1
|
Davison KE, Liu T, Belisle RM, Perrachione TK, Qi Z, Gabrieli JDE, Tager-Flusberg H, Zuk J. Right-Hemispheric White Matter Organization Is Associated With Speech Timing in Autistic Children. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025:1-15. [PMID: 40388906 DOI: 10.1044/2025_jslhr-24-00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
PURPOSE Converging research suggests that speech timing, including altered rate and pausing when speaking, can distinguish autistic individuals from nonautistic peers. Although speech timing can impact effective social communication, it remains unclear what mechanisms underlie individual differences in speech timing in autism. METHOD The present study examined the organization of speech- and language-related neural pathways in relation to speech timing in autistic and nonautistic children (24 autistic children, 24 nonautistic children [ages: 5-17 years]). Audio recordings from a naturalistic language sampling task (via narrative generation) were transcribed to extract speech timing features (speech rate, pause duration). White matter organization (as indicated by fractional anisotropy [FA]) was estimated for key tracts bilaterally (arcuate fasciculus, superior longitudinal fasciculus [SLF], inferior longitudinal fasciculus [ILF], frontal aslant tract [FAT]). RESULTS Results indicate associations between speech timing and right-hemispheric white matter organization (FA in the right ILF and FAT) were specific to autistic children and not observed among nonautistic controls. Among nonautistic children, associations with speech timing were specific to the left hemisphere (FA in the left SLF). CONCLUSION Overall, these findings enhance understanding of the neural architecture influencing speech timing in autistic children and, thus, carry implications for understanding potential neural mechanisms underlying speech timing differences in autism. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.28934432.
Collapse
Affiliation(s)
- Kelsey E Davison
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Talia Liu
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Rebecca M Belisle
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | | | - Zhenghan Qi
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | | | - Jennifer Zuk
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| |
Collapse
|
2
|
Chang SE, Below JE, Chow HM, Guenther FH, Hampton Wray AM, Jackson ES, Max L, Neef NE, SheikhBahaei S, Shekim L, Tichenor SE, Walsh B, Watkins KE, Yaruss JS, Bernstein Ratner N. Stuttering: Our Current Knowledge, Research Opportunities, and Ways to Address Critical Gaps. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00162. [PMID: 40201450 PMCID: PMC11977836 DOI: 10.1162/nol_a_00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/28/2025] [Indexed: 04/10/2025]
Abstract
Our understanding of the neurobiological bases of stuttering remains limited, hampering development of effective treatments that are informed by basic science. Stuttering affects more than 5% of all preschool-age children and remains chronic in approximately 1% of adults worldwide. As a condition that affects a most fundamental human ability to engage in fluid and spontaneous verbal communication, stuttering can have substantial psychosocial, occupational, and educational impacts on those who are affected. This article summarizes invited talks and breakout sessions that were held in June 2023 as part of a 2-day workshop sponsored by the US National Institute on Deafness and Other Communication Disorders. The workshop encompassed topics including neurobiology, genetics, speech motor control, cognitive, social, and emotional impacts, and intervention. Updates on current research in these areas were summarized by each speaker, and critical gaps and priorities for future research were raised, and then discussed by participants. Research talks were followed by smaller, moderated breakout sessions intended to elicit diverse perspectives, including on the matter of defining therapeutic targets for stuttering. A major concern that emerged following participant discussion was whether priorities for treatment in older children and adults should focus on targeting core speech symptoms of stuttering, or on embracing effective communication regardless of whether the speaker exhibits overt stuttering. This article concludes with accumulated convergent points endorsed by most attendees on research and clinical priorities that may lead to breakthroughs with substantial potential to contribute to bettering the lives of those living with this complex speech disorder.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Jennifer E. Below
- The Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Frank H. Guenther
- Departments of Speech, Language, & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Amanda M. Hampton Wray
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, USA
| | - Ludo Max
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Nicole E. Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lana Shekim
- National Institute on Deafness and other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Seth E. Tichenor
- Department of Speech-Language Pathology, Duquesne University, Pittsburgh, PA, USA
| | - Bridget Walsh
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - J. Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Nan Bernstein Ratner
- Department of Hearing and Speech Sciences & Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Liu W, Ma D, Cao C, Liu S, Ma X, Jia F, Li P, Zhang H, Liao Y, Qu H. Abnormal cerebral blood flow in children with developmental stuttering. Pediatr Res 2024; 96:1759-1764. [PMID: 38914760 DOI: 10.1038/s41390-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Chuanlong Cao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Sai Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - XinMao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Demirel B, Chesters J, Connally EL, Gough PM, Ward D, Howell P, Watkins KE. No evidence of altered language laterality in people who stutter across different brain imaging studies of speech and language. Brain Commun 2024; 6:fcae305. [PMID: 39346021 PMCID: PMC11430911 DOI: 10.1093/braincomms/fcae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
A long-standing neurobiological explanation of stuttering is the incomplete cerebral dominance theory, which refers to competition between two hemispheres for 'dominance' over handedness and speech, causing altered language lateralization. Renewed interest in these ideas came from brain imaging findings in people who stutter of increased activity in the right hemisphere during speech production or of shifts in activity from right to left when fluency increased. Here, we revisited this theory using functional MRI data from children and adults who stutter, and typically fluent speakers (119 participants in total) during four different speech and language tasks: overt sentence reading, overt picture description, covert sentence reading and covert auditory naming. Laterality indices were calculated for the frontal and temporal lobes using the laterality index toolbox running in Statistical Parametric Mapping. We also repeated the analyses with more specific language regions, namely the pars opercularis (Brodmann area 44) and pars triangularis (Brodmann area 45). Laterality indices in people who stutter and typically fluent speakers did not differ, and Bayesian analyses provided moderate to anecdotal levels of support for the null hypothesis (i.e. no differences in laterality in people who stutter compared with typically fluent speakers). The proportions of the people who stutter and typically fluent speakers who were left lateralized or had atypical rightward or bilateral lateralization did not differ. We found no support for the theory that language laterality is reduced or differs in people who stutter compared with typically fluent speakers.
Collapse
Affiliation(s)
- Birtan Demirel
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Jennifer Chesters
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Emily L Connally
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Patricia M Gough
- School of Psychology, University College Dublin, Dublin DN720/PCS2, Ireland
| | - David Ward
- School of Psychology & Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Peter Howell
- Experimental Psychology, Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Kate E Watkins
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
5
|
Neef NE, Chang SE. Knowns and unknowns about the neurobiology of stuttering. PLoS Biol 2024; 22:e3002492. [PMID: 38386639 PMCID: PMC10883586 DOI: 10.1371/journal.pbio.3002492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Stuttering occurs in early childhood during a dynamic phase of brain and behavioral development. The latest studies examining children at ages close to this critical developmental period have identified early brain alterations that are most likely linked to stuttering, while spontaneous recovery appears related to increased inter-area connectivity. By contrast, therapy-driven improvement in adults is associated with a functional reorganization within and beyond the speech network. The etiology of stuttering, however, remains enigmatic. This Unsolved Mystery highlights critical questions and points to neuroimaging findings that could inspire future research to uncover how genetics, interacting neural hierarchies, social context, and reward circuitry contribute to the many facets of stuttering.
Collapse
Affiliation(s)
- Nicole E. Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Communication Disorders, Ewha Womans University, Seoul, Korea
| |
Collapse
|
6
|
Matsuhashi K, Itahashi T, Aoki R, Hashimoto RI. Meta-analysis of structural integrity of white matter and functional connectivity in developmental stuttering. Brain Res Bull 2023; 205:110827. [PMID: 38013029 DOI: 10.1016/j.brainresbull.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.
Collapse
Affiliation(s)
- Kengo Matsuhashi
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | | |
Collapse
|
7
|
Miller HE, Garnett EO, Heller Murray ES, Nieto-Castañón A, Tourville JA, Chang SE, Guenther FH. A comparison of structural morphometry in children and adults with persistent developmental stuttering. Brain Commun 2023; 5:fcad301. [PMID: 38025273 PMCID: PMC10653153 DOI: 10.1093/braincomms/fcad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
This cross-sectional study aimed to differentiate earlier occurring neuroanatomical differences that may reflect core deficits in stuttering versus changes associated with a longer duration of stuttering by analysing structural morphometry in a large sample of children and adults who stutter and age-matched controls. Whole-brain T1-weighted structural scans were obtained from 166 individuals who stutter (74 children, 92 adults; ages 3-58) and 191 controls (92 children, 99 adults; ages 3-53) from eight prior studies in our laboratories. Mean size and gyrification measures were extracted using FreeSurfer software for each cortical region of interest. FreeSurfer software was also used to generate subcortical volumes for regions in the automatic subcortical segmentation. For cortical analyses, separate ANOVA analyses of size (surface area, cortical thickness) and gyrification (local gyrification index) measures were conducted to test for a main effect of diagnosis (stuttering, control) and the interaction of diagnosis-group with age-group (children, adults) across cortical regions. Cortical analyses were first conducted across a set of regions that comprise the speech network and then in a second whole-brain analysis. Next, separate ANOVA analyses of volume were conducted across subcortical regions in each hemisphere. False discovery rate corrections were applied for all analyses. Additionally, we tested for correlations between structural morphometry and stuttering severity. Analyses revealed thinner cortex in children who stutter compared with controls in several key speech-planning regions, with significant correlations between cortical thickness and stuttering severity. These differences in cortical size were not present in adults who stutter, who instead showed reduced gyrification in the right inferior frontal gyrus. Findings suggest that early cortical anomalies in key speech planning regions may be associated with stuttering onset. Persistent stuttering into adulthood may result from network-level dysfunction instead of focal differences in cortical morphometry. Adults who stutter may also have a more heterogeneous neural presentation than children who stutter due to their unique lived experiences.
