1
|
Williamson JN, Mulyana B, Peng RHT, Jain S, Hassaneen W, Miranpuri A, Yang Y. How the Somatosensory System Adapts to the Motor Change in Stroke: A Hemispheric Shift? Med Hypotheses 2024; 192:111487. [PMID: 39525858 PMCID: PMC11542668 DOI: 10.1016/j.mehy.2024.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract and a maladaptive increase in indirect contralesional motor pathways. How the somatosensory system adapts to the change in the use of motor pathways and the role of adaptive sensory feedback to the abnormal movement control of the paretic arm remains largely unknown. We hypothesize that following a unilateral stroke, there is an adaptive hemispheric shift of somatosensory processing toward the contralesional sensorimotor areas to provide sensory feedback support to the contralesional indirect motor pathways. This research could provide new insights related to somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective. Understanding how somatosensory information shifts may provide a target for a novel method to therapeutically prevent and mitigate the emergence and expression of upper limb motor impairments, following a stroke.
Collapse
Affiliation(s)
- Jordan N. Williamson
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
| | - Beni Mulyana
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Rita Huan-Ting Peng
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Sanjiv Jain
- Carle Foundation Hospital, Dr. Elizabeth Hosick Rehabilitation Center, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| |
Collapse
|
2
|
Chilvers M, Low T, Rajashekar D, Dukelow S. White matter disconnection impacts proprioception post-stroke. PLoS One 2024; 19:e0310312. [PMID: 39264972 PMCID: PMC11392420 DOI: 10.1371/journal.pone.0310312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Proprioceptive impairments occur in approximately 50-64% of people following stroke. While much is known about the grey matter structures underlying proprioception, our understanding of the white matter correlates of proprioceptive impairments is less well developed. It is recognised that behavioural impairments post-stroke are often the result of disconnection between wide-scale brain networks, however the disconnectome associated with proprioception post-stroke is unknown. In the current study, white matter disconnection was assessed in relation to performance on a robotic arm position matching (APM) task. Neuroimaging and robotic assessments of proprioception were collected for 203 stroke survivors, approximately 2-weeks post-stroke. The robotic assessment was performed in a KINARM Exoskeleton robotic device and consisted of a nine-target APM task. First, the relationship between white matter tract lesion load and performance on the APM task was assessed. Next, differences in the disconnectome between participants with and without impairments on the APM task were examined. Greater lesion load to the superior longitudinal fasciculus (SLF II and III), arcuate fasciculus (all segments) and fronto-insular tracts were associated with worse APM task performance. In those with APM task impairments, there was, additionally, disconnection of the posterior corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and optic radiations. This study highlights an important perisylvian white matter network supporting proprioceptive processing in the human brain. It also identifies white matter tracts, important for relaying proprioceptive information from parietal and frontal brain regions, that are not traditionally considered proprioceptive in nature.
Collapse
Affiliation(s)
- Matthew Chilvers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Trevor Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Norata D, Musumeci G, Todisco A, Cruciani A, Motolese F, Capone F, Lattanzi S, Ranieri F, Di Lazzaro V, Pilato F. Bilateral median nerve stimulation and High-Frequency Oscillations unveil interhemispheric inhibition of primary sensory cortex. Clin Neurophysiol 2024; 165:154-165. [PMID: 39033697 DOI: 10.1016/j.clinph.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE This study aimed at investigating the effect of median nerve stimulation on ipsilateral cortical potentials evoked by contralateral median nerve electrical stimulation. METHODS We recorded somatosensory-evoked potentials (SEPs) from the left parietal cortex in 15 right-handed, healthy subjects. We administered bilateral median nerve stimulation, with the ipsilateral stimulation preceding the stimulation on the contralateral by intervals of 5, 10, 20, or 40 ms. We adjusted these intervals based on each individual's N20 latency. As a measure of S1 excitability, the amplitude of the N20 and the area of the High Frequency Oscillation (HFO) burst were analyzed for each condition. RESULTS The results revealed significant inhibition of N20 amplitude by ipsilateral median nerve stimulation at interstimulus intervals (ISIs) between 5 and 40 ms. Late HFO burst was suppressed at short ISIs of 5 and 10 ms, pointing to a transcallosal inhibitory effect on S1 intracortical circuits. CONCLUSIONS Findings suggest interhemispheric interaction between the primary somatosensory areas, supporting the existence of transcallosal transfer of tactile information. SIGNIFICANCE This study provides valuable insights into the interhemispheric connections between primary sensory areas and underscore the potential role of interhemispheric interactions in somatosensory processing.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, 60020 Ancona, Italy.
