1
|
Brochard J, Dayan P, Bach DR. Critical intelligence: computing defensive behaviour. Neurosci Biobehav Rev 2025:106213. [PMID: 40381896 DOI: 10.1016/j.neubiorev.2025.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/24/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Characterising the mechanisms underlying naturalistic defensive behavior remains a significant challenge. While substantial progress has been made in unravelling the neural basis of tightly constrained behaviors, a critical gap persists in our comprehension of the circuits that implement algorithms capable of generating the diverse defensive responses observed outside experimental restrictions. Recent advancements in neuroscience technology now allow for an unprecedented examination of naturalistic behaviour. To help provide a theoretical grounding for this nascent experimental programme, we summarise the main computational and statistical challenges of defensive decision making, encapsulated in the concept of critical intelligence. Next, drawing from an extensive literature in biology, machine learning, and decision theory, we explore a range of candidate solutions to these challenges. While the proposed solutions offer insights into potential adaptive strategies, they also present inherent trade-offs and limitations in their applicability across different biological contexts. Ultimately, we propose series of experiments designed to differentiate between these candidate solutions, providing a roadmap for future investigations into the fundamental defensive algorithms utilized by biological agents and their neural implementation. Thus, our work aims to provide a roadmap towards broader understanding of how complex defensive behaviors are orchestrated in the brain, with implications for both neuroscience research and the development of more sophisticated artificial intelligence systems.
Collapse
Affiliation(s)
- Jules Brochard
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Dominik R Bach
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany; Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
2
|
Boschin EA, Ainsworth M, Galeazzi JM, Buckley MJ. Memories or decisions? Bridging accounts of frontopolar function. Neuropsychologia 2025; 211:109119. [PMID: 40058578 DOI: 10.1016/j.neuropsychologia.2025.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Frontopolar cortex (FPC), for a long time elusive to functional description, is now associated with a wide range of cognitive processes. Prominent accounts of FPC function emerged from studies of memory (e.g., episodic and prospective memory; EM and PM, respectively) and of executive function (e.g., planning, multi-tasking, relational reasoning, cognitive branching, etc). In recent years, FPC function has begun to be described within the context of value-based decision making in terms of monitoring the value of alternatives and optimizing cognitive resources to balance the explore/exploit dilemma in the face of volatile environments. In this perspective, we propose that the broad counterfactual inference and behavioural flexibility account can help re-interpret findings from EM and PM studies and offer an explanatory bridge between the memory and executive function accounts. More specifically, we propose that counterfactual value monitoring in FPC modulates the reallocation of cognitive resources between present and past information and contributes to efficient episodic and prospective retrieval by concurrently assessing the value of competing memories in relation to the decision at hand and proactively evaluating future potential scenarios to anticipate optimal engagement of intentions.
Collapse
Affiliation(s)
- Erica A Boschin
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK.
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| |
Collapse
|
3
|
Hosoda C, Ochiai R, Hosokawa K, Nakamura Y, Matsuhashi T, Okanoya K. The role of frontal pole cortex and personalized feedback in sustaining future-oriented healthy dietary behaviors. Sci Rep 2025; 15:15416. [PMID: 40316632 PMCID: PMC12048544 DOI: 10.1038/s41598-025-98655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Lifestyle-related diseases remain a significant public health concern, highlighting the need to promote sustained health behaviors, particularly among young adults. The present study examines the role of the frontal pole cortex (FPC)-known for supporting persistence towards near-term goals-in promoting long-term health behavior change. Fifty participants were engaged over a 27-day period, during which they maintained daily food diaries. Participants were divided into two groups: one receiving Personalized Feedback (PF) tailored to individual dietary habits and another receiving Control Feedback (CF) involving general nutritional information. The PF group demonstrated higher engagement in diary completion, improved nutritional intake, and better mental health marked by a significant reduction in trait anxiety compared to the CF group. Notably, a distinct correlation between FPC structural features-cortical thickness, T1-weighted/T2-weighted ratio, and fractional anisotropy-and the frequency of diary loggings was observed exclusively in the CF group. This finding suggests that the structural prosperity of the FPC is associated with engagement levels without the modulation effects of personalized feedback. These outcomes highlight the potential of personalized feedback to utilize FPC-related mechanisms for enhancing long-term dietary habits, emphasizing the importance of considering neurobiological traits in health behavior interventions.
Collapse
Affiliation(s)
- Chihiro Hosoda
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
| | - Ryuji Ochiai
- Human Health Care Products Research, Kao Corporation, Tokyo, Japan
| | - Kenchi Hosokawa
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuto Matsuhashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Witkowski PP, Rondot LJH, Kurth-Nelson Z, Garvert MM, Dolan RJ, Behrens TEJ, Boorman E. Neural mechanisms of credit assignment for delayed outcomes during contingent learning. eLife 2025; 13:RP101841. [PMID: 40231604 PMCID: PMC11999693 DOI: 10.7554/elife.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a 'pending' state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.
Collapse
Affiliation(s)
- Phillip P Witkowski
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Lindsay JH Rondot
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
| | - Mona M Garvert
- Faculty of Human Sciences, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Timothy EJ Behrens
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Erie Boorman
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
| |
Collapse
|
5
|
Suntrup-Krueger S, Muhle P, Slavik J, von Itter J, Wollbrink A, Wirth R, Warnecke T, Dziewas R, Gross J, Meuth SG, Labeit B. Cognitive decline limits compensatory resource allocation within the aged swallowing network. GeroScience 2025:10.1007/s11357-025-01649-y. [PMID: 40202551 DOI: 10.1007/s11357-025-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
Cognitive decline has been postulated to predispose to presbyphagia but the neurophysiological basis of this interaction is unclear. To investigate the role of cognition for compensatory resource allocation within the swallowing network and behavioral swallowing performance in dual-task cognitive and motor interference in ageing, volunteers ≥ 70 years of age without preexisting diseases causing dysphagia were investigated using Flexible Endoscopic Evaluation of Swallowing (FEES) including a cognitive and motor dual-task paradigm and a Montreal Cognitive Assessment. The neural correlates of swallowing during dual-task were characterized using magnetoencephalography. Results were related to cognitive function. Sixty-three participants (77.7 ± 6.1 years) underwent FEES, of which 40 additionally underwent MEG. Both cognitive and motor dual-tasks interfered with swallowing function resulting in an increase in pharyngeal residue and premature bolus spillage. The extent of swallowing deterioration ("dual-task cost") was associated with cognitive decline (cognitive dual-task: Spearman's rho = - 0.39, p = 0.002; motor dual-task: Spearman's rho = - 0.25, p = 0.046). When challenged with dual-tasking participants with regular cognition showed compensatory stronger and broader brain activation in cortical pre- and supplementary motor planning areas as well as in frontal executive regions within the cortical swallowing network (p = 0.004) compared to participants with cognitive deficits. They also performed better in the competing cognitive and motor dual-task and showed fewer incorrect responses (p = 0.028). Oropharyngeal swallowing involves cognitive cortical processing. Cognitive decline seems to limit the capacity for compensatory resource allocation within the swallowing network. This may lead to deterioration in both swallowing function and concurrent cognitive-motor performance in challenging dual-task situations.
Collapse
Affiliation(s)
- Sonja Suntrup-Krueger
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Paul Muhle
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Janna Slavik
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Jonas von Itter
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Rainer Wirth
- Department of Geriatric Medicine, Marien-Hospital Herne, Herne, Germany
| | - Tobias Warnecke
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrück, Osnabrück, Germany
| | - Rainer Dziewas
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrück, Osnabrück, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bendix Labeit
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Noel JP, Bockbrader M, Bertoni T, Colachis S, Solca M, Orepic P, Ganzer PD, Haggard P, Rezai A, Blanke O, Serino A. Neuronal responses in the human primary motor cortex coincide with the subjective onset of movement intention in brain-machine interface-mediated actions. PLoS Biol 2025; 23:e3003118. [PMID: 40244939 PMCID: PMC12005534 DOI: 10.1371/journal.pbio.3003118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Self-initiated behavior is accompanied by the experience of intending our actions. Here, we leverage the unique opportunity to examine the full intentional chain-from intention to action to environmental effects-in a tetraplegic person outfitted with a primary motor cortex (M1) brain-machine interface (BMI) generating real hand movements via neuromuscular electrical stimulation (NMES). This combined BMI-NMES approach allowed us to selectively manipulate each element of the intentional chain (intention, action, effect) while probing subjective experience and performing extra-cellular recordings in human M1. Behaviorally, we reveal a novel form of intentional binding: motor intentions are reflected in a perceived temporal attraction between the onset of intentions and that of actions. Neurally, we demonstrate that evoked spiking activity in M1 largely coincides in time with the onset of the experience of intention and that M1 spike counts and the onset of subjective intention may co-vary on a trial-by-trial basis. Further, population-level dynamics, as indexed by a decoder instantiating movement, reflect intention-action temporal binding. The results fill a significant knowledge gap by relating human spiking activity in M1 with the onset of subjective intention and complement prior human intracranial work examining pre-motor and parietal areas.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minnesota Robotics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marcie Bockbrader
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio, United States of America
| | - Tommaso Bertoni
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| | - Sam Colachis
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, Ohio, United States of America
| | - Marco Solca
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavo Orepic
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick D. Ganzer
- Department of Biomedical Engineering, University of Miami, Miami, Florida, United States of America
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| |
Collapse
|
7
|
Li X, Liu M, Liu B, Yue H, Cheng X, Bao H. The effect of expectancy on conditioned pain modulation: evidence from functional near-infrared spectroscopy. Front Psychol 2025; 16:1525216. [PMID: 40166396 PMCID: PMC11955684 DOI: 10.3389/fpsyg.2025.1525216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Background and objective The psychological mechanisms that make Conditioned Pain Modulation (CPM) an effective non-pharmacological intervention are still not fully understood. Expectancy is believed to be a critical psychological factor affecting CPM effects, but its specific role has yet to be fully clarified. This study aims to explore the relationship between expectancy and CPM while providing physiological evidence using functional near-infrared spectroscopy (fNIRS). Method A standardized CPM induction paradigm was implemented, with verbal guidance used to induce expectancy. The Numeric Rating Scale (NRS) assessed the intensity of the test stimulus (TS), while an 11-point scale evaluated participants' attentional focus on the TS and the effect of expectancy. fNIRS was employed to monitor changes in prefrontal cortex (PFC) activity. Results Expectancy significantly amplified the CPM effect (p = 0.036) while markedly reducing attention to the experimental stimulus (p = 0.004). fNIRS findings indicated significant reductions in activity within the left frontal eye field, left dorsolateral prefrontal cortex, and left frontal pole regions. In the post-test, the control group demonstrated significantly higher cortical activity in the right frontal pole region compared to the expectancy group (p < 0.05). Within the expectancy group, bilateral frontal pole cortical activity was significantly lower in the post-test compared to the pre-test (p < 0.05). Conclusion Expectancy represents a key psychological mechanism underlying the CPM effect, potentially modulating its magnitude through attention regulation and accompanied by a reduction in oxygenated hemoglobin activity in the frontal pole region and introduced the Expectancy-Attention-CPM Modulation Model (ECAM).