Collapse
Affiliation(s)
- Hilary E Miller
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth S Heller Murray
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Communication Sciences & Disorders, Temple University, Philadelphia, PA 19122, USA
| | - Alfonso Nieto-Castañón
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Jason A Tourville
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Communication Disorders, Ewha Womans University, Seoul 03760, Korea
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI 48824, USA
| | - Frank H Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
SheikhBahaei S, Millwater M, Maguire GA. Stuttering as a spectrum disorder: A hypothesis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100116. [PMID: 38020803 PMCID: PMC10663130 DOI: 10.1016/j.crneur.2023.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Gerald A. Maguire
- CenExel Research/ American University of Health Sciences, Signal Hill, CA, 90755, USA
| |
Collapse
|
9
|
Briley PM. Reactions and responses to anticipation of stuttering and how they contribute to stuttered speech that listeners perceive as fluent - An opinion paper. JOURNAL OF FLUENCY DISORDERS 2023; 77:105997. [PMID: 37515980 DOI: 10.1016/j.jfludis.2023.105997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The experience of stuttering is wide ranging and includes a variety of perceived and unperceived behaviors and experiences. One of those experiences is anticipation of stuttering. While anticipation of stuttering is commonly discussed in terms of being a prediction of an upcoming event, it has also been equated to an internal realization of stuttering - which is the conceptualization applied here. The aim of this paper is to impress upon the reader that anticipated moments of stuttering (whether at a conscious or subconscious level) must be met with an adaptive reaction or response (which may also occur consciously or subconsciously). While these adaptive reactions and responses may differ based on whether they promote positive or negative communicative behaviors, they still represent adaptations by the speaker. Among the broad category of reactions and responses to anticipation of stuttering are motoric adaptations to speech, which include characteristic stuttering behaviors and other adaptations that may contribute to speech that is perceived by listeners as fluent. An outcome of this conceptualization is, even when adaptations result in listener perceived fluency, the speech of the person who stutters is still controlled by stuttering - meaning that some observable or unobservable adaptation is required. It is critical that speech-language pathologists recognize that the behaviors of people who stutter may reflect reactions and responses to an internal realization of stuttering and observable and unobservable reactions and responses must be considered in both assessments and interventions.
Collapse
Affiliation(s)
- Patrick M Briley
- Department of Communication Sciences & Disorders, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
10
|
Chow HM, Garnett EO, Koenraads SPC, Chang SE. Brain developmental trajectories associated with childhood stuttering persistence and recovery. Dev Cogn Neurosci 2023; 60:101224. [PMID: 36863188 PMCID: PMC9986501 DOI: 10.1016/j.dcn.2023.101224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Stuttering is a neurodevelopmental disorder affecting 5-8 % of preschool-age children, continuing into adulthood in 1 % of the population. The neural mechanisms underlying persistence and recovery from stuttering remain unclear and little information exists on neurodevelopmental anomalies in children who stutter (CWS) during preschool age, when stuttering symptoms typically first emerge. Here we present findings from the largest longitudinal study of childhood stuttering to date, comparing children with persistent stuttering (pCWS) and those who later recovered from stuttering (rCWS) with age-matched fluent peers, to examine the developmental trajectories of both gray matter volume (GMV) and white matter volume (WMV) using voxel-based morphometry. A total of 470 MRI scans were analyzed from 95 CWS (72 pCWS and 23 rCWS) and 95 fluent peers between 3 and 12 years of age. We examined overall group and group by age interactions in GMV and WMV in preschool age (3-5 years old) and school age (6-12 years old) CWS and controls, controlling for sex, IQ, intracranial volume, and socioeconomic status. The results provide broad support for a possible basal ganglia-thalamocortical (BGTC) network deficit starting in the earliest phases of the disorder and point to normalization or compensation of earlier occurring structural changes associated with stuttering recovery.
Collapse
Affiliation(s)
- Ho Ming Chow
- University of Delaware, Department of Communication Sciences and Disorders, Newark, DE 19713, USA
| | - Emily O Garnett
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Soo-Eun Chang
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Neef NE, Angstadt M, Koenraads SPC, Chang SE. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter. Cereb Cortex 2023; 33:4085-4100. [PMID: 36057839 PMCID: PMC10068293 DOI: 10.1093/cercor/bhac328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inferior frontal cortex pars opercularis (IFCop) features a distinct cerebral dominance and vast functional heterogeneity. Left and right IFCop are implicated in developmental stuttering. Weak left IFCop connections and divergent connectivity of hyperactive right IFCop regions have been related to impeded speech. Here, we reanalyzed diffusion magnetic resonance imaging data from 83 children (41 stuttering). We generated connection probability maps of functionally segregated area 44 parcels and calculated hemisphere-wise analyses of variance. Children who stutter showed reduced connectivity of executive, rostral-motor, and caudal-motor corticostriatal projections from the left IFCop. We discuss this finding in the context of tracing studies from the macaque area 44, which leads to the need to reconsider current models of speech motor control. Unlike the left, the right IFCop revealed increased connectivity of the inferior posterior ventral parcel and decreased connectivity of the posterior dorsal parcel with the anterior insula, particularly in stuttering boys. This divergent connectivity pattern in young children adds to the debate on potential core deficits in stuttering and challenges the theory that right hemisphere differences might exclusively indicate compensatory changes that evolve from lifelong exposure. Instead, early right prefrontal connectivity differences may reflect additional brain signatures of aberrant cognition-emotion-action influencing speech motor control.
Collapse
Affiliation(s)
- Nicole E Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Simone P C Koenraads
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Wytemaweg 80, 3015 CNRotterdam, the Netherlands
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
- Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, MI 48824, USA
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, 846 Service Road, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Höbler F, Bitan T, Tremblay L, De Nil L. Explicit benefits: Motor sequence acquisition and short-term retention in adults who do and do not stutter. JOURNAL OF FLUENCY DISORDERS 2023; 75:105959. [PMID: 36736073 DOI: 10.1016/j.jfludis.2023.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Motor sequencing skills have been found to distinguish individuals who experience developmental stuttering from those who do not stutter, with these differences extending to non-verbal sequencing behaviour. Previous research has focused on measures of reaction time and practice under externally cued conditions to decipher the motor learning abilities of persons who stutter. Without the confounds of extraneous demands and sensorimotor processing, we investigated motor sequence learning under conditions of explicit awareness and focused practice among adults with persistent development stuttering. Across two consecutive practice sessions, 18 adults who stutter (AWS) and 18 adults who do not stutter (ANS) performed the finger-to-thumb opposition sequencing (FOS) task. Both groups demonstrated significant within-session performance improvements, as evidenced by fast on-line learning of finger sequences on day one. Additionally, neither participant group showed deterioration of their learning gains the following day, indicating a relative stabilization of finger sequencing performance during the off-line period. These findings suggest that under explicit and focused conditions, early motor learning gains and their short-term retention do not differ between AWS and ANS. Additional factors influencing motor sequencing performance, such as task complexity and saturation of learning, are also considered. Further research into explicit motor learning and its generalization following extended practice and follow-up in persons who stutter is warranted. The potential benefits of motor practice generalizability among individuals who stutter and its relevance to supporting treatment outcomes are suggested as future areas of investigation.
Collapse
Affiliation(s)
- Fiona Höbler
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada.
| | - Tali Bitan
- Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Psychology and IIPDM, University of Haifa, Haifa 3498838, Israel
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Clara Benson Building, 320 Huron St., Room 231, Toronto, ON M5S 3J7, Canada; KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Luc De Nil
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
13
|
Jackson ES, Dravida S, Zhang X, Noah JA, Gracco V, Hirsch J. Activation in Right Dorsolateral Prefrontal Cortex Underlies Stuttering Anticipation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:469-494. [PMID: 37216062 PMCID: PMC10158639 DOI: 10.1162/nol_a_00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 05/24/2023]
Abstract
People who stutter learn to anticipate many of their overt stuttering events. Despite the critical role of anticipation, particularly how responses to anticipation shape stuttering behaviors, the neural bases associated with anticipation are unknown. We used a novel approach to identify anticipated and unanticipated words, which were produced by 22 adult stutterers in a delayed-response task while hemodynamic activity was measured using functional near infrared spectroscopy (fNIRS). Twenty-two control participants were included such that each individualized set of anticipated and unanticipated words was produced by one stutterer and one control participant. We conducted an analysis on the right dorsolateral prefrontal cortex (R-DLPFC) based on converging lines of evidence from the stuttering and cognitive control literatures. We also assessed connectivity between the R-DLPFC and right supramarginal gyrus (R-SMG), two key nodes of the frontoparietal network (FPN), to assess the role of cognitive control, and particularly error-likelihood monitoring, in stuttering anticipation. All analyses focused on the five-second anticipation phase preceding the go signal to produce speech. The results indicate that anticipated words are associated with elevated activation in the R-DLPFC, and that compared to non-stutterers, stutterers exhibit greater activity in the R-DLPFC, irrespective of anticipation. Further, anticipated words are associated with reduced connectivity between the R-DLPFC and R-SMG. These findings highlight the potential roles of the R-DLPFC and the greater FPN as a neural substrate of stuttering anticipation. The results also support previous accounts of error-likelihood monitoring and action-stopping in stuttering anticipation. Overall, this work offers numerous directions for future research with clinical implications for targeted neuromodulation.
Collapse
Affiliation(s)
- Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, USA
| | - Swethasri Dravida
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J. Adam Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Gracco
- Haskins Laboratories, New Haven, CT, USA
- McGill University, Montreal, Canada
| | - Joy Hirsch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
14
|
Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis. Brain Sci 2022; 12:brainsci12081030. [PMID: 36009093 PMCID: PMC9406059 DOI: 10.3390/brainsci12081030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Stuttering is characterized by dysfluency and difficulty in speech production. Previous research has found abnormalities in the neural function of various brain areas during speech production tasks. However, the cognitive neural mechanism of stuttering has still not been fully determined. Method: Activation likelihood estimation analysis was performed to provide neural imaging evidence on neural bases by reanalyzing published studies. Results: Our analysis revealed overactivation in the bilateral posterior superior temporal gyrus, inferior frontal gyrus, medial frontal gyrus, precentral gyrus, postcentral gyrus, basal ganglia, and cerebellum, and deactivation in the anterior superior temporal gyrus and middle temporal gyrus among the stutterers. The overactivated regions might indicate a greater demand in feedforward planning in speech production, while the deactivated regions might indicate dysfunction in the auditory feedback system among stutterers. Conclusions: Our findings provide updated and direct evidence on the multi-level impairment (feedforward and feedback systems) of stutterers during speech production and show that the corresponding neural bases were differentiated.