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Simona Lattanzi
- Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, 60020 Ancona, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
4
|
Marcantoni I, Piccolantonio G, Ghoushi M, Valenti M, Reversi L, Mariotti F, Foschi N, Lattanzi S, Burattini L, Fabri M, Polonara G. Interhemispheric functional connectivity: an fMRI study in callosotomized patients. Front Hum Neurosci 2024; 18:1363098. [PMID: 38812473 PMCID: PMC11133720 DOI: 10.3389/fnhum.2024.1363098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Functional connectivity (FC) is defined in terms of temporal correlations between physiological signals, which mainly depend upon structural (axonal) connectivity; it is commonly studied using functional magnetic resonance imaging (fMRI). Interhemispheric FC appears mostly supported by the corpus callosum (CC), although several studies investigating this aspect have not provided conclusive evidence. In this context, patients in whom the CC was resected for therapeutic reasons (split-brain patients) provide a unique opportunity for research into this issue. The present study was aimed at investigating with resting-state fMRI the interhemispheric FC in six epileptic patients who have undergone surgical resection of the CC. Methods The analysis was performed using fMRI of the Brain Software Library; the evaluation of interhemispheric FC and the recognition of the resting-state networks (RSNs) were performed using probabilistic independent component analysis. Results Generally, bilateral brain activation was often observed in primary sensory RSNs, while in the associative areas, such as those composing the default mode and fronto-parietal networks, the activation was often unilateral. Discussion These results suggest that even in the absence of the CC, some interhemispheric communication is still present. This residual FC might be supported through extra-callosal pathways that are likely subcortical, making it possible for some interhemispheric integration. Further studies are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Ilaria Marcantoni
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Giusi Piccolantonio
- Dipartimento di Ingegneria per Medicina di Innovazione, Università di Verona, Verona, Italy
| | - Mojgan Ghoushi
- Dipartimento di Scienze Radiologiche, Azienda Ospedaliera-Universitaria Umberto I, Ancona, Italy
| | - Marco Valenti
- Dipartimento di Scienze Radiologiche, Azienda Ospedaliera-Universitaria Umberto I, Ancona, Italy
| | - Luca Reversi
- Dipartimento di Scienze Radiologiche, Azienda Ospedaliera-Universitaria Umberto I, Ancona, Italy
| | - Francesco Mariotti
- Dipartimento di Scienze Radiologiche, Azienda Ospedaliera-Universitaria Umberto I, Ancona, Italy
| | - Nicoletta Foschi
- Dipartimento di Scienze Neurologiche, Azienda Ospedaliera-Universitaria Umberto I, Ancona, Italy
| | - Simona Lattanzi
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Burattini
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Mara Fabri
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
5
|
Adil D, Duerden EG, Eagleson R, de Ribaupierre S. Structural Alterations of the Corpus Callosum in Children With Infantile Hydrocephalus. J Child Neurol 2024; 39:66-76. [PMID: 38387869 PMCID: PMC11083734 DOI: 10.1177/08830738241231343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
This study investigates structural alterations of the corpus callosum in children diagnosed with infantile hydrocephalus. We aim to assess both macrostructural (volume) and microstructural (diffusion tensor imaging metrics) facets of the corpus callosum, providing insights into the nature and extent of alterations associated with this condition. Eighteen patients with infantile hydrocephalus (mean age = 9 years) and 18 age- and sex-matched typically developing healthy children participated in the study. Structural magnetic resonance imaging and diffusion tensor imaging were used to assess corpus callosum volume and microstructure, respectively. Our findings reveal significant alterations in corpus callosum volume, particularly in the posterior area, as well as distinct microstructural disparities, notably pronounced in these same segments. These results highlight the intricate interplay between macrostructural and microstructural aspects in understanding the impact of infantile hydrocephalus. Examining these structural alterations provides an understanding into the mechanisms underlying the effects of infantile hydrocephalus on corpus callosum integrity, given its pivotal role in interhemispheric communication. This knowledge offers a more nuanced perspective on neurologic disorders and underscores the significance of investigating the corpus callosum's health in such contexts.
