and designer receptors exclusively activated by designer drugs. These studies establish the basis for novel and promising neuromodulatory treatments for PD motor symptoms.
Collapse
Affiliation(s)
- A D Currie
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - J K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Zhao L, Xu K, Talyzina I, Shi J, Li S, Yang Y, Zhang S, Zheng J, Sobolevsky AI, Chen H, Cui J. Human TRPV4 engineering yields an ultrasound-sensitive actuator for sonogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618766. [PMID: 39464052 PMCID: PMC11507911 DOI: 10.1101/2024.10.16.618766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sonogenetics offers non-invasive and cell-type specific modulation of cells genetically engineered to express ultrasound-sensitive actuators. Finding an ion channel to serve as sonogenetic actuator it critical for advancing this promising technique. Here, we show that ultrasound can activate human TRP channel hTRPV4. By screening different hTRPV4 variants, we identify a mutation F617L that increases mechano-sensitivity of this channel to ultrasound, while reduces its sensitivity to hypo-osmolarity, elevated temperature, and agonist. This altered sensitivity profile correlates with structural differences in hTRPV4-F617L compared to wild-type channels revealed by our cryo-electron microscopy analysis. We also show that hTRPV4-F617L can serve as a sonogenetic actuator for neuromodulation in freely moving mice. Our findings demonstrate the use of structure-guided mutagenesis to engineer ion channels with tailored properties of ideal sonogenetic actuators.
Collapse
|
24
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional regulation of motor circuits using magnetogenetic gene therapy. SCIENCE ADVANCES 2024; 10:eadp9150. [PMID: 39383230 PMCID: PMC11463271 DOI: 10.1126/sciadv.adp9150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
25
|
Lanni I, Chiacchierini G, Papagno C, Santangelo V, Campolongo P. Treating Alzheimer's disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci Biobehav Rev 2024; 165:105831. [PMID: 39074672 DOI: 10.1016/j.neubiorev.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) is a severe and progressive neurodegenerative condition that exerts detrimental effects on brain function. As of now, there is no effective treatment for AD patients. This review explores two distinct avenues of research. The first revolves around the use of animal studies and preclinical models to gain insights into AD's underlying mechanisms and potential treatment strategies. Specifically, it delves into the effectiveness of interventions such as Optogenetics and Chemogenetics, shedding light on their implications for understanding pathophysiological mechanisms and potential therapeutic applications. The second avenue focuses on non-invasive brain stimulation (NiBS) techniques in the context of AD. Evidence suggests that NiBS can successfully modulate cognitive functions associated with various neurological and neuropsychiatric disorders, including AD, as demonstrated by promising findings. Here, we critically assessed recent findings in AD research belonging to these lines of research and discuss their potential impact on the clinical horizon of AD treatment. These multifaceted approaches offer hope for advancing our comprehension of AD pathology and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Ilenia Lanni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Chiacchierini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
26
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
27
|
Piette C, Tin SNW, Liège AD, Bloch-Queyrat C, Degos B, Venance L, Touboul J. Deep Brain Stimulation restores information processing in parkinsonian cortical networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.25.24310748. [PMID: 39252923 PMCID: PMC11383511 DOI: 10.1101/2024.08.25.24310748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with alterations of neural activity and information processing primarily in the basal ganglia and cerebral cortex. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) is the most effective therapy when patients experience levodopa-induced motor complications. A growing body of evidence points towards a cortical effect of STN-DBS, restoring key electrophysiological markers, such as excessive beta band oscillations, commonly observed in PD. However, the mechanisms of STN-DBS remain elusive. Here, we aim to better characterize the cortical substrates underlying STN-DBS-induced improvement in motor symptoms. We recorded electroencephalograms (EEG) from PD patients and found that, although apparent EEG features were not different with or without therapy, EEG signals could more accurately predict limb movements under STN-DBS. To understand the origins of this enhanced information transmission under STN-DBS in the human EEG data, we investigated the information capacity and dynamics of a variety of computational models of cortical networks. The extent of improvement in decoding accuracy of complex naturalistic inputs under STN-DBS depended on the synaptic parameters of the network as well as its excitability and synchronization levels. Additionally, decoding accuracy could be optimized by adjusting STN-DBS parameters. Altogether, this work draws a comprehensive link between known alterations in cortical activity and the degradation of information processing capacity, as well as its restoration under DBS. These results also offer new perspectives for optimizing STN-DBS parameters based on clinically accessible measures of cortical information processing capacity.