Collapse
|
15
|
Differences in implicit motor learning between adults who do and do not stutter. Neuropsychologia 2022; 174:108342. [PMID: 35931135 DOI: 10.1016/j.neuropsychologia.2022.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Implicit learning allows us to acquire complex motor skills through repeated exposure to sensory cues and repetition of motor behaviours, without awareness or effort. Implicit learning is also critical to the incremental fine-tuning of the perceptual-motor system. To understand how implicit learning and associated domain-general learning processes may contribute to motor learning differences in people who stutter, we investigated implicit finger-sequencing skills in adults who do (AWS) and do not stutter (ANS) on an Alternating Serial Reaction Time task. Our results demonstrated that, while all participants showed evidence of significant sequence-specific learning in their speed of performance, male AWS were slower and made fewer sequence-specific learning gains than their ANS counterparts. Although there were no learning gains evident in accuracy of performance, AWS performed the implicit learning task more accurately than ANS, overall. These findings may have implications for sex-based differences in the experience of developmental stuttering, for the successful acquisition of complex motor skills during development by individuals who stutter, and for the updating and automatization of speech motor plans during the therapeutic process.
Collapse
|
16
|
Das A, Mock J, Irani F, Huang Y, Najafirad P, Golob E. Multimodal explainable AI predicts upcoming speech behavior in adults who stutter. Front Neurosci 2022; 16:912798. [PMID: 35979337 PMCID: PMC9376608 DOI: 10.3389/fnins.2022.912798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
A key goal of cognitive neuroscience is to better understand how dynamic brain activity relates to behavior. Such dynamics, in terms of spatial and temporal patterns of brain activity, are directly measured with neurophysiological methods such as EEG, but can also be indirectly expressed by the body. Autonomic nervous system activity is the best-known example, but, muscles in the eyes and face can also index brain activity. Mostly parallel lines of artificial intelligence research show that EEG and facial muscles both encode information about emotion, pain, attention, and social interactions, among other topics. In this study, we examined adults who stutter (AWS) to understand the relations between dynamic brain and facial muscle activity and predictions about future behavior (fluent or stuttered speech). AWS can provide insight into brain-behavior dynamics because they naturally fluctuate between episodes of fluent and stuttered speech behavior. We focused on the period when speech preparation occurs, and used EEG and facial muscle activity measured from video to predict whether the upcoming speech would be fluent or stuttered. An explainable self-supervised multimodal architecture learned the temporal dynamics of both EEG and facial muscle movements during speech preparation in AWS, and predicted fluent or stuttered speech at 80.8% accuracy (chance=50%). Specific EEG and facial muscle signals distinguished fluent and stuttered trials, and systematically varied from early to late speech preparation time periods. The self-supervised architecture successfully identified multimodal activity that predicted upcoming behavior on a trial-by-trial basis. This approach could be applied to understanding the neural mechanisms driving variable behavior and symptoms in a wide range of neurological and psychiatric disorders. The combination of direct measures of neural activity and simple video data may be applied to developing technologies that estimate brain state from subtle bodily signals.
Collapse
Affiliation(s)
- Arun Das
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffrey Mock
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| | - Farzan Irani
- Department of Communication Disorders, Texas State University, San Marcos, TX, United States
| | - Yufei Huang
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Peyman Najafirad
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| | - Edward Golob
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Garnett EO, Chow HM, Limb S, Liu Y, Chang SE. Neural activity during solo and choral reading: A functional magnetic resonance imaging study of overt continuous speech production in adults who stutter. Front Hum Neurosci 2022; 16:894676. [PMID: 35937674 PMCID: PMC9353050 DOI: 10.3389/fnhum.2022.894676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023] Open
Abstract
Previous neuroimaging investigations of overt speech production in adults who stutter (AWS) found increased motor and decreased auditory activity compared to controls. Activity in the auditory cortex is heightened, however, under fluency-inducing conditions in which AWS temporarily become fluent while synchronizing their speech with an external rhythm, such as a metronome or another speaker. These findings suggest that stuttering is associated with disrupted auditory motor integration. Technical challenges in acquiring neuroimaging data during continuous overt speech production have limited experimental paradigms to short or covert speech tasks. Such paradigms are not ideal, as stuttering primarily occurs during longer speaking tasks. To address this gap, we used a validated spatial ICA technique designed to address speech movement artifacts during functional magnetic resonance imaging (fMRI) scanning. We compared brain activity and functional connectivity of the left auditory cortex during continuous speech production in two conditions: solo (stutter-prone) and choral (fluency-inducing) reading tasks. Overall, brain activity differences in AWS relative to controls in the two conditions were similar, showing expected patterns of hyperactivity in premotor/motor regions but underactivity in auditory regions. Functional connectivity of the left auditory cortex (STG) showed that within the AWS group there was increased correlated activity with the right insula and inferior frontal area during choral speech. The AWS also exhibited heightened connectivity between left STG and key regions of the default mode network (DMN) during solo speech. These findings indicate possible interference by the DMN during natural, stuttering-prone speech in AWS, and that enhanced coordination between auditory and motor regions may support fluent speech.
Collapse
Affiliation(s)
- Emily O. Garnett
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ho Ming Chow
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Sarah Limb
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Yanni Liu
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Soo-Eun Chang
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Criscuolo A, Schwartze M, Kotz SA. Cognition through the lens of a body–brain dynamic system. Trends Neurosci 2022; 45:667-677. [DOI: 10.1016/j.tins.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
|
19
|
Neef NE, Korzeczek A, Primaßin A, Wolff von Gudenberg A, Dechent P, Riedel CH, Paulus W, Sommer M. White matter tract strength correlates with therapy outcome in persistent developmental stuttering. Hum Brain Mapp 2022; 43:3357-3374. [PMID: 35415866 PMCID: PMC9248304 DOI: 10.1002/hbm.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022] Open
Abstract
Persistent stuttering is a prevalent neurodevelopmental speech disorder, which presents with involuntary speech blocks, sound and syllable repetitions, and sound prolongations. Affected individuals often struggle with negative feelings, elevated anxiety, and low self-esteem. Neuroimaging studies frequently link persistent stuttering with cortical alterations and dysfunctional cortico-basal ganglia-thalamocortical loops; dMRI data also point toward connectivity changes of the superior longitudinal fasciculus (SLF) and the frontal aslant tract (FAT). Both tracts are involved in speech and language functions, and the FAT also supports inhibitory control and conflict monitoring. Whether the two tracts are involved in therapy-associated improvements and how they relate to therapeutic outcomes is currently unknown. Here, we analyzed dMRI data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 27 fluent control participants, measured 1 year apart. We used diffusion tractography to segment the SLF and FAT bilaterally and to quantify their microstructural properties before and after a fluency-shaping program. Participants learned to speak with soft articulation, pitch, and voicing during a 2-week on-site boot camp and computer-assisted biofeedback-based daily training for 1 year. Therapy had no impact on the microstructural properties of the two tracts. Yet, after therapy, stuttering severity correlated positively with left SLF fractional anisotropy, whereas relief from the social-emotional burden to stutter correlated negatively with right FAT fractional anisotropy. Thus, posttreatment, speech motor performance relates to the left dorsal stream, while the experience of the adverse impact of stuttering relates to the structure recently associated with conflict monitoring and action inhibition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Annika Primaßin
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Fachbereich Gesundheit, FH Münster University of Applied Sciences, Münster, Germany
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Heiner Riedel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Gracco VL, Sares AG, Koirala N. Structural brain network topological alterations in stuttering adults. Brain Commun 2022; 4:fcac058. [PMID: 35368614 PMCID: PMC8971894 DOI: 10.1093/braincomms/fcac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Persistent developmental stuttering is a speech disorder that primarily affects normal speech fluency but encompasses a complex set of symptoms ranging from reduced sensorimotor integration to socioemotional challenges. Here, we investigated the whole brain structural connectome and its topological alterations in adults who stutter. Diffusion weighted imaging data of 33 subjects (13 adults who stutter and 20 fluent speakers) was obtained along with a stuttering severity evaluation. The structural brain network properties were analyzed using Network-based statistics and graph theoretical measures particularly focusing on community structure, network hubs and controllability. Bayesian power estimation was used to assess the reliability of the structural connectivity differences by examining the effect size. The analysis revealed reliable and wide-spread decreases in connectivity for adults who stutter in regions associated with sensorimotor, cognitive, emotional, and memory-related functions. The community detection algorithms revealed different subnetworks for fluent speakers and adults who stutter, indicating considerable network adaptation in adults who stutter. Average and modal controllability differed between groups in a subnetwork encompassing frontal brain regions and parts of the basal ganglia.
The results revealed extensive structural network alterations and substantial adaptation in neural architecture in adults who stutter well beyond the sensorimotor network. These findings highlight the impact of the neurodevelopmental effects of persistent stuttering on neural organization and the importance of examining the full structural connectome and the network alterations that underscore the behavioral phenotype.
Collapse
Affiliation(s)
- Vincent L. Gracco
- Haskins Laboratories, New Haven, CT, USA
- School of Communication Sciences & Disorders, McGill University, Montreal, Canada
| | | | | |
Collapse
|
21
|
Zhao Y, Yang L, Gong G, Cao Q, Liu J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110477. [PMID: 34798202 DOI: 10.1016/j.pnpbp.2021.110477] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) usually present overlapping symptoms. Abnormal white matter (WM) microstructure has been found in these disorders. Identification of common and unique neural abnormalities across NDDs could provide further insight into the underlying pathophysiological mechanisms. METHODS We performed a voxel-based meta-analysis of whole-brain diffusion tensor imaging (DTI) studies in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) and other NDDs. A systematic literature search was conducted through March 2020 to identify studies that compared measures of WM microstructure between patients with NDDs and neurotypical controls. Peak voxel coordinates were meta-analyzed via anisotropic effect size-signed differential mapping (AES-SDM) as well as activation likelihood estimation (ALE). RESULTS Our final sample included a total of 4137 subjects from 66 studies across five NDDs. Fractional anisotropy (FA) reductions were found in the splenium of the CC in ADHD, and the genu and splenium of CC in ASD. And mean diffusivity (MD) increases were shown in posterior thalamic radiation in ASD. No consistent abnormalities were detected in specific learning disorder, motor disorder or communication disorder. Significant differences between child/adolescent and adult patients were found within the CC across NDDs, reflective of aberrant neurodevelopmental processes in NDDs. CONCLUSIONS The current study demonstrated atypical WM patterns in ASD, ADHD and other NDDs. Microstructural abnormalities in the splenium of the CC were possibly shared among ASD and ADHD.