Collapse
Affiliation(s)
- Xueshan Li
- School of Psychology, Inner Mongolia Normal University, Hohhot, China
| | - Min Liu
- School of Psychology, Inner Mongolia Normal University, Hohhot, China
| | - Bo Liu
- School of Psychology, Inner Mongolia Normal University, Hohhot, China
| | - Heng Yue
- School of Journalism and Communication, Xiamen University, Xiamen, China
| | - Xiangjuan Cheng
- The Psychological Health Education Centre, Anhui Polytechnic University, Wuhu, China
| | - Hugejiletu Bao
- College of Physical Education, Inner Mongolia Normal University, Hohhot, China
| |
Collapse
|
8
|
Mattes RS, Soutschek A. Brain stimulation over dorsomedial prefrontal cortex causally affects metacognitive bias but not mentalising. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01277-1. [PMID: 40011401 DOI: 10.3758/s13415-025-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Despite the importance of metacognition for everyday decision-making, its neural substrates are far from understood. Recent neuroimaging studies linked metacognitive processes to dorsomedial prefrontal cortex (dmPFC), a region known to be involved in monitoring task difficulty. dmPFC is also thought to be involved in mentalising, consistent with theoretical accounts of metacognition as a self-directed subform of mentalising. However, it is unclear whether, and if so how, dmPFC causally affects metacognitive judgements, and whether this can be explained by a more general role of dmPFC for mentalising. To test this, participants performed two tasks targeting metacognition in perceptual decisions and mentalising whilst undergoing excitatory anodal versus sham dmPFC tDCS. dmPFC tDCS significantly decreased subjective confidence reports while leaving first-level performance in accuracy and reaction times unaffected, suggesting a causal contribution of dmPFC to representing metacognitive bias. Furthermore, we found no effect of dmPFC tDCS on neither metacognitive sensitivity and efficiency nor on mentalising, providing no evidence for an overlap between perceptual metacognition and mentalising in the dmPFC. Together, our findings highlight the dmPFC's causal role in metacognition by representing subjective confidence during evaluations of cognitive performance.
Collapse
Affiliation(s)
- Rebekka S Mattes
- Department for Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Alexander Soutschek
- Department for Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| |
Collapse
|
9
|
Chen M, Shao H, Wang L, Ma J, Chen J, Li J, Zhong J, Zhu B, Bi B, Chen K, Wang J, Gong L. Aberrant individual large-scale functional network connectivity and topology in chronic insomnia disorder with and without depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111158. [PMID: 39368537 DOI: 10.1016/j.pnpbp.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Insomnia is increasingly prevalent with significant associations with depression. Delineating specific neural circuits for chronic insomnia disorder (CID) with and without depressive symptoms is fundamental to develop precision diagnosis and treatment. In this study, we examine static, dynamic and network topology changes of individual large-scale functional network for CID with (CID-D) and without depression to reveal their specific neural underpinnings. Seventeen individual-specific functional brain networks are obtained using a regularized nonnegative matrix factorization technique. Disorders-shared and -specific differences in static and dynamic large-scale functional network connectivities within or between the cognitive control network, dorsal attention network, visual network, limbic network, and default mode network are found for CID and CID-D. Additionally, CID and CID-D groups showed compromised network topological architecture including reduced small-world properties, clustering coefficients and modularity indicating decreased network efficiency and impaired functional segregation. Moreover, the altered neuroimaging indices show significant associations with clinical manifestations and could serve as effective neuromarkers to distinguish among healthy controls, CID and CID-D. Taken together, these findings provide novel insights into the neural basis of CID and CID-D, which may facilitate developing new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meiling Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Libo Wang
- The Second People's Hospital of Yuxi, the Affiliated Hospital of Kunming University of Science and Technology, Yuxi, China
| | - Jianing Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Junying Li
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Jingmei Zhong
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baosheng Zhu
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Bin Bi
- Department of Clinical Psychology, the Second People's Hospital of Guizhou Province, Guiyang, China..
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
10
|
Gao C, Li G, Wang Z, Jiang Q, He R, Sun J, You Y, Zhu Y, Zhao J, Zhang X, Zhou C. The therapeutic effects of theta burst stimulation on negative symptoms in chronic schizophrenia using functional near-infrared spectroscopy. J Psychiatr Res 2025; 181:484-491. [PMID: 39675131 DOI: 10.1016/j.jpsychires.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND To explore the efficacy of theta burst stimulation (TBS) on the negative symptoms in patients with chronic schizophrenia, and to investigate the alterations of local brain activity using functional near-infrared spectroscopy (fNIRS). METHODS 100 patients with chronic schizophrenia were enrolled and divided into the real group (50 subjects) and sham group (50 subjects). The real group was given real stimulation of TBS for 4 weeks, and the sham group was sham-stimulated with the same site. The Positive and Negative Symptom Scale (PANSS) and the Scale for Assessment of Negative Symptoms (SANS) were used to assess the clinical symptoms. fNIRS was used to detect the amplitude of low frequency fluctuation (ALFF) of cortical hemoglobin before and after TBS. Repeated analysis of variance (ANOVA) was used to compare the changes in clinical features between the two groups. Correlation analysis was used to explore the associations between altered ALFF and clinical features. RESULTS Repeated ANOVA revealed that the interaction effect of group∗time showed significant influence on the scores of PANSS-total, PANSS-negative, and SANS in the two groups of patients. Test of within-subjects effects showed that significant reductions in scores of PANSS-total, PANSS-negative, and SANS were found between the real group and sham group after TBS, as well as in the real group before and after TBS. fNIRS revealed that the normalized ALFF (zALFF) of deoxyhemoglobin in the left dorsolateral prefrontal cortex was decreased in the real group after TBS. Furthermore, the zALFF of oxyhemoglobin was increased in the right and left frontal pole regions, and decreased in the right superior temporal gyrus in the real group compared to the sham group after TBS. Correlation analysis showed that the alterations of zALFF in frontal regions after treatment were associated with the improvement of negative symptoms in chronic schizophrenia patients. CONCLUSIONS Short-term TBS is effective in the improvement of negative symptoms of chronic schizophrenia. fNIRS could reveal the changes in brain activity after TBS treatment, providing an effective technique for exploring the efficacy of TBS in schizophrenia.
Collapse
Affiliation(s)
- Chunying Gao
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Guangjian Li
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Zhou Wang
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Qingwei Jiang
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Rongrong He
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Jingjing Sun
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Yangyang You
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Yingzhi Zhu
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Jing Zhao
- Department of Psychiatry, Pujiang Hospital of Shanghai Mental Health Center, Shanghai, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Witkowski PP, Rondot L, Kurth-Nelson Z, Garvert MM, Dolan RJ, Behrens TEJ, Boorman ED. Neural mechanisms of credit assignment for delayed outcomes during contingent learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606895. [PMID: 39149338 PMCID: PMC11326259 DOI: 10.1101/2024.08.06.606895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a "pending" state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.
Collapse
Affiliation(s)
- Phillip P. Witkowski
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay Rondot
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Google DeepMind, London, UK
| | - Mona M. Garvert
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Timothy E. J. Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Erie D. Boorman
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
| |
Collapse
|
12
|
Myslowski J, McClure SM, Lisinski J, Tomlinson DC, Kablinger AS, MacKillop J, Koffarnus MN, Fontes RM, Bickel WK, LaConte SM. Connectivity Changes Following Episodic Future Thinking in Alcohol Use Disorder. Brain Connect 2024; 14:550-559. [PMID: 39302073 DOI: 10.1089/brain.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Introduction: Recent addiction and obesity-related research suggests that episodic future thinking (EFT) can serve as a promising intervention to promote healthy decision-making. We used data from a pilot study to investigate the acute neural effects of EFT in alcohol use disorder (AUD). Because of the limitations of those data, we additionally used data from a previously published functional MRI (fMRI) study in which participants had not received any intervention for their AUD. Methods: In an out-of-scanner, guided interview, participants (n = 24; median age = 37.3 years; median AUDIT = 22.5) generated scenarios and cues about their future (EFT intervention, n = 15) or recent past (control episodic thinking [CET] control intervention, n = 9). Then, they performed both resting-state and task-based (delay discounting [DD]) fMRI. We used nodes from the default mode network and salience networks as well as the hippocampus to perform seed-based analyses of the resting-state data. The results then guided psychophysiological interaction analyses in the DD task. In addition, we used data from a larger, previously reported study as a "no intervention" group of AUD participants (n = 50; median age = 43.3; median Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) alcohol dependence score = 7) to reproduce and aid in interpreting our key findings. Results: EFT, but not CET, participants showed statistically improved DD rates-a behavioral marker for addiction. Resting-state analyses of the left hippocampus revealed connectivity differences in the frontal poles. The directionality of this difference suggested that EFT may reduce a hypo-connectivity relationship between these regions in AUD. We also found resting-state connectivity differences between the salience network and the right dorsolateral prefrontal cortex (R DLPFC), which then led us to discover R-to-L DLPFC psychophysiological interaction differences during DD. Moreover, the resting-state salience-to-DLPFC functional connectivity showed an inverse relationship to DD rate while hyperconnectivity between left and right DLPFC reflected slower reaction times during DD trials. Discussion: These findings suggest that previously noted benefits of EFT such as the improved DD replicated here might coincide with changes in neural connectivity patterns in AUD. The alterations in connectivity highlight potential mechanisms underlying the effectiveness of EFT in improving decision-making in AUD. Understanding these neural effects may contribute to the further development of targeted interventions for AUD and related disorders.