Collapse
Affiliation(s)
- Derya Adil
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Emma G. Duerden
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Electrical and Computer Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Westerhausen R, Fabri M, Hausmann M. Dichotic-listening performance after complete callosotomy: No relief from left-ear extinction by selective attention. Neuropsychologia 2023; 188:108627. [PMID: 37348649 DOI: 10.1016/j.neuropsychologia.2023.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The surgical section of the corpus callosum (callosotomy) has been frequently demonstrated to result in a left-ear extinction in dichotic listening. That is, callosotomy patients report the left-ear stimulus below chance level, resulting in substantially enhanced right-ear advantage (REA) compared with controls. A small number of previous studies also suggest that callosotomy patients can overcome left-ear extinction when the instruction encourages to attend selectively to the left-ear stimulus. In the present case study, we re-examine the role of selective attention in dichotic listening in two patients with complete callosotomy and 40 age- and sex-matched controls. We used the standardised Bergen dichotic-listening paradigm which uses stop-consonant-vowel syllables as stimulus material and includes both a free-report and selective-attention condition. As was predicted, both patients showed a clear left-ear extinction. However, contrasting the earlier reports, we did not find any evidence for a relief from this extinction by selectively attending to the left-ear stimulus. We conclude that previous demonstrations of an attention-improved left-ear recall in callosotomy patients may be attributed to the use of suboptimal dichotic paradigms or residual callosal connectivity, rather than representing a genuine effect of attention.
Collapse
Affiliation(s)
| | - Mara Fabri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Markus Hausmann
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
7
|
Fabri M, Polonara G. Functional topography of the corpus callosum as revealed by fMRI and behavioural studies of control subjects and patients with callosal resection. Neuropsychologia 2023; 183:108533. [PMID: 36906223 DOI: 10.1016/j.neuropsychologia.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The concept of a topographical map of the corpus callosum (CC), the main interhemispheric commissure, has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in also the CC. This short review summarizes the functional and behavioral studies performed in groups of healthy subjects and in patients undergone to partial or total callosal resection, and it is focused on the work conducted by the authors. Functional data have been collected by diffusion tensor imaging and tractography (DTI and DTT) and functional magnetic resonance imaging (fMRI), both techniques allowing to expand and refine our knowledge of the commissure. Neuropsychological test were also administered, and simple behavioral task, as imitation perspective and mental rotation ability, were analyzed. These researches added new insight on the topographic organization of the human CC. By combining DTT and fMRI it was possible to observe that the callosal crossing points of interhemispheric fibers connecting homologous primary sensory cortices, correspond to the CC sites where the fMRI activation elicited by peripheral stimulation was detected. In addition, CC activation during imitation and mental rotation performance was also reported. These studies demonstrated the presence of specific callosal fiber tracts that cross the commissure in the genu, body, and splenium, at sites showing fMRI activation, consistently with cortical activated areas. Altogether, these findings lend further support to the notion that the CC displays a functional topographic organization, also related to specific behavior.
Collapse
Affiliation(s)
- Mara Fabri
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica Delle Marche, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
8
|
Cortical Reorganization of Early Somatosensory Processing in Hemiparetic Stroke. J Clin Med 2022; 11:jcm11216449. [PMID: 36362680 PMCID: PMC9654771 DOI: 10.3390/jcm11216449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The cortical motor system can be reorganized following a stroke, with increased recruitment of the contralesional hemisphere. However, it is unknown whether a similar hemispheric shift occurs in the somatosensory system to adapt to this motor change, and whether this is related to movement impairments. This proof-of-concept study assessed somatosensory evoked potentials (SEPs), P50 and N100, in hemiparetic stroke participants and age-matched controls using high-density electroencephalograph (EEG) recordings during tactile finger stimulation. The laterality index was calculated to determine the hemispheric dominance of the SEP and re-confirmed with source localization. The study found that latencies of P50 and N100 were significantly delayed in stroke brains when stimulating the paretic hand. The amplitude of P50 in the contralateral (to stimulated hand) hemisphere was negatively correlated with the Fügl-Meyer upper extremity motor score in stroke. Bilateral cortical responses were detected in stroke, while only contralateral cortical responses were shown in controls, resulting in a significant difference in the laterality index. These results suggested that somatosensory reorganization after stroke involves increased recruitment of ipsilateral cortical regions, especially for the N100 SEP component. This reorganization delays the latency of somatosensory processing after a stroke. This research provided new insights related to the somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective.