Collapse
Affiliation(s)
- Yilu Zhao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Li Yang
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingjiu Cao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| | - Jing Liu
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| |
Collapse
|
22
|
Loucks TM, Pelczarski KM, Lomheim H, Aalto D. Speech kinematic variability in adults who stutter is influenced by treatment and speaking style. JOURNAL OF COMMUNICATION DISORDERS 2022; 96:106194. [PMID: 35134668 DOI: 10.1016/j.jcomdis.2022.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
AIM We tested whether completion of the Comprehensive Stuttering Program (CSP) is associated with a reduction in speech kinematic variability relative to pre-treatment when adults who stutter (AWS) use a casual speaking manner or fluency skills. RATIONAL Kinematic variability is higher in AWS suggesting a sensorimotor vulnerability; however, it is not clear whether high variability is a trait related to the underlying disorder or reflects the mutable state of stuttering. Speech restructuring intervention such as the CSP could support more consistent articulatory control and stable movement patterns. METHODOLOGY Thirteen AWS were tested before and after completing the CSP while 11 adults who do not stutter (AWNS) completed a single session. Participants were instructed to use a casual manner of speaking in the first post-treatment session. In the second post-treatment condition, the AWS employed their fluency skills at a control speaking rate. An optical tracking system captured lower lip movements while participants spoke two English phrases and a complex nonword. Across-utterance kinematic variability was measured using the spatiotemporal index (STI) and within-utterance variability was measured with recurrence quantification analysis (RQA). RESULTS There was a positive treatment outcome based on significant reductions in percentage syllables stuttered (%SS) during speaking and reading, decreases in stuttering severity and improved perceptions of stuttering and communication confidence. The STI of the AWS decreased significantly after treatment for both speaking styles. The RQA variables indicated that AWS used a less stereotyped and more flexible manner of speaking in the casual condition after treatment, but speech movement regularity increased when using fluency skills. CONCLUSIONS The AWS showed a significant decrease in labial kinematic variability alongside a successful treatment outcome involving speech restructuring and cognitive behavioral techniques. These changes in across-utterance and within-utterance kinematic indices demonstrate that effective stuttering treatment can promote speech motor stability along with fluent speech.
Collapse
Affiliation(s)
- Torrey M Loucks
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, 8205 114St, 2-70 Corbett Hall, Edmonton, Alberta, T6G 2G4, Canada; Clinic Director, Faculty of Rehabilitation Medicine, Institute for Stuttering Treatment and Research, Reception Office # 2-18 Corbett Hall, University of Alberta, Edmonton, Alberta, T6G 2G4, Canada.
| | - Kristin M Pelczarski
- Communication Sciences and Disorders, Kansas State University, 1406 Campus Creek Road, Manhattan, KS, 66506, United States.
| | - Holly Lomheim
- Clinic Director, Faculty of Rehabilitation Medicine, Institute for Stuttering Treatment and Research, Reception Office # 2-18 Corbett Hall, University of Alberta, Edmonton, Alberta, T6G 2G4, Canada.
| | - Daniel Aalto
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, 8205 114St, 2-70 Corbett Hall, Edmonton, Alberta, T6G 2G4, Canada.
| |
Collapse
|
23
|
Jossinger S, Sares A, Zislis A, Sury D, Gracco V, Ben-Shachar M. White matter correlates of sensorimotor synchronization in persistent developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2022; 95:106169. [PMID: 34856426 PMCID: PMC8821245 DOI: 10.1016/j.jcomdis.2021.106169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Individuals with persistent developmental stuttering display deficits in aligning motor actions to external cues (i.e., sensorimotor synchronization). Diffusion imaging studies point to stuttering-associated differences in dorsal, not ventral, white matter pathways, and in the cerebellar peduncles. Here, we studied microstructural white matter differences between adults who stutter (AWS) and fluent speakers using two complementary approaches to: (a) assess previously reported group differences in white matter diffusivity, and (b) evaluate the relationship between white matter diffusivity and sensorimotor synchronization in each group. METHODS Participants completed a sensorimotor synchronization task and a diffusion MRI scan. We identified the cerebellar peduncles and major dorsal- and ventral-stream language pathways in each individual and assessed correlations between sensorimotor synchronization and diffusion measures along the tracts. RESULTS The results demonstrated group differences in dorsal, not ventral, language tracts, in alignment with prior reports. Specifically, AWS had significantly lower fractional anisotropy (FA) in the left arcuate fasciculus, and significantly higher mean diffusivity (MD) in the bilateral frontal aslant tract compared to fluent speakers, while no significant group difference was detected in the inferior fronto-occipital fasciculus. We also found significant group differences in both FA and MD of the left middle cerebellar peduncle. Comparing patterns of association with sensorimotor synchronization revealed a novel double dissociation: MD within the left inferior cerebellar peduncle was significantly correlated with mean asynchrony in AWS but not in fluent speakers, while FA within the left arcuate fasciculus was significantly correlated with mean asynchrony in fluent speakers, but not in AWS. CONCLUSIONS Our results support the view that stuttering involves altered connectivity in dorsal tracts and that AWS may rely more heavily on cerebellar tracts to process timing information. Evaluating microstructural associations with sensitive behavioral measures provides a powerful tool for discovering additional functional differences in the underlying connectivity in AWS.
Collapse
Affiliation(s)
- Sivan Jossinger
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Anastasia Sares
- Department of Psychology, Concordia University, Montréal, Canada; Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada
| | - Avital Zislis
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Sury
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Vincent Gracco
- Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada; School of Communication Sciences and Disorders, McGill University, Montréal, Canada; Haskins Laboratories, New Haven, CT, United States
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
24
|
Korzeczek A, Primaßin A, Wolff von Gudenberg A, Dechent P, Paulus W, Sommer M, Neef NE. Fluency shaping increases integration of the command-to-execution and the auditory-to-motor pathways in persistent developmental stuttering. Neuroimage 2021; 245:118736. [PMID: 34798230 DOI: 10.1016/j.neuroimage.2021.118736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
Abstract
Fluency-shaping enhances the speech fluency of persons who stutter, yet underlying conditions and neuroplasticity-related mechanisms are largely unknown. While speech production-related brain activity in stuttering is well studied, it is unclear whether therapy repairs networks of altered sensorimotor integration, imprecise neural timing and sequencing, faulty error monitoring, or insufficient speech planning. Here, we tested the impact of one-year fluency-shaping therapy on resting-state fMRI connectivity within sets of brain regions subserving these speech functions. We analyzed resting-state data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 28 fluent control participants, measured one year apart. Improved fluency was accompanied by an increased connectivity within the sensorimotor integration network. Specifically, two connections were strengthened; the left inferior frontal gyrus showed increased connectivity with the precentral gyrus at the representation of the left laryngeal motor cortex, and the left inferior frontal gyrus showed increased connectivity with the right superior temporal gyrus. Thus, therapy-associated neural remediation was based on a strengthened integration of the command-to-execution pathway together with an increased auditory-to-motor coupling. Since we investigated task-free brain activity, we assume that our findings are not biased to network activity involved in compensation but represent long-term focal neuroplasticity effects.
Collapse
Affiliation(s)
- Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Annika Primaßin
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; FH Münster University of Applied Sciences, Münster School of Health (MSH), Münster, Germany.
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, University Medical Center Göttingen, Göttingen, Germany.
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Germany; Department of Geriatrics, University Medical Center Göttingen, Germany.
| | - Nicole E Neef
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Germany.
| |
Collapse
|
25
|
Jackson ES, Miller LR, Warner HJ, Yaruss JS. Adults who stutter do not stutter during private speech. JOURNAL OF FLUENCY DISORDERS 2021; 70:105878. [PMID: 34534899 PMCID: PMC8629878 DOI: 10.1016/j.jfludis.2021.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Adults who stutter tend not to stutter when they are alone. This phenomenon is difficult to study because it is difficult to know whether participants perceive that they are truly alone and not being heard or observed. This may explain the presence of stuttering during previous studies in which stutterers spoke while they were alone. We addressed this issue by developing a paradigm that elicited private speech, or overt speech meant only for the speaker. We tested the hypothesis that adults do not stutter during private speech. METHOD Twenty-four participants were audio-/video-recorded while speaking in several conditions: 1) conversational speech; 2) reading; 3) private speech, in which deception was used to increase the probability that participants produced speech intended for only themselves; 4) private speech+, for which real-time transcription was used so that participants produced the same words as in the private speech condition but while addressing two listeners; and 5) a second conversational speech condition. RESULTS Stuttering was not observed in more than 10,000 syllables produced during the private speech condition, except for seven possible, mild stuttering events exhibited by 3 of 24 participants. Stuttering frequency was similar for the remaining conditions. CONCLUSIONS Adults appear not to stutter during private speech, indicating that speakers' perceptions of listeners, whether real or imagined, play a critical and likely necessary role in the manifestation of stuttering events. Future work should disentangle whether this is due to the removal of concerns about social evaluation or judgment, self-monitoring, or other communicative processes.
Collapse
Affiliation(s)
- Eric S Jackson
- Department of Communicative Sciences and Disorders, New York University, 665 Broadway, 9th Floor, New York, NY 10012, United States.
| | - Lindsay R Miller
- Department of Communicative Sciences and Disorders, New York University, 665 Broadway, 9th Floor, New York, NY 10012, United States
| | - Haley J Warner
- Department of Communicative Sciences and Disorders, New York University, 665 Broadway, 9th Floor, New York, NY 10012, United States
| | - J Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, 1025 Red Cedar Road, East Lansing, MI 48824, United States
| |
Collapse
|
26
|
Thompson-Lake DGY, Scerri TS, Block S, Turner SJ, Reilly S, Kefalianos E, Bonthrone AF, Helbig I, Bahlo M, Scheffer IE, Hildebrand MS, Liégeois FJ, Morgan AT. Atypical development of Broca's area in a large family with inherited stuttering. Brain 2021; 145:1177-1188. [PMID: 35296891 PMCID: PMC9724773 DOI: 10.1093/brain/awab364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.