Collapse
Affiliation(s)
- Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| | - Sophie Ng Wing Tin
- Service de Physiologie, Explorations Fonctionnelles et Médecine du Sport, Assistance Publique-Hôpitaux de Paris (AP-HP), Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
- Inserm UMR 1272, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Astrid De Liège
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Coralie Bloch-Queyrat
- Department of Clinical Research, Avicenne University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 93009, Bobigny, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| |
Collapse
|
28
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
29
|
Williams D. Why so slow? Models of parkinsonian bradykinesia. Nat Rev Neurosci 2024; 25:573-586. [PMID: 38937655 DOI: 10.1038/s41583-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions.
Collapse
Affiliation(s)
- David Williams
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
30
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
31
|
Lee H, Kim HF, Hikosaka O. Implication of regional selectivity of dopamine deficits in impaired suppressing of involuntary movements in Parkinson's disease. Neurosci Biobehav Rev 2024; 162:105719. [PMID: 38759470 PMCID: PMC11167649 DOI: 10.1016/j.neubiorev.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
To improve the initiation and speed of intended action, one of the crucial mechanisms is suppressing unwanted movements that interfere with goal-directed behavior, which is observed relatively aberrant in Parkinson's disease patients. Recent research has highlighted that dopamine deficits in Parkinson's disease predominantly occur in the caudal lateral part of the substantia nigra pars compacta (SNc) in human patients. We previously found two parallel circuits within the basal ganglia, primarily divided into circuits mediated by the rostral medial part and caudal lateral part of the SNc dopamine neurons. We have further discovered that the indirect pathway in caudal basal ganglia circuits, facilitated by the caudal lateral part of the SNc dopamine neurons, plays a critical role in suppressing unnecessary involuntary movements when animals perform voluntary goal-directed actions. We thus explored recent research in humans and non-human primates focusing on the distinct functions and networks of the caudal lateral part of the SNc dopamine neurons to elucidate the mechanisms involved in the impairment of suppressing involuntary movements in Parkinson's disease patients.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
32
|
Dadgar-Kiani E, Bieri G, Melki R, Hossain A, Gitler AD, Lee JH. Neuromodulation modifies α-synuclein spreading dynamics in vivo and the pattern is predicted by changes in whole-brain function. Brain Stimul 2024; 17:938-946. [PMID: 39096960 PMCID: PMC11416857 DOI: 10.1016/j.brs.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Many neurodegenerative disease treatments, such as deep brain stimulation for Parkinson's Disease, can alleviate symptoms by primarily compensating for circuit dysfunctions. However, the stimulation's effect on the underlying disease progression remains relatively unknown. Here, we report that neuromodulation can not only modulate circuit function but also modulate the in vivo spreading dynamics of α-synuclein pathology, the primary pathological hallmark observed in Parkinson's Disease. METHODS In a mouse model, pre-formed fibrils were injected into the striatum to induce widespread α-synuclein pathology. Two days after fibril injection, mice were treated for two weeks with daily optogenetic stimulation of the Secondary Motor Area, Layer V. Whole brains were then extracted, immunolabeled, cleared, and imaged with light-sheet fluorescent microscopy. RESULTS Repeated optogenetic stimulation led to a decrease in pathology at the site of stimulation and at various cortical and subcortical regions, while the contralateral cortex saw a consistent increase. Aligning the pathology changes with optogenetic-fMRI measured brain activity, we found that the changes in pathology and brain function had similar spatial locations but opposite polarity. CONCLUSION These results demonstrate the ability to modulate and predict whole brain pathology changes using neuromodulation, opening a new horizon for investigating optimized neuromodulation therapies.