Collapse
Affiliation(s)
- Jeremy Myslowski
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Jonathan Lisinski
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Devin C Tomlinson
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anita S Kablinger
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - James MacKillop
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, USA
| | - Mikhail N Koffarnus
- Department of Family and Community Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Rafaela M Fontes
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Warren K Bickel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Department of Psychology, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen M LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Mao L, Hong X, Hu M. Identifying neuroimaging biomarkers in major depressive disorder using machine learning algorithms and functional near-infrared spectroscopy (fNIRS) during verbal fluency task. J Affect Disord 2024; 365:9-20. [PMID: 39151759 DOI: 10.1016/j.jad.2024.08.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
One of the most prevalent psychiatric disorders is major depressive disorder (MDD), which increases the probability of suicidal ideation or untimely demise. Abnormal frontal hemodynamic changes detected by functional near-infrared spectroscopy (fNIRS) during verbal fluency task (VFT) have the potential to be used as an objective indicator for assessing clinical symptoms. However, comprehensive quantitative and objective assessment instruments for individuals who exhibit symptoms suggestive of depression remain undeveloped. Drawing from a total of 467 samples in a large-scale dataset comprising 289 MDD patients and 178 healthy controls, fNIRS measurements were obtained throughout the VFT. To identify unique MDD biomarkers, this research introduced a data representation approach for extracting spatiotemporal features from fNIRS signals, which were subsequently utilized as potential predictors. Machine learning classifiers (e.g., Gradient Boosted Decision Trees (GBDT) and Multilayer Perceptron) were implemented to assess the ability to predict selected features. The mean and standard deviation of the cross-validation indicated that the GBDT model, when combined with the 180-feature pattern, distinguishes patients with MDD from healthy controls in the most effective manner. The accuracy of correct classification for the test set was 0.829 ± 0.053, with an AUC of 0.895 (95 % CI: 0.864-0.925) and a sensitivity of 0.914 ± 0.051. Channels that made the most important contribution to the identification of MDD were identified using Shapley Additive Explanations method, located in the frontopolar area and the dorsolateral prefrontal cortex, as well as pars triangularis Broca's area. Assessment of abnormal prefrontal activity during the VFT in MDD serves as an objectively measurable biomarker that could be utilized to evaluate cognitive deficits and facilitate early screening for MDD. The model suggested in this research could be applied to large-scale case-control fNIRS datasets to detect unique characteristics of MDD and offer clinicians an objective biomarker-based analytical instrument to assist in the evaluation of suspicious cases.
Collapse
Affiliation(s)
- Lingyun Mao
- Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China; Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xin Hong
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Maorong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Feizpour A, Buckley MJ, Mundinano IC, Rosa MGP, Mansouri FA. The role of frontopolar cortex in adjusting the balance between response execution and action inhibition in anthropoids. Prog Neurobiol 2024; 241:102671. [PMID: 39369837 DOI: 10.1016/j.pneurobio.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Executive control of behaviour entails keeping a fine balance between response execution and action inhibition. The most anterior part of the prefrontal cortex (frontopolar cortex) is highly developed in anthropoids; however, no previous study has examined its essential (indispensable) role in regulating the interplay between action execution and inhibition. In this cross-species study, we examine the performance of humans and macaque monkeys in the context of a stop-signal task and then assess the consequence of selective and bilateral damage to frontopolar cortex on monkeys' behaviour. Humans and monkeys showed significant within-session practice-related adjustments in both response execution (increase in response time (RT) and decrease in response variabilities) and action inhibition (enhanced inhibition). Furthermore, both species expressed context-dependent (post-error and post-stop) behavioral adjustments. In post-lesion testing, frontopolar-damaged monkeys had a longer RT and lower percentage of timeout trials, compared to their pre-lesion performance. The practice-related changes in mean RT and in RT variability were significantly heightened in frontopolar-damaged monkeys. They also showed attenuated post-error, but exaggerated post-stop, behavioural adjustments. Importantly, frontopolar damage had no significant effects on monkeys' inhibition ability. Our findings indicate that frontopolar cortex plays a critical role in allocation of control to response execution, but not action inhibition.
Collapse
Affiliation(s)
- Azadeh Feizpour
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Inaki C Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
15
|
Pupíková M, Maceira-Elvira P, Harquel S, Šimko P, Popa T, Gajdoš M, Lamoš M, Nencha U, Mitterová K, Šimo A, Hummel FC, Rektorová I. Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement. Heliyon 2024; 10:e37427. [PMID: 39315230 PMCID: PMC11417162 DOI: 10.1016/j.heliyon.2024.e37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Aging populations face significant cognitive challenges, particularly in working memory (WM). Transcranial alternating current stimulation (tACS) offer promising avenues for cognitive enhancement, especially when inspired by brain physiology. This study (NCT04986787) explores the effect of multifocal tACS on WM performance in healthy older adults, focusing on fronto-parietal network modulation. Individualized physiology-inspired tACS applied to the fronto-parietal network was investigated in two blinded cross-over experiments. The first experiment involved monofocal/bifocal theta-tACS to the fronto-parietal network, while in the second experiment cross-frequency theta-gamma interactions between these regions were explored. Participants have done online WM tasks under the stimulation conditions. Network connectivity was assessed via rs-fMRI and multichannel electroencephalography. Prefrontal monofocal theta tACS modestly improved WM accuracy over sham (d = 0.30). Fronto-parietal stimulation enhanced WM task processing speed, with the strongest effects for bifocal in-phase theta tACS (d = 0.41). Cross-frequency stimulations modestly boosted processing speed with or without impairing task accuracy depending on the stimulation protocol. This research adds to the understanding of physiology-inspired brain stimulation for cognitive enhancement in older subjects.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pablo Maceira-Elvira
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Sylvain Harquel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Traian Popa
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Martin Gajdoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Umberto Nencha
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Adam Šimo
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Friedhelm C. Hummel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Ballester J, Marchand WR, Philip NS. Transcranial magnetic stimulation for methamphetamine use disorder: A scoping review within the neurocircuitry model of addiction. Psychiatry Res 2024; 338:115995. [PMID: 38852478 PMCID: PMC11209858 DOI: 10.1016/j.psychres.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The use of methamphetamine in the United States is increasing, contributing now to the "fourth wave" in the national opioid epidemic crisis. People who suffer from methamphetamine use disorder (MUD) have a higher risk of death. No pharmacological interventions are approved by the FDA and psychosocial interventions are only moderately effective. Transcranial Magnetic Stimulation (TMS) is a relatively novel FDA-cleared intervention for the treatment of Major Depressive Disorder (MDD) and other neuropsychiatric conditions. Several lines of research suggest that TMS could be useful for the treatment of addictive disorders, including MUD. We will review those published clinical trials that show potential effects on craving reduction of TMS when applied over the dorsolateral prefrontal cortex (DLPFC) also highlighting some limitations that affect their generalizability and applicability. We propose the use of the Koob and Volkow's neurocircuitry model of addiction as a frame to explain the brain effects of TMS in patients with MUD. We will finally discuss new venues that could lead to a more individualized and effective treatment of this complex disorder including the use of neuroimaging, the exploration of different areas of the brain such as the frontopolar cortex or the salience network and the use of biomarkers.
Collapse
Affiliation(s)
- J Ballester
- Substance Abuse Residential Rehabilitation Treatment Program, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA.
| | - W R Marchand
- Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; VISN-19 Whole Health Flagship Site, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - N S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| |
Collapse
|
17
|
Forbes CE. On the neural networks of self and other bias and their role in emergent social interactions. Cortex 2024; 177:113-129. [PMID: 38848651 DOI: 10.1016/j.cortex.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Extensive research has documented the brain networks that play an integral role in bias, or the alteration and filtration of information processing in a manner that fundamentally favors an individual. The roots of bias, whether self- or other-oriented, are a complex constellation of neural and psychological processes that start at the most fundamental levels of sensory processing. From the millisecond information is received in the brain it is filtered at various levels and through various brain networks in relation to extant intrinsic activity to provide individuals with a perception of reality that complements and satisfies the conscious perceptions they have for themselves and the cultures in which they were reared. The products of these interactions, in turn, are dynamically altered by the introduction of others, be they friends or strangers who are similar or different in socially meaningful ways. While much is known about the various ways that basic biases alter specific aspects of neural function to support various forms of bias, the breadth and scope of the phenomenon remains entirely unclear. The purpose of this review is to examine the brain networks that shape (i.e., bias) the self-concept and how interactions with similar (ingroup) compared to dissimilar (outgroup) others alter these network (and subsequent interpersonal) interactions in fundamental ways. Throughout, focus is placed on an emerging understanding of the brain as a complex system, which suggests that many of these network interactions likely occur on a non-linear scale that blurs the lines between network hierarchies.
Collapse
Affiliation(s)
- Chad E Forbes
- Social Neuroscience Laboratory, Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA; Florida Atlantic University Stiles-Nicholson Brain Institute, USA.
| |
Collapse
|
18
|
Dai YF, Zhong XK, Gao XY, Huang C, Leng WW, Chen HZ, Jiang CH. Aerobic fitness as a moderator of acute aerobic exercise effects on executive function. Cereb Cortex 2024; 34:bhae141. [PMID: 38602740 DOI: 10.1093/cercor/bhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike. Executive function tests (Flanker, N-back, More-odd-shifting) were performed before and after exercise and functional near-infrared spectroscopy was used to monitor prefrontal cerebral blood flow changes during the tasks. The results indicated significant differences between the two groups regarding executive function. Participants with lower aerobic fitness performed better than their higher fitness counterparts in inhibitory control and working memory, but not in cognitive flexibility. This finding suggests that the aerobic fitness may moderate the extent of cognitive benefits gained from acute aerobic exercise. Furthermore, the neuroimaging data indicated negative activation in the frontopolar area and dorsolateral prefrontal cortex in response to three complex tasks. These findings underscore the importance of considering individual aerobic fitness when assessing the cognitive benefits of exercise and could have significant implications for tailoring fitness programs to enhance cognitive performance.
Collapse
Affiliation(s)
- Yuan-Fu Dai
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Xiao-Ke Zhong
- College of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou, Fujian, 350108, China
| | - Xiao-Yan Gao
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Chen Huang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Wen-Wu Leng
- Xinyu No. 4 Middle School, No. 328, North Lake West Road, Chengbei Street, Yushui District, Xinyu, Jiangxi, 338099, China
| | - Han-Zhe Chen
- Tianjin No. 2 High School, No. 109, Kunwei Road, Hebei District, Tianjin, 300143, China
| | - Chang-Hao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
19
|
Zivi P, Zigrino A, Couyoumdjian A, Ferlazzo F, Sdoia S. Persisting inhibition biases efficient rule inference under uncertainty. Front Psychol 2024; 15:1308636. [PMID: 38586296 PMCID: PMC10995926 DOI: 10.3389/fpsyg.2024.1308636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Task set inhibition supports optimal switching among tasks by actively suppressing the interference from recently executed competing task sets. It is typically studied in cued task-switching paradigms where there is no uncertainty about the task set or rule to prepare for on each trial. While inhibition has been shown to influence the speed and the accuracy of task execution, affecting task set retrieval, preparation, or implementation in conditions of task set switching, it remains uninvestigated whether it also affects rule selection under uncertainty. Methods We implemented an ad-hoc four-rule card sorting task and categorized the rules selected by participants after a rule shift according to the recency of their last usage. We included a measure of working memory capacity (WMC) to control for its involvement in the rule selection process. Results Participants exhibited a reduced preference for recently abandoned rules than less recently abandoned ones. Furthermore, we found that such a preference was not associated with WMC. Discussion The results suggest that decision-making processes underlying rule inference and selection may be influenced by task-set inhibition, configuring as a conflict adjustment mechanism to the sequential history of rules application.