Collapse
Affiliation(s)
| | - Thomas S Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Susan Block
- Discipline of Speech Pathology, School of Allied Health, Human Services & Sport, La Trobe University, Bundoora 3086, Australia
| | - Samantha J Turner
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia
| | - Sheena Reilly
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Menzies Health Institute Queensland, Griffith University, Southport 4215, Australia
| | - Elaina Kefalianos
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | | | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104USA
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville 3052, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia,Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
| | - Michael S Hildebrand
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia
| | | | - Angela T Morgan
- Correspondence to: Angela T. Morgan Murdoch Children’s Research Institute Parkville 3052, Australia E-mail:
| |
Collapse
|
27
|
Chow HM, Li H, Liu S, Frigerio-Domingues C, Drayna D. Neuroanatomical anomalies associated with rare AP4E1 mutations in people who stutter. Brain Commun 2021; 3:fcab266. [PMID: 34859215 PMCID: PMC8633735 DOI: 10.1093/braincomms/fcab266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Developmental stuttering is a common speech disorder with strong genetic underpinnings. Recently, stuttering has been associated with mutations in genes involved in lysosomal enzyme trafficking. However, how these mutations affect the brains of people who stutter remains largely unknown. In this study, we compared grey matter volume and white matter fractional anisotropy between a unique group of seven subjects who stutter and carry the same rare heterozygous AP4E1 coding mutations and seven unrelated controls without such variants. The carriers of the AP4E1 mutations are members of a large Cameroonian family in which the association between AP4E1 and persistent stuttering was previously identified. Compared to controls, mutation carriers showed reduced grey matter volume in the thalamus, visual areas and the posterior cingulate cortex. Moreover, reduced fractional anisotropy was observed in the corpus callosum, consistent with the results of previous neuroimaging studies of people who stutter with unknown genetic backgrounds. Analysis of gene expression data showed that these structural differences appeared at the locations in which expression of AP4E1 is relatively high. Moreover, the pattern of grey matter volume differences was significantly associated with AP4E1 expression across the left supratentorial regions. This spatial congruency further supports the connection between AP4E1 mutations and the observed structural differences.
Collapse
Affiliation(s)
- Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE 19713, USA
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred duPont Hospital for Children, Wilmington, DE 19803, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Section on Genetics of Communication Disorders, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Hua Li
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, NIMH/NIH, Bethesda, MD 20892, USA
| | | | - Dennis Drayna
- Section on Genetics of Communication Disorders, NIDCD/NIH, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
29
|
Busan P, Moret B, Masina F, Del Ben G, Campana G. Speech Fluency Improvement in Developmental Stuttering Using Non-invasive Brain Stimulation: Insights From Available Evidence. Front Hum Neurosci 2021; 15:662016. [PMID: 34456692 PMCID: PMC8386014 DOI: 10.3389/fnhum.2021.662016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Developmental stuttering (DS) is a disturbance of the normal rhythm of speech that may be interpreted as very debilitating in the most affected cases. Interventions for DS are historically based on the behavioral modifications of speech patterns (e.g., through speech therapy), which are useful to regain a better speech fluency. However, a great variability in intervention outcomes is normally observed, and no definitive evidence is currently available to resolve stuttering, especially in the case of its persistence in adulthood. In the last few decades, DS has been increasingly considered as a functional disturbance, affecting the correct programming of complex motor sequences such as speech. Compatibly, understanding of the neurophysiological bases of DS has dramatically improved, thanks to neuroimaging, and techniques able to interact with neural tissue functioning [e.g., non-invasive brain stimulation (NIBS)]. In this context, the dysfunctional activity of the cortico-basal-thalamo-cortical networks, as well as the defective patterns of connectivity, seems to play a key role, especially in sensorimotor networks. As a consequence, a direct action on the functionality of "defective" or "impaired" brain circuits may help people who stutter to manage dysfluencies in a better way. This may also "potentiate" available interventions, thus favoring more stable outcomes of speech fluency. Attempts aiming at modulating (and improving) brain functioning of people who stutter, realized by using NIBS, are quickly increasing. Here, we will review these recent advancements being applied to the treatment of DS. Insights will be useful not only to assess whether the speech fluency of people who stutter may be ameliorated by acting directly on brain functioning but also will provide further suggestions about the complex and dynamic pathophysiology of DS, where causal effects and "adaptive''/''maladaptive" compensation mechanisms may be strongly overlapped. In conclusion, this review focuses future research toward more specific, targeted, and effective interventions for DS, based on neuromodulation of brain functioning.
Collapse
Affiliation(s)
| | | | | | - Giovanni Del Ben
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gianluca Campana
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
30
|
Jackson ES, Wijeakumar S, Beal DS, Brown B, Zebrowski PM, Spencer JP. Speech planning and execution in children who stutter: Preliminary findings from a fNIRS investigation. J Clin Neurosci 2021; 91:32-42. [PMID: 34373047 DOI: 10.1016/j.jocn.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Few studies have investigated the neural mechanisms underlying speech production in children who stutter (CWS), despite the critical importance of understanding these mechanisms closer to the time of stuttering onset. The relative contributions of speech planning and execution in CWS therefore are also unknown. Using functional near-infrared spectroscopy, the current study investigated neural mechanisms of planning and execution in a small sample of 9-12 year-old CWS and controls (N = 12) by implementing two tasks that manipulated speech planning and execution loads. Planning was associated with atypical activation in bilateral inferior frontal gyrus and right supramarginal gyrus. Execution was associated with atypical activation in bilateral precentral gyrus and inferior frontal gyrus, as well as right supramarginal gyrus and superior temporal gyrus. The CWS exhibited some activation patterns that were similar to the adults who stutter (AWS) as reported in our previous study: atypical planning in frontal areas including left inferior frontal gyrus and atypical execution in fronto-temporo-parietal regions including left precentral gyrus, and right inferior frontal, superior temporal, and supramarginal gyri. However, differences also emerged. Whereas CWS and AWS both appear to exhibit atypical activation in right inferior and supramarginal gyri during execution, only CWS appear to exhibit this same pattern during planning. In addition, the CWS appear to exhibit atypical activation in left inferior frontal and right precentral gyri related to execution, whereas AWS do not. These preliminary results are discussed in the context of possible impairments in sensorimotor integration and inhibitory control for CWS.
Collapse
Affiliation(s)
- Eric S Jackson
- Department of Communicative Sciences and Disorders, New York University, 665 Broadway, 9th Floor, New York, NY 10012, USA.
| | | | - Deryk S Beal
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road Toronto, Ontario M4G 1R8, Canada; Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7, Canada
| | - Bryan Brown
- Department of Communication Sciences and Disorders, University of Wisconsin-Eau Claire, 239 Water Street, Eau Claire, WI 54702, USA
| | - Patricia M Zebrowski
- Department of Communication Sciences and Disorders, Wendell Johnson Speech and Hearing Center, Iowa City, IA 52242, USA
| | - John P Spencer
- School of Psychology, University of East Anglia, Lawrence Stenhouse Building 0.09, Norwich NR4 7TJ, UK
| |
Collapse
|
31
|
Frankford SA, Heller Murray ES, Masapollo M, Cai S, Tourville JA, Nieto-Castañón A, Guenther FH. The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2325-2346. [PMID: 33887150 PMCID: PMC8740675 DOI: 10.1044/2021_jslhr-20-00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Purpose Stuttering is characterized by intermittent speech disfluencies, which are dramatically reduced when speakers synchronize their speech with a steady beat. The goal of this study was to characterize the neural underpinnings of this phenomenon using functional magnetic resonance imaging. Method Data were collected from 16 adults who stutter and 17 adults who do not stutter while they read sentences aloud either in a normal, self-paced fashion or paced by the beat of a series of isochronous tones ("rhythmic"). Task activation and task-based functional connectivity analyses were carried out to compare neural responses between speaking conditions and groups after controlling for speaking rate. Results Adults who stutter produced fewer disfluent trials in the rhythmic condition than in the normal condition. Adults who stutter did not have any significant changes in activation between the rhythmic condition and the normal condition, but when groups were collapsed, participants had greater activation in the rhythmic condition in regions associated with speech sequencing, sensory feedback control, and timing perception. Adults who stutter also demonstrated increased functional connectivity among cerebellar regions during rhythmic speech as compared to normal speech and decreased connectivity between the left inferior cerebellum and the left prefrontal cortex. Conclusions Modulation of connectivity in the cerebellum and prefrontal cortex during rhythmic speech suggests that this fluency-inducing technique activates a compensatory timing system in the cerebellum and potentially modulates top-down motor control and attentional systems. These findings corroborate previous work associating the cerebellum with fluency in adults who stutter and indicate that the cerebellum may be targeted to enhance future therapeutic interventions. Supplemental Material https://doi.org/10.23641/asha.14417681.
Collapse
Affiliation(s)
- Saul A. Frankford
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Matthew Masapollo
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Shanqing Cai
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Jason A. Tourville
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Frank H. Guenther
- Department of Speech, Language & Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Radiology, Massachusetts General Hospital, Boston
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
32
|
Boley N, Patil S, Garnett EO, Li H, Chugani DC, Chang SE, Chow HM. Association Between Gray Matter Volume Variations and Energy Utilization in the Brain: Implications for Developmental Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2317-2324. [PMID: 33719533 PMCID: PMC8740693 DOI: 10.1044/2020_jslhr-20-00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Purpose The biological mechanisms underlying developmental stuttering remain unclear. In a previous investigation, we showed that there is significant spatial correspondence between regional gray matter structural anomalies and the expression of genes linked to energy metabolism. In the current study, we sought to further examine the relationship between structural anomalies in the brain in children with persistent stuttering and brain regional energy metabolism. Method High-resolution structural MRI scans were acquired from 26 persistent stuttering and 44 typically developing children. Voxel-based morphometry was used to quantify the between-group gray matter volume (GMV) differences across the whole brain. Group differences in GMV were then compared with published values for the pattern of glucose metabolism measured via F18 fluorodeoxyglucose uptake in the brains of 29 healthy volunteers using positron emission tomography. Results A significant positive correlation between GMV differences and F18 fluorodeoxyglucose uptake was found in the left hemisphere (ρ = .36, p < .01), where speech-motor and language processing are typically localized. No such correlation was observed in the right hemisphere (ρ = .05, p = .70). Conclusions Corroborating our previous gene expression studies, the results of the current study suggest a potential connection between energy metabolism and stuttering. Brain regions with high energy utilization may be particularly vulnerable to anatomical changes associated with stuttering. Such changes may be further exacerbated when there are sharp increases in brain energy utilization, which coincides with the developmental period of rapid speech/language acquisition and the onset of stuttering during childhood. Supplemental Material https://doi.org/10.23641/asha.14110454.