Collapse
Affiliation(s)
- Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Gregor Bieri
- Department of Genetics, Stanford University, CA, 94305, USA
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Aronee Hossain
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, CA, 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, CA, 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. Brain Stimul 2024; 17:947-957. [PMID: 39096961 PMCID: PMC11364984 DOI: 10.1016/j.brs.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Biomedical Engineering, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen W Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoa Do
- Department of Biomedical Engineering, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | - Warren M Grill
- Department of Biomedical Engineering, USA; Department of Electrical and Computer Engineering, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
34
|
Griggs DJ, Bloch J, Stanis N, Zhou J, Fisher S, Jahanian H, Yazdan-Shahmorad A. A large-scale optogenetic neurophysiology platform for improving accessibility in NHP behavioral experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600719. [PMID: 38979206 PMCID: PMC11230395 DOI: 10.1101/2024.06.25.600719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Optogenetics has been a powerful scientific tool for two decades, yet its integration with non-human primate (NHP) electrophysiology has been limited due to several technical challenges. These include a lack of electrode arrays capable of supporting large-scale and long-term optical access, inaccessible viral vector delivery methods for transfection of large regions of cortex, a paucity of hardware designed for large-scale patterned cortical illumination, and inflexible designs for multi-modal experimentation. To address these gaps, we introduce a highly accessible platform integrating optogenetics and electrophysiology for behavioral and neural modulation with neurophysiological recording in NHPs. We employed this platform in two rhesus macaques and showcased its capability of optogenetically disrupting reaches, while simultaneously monitoring ongoing electrocorticography activity underlying the stimulation-induced behavioral changes. The platform exhibits long-term stability and functionality, thereby facilitating large-scale electrophysiology, optical imaging, and optogenetics over months, which is crucial for translationally relevant multi-modal studies of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon J Griggs
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | - Julien Bloch
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Noah Stanis
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Jasmine Zhou
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Shawn Fisher
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | | | - Azadeh Yazdan-Shahmorad
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
- Weill Neurohub
| |
Collapse
|
35
|
Wu Y, Hu K, Liu S. Computational models advance deep brain stimulation for Parkinson's disease. NETWORK (BRISTOL, ENGLAND) 2024:1-32. [PMID: 38923890 DOI: 10.1080/0954898x.2024.2361799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.
Collapse
Affiliation(s)
- Yongtong Wu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Bocci T, Ferrara R, Albizzati T, Averna A, Guidetti M, Marceglia S, Priori A. Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials. Brain Commun 2024; 6:fcae201. [PMID: 38894949 PMCID: PMC11184348 DOI: 10.1093/braincomms/fcae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.
Collapse
Affiliation(s)
- Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Tommaso Albizzati
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
- Newronika S.r.l., 20093 Cologno Monzese, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
37
|
De Ridder D, Siddiqi MA, Dauwels J, Serdijn WA, Strydis C. NeuroDots: From Single-Target to Brain-Network Modulation: Why and What Is Needed? Neuromodulation 2024; 27:711-729. [PMID: 38639704 DOI: 10.1016/j.neurom.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/05/2023] [Accepted: 01/10/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Current techniques in brain stimulation are still largely based on a phrenologic approach that a single brain target can treat a brain disorder. Nevertheless, meta-analyses of brain implants indicate an overall success rate of 50% improvement in 50% of patients, irrespective of the brain-related disorder. Thus, there is still a large margin for improvement. The goal of this manuscript is to 1) develop a general theoretical framework of brain functioning that is amenable to surgical neuromodulation, and 2) describe the engineering requirements of the next generation of implantable brain stimulators that follow from this theoretic model. MATERIALS AND METHODS A neuroscience and engineering literature review was performed to develop a universal theoretical model of brain functioning and dysfunctioning amenable to surgical neuromodulation. RESULTS Even though a single target can modulate an entire network, research in network science reveals that many brain disorders are the consequence of maladaptive interactions among multiple networks rather than a single network. Consequently, targeting the main connector hubs of those multiple interacting networks involved in a brain disorder is theoretically more beneficial. We, thus, envision next-generation network implants that will rely on distributed, multisite neuromodulation targeting correlated and anticorrelated interacting brain networks, juxtaposing alternative implant configurations, and finally providing solid recommendations for the realization of such implants. In doing so, this study pinpoints the potential shortcomings of other similar efforts in the field, which somehow fall short of the requirements. CONCLUSION The concept of network stimulation holds great promise as a universal approach for treating neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Muhammad Ali Siddiqi
- Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan; Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Quantum and Computer Engineering Department, Delft University of Technology, Delft, The Netherlands
| | - Justin Dauwels
- Microelectronics Department, Delft University of Technology, Delft, The Netherlands
| | - Wouter A Serdijn
- Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Section Bioelectronics, Delft University of Technology, Delft, The Netherlands
| | - Christos Strydis
- Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands; Quantum and Computer Engineering Department, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
38
|
Suresh V, Dave T, Ghosh S, Jena R, Sanker V. Deep brain stimulation in Parkinson's disease: A scientometric and bibliometric analysis, trends, and research hotspots. Medicine (Baltimore) 2024; 103:e38152. [PMID: 38758903 PMCID: PMC11098246 DOI: 10.1097/md.0000000000038152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Parkinson disease (PD), a prevalent neurodegenerative ailment in the elderly, relies mainly on pharmacotherapy, yet deep brain stimulation (DBS) emerges as a vital remedy for refractory cases. This study performs a bibliometric analysis on DBS in PD, delving into research trends and study impact to offer comprehensive insights for researchers, clinicians, and policymakers, illuminating the current state and evolutionary trajectory of research in this domain. A systematic search on March 13, 2023, in the Scopus database utilized keywords like "Parkinson disease," "PD," "Parkinsonism," "Deep brain stimulation," and "DBS." The top 1000 highly cited publications on DBS in PD underwent scientometric analysis via VOS Viewer and R Studio's Bibliometrix package, covering publication characteristics, co-authorship, keyword co-occurrence, thematic clustering, and trend topics. The bibliometric analysis spanned 1984 to 2021, involving 1000 cited articles from 202 sources. The average number of citations per document were 140.9, with 31,854 references. "Movement Disorders" led in publications (n = 98), followed by "Brain" (n = 78) and "Neurology" (n = 65). The University of Oxford featured prominently. Thematic keyword clustering identified 9 core research areas, such as neuropsychological function and motor circuit electrophysiology. The shift from historical neurosurgical procedures to contemporary focuses like "beta oscillations" and "neuroethics" was evident. The bibliometric analysis emphasizes UK and US dominance, outlining 9 key research areas pivotal for reshaping Parkinson treatment. A discernible shift from invasive neurosurgery to DBS is observed. The call for personalized DBS, integration with NIBS, and exploration of innovative avenues marks the trajectory for future research.
Collapse
Affiliation(s)
- Vinay Suresh
- King George’s Medical University, Lucknow, India
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | - Rahul Jena
- Bharati Vidyapeeth Medical College, Pune, India
| | - Vivek Sanker
- Society of Brain Mapping and Therapeutics, Los Angeles, CA
| |
Collapse
|
39
|
Borgheai SB, Opri E, Isbaine F, Cole E, Deligani RJ, Laxpati N, Risk BB, Willie JT, Gross RE, Yong NA, McIntyre CC, Miocinovic S. Neural pathway activation in the subthalamic region depends on stimulation polarity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306044. [PMID: 38746250 PMCID: PMC11092741 DOI: 10.1101/2024.05.01.24306044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD); however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic vs. anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioral responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 PD patients undergoing DBS implantation. Cortical evoked potentials (cEP) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEP) were recorded from non-stimulating contacts and EMG activity was recorded from arm and face muscles. We measured: 1) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, 2) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway, and 3) amplitudes of very short-latency cEP and motor evoked potentials (mEP) for activation of cortico-spinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the HDP and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.
Collapse
|
40
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional Regulation of Motor Circuits Using Magnetogenetic Gene Therapy Short: Magnetogenetic Regulation of Motor Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548699. [PMID: 37503198 PMCID: PMC10369996 DOI: 10.1101/2023.07.13.548699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. AAV-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine 2a receptor-cre driver mice resulted in motor freezing when placed in an MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in-vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
41
|
Steiner LA, Crompton D, Sumarac S, Vetkas A, Germann J, Scherer M, Justich M, Boutet A, Popovic MR, Hodaie M, Kalia SK, Fasano A, Hutchison Wd WD, Lozano AM, Lankarany M, Kühn AA, Milosevic L. Neural signatures of indirect pathway activity during subthalamic stimulation in Parkinson's disease. Nat Commun 2024; 15:3130. [PMID: 38605039 PMCID: PMC11009243 DOI: 10.1038/s41467-024-47552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.