Collapse
Affiliation(s)
- Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Jia H, Li Z, Guo F, Hua Z, Zhou X, Li X, Li R, Liu Q, Liu Y, Dong H. Cortical structure and the risk of amyotrophic lateral sclerosis: A bidirectional Mendelian randomization study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110872. [PMID: 37827425 DOI: 10.1016/j.pnpbp.2023.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Current observational studies indicate progressive brain atrophy is closely associated with the clinical feature of amyotrophic lateral sclerosis. However, it is unclear whether the changes in cortical structure are the cause or result of ALS. Our study aimed to investigate the causal relationship between cortical structure and ALS risk using a bidirectional two-sample MR study. METHODS We collected publicly available genome-wide association studies' summary statistics for cortical structure from UK Biobank and ENIGMA consortium (n = 33,992) and ALS from the Project MinE (n = 138,086). We used the inverse variance weighted method (IVW) as primary analysis in order to evaluate the causal effects. In addition, the weighted median and MR Egger methods were performed to ensure the robustness and reliability of the IVW results. RESULTS We found the decreased surface of the paracentral lobule and thickness of the frontal pole and middle temporal lobe were suggestively associated with an increased risk of ALS as well as the increased surface of medial orbitofrontal and middle temporal lobe. In another aspect, the causalities between the susceptibility to ALS and the volume of the transverse temporal gyrus and superior temporal gyrus were negative. Besides, the susceptibility to ALS might also contribute to an increased thickness of the postcentral gyrus and superior parietal gyrus. CONCLUSION In this two-sample MR analysis, we observed that multiple cortical brain regions are associated with a higher ALS risk. Further research into the underlying mechanisms is required to back up our findings.
Collapse
Affiliation(s)
- Hongning Jia
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China; Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zhiguang Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Neurology, Xingtai Third Hospital, Xingtai, China
| | - Fei Guo
- Department of Basic Medicine, Xingtai Medical College, Xingtai, China
| | - Zixin Hua
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaomeng Zhou
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Xin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China.
| | - Hui Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
21
|
Soleimani G, Joutsa J, Moussawi K, Siddiqi SH, Kuplicki R, Bikson M, Paulus MP, Fox MD, Hanlon CA, Ekhtiari H. Converging Evidence for Frontopolar Cortex as a Target for Neuromodulation in Addiction Treatment. Am J Psychiatry 2024; 181:100-114. [PMID: 38018143 PMCID: PMC11318367 DOI: 10.1176/appi.ajp.20221022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Juho Joutsa
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Khaled Moussawi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Shan H Siddiqi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Rayus Kuplicki
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Marom Bikson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Martin P Paulus
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Michael D Fox
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| |
Collapse
|
22
|
Huang Y, Yan R, Zhang Y, Wang X, Sun H, Zhou H, Zou H, Xia Y, Yao Z, Shi J, Lu Q. Abnormal fractional amplitude of low-frequency fluctuations and regional homogeneity in major depressive disorder with non-suicidal self-injury. Clin Neurophysiol 2024; 157:120-129. [PMID: 38101296 DOI: 10.1016/j.clinph.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE We conducted this resting-state functional magnetic resonance imaging (rsfMRI) study to characterize changes in regional homogeneity (ReHo) or fractional amplitude of low-frequency fluctuations (fALFF) in young adult patients with major depressive disorder (MDD), with or without non-suicidal self-injury (NSSI). METHODS We recruited 54 MDD patients with NSSI (MDD/NSSI), 68 MDD patients without NSSI, which is referred to as simple MDD (sMDD), and 66 matched healthy controls (HCs). A combination of fALFF and ReHo analyses was conducted. The effects of NSSI on the brain and their relationship to clinical variables were examined in this study. RESULTS MDD/NSSI patients have decreased fALFF in the right superior frontal gyrus (SFG) and the right inferior parietal lobe (IPL), decreased ReHo in the right SFG and the right middle temporal gyrus (MTG) and the left middle occipital gyrus (MOG). fALFF and ReHo values of the right SFG are positively correlated. The ReHo values of the right SFG and the number of recent self-injuries are positively correlated; the fALFF values of the right SFG are negatively correlated with NSSI severity. CONCLUSIONS There is a difference in brain activity between MDD/NSSI and sMDD, which may serve as an important physiological marker to determine the risk of self-injury and suicide. SIGNIFICANCE Abnormal brain activity in patients with NSSI may provide new perspectives and significant implications on the severity of MDD patients and the prevention of self-injury and suicide.
Collapse
Affiliation(s)
- Yinghong Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Clinical Psychology, The Affiliated Hangzhou First People's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.
| | - Jiabo Shi
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
23
|
Jordan N, Emanuelle R. Hands off, brain off? A meta-analysis of neuroimaging data during active and passive driving. Brain Behav 2023; 13:e3272. [PMID: 37828722 PMCID: PMC10726911 DOI: 10.1002/brb3.3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Car driving is more and more automated, to such an extent that driving without active steering control is becoming a reality. Although active driving requires the use of visual information to guide actions (i.e., steering the vehicle), passive driving only requires looking at the driving scene without any need to act (i.e., the human is passively driven). MATERIALS & METHODS After a careful search of the scientific literature, 11 different studies, providing 17 contrasts, were used to run a comprehensive meta-analysis contrasting active driving with passive driving. RESULTS Two brain regions were recruited more consistently for active driving compared to passive driving, the left precentral gyrus (BA3 and BA4) and the left postcentral gyrus (BA4 and BA3/40), whereas a set of brain regions was recruited more consistently in passive driving compared to active driving: the left middle frontal gyrus (BA6), the right anterior lobe and the left posterior lobe of the cerebellum, the right sub-lobar thalamus, the right anterior prefrontal cortex (BA10), the right inferior occipital gyrus (BA17/18/19), the right inferior temporal gyrus (BA37), and the left cuneus (BA17). DISCUSSION From a theoretical perspective, these findings support the idea that the output requirement of the visual scanning process engaged for the same activity can trigger different cerebral pathways, associated with different cognitive processes. A dorsal stream dominance was found during active driving, whereas a ventral stream dominance was obtained during passive driving. From a practical perspective, and contrary to the dominant position in the Human Factors community, our findings support the idea that a transition from passive to active driving would remain challenging as passive and active driving engage distinct neural networks.
Collapse
Affiliation(s)
- Navarro Jordan
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082)Université de LyonBron Cedex, LyonFrance
- Institut Universitaire de FranceParisFrance
| | - Reynaud Emanuelle
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082)Université de LyonBron Cedex, LyonFrance
| |
Collapse
|
24
|
Xiang M, Li G, Ye J, Wu M, Xu R, Hu M. Effects of combined physical and cognitive training on executive function of adolescent shooting athletes: A functional near-infrared spectroscopy study. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:220-228. [PMID: 37753422 PMCID: PMC10518801 DOI: 10.1016/j.smhs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Individual executive function improvement through physical and cognitive training is a research hotspot in physical education and cognitive science. However, few studies have evaluated whether combined physical and cognitive training (CPCT) has greater benefits for executive function performance and cerebral oxygenation in adolescent athletes than cognitive training alone. This study randomly assigned 33 adolescent shooting athletes to a CPCT (n = 17) or computerized cognitive training (CCT, n = 16) group and compared their executive function after six weeks of training. All subjects were assessed using the 2-back, task-switching, and Stroop tests before and after training. The prefrontal cortex oxygenated hemoglobin (Oxy-Hb) activation level was monitored while executing the three tasks using functional near-infrared spectroscopy. Our results showed that the CPCT and CCT groups similarly improved their updating function as indicated by the 2-back task accuracy. The CPCT group significantly improved the switching function in the task-switching test accuracy, while the CCT group did not. However, both groups did not improve in behavioral performance as indicated by the inhibition function in the Stroop task. Cerebral oxygenation, indicated by the oxy-Hb activation level in the frontal pole area of the prefrontal lobe, significantly improved in the CPCT group during the three cognitive tasks, whereas the CCT group showed no change. These findings indicated that CPCT endowed greater advantages in task-switching in the behavioral performance of the executive function than CCT. Moreover, CPCT was superior to CCT in increasing task-efficient cerebral oxygenation during the activation of the prefrontal cortex in adolescent shooting athletes.
Collapse
Affiliation(s)
- Mingqiang Xiang
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, 510500, China
| | - Guanru Li
- Graduate School, Guangzhou Sport University, Guangzho, 510500, China
| | - Jianuo Ye
- Graduate School, Guangzhou Sport University, Guangzho, 510500, China
| | - Meng Wu
- Guangzhou Institute of Sports Science, Guangzhou, 510500, China
| | - Ruiping Xu
- Guangzhou Institute of Sports Science, Guangzhou, 510500, China
| | - Min Hu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, 510500, China
| |
Collapse
|
25
|
Noel JP, Bockbrader M, Colachis S, Solca M, Orepic P, Ganzer PD, Haggard P, Rezai A, Blanke O, Serino A. Human primary motor cortex indexes the onset of subjective intention in brain-machine-interface mediated actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550067. [PMID: 37547006 PMCID: PMC10401963 DOI: 10.1101/2023.07.21.550067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Self-initiated behavior is accompanied by the experience of willing our actions. Here, we leverage the unique opportunity to examine the full intentional chain - from will (W) to action (A) to environmental effects (E) - in a tetraplegic person fitted with a primary motor cortex (M1) brain machine interface (BMI) generating hand movements via neuromuscular electrical stimulation (NMES). This combined BMI-NMES approach allowed us to selectively manipulate each element of the intentional chain (W, A, and E) while performing extra-cellular recordings and probing subjective experience. Our results reveal single-cell, multi-unit, and population-level dynamics in human M1 that encode W and may predict its subjective onset. Further, we show that the proficiency of a neural decoder in M1 reflects the degree of W-A binding, tracking the participant's subjective experience of intention in (near) real time. These results point to M1 as a critical node in forming the subjective experience of intention and demonstrate the relevance of intention-related signals for translational neuroprosthetics.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York City, New York, U.S.A
| | - Marcia Bockbrader
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio, U.S.A
| | - Sam Colachis
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, Ohio, U.S.A
| | - Marco Solca
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavo Orepic
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick D. Ganzer
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, U.K
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, U.S.A
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
26
|
Wang W, Kang Y, Niu X, Zhang Z, Li S, Gao X, Zhang M, Cheng J, Zhang Y. Connectome-based predictive modeling of smoking severity using individualized structural covariance network in smokers. Front Neurosci 2023; 17:1227422. [PMID: 37547147 PMCID: PMC10400777 DOI: 10.3389/fnins.2023.1227422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Abnormal interactions among distributed brain systems are implicated in the mechanisms of nicotine addiction. However, the relationship between the structural covariance network, a measure of brain connectivity, and smoking severity remains unclear. To fill this gap, this study aimed to investigate the relationship between structural covariance network and smoking severity in smokers. Methods A total of 101 male smokers and 51 male non-smokers were recruited, and they underwent a T1-weighted anatomical image scan. First, an individualized structural covariance network was derived via a jackknife-bias estimation procedure for each participant. Then, a data-driven machine learning method called connectome-based predictive modeling (CPM) was conducted to infer smoking severity measured with Fagerström Test for Nicotine Dependence (FTND) scores using an individualized structural covariance network. The performance of CPM was evaluated using the leave-one-out cross-validation and a permutation testing. Results As a result, CPM identified the smoking severity-related structural covariance network, as indicated by a significant correlation between predicted and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks comprised of edges mainly located between the subcortical-cerebellum network and networks including the frontoparietal default model and motor and visual networks. Discussion These results identified smoking severity-related structural covariance networks and provided a new insight into the neural underpinnings of smoking severity.