Collapse
Affiliation(s)
- Nathaniel Boley
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Sanath Patil
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
- Premedical-Medical Program, Eberly College of Science, The Pennsylvania State University, University Park
| | - Emily O. Garnett
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor
| | - Hua Li
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Diane C. Chugani
- Department of Communication Sciences and Disorders, College of Health Sciences, University of Delaware, Newark
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor
- Cognitive Imaging Research Center, Department of Radiology, College of Osteopathic Medicine, Michigan State University, East Lansing
- Department of Communicative Sciences and Disorders, College of Communication Arts and Sciences, Michigan State University, East Lansing
| | - Ho Ming Chow
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
- Department of Communication Sciences and Disorders, College of Health Sciences, University of Delaware, Newark
| |
Collapse
|
33
|
Mollaei F, Mersov A, Woodbury M, Jobst C, Cheyne D, De Nil L. White matter microstructural differences underlying beta oscillations during speech in adults who stutter. BRAIN AND LANGUAGE 2021; 215:104921. [PMID: 33550120 DOI: 10.1016/j.bandl.2021.104921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The basal ganglia-thalamocortical (BGTC) loop may underlie speech deficits in developmental stuttering. In this study, we investigated the relationship between abnormal cortical neural oscillations and structural integrity alterations in adults who stutter (AWS) using a novel magnetoencephalography (MEG) guided tractography approach. Beta oscillations were analyzed using sensorimotor speech MEG, and white matter pathways were examined using tract-based spatial statistics (TBSS) and probabilistic tractography in 11 AWS and 11 fluent speakers. TBSS analysis revealed overlap between cortical regions of increased beta suppression localized to the mouth motor area and a reduced fractional anisotropy (FA) in the AWS group. MEG-guided tractography showed reduced FA within the BGTC loop from left putamen to subject-specific MEG peak. This is the first study to provide evidence that structural abnormalities may be associated with functional deficits in stuttering and reflect a network deficit within the BGTC loop that includes areas of the left ventral premotor cortex and putamen.
Collapse
Affiliation(s)
- Fatemeh Mollaei
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
| | - Anna Mersov
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada
| | - Merron Woodbury
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Cecilia Jobst
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Douglas Cheyne
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Institute of Medical Sciences and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5T 1W7, Canada
| | - Luc De Nil
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Rehabilitation Sciences Institute, Toronto, Ontario M5G 1V7, Canada
| |
Collapse
|
34
|
Kornisch M. Bilinguals who stutter: A cognitive perspective. JOURNAL OF FLUENCY DISORDERS 2021; 67:105819. [PMID: 33296800 DOI: 10.1016/j.jfludis.2020.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Brain differences, both in structure and executive functioning, have been found in both developmental stuttering and bilingualism. However, the etiology of stuttering remains unknown. The early suggestion that stuttering is a result of brain dysfunction has since received support from various behavioral and neuroimaging studies that have revealed functional and structural brain changes in monolinguals who stutter (MWS). In addition, MWS appear to show deficits in executive control. However, there is a lack of data on bilinguals who stutter (BWS). This literature review is intended to provide an overview of both stuttering and bilingualism as well as synthesize areas of overlap among both lines of research and highlight knowledge gaps in the current literature. METHODS A systematic literature review on both stuttering and bilingualism studies was conducted, searching for articles containing "stuttering" and/or "bilingualism" and either "brain", "executive functions", "executive control", "motor control", "cognitive reserve", or "brain reserve" in the PubMed database. Additional studies were found by examining the reference list of studies that met the inclusion criteria. RESULTS A total of 148 references that met the criteria for inclusion in this paper were used in the review. A comparison of the impact of stuttering or bilingualism on the brain are discussed. CONCLUSION Previous research examining a potential bilingual advantage for BWS is mixed. However, if such an advantage does exist, it appears to offset potential deficits in executive functioning that may be associated with stuttering.
Collapse
Affiliation(s)
- Myriam Kornisch
- The University of Mississippi, School of Applied Sciences, Department of Communication Sciences & Disorders, 2301 South Lamar Blvd, Oxford, MS 38655, United States.
| |
Collapse
|
35
|
Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering. Brain Struct Funct 2021; 226:801-816. [PMID: 33538875 DOI: 10.1007/s00429-020-02210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Speech rate is a basic characteristic of language production, which affects the speaker's intelligibility and communication efficiency. Various speech disorders, including persistent developmental stuttering, present altered speech rate. Specifically, adults who stutter (AWS) typically exhibit a slower speech rate compared to fluent speakers. Evidence from imaging studies suggests that the cerebellum contributes to the paced production of speech. People who stutter show structural and functional abnormalities in the cerebellum. However, the involvement of the cerebellar pathways in controlling speech rate remains unexplored. Here, we assess the association of the cerebellar peduncles with speech rate in AWS and control speakers. Diffusion MRI and speech-rate data were collected in 42 participants (23 AWS, 19 controls). We used deterministic tractography with Automatic Fiber segmentation and Quantification (AFQ) to identify the superior, middle, and inferior cerebellar peduncles (SCP, MCP, ICP) bilaterally, and quantified fractional anisotropy (FA) and mean diffusivity (MD) along each tract. No significant differences were observed between AWS and controls in the diffusivity values of the cerebellar peduncles. However, AWS demonstrated a significant negative association between speech rate and FA within the left ICP, a major cerebellar pathway that transmits sensory feedback signals from the olivary nucleus into the cerebellum. The involvement of the ICP in controlling speech production in AWS is compatible with the view that stuttering stems from hyperactive speech monitoring, where even minor deviations from the speech plan are considered as errors. In conclusion, our findings suggest a plausible neural mechanism for speech rate reduction observed in AWS.
Collapse
|
36
|
Masapollo M, Segawa JA, Beal DS, Tourville JA, Nieto-Castañón A, Heyne M, Frankford SA, Guenther FH. Behavioral and neural correlates of speech motor sequence learning in stuttering and neurotypical speakers: an fMRI investigation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:106-137. [PMID: 34296194 PMCID: PMC8294667 DOI: 10.1162/nol_a_00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., "gvasf") over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.
Collapse
Affiliation(s)
- Matthew Masapollo
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL
| | - Jennifer A. Segawa
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Departments of Neuroscience and Biology, Stonehill College, Easton, MA
| | - Deryk S. Beal
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech-Language Pathology, University of Toronto, Toronto, Canada
| | - Jason A. Tourville
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | | | - Matthias Heyne
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Saul A. Frankford
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Frank H. Guenther
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Biomedical Engineering, Boston University, Boston, MA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
37
|
Neef NE, Primaßin A, von Gudenberg AW, Dechent P, Riedel C, Paulus W, Sommer M. Two cortical representations of voice control are differentially involved in speech fluency. Brain Commun 2021; 3:fcaa232. [PMID: 33959707 PMCID: PMC8088816 DOI: 10.1093/braincomms/fcaa232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
Recent studies have identified two distinct cortical representations of voice control in humans, the ventral and the dorsal laryngeal motor cortex. Strikingly, while persistent developmental stuttering has been linked to a white-matter deficit in the ventral laryngeal motor cortex, intensive fluency-shaping intervention modulated the functional connectivity of the dorsal laryngeal motor cortical network. Currently, it is unknown whether the underlying structural network organization of these two laryngeal representations is distinct or differently shaped by stuttering intervention. Using probabilistic diffusion tractography in 22 individuals who stutter and participated in a fluency shaping intervention, in 18 individuals who stutter and did not participate in the intervention and in 28 control participants, we here compare structural networks of the dorsal laryngeal motor cortex and the ventral laryngeal motor cortex and test intervention-related white-matter changes. We show (i) that all participants have weaker ventral laryngeal motor cortex connections compared to the dorsal laryngeal motor cortex network, regardless of speech fluency, (ii) connections of the ventral laryngeal motor cortex were stronger in fluent speakers, (iii) the connectivity profile of the ventral laryngeal motor cortex predicted stuttering severity (iv) but the ventral laryngeal motor cortex network is resistant to a fluency shaping intervention. Our findings substantiate a weaker structural organization of the ventral laryngeal motor cortical network in developmental stuttering and imply that assisted recovery supports neural compensation rather than normalization. Moreover, the resulting dissociation provides evidence for functionally segregated roles of the ventral laryngeal motor cortical and dorsal laryngeal motor cortical networks.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
- Department of Diagnostic and Interventional Neuroradiology, Georg August University, Göttingen 37075, Germany
| | - Annika Primaßin
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, Georg August University, Göttingen 37075, Germany
| | - Christian Riedel
- Department of Diagnostic and Interventional Neuroradiology, Georg August University, Göttingen 37075, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
- Department of Neurology, Georg August University, Göttingen 37075, Germany
| |
Collapse
|
38
|
Ferreira TNM, Rodrigues LRP, Correia DV, Andrade SMMDS, Alves GADS, Rosa MRDD. Temporal processing skills in people who stutter. REVISTA CEFAC 2021. [DOI: 10.1590/1982-0216/202123313620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Purpose: to investigate the auditory skills of temporal resolution and ordering in people who stutter. Methods: an observational, cross-sectional, analytical, and comparative research between study and control groups conducted at a speech-language-hearing teaching clinic of an academic institution, comprising people who stutter (who attended a public outreach program) and volunteers without communicative disorders, for 13 months. The procedures used were auditory perception anamnesis, acoustic immittance, and pure-tone and speech audiometry to discharge hearing changes. The participants who met the eligibility criteria had their resolution and ordering skills assessed with the Gaps-in-Noise, Random Gap Detection, Pitch Pattern Sequence, and Duration Pattern Sequence tests and the data obtained were entered into a spreadsheet for descriptive and inferential statistical analyses. Results: the study group presented changes in temporal resolution and ordering. A statistically significant difference was also verified comparing the assessment findings of the study and control groups, in all the assessment tests. Conclusion: temporal resolution and ordering changes were observed in the people presented with stuttering, regardless of sex or chronological age.