Collapse
Affiliation(s)
- Leon A Steiner
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - David Crompton
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Artur Vetkas
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Jürgen Germann
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Maximilian Scherer
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Maria Justich
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5G 1×6, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - William D Hutchison Wd
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Milad Lankarany
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
42
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
43
|
Ramezani M, Kim JH, Liu X, Ren C, Alothman A, De-Eknamkul C, Wilson MN, Cubukcu E, Gilja V, Komiyama T, Kuzum D. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. NATURE NANOTECHNOLOGY 2024; 19:504-513. [PMID: 38212523 PMCID: PMC11742260 DOI: 10.1038/s41565-023-01576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.
Collapse
Affiliation(s)
- Mehrdad Ramezani
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chi Ren
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Abdullah Alothman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chawina De-Eknamkul
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Madison N Wilson
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
El Hajj R, Al Sagheer T, Ballout N. Optogenetics in chronic neurodegenerative diseases, controlling the brain with light: A systematic review. J Neurosci Res 2024; 102:e25321. [PMID: 38588013 DOI: 10.1002/jnr.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.
Collapse
Affiliation(s)
- Rojine El Hajj
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
45
|
Hou X, Jing J, Jiang Y, Huang X, Xian Q, Lei T, Zhu J, Wong KF, Zhao X, Su M, Li D, Liu L, Qiu Z, Sun L. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat Commun 2024; 15:2253. [PMID: 38480733 PMCID: PMC10937988 DOI: 10.1038/s41467-024-46461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xiaohui Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Ting Lei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Min Su
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Danni Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Langzhou Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China.
| |
Collapse
|
46
|
Spooner RK, Hizli BJ, Bahners BH, Schnitzler A, Florin E. Modulation of DBS-induced cortical responses and movement by the directionality and magnitude of current administered. NPJ Parkinsons Dis 2024; 10:53. [PMID: 38459031 PMCID: PMC10923868 DOI: 10.1038/s41531-024-00663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Subthalamic deep brain stimulation (STN-DBS) is an effective therapy for alleviating motor symptoms in people with Parkinson's disease (PwP), although some may not receive optimal clinical benefits. One potential mechanism of STN-DBS involves antidromic activation of the hyperdirect pathway (HDP), thus suppressing cortical beta synchrony to improve motor function, albeit the precise mechanisms underlying optimal DBS parameters are not well understood. To address this, 18 PwP with STN-DBS completed a 2 Hz monopolar stimulation of the left STN during MEG. MEG data were imaged in the time-frequency domain using minimum norm estimation. Peak vertex time series data were extracted to interrogate the directional specificity and magnitude of DBS current on evoked and induced cortical responses and accelerometer metrics of finger tapping using linear mixed-effects models and mediation analyses. We observed increases in evoked responses (HDP ~ 3-10 ms) and synchronization of beta oscillatory power (14-30 Hz, 10-100 ms) following DBS pulse onset in the primary sensorimotor cortex (SM1), supplementary motor area (SMA) and middle frontal gyrus (MFG) ipsilateral to the site of stimulation. DBS parameters significantly modulated neural and behavioral outcomes, with clinically effective contacts eliciting significant increases in medium-latency evoked responses, reductions in induced SM1 beta power, and better movement profiles compared to suboptimal contacts, often regardless of the magnitude of current applied. Finally, HDP-related improvements in motor function were mediated by the degree of SM1 beta suppression in a setting-dependent manner. Together, these data suggest that DBS-evoked brain-behavior dynamics are influenced by the level of beta power in key hubs of the basal ganglia-cortical loop, and this effect is exacerbated by the clinical efficacy of DBS parameters. Such data provides novel mechanistic and clinical insight, which may prove useful for characterizing DBS programming strategies to optimize motor symptom improvement in the future.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Baccara J Hizli
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
47
|