Collapse
|
27
|
Katayama N, Nakagawa A, Umeda S, Terasawa Y, Shinagawa K, Kikuchi T, Tabuchi H, Abe T, Mimura M. Functional connectivity changes between frontopolar cortex and nucleus accumbens following cognitive behavioral therapy in major depression: A randomized clinical trial. Psychiatry Res Neuroimaging 2023; 332:111643. [PMID: 37060839 DOI: 10.1016/j.pscychresns.2023.111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Cognitive behavioral therapy (CBT) is a psychotherapy that challenges distorted cognitions; however, the neural mechanisms that underpin CBT remain unclear. Hence, we aimed to assess the treatment-related resting-state functional connectivity (rsFC) changes in the brain regions associated with future thinking and the associations between rsFC changes and clinical improvements. Thirty-eight adult patients with MDD were randomly assigned with equal likelihood to receive 16-week individual CBT or talking control with a 12-month follow-up period. We evaluated the rsFC changes in the frontal regions, nucleus accumbens, amygdala, and limbic structures key to the depression pathophysiology and future thinking with 2 × 2 mixed ANOVA interaction analysis. Pearson's correlation analysis with Bonferroni's correction was also performed to examine the associations with clinical symptoms, such as depression severity and automatic thoughts in follow-up evaluations. Treatment-specific changes include enhancement in frontopolar connectivity with the nucleus accumbens. An increased rsFC was associated with lower negative automatic thoughts postoperatively, together with lower depressive symptoms and higher positive automatic thoughts at follow-up. Conclusively, rsFC changes in the fronto-limbic neural control circuit after CBT, particularly between the frontal pole and nucleus accumbens, may be clinically meaningful functional changes related to the depression recovery process.
Collapse
Affiliation(s)
- Nariko Katayama
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Atsuo Nakagawa
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan; Department of Neuropsychiatry, School of Medicine, St. Marianna University, Kawasaki, Japan.
| | - Satoshi Umeda
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| | - Yuri Terasawa
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| | - Kazushi Shinagawa
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| | - Toshiaki Kikuchi
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Takayuki Abe
- Department of Neuropsychiatry, School of Medicine, St. Marianna University, Kawasaki, Japan; School of Data Science, Yokohama City University, Yokohama, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
28
|
Law CK, Kolling N, Chan CCH, Chau BKH. Frontopolar cortex represents complex features and decision value during choice between environments. Cell Rep 2023; 42:112555. [PMID: 37224014 PMCID: PMC10320831 DOI: 10.1016/j.celrep.2023.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Important decisions often involve choosing between complex environments that define future item encounters. Despite its importance for adaptive behavior and distinct computational challenges, decision-making research primarily focuses on item choice, ignoring environment choice altogether. Here we contrast previously studied item choice in ventromedial prefrontal cortex with lateral frontopolar cortex (FPl) linked to environment choice. Furthermore, we propose a mechanism for how FPl decomposes and represents complex environments during decision making. Specifically, we trained a choice-optimized, brain-naive convolutional neural network (CNN) and compared predicted CNN activation with actual FPl activity. We showed that the high-dimensional FPl activity decomposes environment features to represent the complexity of an environment to make such choice possible. Moreover, FPl functionally connects with posterior cingulate cortex for guiding environment choice. Further probing FPl's computation revealed a parallel processing mechanism in extracting multiple environment features.
Collapse
Affiliation(s)
- Chun-Kit Law
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Nils Kolling
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, Hong Kong
| | - Bolton K H Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
29
|
Thackray AE, Hinton EC, Alanazi TM, Dera AM, Fujihara K, Hamilton-Shield JP, King JA, Lithander FE, Miyashita M, Thompson J, Morgan PS, Davies MJ, Stensel DJ. Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging. Hum Brain Mapp 2023; 44:3815-3832. [PMID: 37145965 DOI: 10.1002/hbm.26314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023] Open
Abstract
Acute exercise suppresses appetite and alters food-cue reactivity, but the extent exercise-induced changes in cerebral blood flow (CBF) influences the blood-oxygen-level-dependent (BOLD) signal during appetite-related paradigms is not known. This study examined the impact of acute running on visual food-cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2 ) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five-minute pseudo-continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD-fMRI was acquired during a food-cue reactivity task before and 28 min after exercise/rest. Food-cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time-by-trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate-to-large reductions in subjective appetite ratings (Cohen's d = 0.53-0.84; p ≤ .024) and increased food-cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise-induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food-cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF.
Collapse
Affiliation(s)
- Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Elanor C Hinton
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
| | - Turki M Alanazi
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia
| | - Abdulrahman M Dera
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- College of Sport Sciences, Jeddah University, Saudi Arabia
| | - Kyoko Fujihara
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Julian P Hamilton-Shield
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Fiona E Lithander
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Julie Thompson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Paul S Morgan
- Radiological Sciences, School of Medicine, University of Nottingham, UK
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK
| | - Melanie J Davies
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
30
|
Drossel G, Brucar LR, Rawls E, Hendrickson TJ, Zilverstand A. Subtypes in addiction and their neurobehavioral profiles across three functional domains. Transl Psychiatry 2023; 13:127. [PMID: 37072391 PMCID: PMC10113211 DOI: 10.1038/s41398-023-02426-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
Rates of return to use in addiction treatment remain high. We argue that the development of improved treatment options will require advanced understanding of individual heterogeneity in Substance Use Disorders (SUDs). We hypothesized that considerable individual differences exist in the three functional domains underlying addiction-approach-related behavior, executive function, and negative emotionality. We included N = 593 participants from the enhanced Nathan Kline Institute-Rockland Sample community sample (ages 18-59, 67% female) that included N = 420 Controls and N = 173 with past SUDs [54% female; N = 75 Alcohol Use Disorder (AUD) only, N = 30 Cannabis Use Disorder (CUD) only, and N = 68 Multiple SUDs]. To test our a priori hypothesis that distinct neuro-behavioral subtypes exist within individuals with past SUDs, we conducted a latent profile analysis with all available phenotypic data as input (74 subscales from 18 measures), and then characterized resting-state brain function for each discovered subtype. Three subtypes with distinct neurobehavioral profiles were recovered (p < 0.05, Cohen's D: 0.4-2.8): a "Reward type" with higher approach-related behavior (N = 69); a "Cognitive type" with lower executive function (N = 70); and a "Relief type" with high negative emotionality (N = 34). For those in the Reward type, substance use mapped onto resting-state connectivity in the Value/Reward, Ventral-Frontoparietal and Salience networks; for the Cognitive type in the Auditory, Parietal Association, Frontoparietal and Salience networks; and for the Relief type in the Parietal Association, Higher Visual and Salience networks (pFDR < 0.05). Subtypes were equally distributed amongst individuals with different primary SUDs (χ2 = 4.71, p = 0.32) and gender (χ2 = 3.44, p = 0.18). Results support functionally derived subtypes, demonstrating considerable individual heterogeneity in the multi-dimensional impairments in addiction. This confirms the need for mechanism-based subtyping to inform the development of personalized addiction medicine approaches.
Collapse
Affiliation(s)
- Gunner Drossel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Leyla R Brucar
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Mutlu MC, Canbeyli R, Saybaşılı H. Functional near-infrared spectroscopy shows that object relative clauses are more difficult to process than subject relative clauses in Turkish. Eur J Neurosci 2023; 57:951-961. [PMID: 36748344 DOI: 10.1111/ejn.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
It was suggested that processing subject relative clauses (SRCs) is universally easier than processing object relative clauses (ORCs) based on the studies carried out in head-initial languages such as English and German. However, studies in head-final languages such as Chinese and Basque contradicted this claim. Turkish is also a head-final language. Existing relative clause processing literature in Turkish is based solely on behavioural metrics. Even though an ORC processing disadvantage was suggested for Turkish, the results were not conclusive. Therefore, we aimed to investigate the neural dynamics of relative clause processing in Turkish. We asked 14 native Turkish speakers to answer yes/no questions about 24 sentences each containing either a SRC or ORC while their prefrontal hemodynamic activity was recorded with functional near-infrared spectroscopy. Our findings revealed hemodynamic activity in the lateral portions of the left prefrontal cortex for both conditions. However, hemodynamic activity was more widespread in prefrontal regions in ORC compared to SRC condition. Even though the behavioural metrics failed to produce a significant difference between the conditions, direct ORC > SRC contrast revealed significant activity in the left inferior frontal cortex, a region heavily involved in language processing, as well as in left and right dorsolateral prefrontal cortices, which are also known to be involved in language processing-related and conflict monitoring-related processes, respectively. Our findings indicate that processing ORCs is more difficult and requires further prefrontal resources than processing SRCs in Turkish, thus refuting the head-directionality-based explanations of relative clause processing asymmetries.
Collapse
Affiliation(s)
- Murat Can Mutlu
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University, Istanbul, Turkey
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
32
|
Deng Y, Li W, Zhang B. Functional Activity in the Effect of Transcranial Magnetic Stimulation Therapy for Patients with Depression: A Meta-Analysis. J Pers Med 2023; 13:405. [PMID: 36983590 PMCID: PMC10051603 DOI: 10.3390/jpm13030405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Depression is a long-lasting mental disorder that affects more than 264 million people worldwide. Transcranial magnetic stimulation (TMS) can be a safe and effective choice for the treatment of depression. Functional neuroimaging provides unique insights into the neuropsychiatric effects of antidepressant TMS. In this meta-analysis, we aimed to assess the functional activity of brain regions caused by TMS for depression. A literature search was conducted from inception to 5 January 2022. Studies were then selected according to predetermined inclusion and exclusion criteria. Activation likelihood estimation was applied to analyze functional activation. Five articles were ultimately included after selection. The main analysis results indicated that TMS treatment for depression can alter the activity in the right precentral gyrus, right posterior cingulate, left inferior frontal gyrus and left middle frontal gyrus. In resting-state studies, increased activation was shown in the right precentral gyrus, right posterior cingulate, left inferior frontal gyrus and left superior frontal gyrus associated with TMS treatment. In task-related studies, clusters in the right middle frontal gyrus, left sub-gyrus, left middle frontal gyrus and left posterior cingulate were hyperactivated post-treatment. Our study offers an overview of brain activity changes in patients with depression after TMS treatment.