Collapse
|
39
|
Tezel-Bayraktaroglu O, Bayraktaroglu Z, Demirtas-Tatlidede A, Demiralp T, Oge AE. Neuronavigated rTMS inhibition of right pars triangularis anterior in stuttering: Differential effects on reading and speaking. BRAIN AND LANGUAGE 2020; 210:104862. [PMID: 32979643 DOI: 10.1016/j.bandl.2020.104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Functional neuroimaging studies show an overactivation of speech and language related homologous areas of the right hemisphere in persons who stutter. In this study, we inhibited Broca's homologues using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and assessed its effects on stuttering severity. The investigated cortical areas included pars opercularis (BA44), anterior and posterior pars triangularis (BA45), mouth area on the primary motor cortex (BA4). We collected reading and speaking samples before and after rTMS sessions and calculated the percentage of syllables stuttered. Only right anterior pars triangularis stimulation induced significant changes in speech fluency. Notably, the effects were differential for reading and speaking conditions. Overall, our results provide supportive evidence that right anterior BA45 may be a critical region for stuttering. The observed differential effects following the inhibition of right anterior BA45 merits further study of contributions of this region on different language domains in persons who stutter.
Collapse
Affiliation(s)
| | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, International School of Medicine, Department of Physiology, 34815 Beykoz, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Restorative and Regenerative Medicine Research Center (REMER), functional Imaging and Cognitive Affective Neuroscience Laboratory (fINCAN), 34810 Beykoz, Istanbul, Turkey
| | - Asli Demirtas-Tatlidede
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, 34093 Capa, Istanbul, Turkey; Bahcesehir University, School of Medicine, Department of Neurology, 34734 Kadikoy, Istanbul, Turkey
| | - Tamer Demiralp
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory-Neuroimaging Unit, 34093 Capa, Istanbul, Turkey; Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, 34093 Capa, Istanbul, Turkey
| | - A Emre Oge
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, 34093 Capa, Istanbul, Turkey
| |
Collapse
|
40
|
Robertson SC, Diaz K. Case Report of Acquired Stuttering After Soccer-Related Concussion: Functional Magnetic Resonance Imaging as a Prognostic Tool. World Neurosurg 2020; 142:401-403. [DOI: 10.1016/j.wneu.2020.06.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
|
41
|
Koenraads SPC, van der Schroeff MP, van Ingen G, Lamballais S, Tiemeier H, Baatenburg de Jong RJ, White T, Franken MC, Muetzel RL. Structural brain differences in pre-adolescents who persist in and recover from stuttering. NEUROIMAGE-CLINICAL 2020; 27:102334. [PMID: 32650280 PMCID: PMC7341447 DOI: 10.1016/j.nicl.2020.102334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
Brain (micro-)structural differences were found in pre-adolescents who stutter. Persistency was associated with marginally smaller left frontal gray matter volume. Recovery was associated with higher mean diffusivity in white matter tracts. Distinct brain structures implicated in persistence and recovery of stuttering. Background Stuttering is a complex speech fluency disorder occurring in childhood. In young children, stuttering has been associated with speech-related auditory and motor areas of the brain. During transition into adolescence, the majority of children who stutter (75–80%) will experience remission of their symptoms. The current study evaluated brain (micro-)structural differences between pre-adolescents who persisted in stuttering, those who recovered, and fluently speaking controls. Methods This study was embedded in the Generation R Study, a population-based cohort in the Netherlands of children followed from pregnancy onwards. Neuroimaging was performed in 2211 children (mean age: 10 years, range 8–12), of whom 20 persisted in and 77 recovered from stuttering. Brain structure (e.g., gray matter) and microstructure (e.g., diffusion tensor imaging) differences between groups were tested using multiple linear regression. Results Pre-adolescents who persisted in stuttering had marginally lower left superior frontal gray matter volume compared to those with no history of stuttering (β −1344, 95%CI −2407;-280), and those who recovered (β −1825, 95%CI −2999;-650). Pre-adolescents who recovered, compared to those with no history of stuttering, had higher mean diffusivity in the forceps major (β 0.002, 95%CI 0.001;0.004), bilateral superior longitudinal fasciculi (β 0.001, 95%CI 0.000;0.001), left corticospinal tract (β 0.003, 95%CI 0.002;0.004), and right inferior longitudinal fasciculus (β 0.001, 95%CI 0.000;0.001). Conclusion Findings suggest that relatively small difference in prefrontal gray matter volume is associated with persistent stuttering, and alterations in white matter tracts are apparent in individuals who recovered. The findings further strengthen the potential relevance of brain (micro-)structure in persistence and recovery from stuttering in pre-adolescents.
Collapse
Affiliation(s)
- S P C Koenraads
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M P van der Schroeff
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - G van Ingen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Lamballais
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - H Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - T White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M C Franken
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - R L Muetzel
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Busan P, Del Ben G, Tantone A, Halaj L, Bernardini S, Natarelli G, Manganotti P, Battaglini PP. Effect of muscular activation on surrounding motor networks in developmental stuttering: A TMS study. BRAIN AND LANGUAGE 2020; 205:104774. [PMID: 32135384 DOI: 10.1016/j.bandl.2020.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/05/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Previous studies regarding developmental stuttering (DS) suggest that motor neural networks are strongly affected. Transcranial magnetic stimulation (TMS) was used to investigate neural activation of the primary motor cortex in DS during movement execution, and the influence of muscle representations involved in movements on "surrounding" ones. TMS was applied over the contralateral abductor digiti minimi (ADM) motor representation, at rest and during the movement of homologue first dorsal interosseous muscles (tonic contraction, phasic movements cued by acoustic signalling, and "self-paced" movements). Results highlighted a lower cortico-spinal excitability of ADM in the left hemisphere of stutterers, and an enhanced intracortical inhibition in their right motor cortex (in comparison to fluent speakers). Abnormal intracortical functioning was especially evident during phasic contractions cued by "external" acoustic signals. An exaggerated inhibition of muscles not directly involved in intended movements, in stuttering, may be useful to obtain more efficient motor control. This was stronger during contractions cued by "external" signals, highlighting mechanisms likely used by stutterers during fluency-evoking conditions.
Collapse
Affiliation(s)
- Pierpaolo Busan
- IRCCS Ospedale San Camillo, via Alberoni 70, 30126 Venice, Italy.
| | - Giovanni Del Ben
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy.
| | - Antonietta Tantone
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy
| | - Livia Halaj
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy
| | | | - Giulia Natarelli
- Department of Developmental and Social Psychology, University of Padua, via Venezia 8, 35100 Padua, Italy.
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| | - Piero Paolo Battaglini
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy.
| |
Collapse
|
43
|
Maguire GA, Nguyen DL, Simonson KC, Kurz TL. The Pharmacologic Treatment of Stuttering and Its Neuropharmacologic Basis. Front Neurosci 2020; 14:158. [PMID: 32292321 PMCID: PMC7118465 DOI: 10.3389/fnins.2020.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Stuttering is a DSM V psychiatric condition for which there are no FDA-approved medications for treatment. A growing body of evidence suggests that dopamine antagonist medications are effective in reducing the severity of stuttering symptoms. Stuttering shares many similarities to Tourette's Syndrome in that both begin in childhood, follow a similar male to female ratio of 4:1, respond to dopamine antagonists, and symptomatically worsen with dopamine agonists. In recent years, advances in the neurophysiology of stuttering have helped further guide pharmacological treatment. A newer medication with a novel mechanism of action, selective D1 antagonism, is currently being investigated in FDA trials for the treatment of stuttering. D1 antagonists possess different side-effect profiles than D2 antagonist medications and may provide a unique option for those who stutter. In addition, VMAT-2 inhibitors alter dopamine transmission in a unique mechanism of action that offers a promising treatment avenue in stuttering. This review seeks to highlight the different treatment options to help guide the practicing clinician in the treatment of stuttering.
Collapse
Affiliation(s)
- Gerald A Maguire
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Diem L Nguyen
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Kevin C Simonson
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Troy L Kurz
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
44
|
Sares AG, Deroche MLD, Ohashi H, Shiller DM, Gracco VL. Neural Correlates of Vocal Pitch Compensation in Individuals Who Stutter. Front Hum Neurosci 2020; 14:18. [PMID: 32161525 PMCID: PMC7053555 DOI: 10.3389/fnhum.2020.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stuttering is a disorder that impacts the smooth flow of speech production and is associated with a deficit in sensorimotor integration. In a previous experiment, individuals who stutter were able to vocally compensate for pitch shifts in their auditory feedback, but they exhibited more variability in the timing of their corrective responses. In the current study, we focused on the neural correlates of the task using functional MRI. Participants produced a vowel sound in the scanner while hearing their own voice in real time through headphones. On some trials, the audio was shifted up or down in pitch, eliciting a corrective vocal response. Contrasting pitch-shifted vs. unshifted trials revealed bilateral superior temporal activation over all the participants. However, the groups differed in the activation of middle temporal gyrus and superior frontal gyrus [Brodmann area 10 (BA 10)], with individuals who stutter displaying deactivation while controls displayed activation. In addition to the standard univariate general linear modeling approach, we employed a data-driven technique (independent component analysis, or ICA) to separate task activity into functional networks. Among the networks most correlated with the experimental time course, there was a combined auditory-motor network in controls, but the two networks remained separable for individuals who stuttered. The decoupling of these networks may account for temporal variability in pitch compensation reported in our previous work, and supports the idea that neural network coherence is disturbed in the stuttering brain.