Bingham CS, McIntyre CC. Coupled Activation of the Hyperdirect and Cerebellothalamic Pathways with Zona Incerta Deep Brain Stimulation. Mov Disord 2024; 39:539-545. [PMID: 38321526 PMCID: PMC10963140 DOI: 10.1002/mds.29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or ventral intermediate nucleus (VIM) are established targets for the treatment of Parkinson's disease (PD) or essential tremor (ET), respectively. However, DBS of the zona incerta (ZI) can be effective for both disorders. VIM DBS is assumed to achieve its therapeutic effect via activation of the cerebellothalamic (CBT) pathway, whereas the activation of the hyperdirect (HD) pathway likely plays a role in the mechanisms of STN DBS. Interestingly, HD pathway axons also emit collaterals to the ZI and red nucleus (RN) and the CBT pathway courses nearby to the ZI. OBJECTIVE The aim was to examine the ability of ZI DBS to mutually activate the HD and CBT pathways in a detailed computational model of human DBS. METHODS We extended a previous model of the human HD pathway to incorporate axon collaterals to the ZI and RN. The anatomical framework of the model system also included representations of the CBT pathway and internal capsule (IC) fibers of passage. We then performed detailed biophysical simulations to quantify DBS activation of the HD, CBT, and IC pathways with electrodes located in either the STN or ZI. RESULTS STN DBS and ZI DBS both robustly activated the HD pathway. However, STN DBS was limited by IC activation at higher stimulus amplitudes. Alternatively, ZI DBS avoided IC activation while simultaneously activating the HD and CBT pathways. CONCLUSIONS From both neuroanatomical and biophysical perspectives, ZI DBS represents an advantageous target for coupled activation of the HD and CBT pathways. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Clayton S. Bingham
- Department of Biomedical Engineering, Duke University, Durham, N.C. 27708
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, N.C. 27708
- Department of Neurosurgery, Duke University, Durham, N.C. 27708
| |
Collapse
|
48
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581627. [PMID: 38464010 PMCID: PMC10925223 DOI: 10.1101/2024.02.22.581627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
|
49
|
Tsolaki E, Kashanian A, Chiu K, Bari A, Pouratian N. Connectivity-based segmentation of the thalamic motor region for deep brain stimulation in essential tremor: A comparison of deterministic and probabilistic tractography. Neuroimage Clin 2024; 41:103587. [PMID: 38422832 PMCID: PMC10944185 DOI: 10.1016/j.nicl.2024.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Deep brain stimulation (DBS) studies have shown that stimulation of the motor segment of the thalamus based on probabilistic tractography is predictive of improvement in essential tremor (ET). However, probabilistic methods are computationally demanding, requiring the need for alternative tractography methods for use in the clinical setting. The purpose of this study was to compare probabilistic vs deterministic tractography methods for connectivity-based targeting in patients with ET. METHODS Probabilistic and deterministic tractography methods were retrospectively applied to diffusion-weighted data sets in 36 patients with refractory ET. The thalamus and precentral gyrus were selected as regions of interest and fiber tracking was performed between these regions to produce connectivity-based thalamic segmentations, per prior methods. The resultant deterministic target maps were compared with those of thresholded probabilistic maps. The center of gravity (CG) of each connectivity map was determined and the differences in spatial distribution between the tractography methods were characterized. Furthermore, the intersection between the connectivity maps and CGs with the therapeutic volume of tissue activated (VTA) was calculated. A mixed linear model was then used to assess clinical improvement in tremor with volume of overlap. RESULTS Both tractography methods delineated the region of the thalamus with connectivity to the precentral gyrus to be within the posterolateral aspect of the thalamus. The average CG of deterministic maps was more medial-posterior in both the left (3.7 ± 1.3 mm3) and the right (3.5 ± 2.2 mm3) hemispheres when compared to 30 %-thresholded probabilistic maps. Mixed linear model showed that the volume of overlap between CGs of deterministic and probabilistic targeting maps and therapeutic VTAs were significant predictors of clinical improvement. CONCLUSIONS Deterministic tractography can reconstruct DBS thalamic target maps in approximately 5 min comparable to those produced by probabilistic methods that require > 12 h to generate. Despite differences in CG between the methods, both deterministic-based and probabilistic targeting were predictive of clinical improvement in ET.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Alon Kashanian
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin Chiu
- Brainlab, Inc., 5 Westbrook Corporate Center, Suite 1000, Westchester, IL 60154, USA
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Yang YC, Wang GH, Chou P, Hsueh SW, Lai YC, Kuo CC. Dynamic electrical synapses rewire brain networks for persistent oscillations and epileptogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313042121. [PMID: 38346194 PMCID: PMC10895348 DOI: 10.1073/pnas.2313042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei100, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei100, Taiwan
| |
Collapse
|