Collapse
Affiliation(s)
- Yongyan Deng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
- Peking University Sixth Hospital, Beijing 100191, China
| | - Wenyue Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin 300222, China
| |
Collapse
|
33
|
Miyamoto K, Rushworth MFS, Shea N. Imagining the future self through thought experiments. Trends Cogn Sci 2023; 27:446-455. [PMID: 36801162 DOI: 10.1016/j.tics.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The ability of the mind to conceptualize what is not present is essential. It allows us to reason counterfactually about what might have happened had events unfolded differently or had another course of action been taken. It allows us to think about what might happen - to perform 'Gedankenexperimente' (thought experiments) - before we act. However, the cognitive and neural mechanisms mediating this ability are poorly understood. We suggest that the frontopolar cortex (FPC) keeps track of and evaluates alternative choices (what we might have done), whereas the anterior lateral prefrontal cortex (alPFC) compares simulations of possible future scenarios (what we might do) and evaluates their reward values. Together, these brain regions support the construction of suppositional scenarios.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Suzuki T, Waki H, Imai K, Hisajima T. Electroacupuncture on the Ophthalmic Branch of the Trigeminal Nerve Affects Cerebral Blood Flow in the Frontopolar Cortex During Mental Arithmetic: A Randomized Crossover Trial. Med Acupunct 2023. [DOI: 10.1089/acu.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Takuya Suzuki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Hideaki Waki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Kenji Imai
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Wang Q, Dai W, Xu S, Zhu S, Sui Y, Kan C, Shen Y, Zhu Y, Guo C, Wang T. Brain activation of the PFC during dual-task walking in stroke patients: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci 2023; 17:1111274. [PMID: 36875661 PMCID: PMC9980909 DOI: 10.3389/fnins.2023.1111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Dual-task walking is a good paradigm to measure the walking ability of stroke patients in daily life. It allows for a better observation of brain activation under dual-task walking to assess the impact of the different tasks on the patient when combining with functional near-infrared spectroscopy (fNIRS). This review aims to summarize the cortical change of the prefrontal cortex (PFC) detected in single-task and dual-task walking in stroke patients. Methods Six databases (Medline, Embase, PubMed, Web of Science, CINAHL, and Cochrane Library) were systematically searched for relevant studies, from inception to August 2022. Studies that measured the brain activation of single-task and dual-task walking in stroke patients were included. The main outcome of the study was PFC activity measured using fNIRS. In addition, a subgroup analysis was also performed for study characteristics based on HbO to analyze the different effects of disease duration and the type of dual task. Results Ten articles were included in the final review, and nine articles were included in the quantitative meta-analysis. The primary analysis showed more significant PFC activation in stroke patients performing dual-task walking than single-task walking (SMD = 0.340, P = 0.02, I 2 = 7.853%, 95% CI = 0.054-0.626). The secondary analysis showed a significant difference in PFC activation when performing dual-task walking and single-task walking in chronic patients (SMD = 0.369, P = 0.038, I 2 = 13.692%, 95% CI = 0.020-0.717), but not in subacute patients (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). In addition, performing walking combining serial subtraction (SMD = 0.516, P < 0.001, I 2 = 0%, 95% CI = 0.239-0.794), obstacle crossing (SMD = 0.564, P = 0.002, I 2 = 0%, 95% CI = 0.205-0.903), or a verbal task (SMD = 0.654, P = 0.009, I 2 = 0%, 95% CI = 0.164-1.137) had more PFC activation than single-task walking, while performing the n-back task did not show significant differentiation (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). Conclusions Different dual-task paradigms produce different levels of dual-task interference in stroke patients with different disease durations, and it is important to choose the matching dual-task type in relation to the walking ability and cognitive ability of the patient, in order to better improve the assessment and training effects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022356699.
Collapse
Affiliation(s)
- Qinglei Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Xu
- Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Shizhe Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Youxin Sui
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Chaojie Kan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Ying Shen
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Guo
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Xia N, He C, Wei X, Li YA, Lou W, Gu M, Chen Z, Xu J, Liu Y, Han X, Huang X. Altered frontoparietal activity in acoustic startle priming tasks during reticulospinal tract facilitation: An fNIRS study. Front Neurosci 2023; 17:1112046. [PMID: 36875651 PMCID: PMC9978531 DOI: 10.3389/fnins.2023.1112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Background Because it is one of the important pathways for promoting motor recovery after cortical injury, the function of the reticulospinal tract (RST) has received increasing attention in recent years. However, the central regulatory mechanism of RST facilitation and reduction of apparent response time is not well understood. Objectives To explore the potential role of RST facilitation in the acoustic startle priming (ASP) paradigm and observe the cortical changes induced by ASP reaching tasks. Methods Twenty healthy participants were included in this study. The reaching tasks were performed with their left and right hands. Participants were instructed to get ready after the warning cue and complete the reach as soon as they heard the Go cue. Half of the testing trials were set as control trials with an 80-dB Go cue. The other half of the trials had the Go cue replaced with 114-dB white noise to evoke the StartleReact effect, inducing reticulospinal tract facilitation. The response of the bilateral sternocleidomastoid muscle (SCM) and the anterior deltoid was recorded via surface electromyography. Startle trials were labeled as exhibiting a positive or negative StartleReact effect, according to whether the SCM was activated early (30-130 ms after the Go cue) or late, respectively. Functional near-infrared spectroscopy was used to synchronously record the oxyhemoglobin and deoxyhemoglobin fluctuations in bilateral motor-related cortical regions. The β values representing cortical responses were estimated via the statistical parametric mapping technique and included in the final analyses. Results Separate analyses of data from movements of the left or right side revealed significant activation of the right dorsolateral prefrontal cortex during RST facilitation. Moreover, left frontopolar cortex activation was greater in positive startle trials than in control or negative startle trials during left-side movements. Furthermore, decreased activity of the ipsilateral primary motor cortex in positive startle trials during ASP reaching tasks was observed. Conclusion The right dorsolateral prefrontal cortex and the frontoparietal network to which it belongs may be the regulatory center for the StartleReact effect and RST facilitation. In addition, the ascending reticular activating system may be involved. The decreased activity of the ipsilateral primary motor cortex suggests enhanced inhibition of the non-moving side during the ASP reaching task. These findings provide further insight into the SE and into RST facilitation.
Collapse
Affiliation(s)
- Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Chang He
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.,State Key Lab of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Weiwei Lou
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Yali Liu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| |
Collapse
|
37
|
Kaube H, Eiserbeck A, Abdel Rahman R. Separating art from the artist: The effect of negative affective knowledge on ERPs and aesthetic experience. PLoS One 2023; 18:e0281082. [PMID: 36719879 PMCID: PMC9888721 DOI: 10.1371/journal.pone.0281082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Some artists do terrible things. But does knowing something bad about an artist affect the way we perceive the work? Despite increased public interest, this question has yet to be addressed empirically. In this pre-registered study, we used aesthetic ratings and electrophysiological brain responses to shed light on the issue. We found that paintings of artists associated with negative-social biographical knowledge were liked less and found more arousing than paintings of artists associated with neutral information. Such paintings also elicited an enhanced brain response associated with fast and reflexive processing of emotional stimuli (early posterior negativity; EPN). Evaluations of quality and later, more controlled brain responses (late positive potential; LPP) were not affected. Reflecting the complexity of aesthetic experience, this pattern of results became more differentiated when the visual relatedness between the contents of the painting and the artist-related information was taken into account. Overall, our findings suggest that emotional aspects involved in art reception are not spontaneously separated from the artist, whilst evaluative judgments and more elaborate processing may be.
Collapse
Affiliation(s)
- Hannah Kaube
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| | - Anna Eiserbeck
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
38
|
Lavigne-Cerván R, Sánchez-Muñoz de León M, Juárez-Ruiz de Mier R, Romero-González M, Gamboa-Ternero S, Rodríguez-Infante G, Romero-Pérez JF. Proposal for an Integrative Cognitive-Emotional Conception of ADHD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15421. [PMID: 36430140 PMCID: PMC9691192 DOI: 10.3390/ijerph192215421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Although numerous efforts have been made to deepen our understanding of the etiology of Attention Deficit Hyperactivity Disorder (ADHD), no explanation of its origins, nor of its consequences, has yet found a consensus within the scientific community. This study performs a theoretical review of various research studies and provides a reflection on the role of emotions in the origin of the disorder, at the neuroanatomical and functional level. To this end, theoretical models (single and multiple origin) and applied studies are reviewed in order to broaden the perspective on the relevance of the executive system in ADHD; it is suggested that this construct is not only composed and activated by cognitive processes and functions, but also includes elements of an emotional and motivational nature. Consequently, it is shown that ADHD is involved in social development and in a person's ability to adapt to the environment.