Collapse
Affiliation(s)
- Anastasia G. Sares
- Speech Motor Control Lab, Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
| | - Mickael L. D. Deroche
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- Laboratory for Hearing and Cognition, Department of Psychology, Concordia University, Montreal, QC, Canada
| | | | - Douglas M. Shiller
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montreal, QC, Canada
| | - Vincent L. Gracco
- Speech Motor Control Lab, Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
45
|
Jenson D, Bowers AL, Hudock D, Saltuklaroglu T. The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering. Front Hum Neurosci 2020; 13:458. [PMID: 31998103 PMCID: PMC6965028 DOI: 10.3389/fnhum.2019.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor internal modeling mechanisms are thought to underlie stuttering. However, much remains to be learned regarding the precise manner how these deficits contribute to disrupting both speech and cognitive functions in those who stutter. Herein, we examine the suitability of electroencephalographic (EEG) mu rhythms for addressing these deficits. We review some previous findings of mu rhythm activity differentiating stuttering from non-stuttering individuals and present some new preliminary findings capturing stuttering-related deficits in working memory. Mu rhythms are characterized by spectral peaks in alpha (8-13 Hz) and beta (14-25 Hz) frequency bands (mu-alpha and mu-beta). They emanate from premotor/motor regions and are influenced by basal ganglia and sensorimotor function. More specifically, alpha peaks (mu-alpha) are sensitive to basal ganglia-based inhibitory signals and sensory-to-motor feedback. Beta peaks (mu-beta) are sensitive to changes in timing and capture motor-to-sensory (i.e., forward model) projections. Observing simultaneous changes in mu-alpha and mu-beta across the time-course of specific events provides a rich window for observing neurophysiological deficits associated with stuttering in both speech and cognitive tasks and can provide a better understanding of the functional relationship between these stuttering symptoms. We review how independent component analysis (ICA) can extract mu rhythms from raw EEG signals in speech production tasks, such that changes in alpha and beta power are mapped to myogenic activity from articulators. We review findings from speech production and auditory discrimination tasks demonstrating that mu-alpha and mu-beta are highly sensitive to capturing sensorimotor and basal ganglia deficits associated with stuttering with high temporal precision. Novel findings from a non-word repetition (working memory) task are also included. They show reduced mu-alpha suppression in a stuttering group compared to a typically fluent group. Finally, we review current limitations and directions for future research.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Andrew L. Bowers
- Epley Center for Health Professions, Communication Sciences and Disorders, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hudock
- Department of Communication Sciences and Disorders, Idaho State University, Pocatello, ID, United States
| | - Tim Saltuklaroglu
- College of Health Professions, Department of Audiology and Speech-Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
46
|
Verly M, Gerrits R, Sleurs C, Lagae L, Sunaert S, Zink I, Rommel N. The mis-wired language network in children with developmental language disorder: insights from DTI tractography. Brain Imaging Behav 2020; 13:973-984. [PMID: 29934818 DOI: 10.1007/s11682-018-9903-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aims to detect the neural substrate underlying the language impairment in children with developmental language disorder (DLD) using diffusion tensor imaging (DTI) tractography. Deterministic DTI tractography was performed in a group of right-handed children with DLD (N = 17; mean age 10;07 ± 2;01 years) and a typically developing control group matched for age, gender and handedness (N = 22; mean age 11;00 ± 1;11 years) to bilaterally identify the superior longitudinal fascicle, arcuate fascicle, anterior lateral segment and posterior lateral segment (also called dorsal language network) and the middle and inferior longitudinal fascicle, extreme capsule fiber system and uncinate fascicle (also called ventral language network). Language skills were assessed using an extensive, standardized test battery. Differences in language performance, white matter organization and structural lateralization of the language network were statistically analyzed. Children with DLD showed a higher overall volume and higher ADC values for the left-hemispheric language related WM tracts. In addition, in children with DLD, the majority (88%; 7/8) of the studied language related WM tracts did not show a significant left or right lateralization pattern. These structural alterations might underlie the language impairment in children with DLD.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium.
| | - Robin Gerrits
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| | | | - Lieven Lagae
- Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Translational MRI, KU Leuven, Leuven, Belgium.,Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Inge Zink
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| | - Nathalie Rommel
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| |
Collapse
|
47
|
Garnett EO, Chow HM, Choo AL, Chang SE. Stuttering Severity Modulates Effects of Non-invasive Brain Stimulation in Adults Who Stutter. Front Hum Neurosci 2019; 13:411. [PMID: 31824276 PMCID: PMC6881273 DOI: 10.3389/fnhum.2019.00411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stuttering is a neurodevelopmental disorder that manifests as frequent disruptions in the flow of speech, affecting 1% of adults. Treatments are limited to behavioral interventions with variable success and high relapse rates, particularly in adults. However, even in severe cases, fluency can be temporarily induced during conditions in which the speaker synchronizes his speech with external rhythmic cues, such as when reading in unison (choral speech) or with a metronome. Non-invasive neuromodulation techniques such as transcranial direct current stimulation (tDCS) have shown promise in augmenting the effects of behavioral treatment during motor and speech/language rehabilitation, but only one study to date has examined behavioral modulatory effects of tDCS in the context of stuttering. Using high-definition (HD)-tDCS electrodes, which improves focality of stimulation relative to conventional tDCS, we investigated the effects of tDCS on speech fluency and brain activation in 14 adults who stutter (AWS). Either anodal or sham stimulation was delivered on separate days over left supplementary motor area (SMA). During stimulation, participants read aloud in sync with a metronome. Measures of speech fluency and brain activity functional magnetic resonance imaging (fMRI) were collected before and after stimulation. No significant differences in brain activity or speech fluency were found when comparing active and sham stimulation. However, stuttering severity significantly modulated the effect of stimulation: active stimulation attenuated the atypically strong association between stuttering severity and right thalamocortical network activity, especially in more severe speakers. These preliminary results warrant additional research into potential application of HD-tDCS to modulate speech motor networks to enhance fluency in stuttering.
Collapse
Affiliation(s)
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, United States.,Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Ai Leen Choo
- Department of Communication Sciences and Disorders, Georgia State University, Atlanta, GA, United States
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
49
|
Khodeir MS. 'Exploring stuttering severity in the Egyptian Arabic speaking children who stutter: A correlation study of Bloodstein classification of stuttering severity and the stuttering severity instrument for children and Adults-Arabic Version'. Int J Pediatr Otorhinolaryngol 2019; 125:38-43. [PMID: 31252197 DOI: 10.1016/j.ijporl.2019.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to explore the magnitude of stuttering severity in the Egyptian Arabic speaking children who stutter (CWS) by corelating stuttering severity grades assessed by Bloodstein classification of stuttering severity (BLS) and by the stuttering severity instrument for children and adults-Arabic version (ASSI). METHODS 58 Egyptian Arabic speaking CWS aged 5-9 years and 9 months, were selected conveniently upon inclusion and exclusion criteria from patients frequented at the Phoniatrics clinic of El-Demerdash hospital (Ain Shams University). Through an observational cross-sectional study, the selected children underwent the Ain Shams university assessment protocol of fluency disorders, including clinician's assessment of stuttering severity by BLS classification and ASSI. The correlation between the grade of stuttering severity by BLS classification and ASSI were analyzed by Spearman's correlation coefficient and regression analysis. RESULTS Significant positive correlation was found between grades of stuttering severity measured by BLS classification and ASSI. Among children with mild, moderate and severe degrees of stuttering by BLS classification, the score of their ASSI decrease as the child's age increases. The age of the participated CWS was significantly inversely related to the score of ASSI, yet it is not related to the grades of BLS classification. The age of onset of stuttering was not related to stuttering severity whether measured by BLS classification or ASSI. CONCLUSION There is a significant positive relationship between stuttering severity measured by BLS classification and ASSI. Speech disfluencies counted by ASSI decreases as the child's age increases, in relation to stuttering severity by BLS classification. Clinicians should depend on more than one tool while assessing stuttering severity.
Collapse
Affiliation(s)
- Mona Sameeh Khodeir
- Unit of Phoniatrics, Department of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
50
|
Neumann K, Euler HA, Zens R, Piskernik B, Packman A, St Louis KO, Kell CA, Amir O, Blomgren M, Boucand VA, Eggers K, Fibiger S, Fourches A, Franken MCJP, Finn P. "Spontaneous" late recovery from stuttering: Dimensions of reported techniques and causal attributions. JOURNAL OF COMMUNICATION DISORDERS 2019; 81:105915. [PMID: 31301534 DOI: 10.1016/j.jcomdis.2019.105915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE (1) To survey the employed techniques and the reasons/occasions which adults who had recovered from stuttering after age 11 without previous treatment reported as causal to overcome stuttering, (2) to investigate whether the techniques and causal attributions can be reduced to coherent (inherently consistent) dimensions, and (3) whether these dimensions reflect common therapy components. METHODS 124 recovered persons from 8 countries responded by SurveyMonkey or paper-and-pencil to rating scale questions about 49 possible techniques and 15 causal attributions. RESULTS A Principal Component Analysis of 110 questionnaires identified 6 components (dimensions) for self-assisted techniques (Speech Restructuring; Relaxed/Monitored Speech; Elocution; Stage Performance; Sought Speech Demands; Reassurance; 63.7% variance explained), and 3 components of perceived causal attributions of recovery (Life Change, Attitude Change, Social Support; 58.0% variance explained). DISCUSSION Two components for self-assisted techniques (Speech Restructuring; Elocution) reflect treatment methods. Another component (Relaxed/Monitored Speech) consists mainly of items that reflect a common, non-professional understanding of effective management of stuttering. The components of the various perceived reasons for recovery reflect differing implicit theories of causes for recovery from stuttering. These theories are considered susceptible to various biases. This identification of components of reported techniques and of causal attributions is novel compared to previous studies who just list techniques and attributions. CONCLUSION The identified dimensions of self-assisted techniques and causal attributions to reduce stuttering as extracted from self-reports of a large, international sample of recovered formerly stuttering adults may guide the application of behavioral stuttering therapies.
Collapse
Affiliation(s)
- Katrin Neumann
- Department of Phoniatrics and Pediatric Audiology, Clinic for Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Germany.
| | - Harald A Euler
- Department of Phoniatrics and Pediatric Audiology, Clinic for Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Germany
| | - Rebekka Zens
- Department of Phoniatrics and Pediatric Audiology, ENT Clinic, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Bernhard Piskernik
- Institute of Applied Psychology: Health, Development, Enhancement, and Intervention, Faculty of Psychology, University of Vienna, Austria
| | - Ann Packman
- Australian Stuttering Research Centre, University of Technology Sydney, Australia
| | - Kenneth O St Louis
- Department of Speech Pathology and Audiology, West Virginia University, Morgantown, WV, USA
| | - Christian A Kell
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Ofer Amir
- Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Blomgren
- Department of Communication Sciences & Disorders, The University of Utah, Salt Lake City, UT, USA
| | | | - Kurt Eggers
- Department of Speech-Language Therapy and Audiology, Thomas More University College, Antwerp, Belgium; Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Steen Fibiger
- University Library of Southern Denmark, Odense, Denmark
| | | | - Marie-Christine J P Franken
- Erasmus Medical University Centre, Sophia Children's Hospital, KNO/Gehoor- en Spraakcentrum, Rotterdam, Netherlands
| | - Patrick Finn
- Communication Sciences and Special Education, University of Georgia, Athens, GA, USA
| |
Collapse
|