Collapse
Affiliation(s)
- Rocío Lavigne-Cerván
- Department of Developmental and Educational Psychology, University of Malaga, 29071 Malaga, Spain
| | | | | | - Marta Romero-González
- Department of Developmental and Educational Psychology, University of Malaga, 29071 Malaga, Spain
| | - Sara Gamboa-Ternero
- Department of Developmental and Educational Psychology, University of Alicante, 03690 Alicante, Spain
| | - Gemma Rodríguez-Infante
- Department of Developmental and Educational Psychology, University of Malaga, 29071 Malaga, Spain
| | - Juan F. Romero-Pérez
- Department of Developmental and Educational Psychology, University of Malaga, 29071 Malaga, Spain
| |
Collapse
|
39
|
Wu H, Li T, Peng C, Yang C, Bian Y, Li X, Xiao Q, Wang P, Zhang Z, Zhang Y. The right prefrontal cortex (PFC) can distinguish anxious depression from non-anxious depression: A promising functional near infrared spectroscopy study (fNIRS). J Affect Disord 2022; 317:319-328. [PMID: 36007594 DOI: 10.1016/j.jad.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Anxious depression is a serious mental disorder characterized by comorbidity of anxiety and depression, and its symptoms are similar to those of non-anxious depression. This study aimed to use functional near-infrared spectroscopy (fNIRS) as a tool to distinguish between patients with anxious and non-anxious depression based on differences in hemodynamic changes in the right prefrontal cortex during the verbal fluency task. It is helpful to improve the diagnostic accuracy of the two disorders to further promote their therapeutic effect and prognosis. METHODS A total of 105 subjects, comprising 39 patients with anxious depression, 32 patients with non-anxious depression, and 32 healthy controls, were evaluated using 53-channel fNIRS and the Depression and Anxiety Clinical Scale. RESULTS Hemodynamic activation was significantly enhanced in the right dorsolateral prefrontal cortex (DLPFC) and right frontopole cortex (FPC) in the anxious depressed group compared with the non-anxious depressed and healthy groups. LIMITATIONS First, Hospital Anxiety and Depression Scale (HADS) was used to evaluate the scores of anxiety and depression among the three groups in our study. Different scales may result in different research results. Therefore, other scales (HAM, the Montgomery Asberg Depression Rating Scale, or the Beck Depression Inventory) should be used for further verification. Second, although all the samples we have chosen were patients with the diagnosis of anxious depression or no-anxious depression, we did not distinguish between different severity of anxious depression or no-anxious depression. Third, pure anxiety was not included as the control condition in our study. CONCLUSIONS There are significant differences in activation patterns of the right DLPFC and right FPC areas between patients with and without anxious depression. Moreover, the right FPC area is promising as a brain region to assess the severity of anxious depression. fNIRS may be a potential tool to improve diagnostic accuracy for both disorders.
Collapse
Affiliation(s)
- Huifen Wu
- School of Education, Huazhong University of Science and Technology, Wuhan, China; School of Education, Hubei Engineering University, Xiaogan, China
| | - Taiping Li
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Peng
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Caihong Yang
- School of Psychology, Central China Normal University, Wuhan, China
| | - Yueran Bian
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Xiao
- Department of Psychiatry, Huazhong University of Science and Technology Hospital, Wuhan, China
| | - Pu Wang
- Department of Rehabilitation Medicine in The Seventh Affiliated Hospital (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhe Zhang
- Department of Humanities and Social Sciences, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Bouchacourt F, Tafazoli S, Mattar MG, Buschman TJ, Daw ND. Fast rule switching and slow rule updating in a perceptual categorization task. eLife 2022; 11:e82531. [PMID: 36374181 PMCID: PMC9691033 DOI: 10.7554/elife.82531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
To adapt to a changing world, we must be able to switch between rules already learned and, at other times, learn rules anew. Often we must do both at the same time, switching between known rules while also constantly re-estimating them. Here, we show these two processes, rule switching and rule learning, rely on distinct but intertwined computations, namely fast inference and slower incremental learning. To this end, we studied how monkeys switched between three rules. Each rule was compositional, requiring the animal to discriminate one of two features of a stimulus and then respond with an associated eye movement along one of two different response axes. By modeling behavior, we found the animals learned the axis of response using fast inference (rule switching) while continuously re-estimating the stimulus-response associations within an axis (rule learning). Our results shed light on the computational interactions between rule switching and rule learning, and make testable neural predictions for these interactions.
Collapse
Affiliation(s)
- Flora Bouchacourt
- Princeton Neuroscience Institute and the Department of PsychologyPrincetonUnited States
| | - Sina Tafazoli
- Princeton Neuroscience Institute and the Department of PsychologyPrincetonUnited States
| | - Marcelo G Mattar
- Princeton Neuroscience Institute and the Department of PsychologyPrincetonUnited States
- Department of Cognitive Science, University of California, San DiegoSan DiegoUnited States
| | - Timothy J Buschman
- Princeton Neuroscience Institute and the Department of PsychologyPrincetonUnited States
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and the Department of PsychologyPrincetonUnited States
| |
Collapse
|
41
|
Hogeveen J, Medalla M, Ainsworth M, Galeazzi JM, Hanlon CA, Mansouri FA, Costa VD. What Does the Frontopolar Cortex Contribute to Goal-Directed Cognition and Action? J Neurosci 2022; 42:8508-8513. [PMID: 36351824 PMCID: PMC9665930 DOI: 10.1523/jneurosci.1143-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the unique functions of different subregions of primate prefrontal cortex has been a longstanding goal in cognitive neuroscience. Yet, the anatomy and function of one of its largest subregions (the frontopolar cortex) remain enigmatic and underspecified. Our Society for Neuroscience minisymposium Primate Frontopolar Cortex: From Circuits to Complex Behaviors will comprise a range of new anatomic and functional approaches that have helped to clarify the basic circuit anatomy of the frontal pole, its functional involvement during performance of cognitively demanding behavioral paradigms in monkeys and humans, and its clinical potential as a target for noninvasive brain stimulation in patients with brain disorders. This review consolidates knowledge about the anatomy and connectivity of frontopolar cortex and provides an integrative summary of its function in primates. We aim to answer the question: what, if anything, does frontopolar cortex contribute to goal-directed cognition and action?
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Boston, MA 02118
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Colleen A Hanlon
- Department of Cancer Biology
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Farshad Alizadeh Mansouri
- Department of Physiology, Monash Biomedicine Discovery Institute, Clayton Victoria, 3800, Australia
- ARC Centre for Integrative Brain Function, Monash University, Clayton Victoria, 3800, Australia
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006
| |
Collapse
|
42
|
Lin X, Zhu X, Zhou W, Zhang Z, Li P, Dong G, Meng S, Deng J, Lu L. Connectome-based predictive modelling of smoking severity in smokers. Addict Biol 2022; 27:e13242. [PMID: 36301219 DOI: 10.1111/adb.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
The functional connectivity within and between networks could provide a framework to characterize the neurobiological mechanism of nicotine addiction. This study examined the brain regions that were functionally connected in response to smoking cues and established the brain-behaviour relationships in smokers. Sixty-seven male smokers were enrolled and scanned while performing the cue-reactivity and Stroop task. A whole-brain analysis approach, connectome-based predictive modelling (CPM), was conducted on the data from the cue-reactivity task to identify the networks that could predict the smoking severity with the Shen atlas as templates. Then, the brain-behaviour relationships were verified in a different brain state (Stroop task). CPM identified the smoking severity-related network, as indicated by a significant correlation between predicted and actual smoking severity scores (r = 0.31, p = 0.02). Identified networks mainly involved the canonical networks implicated in the reward process (motor/sensory network and salience network) and executive control (frontoparietal network). Network strength in the Stroop task marginally significantly predicted smoking severity scores (r = 0.23, p = 0.06), partially replicating the brain-behaviour relationship. The CPM results identified the whole-brain neural network related to smoking severity, which was cross-validated by the AAL and Shen atlas. These findings contribute to more profound insights into neural substrates underlying the smoking severity.
Collapse
Affiliation(s)
- Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Weiran Zhou
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhibo Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Guangheng Dong
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
43
|
Prasannakumar A, Korann V, Jacob A, Bharath RD, Kumar V, Varambally S, Venkatasubramanian G, Rao NP. Relation between frontal pole volumes and cognitive insight in Schizophrenia. Asian J Psychiatr 2022; 76:103204. [PMID: 35907267 DOI: 10.1016/j.ajp.2022.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cognitive insight comprising self-reflection and self-certainty is an important determinant of functional outcomes in Schizophrenia. The neural correlates of cognitive insight in Schizophrenia are underexamined. The frontal pole (FP) is implicated in metacognitive function in healthy individuals, but its role is not well examined in Schizophrenia. We had earlier reported the relationship between Frontal pole volumes and cognitive insight in a small sample of only male patients. Hence, we studied this relationship in an independent sample of schizophrenia patients and healthy controls. METHODS We examined 41 healthy volunteers (HV) and 57 patients with Schizophrenia (SCZ). We used a previously validated manual morphometric method to perform FP parcellation on images obtained from a 3 T scanner and calculated the volumes. Cognitive insight was measured using Beck's Cognitive insight scale (BCIS). To assess the relationship between FP volumes and BCIS scores, multiple linear regression analyses were performed. RESULTS In the overall sample, age, years of education, and intracranial volume were significant predictors of BCIS scores. Within the SCZ group, age and left FP volume were significant predictors of BCIS composite scores and age, ICV for BCIS-self certainty. There was no significant relationship between age and FP volumes in either SCZ or HV group. DISCUSSION The current study in an independent sample further supports the critical role of the frontal pole in cognitive insight, earlier reported by us. As cognitive insight has a vital role in functional outcome, our findings have potential clinical implications.
Collapse
Affiliation(s)
- Akash Prasannakumar
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vittal Korann
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Arpitha Jacob
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | - Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|
44
|
Rodrigo AH, Di Domenico SI, Wright L, Page-Gould E, Fournier MA, Ayaz H, Ruocco AC. Interpersonal traits and the neural representations of cognitive control in the prefrontal cortex. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1001-1020. [PMID: 35332509 DOI: 10.3758/s13415-022-00986-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Adaptive interpersonal functioning relies on the effectiveness of behavioral and neural systems involved in cognitive control. Whether different subcomponents of cognitive control and their neural representations are associated with distinctive interpersonal dispositions has yet to be determined. The present study investigated the relationships between prefrontal cortex (PFC) activation associated with two subcomponents of cognitive control and individual differences in interpersonally relevant traits and facets within the Five-Factor Model of personality. Undergraduate participants (n = 237) provided self-ratings of interpersonal traits and underwent functional near-infrared spectroscopy to measure activation in regions-of-interest linked to subcomponents of cognitive control: the right lateral PFC and its involvement in response selection and inhibition/suppression (RS) during a go/no-go task, and the left lateral PFC associated with goal selection, updating, representation, and maintenance (GS) on a tower planning task. Multilevel models revealed that during both RS and GS, Neuroticism and Extraversion were associated with lower and higher levels of activation, respectively. Higher Agreeableness was related to lower activation during RS but also with greater activation during GS. More narrowly defined interpersonal facets subsumed within the broader trait domains were differentially associated with RS- and GS-related neural responses. Taken together, these findings highlight potential avenues of future research to better understand the ways in which the neural processes that subserve cognitive control may underlie interpersonal dispositions.
Collapse
Affiliation(s)
- Achala H Rodrigo
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | | | - Liam Wright
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | - Elizabeth Page-Gould
- Department of Psychology, University of Toronto (St. George), Toronto, ON, Canada
| | - Marc A Fournier
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Anthony C Ruocco
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada.
| |
Collapse
|
45
|
Li Y, Chen J, Zheng X, Liu J, Peng C, Liao Y, Liu Y. Cognitive deficit in adults with ADHD lies in the cognitive state disorder rather than the working memory deficit: A functional near-infrared spectroscopy study. J Psychiatr Res 2022; 154:332-340. [PMID: 36029728 DOI: 10.1016/j.jpsychires.2022.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023]
Abstract
This study tested whether cognitive deficit in patients with adult attention deficit hyperactivity disorder (ADHD) is a working memory deficit or cognitive state disorder during the N-back task. Twenty-two adults with ADHD and twenty-four healthy controls participated in the N-back task. The functional near-infrared spectroscopy (fNIRS) was combined with three perspectives from behavioral and spatial and temporal activation characteristics of blood oxygen levels in the prefrontal cortex to examine the psychological and neuroprocessing characteristics of adult ADHD. Data were acquired using a block design during an N-back task with three memory loads. Visual stimuli were presented on a computer monitor. Behaviorally, response time and accuracy showed no significant differences between the two groups. Spatially, in the left orbitofrontal area and the left frontopolar area (Channels 4 and 11), adult ADHD had significantly higher activation levels of oxyHb in the 2-back task and lower activation levels of deoxyHb in the 3-back task than healthy controls (corrected p < 0.05). Therefore, Channel 4 in the 2-back condition and Channel 11 in the 3-back condition were used as the regions of interest (ROI). Temporally, adults with ADHD peaked earlier in the ROIs than healthy controls. Furthermore, working memory deficit was not found directly from the behavioral performance in adult ADHD. However, adult ADHD can be affected by memory load, task duration, and novelty stimulus. Our findings suggest that patients with adult ADHD have cognitive state disorder instead of working memory deficit.
Collapse
Affiliation(s)
- Yaojin Li
- Educational Neuroscience Research Center, School of Educational Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Jianwen Chen
- Educational Neuroscience Research Center, School of Educational Sciences, Huazhong University of Science and Technology, Hubei, China.
| | - Xintong Zheng
- Educational Neuroscience Research Center, School of Educational Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Jianxiu Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Cong Peng
- Educational Neuroscience Research Center, School of Educational Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Youguo Liao
- Educational Neuroscience Research Center, School of Educational Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Yan Liu
- School of Educational Sciences, Hunan University of Science and Technology, Hunan, China
| |
Collapse
|
46
|
Gilbert ZD, Martin Del Campo-Vera R, Tang AM, Chen KH, Sebastian R, Shao A, Tabarsi E, Chung RS, Leonor A, Sundaram S, Heck C, Nune G, Liu CY, Kellis S, Lee B. Baseline hippocampal beta band power Is lower in the presence of movement uncertainty. J Neural Eng 2022; 19. [PMID: 35803209 DOI: 10.1088/1741-2552/ac7fb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Objective This study aimed to characterize hippocampal neural signatures of uncertainty by measuring beta band power in the period prior to movement cue. Approach Participants with epilepsy were implanted with hippocampal depth electrodes for stereo electroencephalographic (SEEG) monitoring. Hippocampal beta (13-30 Hz) power changes have been observed during motor tasks such as the direct reach (DR) and Go/No-Go (GNG) tasks. The primary difference between the tasks is the presence of uncertainty about whether movement should be executed. Previous research on cortical responses to uncertainty has found that baseline beta power changes with uncertainty. SEEG data were sampled throughout phases of the DR and GNG tasks. Beta-band power during the fixation phase was compared between the DR and GNG task using a Wilcoxon rank sum test. This unpaired test was also used to analyze response times from cue to task completion between tasks. Main Results Eight patients who performed both reaching tasks were analyzed in this study. Movement response times in the GNG task were on average 210 milliseconds slower than in the DR task. All patients exhibited a significantly increased response latency in the GNG task compared to the DR task (Wilcoxon rank-sum p-value < 0.001). Six out of eight patients demonstrated statistically significant differences in beta power in single hippocampal contacts between the fixation phases of the GNG and DR tasks. At the group level, baseline beta power was significantly lower in the GNG task than in the DR task (Wilcoxon rank-sum p-value < 0.001). Significance This novel study found that, in the presence of task uncertainty, baseline beta power in the hippocampus is lower than in its absence. This finding implicates movement uncertainty as an important factor in baseline hippocampal beta power during movement preparation.
Collapse
Affiliation(s)
- Zachary D Gilbert
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Austin M Tang
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Rinu Sebastian
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Arthur Shao
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Emiliano Tabarsi
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Ryan S Chung
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Andrea Leonor
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Shivani Sundaram
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Christi Heck
- Neurorestoration Center and Department of Neurology, University of Southern California Keck School of Medicine, 2051 Marengo Street, Los Angeles, California, 90033, UNITED STATES
| | - George Nune
- Neurorestoration Center and Department of Neurology, University of Southern California Keck School of Medicine, 2051 Marengo Street, Los Angeles, California, 90033, UNITED STATES
| | - Charles Y Liu
- Neurorestoration Center and Department of Neurological Surgery and Neurology, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Spencer Kellis
- Neurorestoration Center and Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Brian Lee
- Neuroresotoration Center and Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| |
Collapse
|
47
|
Chiarella SG, Torromino G, Gagliardi DM, Rossi D, Babiloni F, Cartocci G. Investigating the negative bias towards artificial intelligence: Effects of prior assignment of AI-authorship on the aesthetic appreciation of abstract paintings. COMPUTERS IN HUMAN BEHAVIOR 2022. [DOI: 10.1016/j.chb.2022.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Seok D, Tadayonnejad R, Wong WW, O'Neill J, Cockburn J, Bari AA, O'Doherty JP, Feusner JD. Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. Neuroimage Clin 2022; 35:103073. [PMID: 35689978 PMCID: PMC9192960 DOI: 10.1016/j.nicl.2022.103073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Obsessive-compulsive and related disorders (OCRD) include OCD and BDD. Neural differences in decision-making arbitration may underlie OCRD symptoms. Resting-state effective connectivity was used to assess arbitration circuitry. Greater left putamen inhibition via left ventrolateral prefrontal cortex in OCRD. Stronger left putamen inhibition was correlated with less severe symptoms. Obsessions and compulsions are central components of obsessive–compulsive disorder (OCD) and obsessive–compulsive related disorders such as body dysmorphic disorder (BDD). Compulsive behaviours may result from an imbalance of habitual and goal-directed decision-making strategies. The relationship between these symptoms and the neural circuitry underlying habitual and goal-directed decision-making, and the arbitration between these strategies, remains unknown. This study examined resting state effective connectivity between nodes of these systems in two cohorts with obsessions and compulsions, each compared with their own corresponding healthy controls: OCD (nOCD = 43; nhealthy = 24) and BDD (nBDD = 21; nhealthy = 16). In individuals with OCD, the left ventrolateral prefrontal cortex, a node of the arbitration system, exhibited more inhibitory causal influence over the left posterolateral putamen, a node of the habitual system, compared with controls. Inhibitory causal influence in this connection showed a trend for a similar pattern in individuals with BDD compared with controls. Those with stronger negative connectivity had lower obsession and compulsion severity in both those with OCD and those with BDD. These relationships were not evident within the habitual or goal-directed circuits, nor were they associated with depressive or anxious symptomatology. These results suggest that abnormalities in the arbitration system may represent a shared neural phenotype across these two related disorders that is specific to obsessive–compulsive symptoms. In addition to nosological implications, these results identify potential targets for novel, circuit-specific treatments.
Collapse
Affiliation(s)
- Darsol Seok
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- Division of Neuromodulation, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA
| | - Wan-Wa Wong
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Joseph O'Neill
- Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jeff Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA
| | - Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA; Computation & Neural Systems Program, California Institute of Technology, Pasadena, CA, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Jamie D Feusner
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Temerty Faculty of Medicine, Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Department of Women's and Children's Health, The Karolinska Institute, Tomtebodavägen 18A, 171 77 Solna, Sweden.
| |
Collapse
|
49
|
Kotikalapudi R, Dricu M, Moser DA, Aue T. Brain Structure and Optimism Bias: A Voxel-Based Morphometry Approach. Brain Sci 2022; 12:315. [PMID: 35326271 PMCID: PMC8946158 DOI: 10.3390/brainsci12030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Individuals often anticipate an unrealistically favorable future for themselves (personal optimism bias) or others (social optimism bias). While such biases are well established, little is known about their neuroanatomy. In this study, participants engaged in a soccer task and estimated the likelihood of successful passes in personal and social scenarios. Voxel-based morphometry revealed that personal optimism bias varied as a positive function of gray matter volume (GMV) in the putamen, frontal pole, hippocampus, temporal pole, inferior temporal gyrus, visual association areas, and mid-superior temporal gyrus. Social optimism bias correlated positively with GMV in the temporoparietal junction and negatively with GMV in the inferior temporal gyrus and pre-supplementary motor areas. Together, these findings suggest that parts of our optimistic outlook are biologically rooted. Moreover, while the two biases looked similar at the behavioral level, they were related to distinct gray matter structures, proposing that their underlying mechanisms are not identical.
Collapse
Affiliation(s)
- Raviteja Kotikalapudi
- Institute for Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; (M.D.); (D.A.M.)
| | | | | | - Tatjana Aue
- Institute for Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; (M.D.); (D.A.M.)
| |
Collapse
|
50
|
Privitera AJ, Tang AC. Functional Significance of Individual Differences in P3 Network Spatial Configuration. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The amplitude and latency of the P3 component in the electroencephalogram (EEG) event-related potentials (ERPs) are among the most extensively used markers for individual differences in normal and abnormal brain functions. In contrast, individual variations in spatial topography of the temporally-defined P3 component are relatively under-explored. Development in EEG-based source imaging opened up the possibility that individual-specific spatial configuration of the neural network underlying the temporally-defined P3 component bear a novel source of information for marking an individual difference in behavioral and cognitive function. In testing this hypothesis, a hybrid method consisting of blind source separation (BSS), equivalent current dipole (ECD) modeling, and hits-vector-based analysis was applied to continuous un-epoched EEG data collected from 13 healthy human participants performing a visual color oddball task. By analyzing the spatial configuration of the network underlying the temporally-defined P3 component, hereafter referred to as the P3N, we discovered that the contribution of each constituent structure within the P3N is not uniform. Instead, frontal lobe structures have significantly more involvement than other constituent structures, as quantitatively characterized by cross-individual reliability and a within-individual contribution to the P3N. A factor analysis of the hits vector data revealed that although P3 latency and amplitude did not show significant correlations with measures of the behavioral outcomes, scores of two factors derived from the hits vectors selectively predict behavioral reaction time and response correctness. These results support the hypothesis that variations in P3 spatial configuration reflect not merely noise but individual-specific features with functional significance.
Collapse
Affiliation(s)
- Adam John Privitera
- College of Liberal Arts, Wenzhou-Kean University, Wenzhou, PR China
- Faculty of Education, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Akaysha C. Tang
- Neural Dialogue Shenzhen Educational Technology, Shenzhen, PR China
- Neuroscience for Education Group, The University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|