Collapse
|
9
|
Alhassani G, Liston MB, Clothier PJ, Schabrun SM. Interhemispheric Inhibition Between Primary Sensory Cortices is not Influenced by Acute Muscle Pain. THE JOURNAL OF PAIN 2022; 23:1177-1186. [PMID: 35131448 DOI: 10.1016/j.jpain.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Bilateral deficits in sensorimotor function have been observed in unilateral musculoskeletal pain conditions. Altered interhemispheric inhibition (IHI) between primary sensory cortices (S1s) is one mechanism that could explain this phenomenon. However, IHI between S1s in response to acute muscle pain, and the relationship between IHI and pressure pain sensitivity in the unaffected limb have not been examined. In 21 healthy individuals, IHI was assessed using somatosensory evoked potentials in response to paired median nerve electrical stimulation at: 1) baseline; 2) immediately following pain resolution; and 3) at 30-minutes follow-up. Acute muscle pain was induced by injection of hypertonic saline into the right abductor pollicis brevis (APB) muscle. Pressure pain thresholds were assessed at the right and left APB muscles before and 30-minutes after pain resolution. Compared to baseline, IHI from the affected to unaffected S1 was unaltered in response to acute muscle pain immediately following pain resolution, or at 30-minutes follow-up. Pressure pain thresholds were reduced over the right (P = .001) and left (P = .001) APB muscles at 30-minutes follow-up. These findings suggest IHI between S1s is unaffected by acute, short-lasting muscle pain, despite the development of increased sensitivity to pressure in the unaffected APB muscle. PERSPECTIVE: IHI from the affected S1 (contralateral to the side of pain) to unaffected S1 is unaltered following the resolution of acute muscle pain. This finding suggests that IHI between S1s may not be relevant in the development of bilateral sensorimotor symptoms in unilateral pain conditions.
Collapse
Affiliation(s)
- Ghufran Alhassani
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia
| | - Matthew B Liston
- Centre for Human and Applied Physiological Sciences, Kings College, London, UK
| | - Peter J Clothier
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia
| | - Siobhan M Schabrun
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia; Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions. The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
11
|
Hausmann M, Corballis MC, Fabri M. Revisiting the attentional bias in the split brain. Neuropsychologia 2021; 162:108042. [PMID: 34582822 DOI: 10.1016/j.neuropsychologia.2021.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Previous research has revealed a strong right bias in allocation of attention in split brain subjects, suggesting that a pathological attention bias occurs not only after unilateral (usually right-hemispheric) damage but also after functional disconnection of intact right-hemispheric areas involved in allocation of attention from those in the left hemisphere. Here, we investigated the laterality bias in spatial attention, as measured with the greyscales task, in two split-brain subjects (D.D.C. and D.D.V.) who had undergone complete callosotomy. The greyscales task requires participants to judge the darker (or brighter) of two left-right mirror-reversed luminance gradients under conditions of free viewing, and offers an efficient means of quantifying pathological attentional biases in patients with unilateral lesions. As predicted, the results of the two split-brain subjects revealed a pathological rightward bias in allocation of attention, suggesting strong dependence on a single hemisphere (the left) in spatial attention, which is opposite to what one expects from people with intact commissures, and is remarkable in that it occurs in free viewing. In that sense both split-brain patients are behaving as though the brain is indeed split, especially in D.D.C. who had undergone partial resection of the anterior commissure in addition to complete callosotomy, whereas the anterior commissure is still intact in D.D.V. The findings support the view that the commissural pathways play a significant role in integration of attentional processes across cerebral hemispheres.
Collapse
Affiliation(s)
- Markus Hausmann
- Department of Psychology, Durham University, United Kingdom.
| | | | - Mara Fabri
- Department of Experimental and Clinical Medicine, Politechnic University of Marche, Ancona, Italy
| |
Collapse
|
12
|
Bayne T, Schechter E. Consciousness after split-brain surgery: The recent challenge to the classical picture. Neuropsychologia 2021; 160:107987. [PMID: 34371067 DOI: 10.1016/j.neuropsychologia.2021.107987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/27/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
In a recent series of experiments, Pinto and colleagues found that the split-brain patient D.D.C. was able to respond accurately to stimuli in either visual field, whether using his right hand, his left hand, or verbally. Pinto and colleagues argue that this demonstrates that a split-brain patient remains a unitary agent and thus continues to possess a unified consciousness. This paper provides a critical evaluation of that claim. First, we argue that two conceptions of the unity of consciousness need to be distinguished: an agency-based conception and an experience-based conception. Second, we argue that it is an open question whether the data presented by Pinto and colleagues is best understood in terms of the unity of agency. Whether that interpretation is correct depends not only on the mechanisms that produce split-brain behaviour, but also on what is involved in being a single agent. Third, we argue that even if the behavioral data indicated that D.D.C has a unified consciousness in the agency-based sense of the term, it is difficult to reconcile them with the claim that his consciousness is fully unified in the experience-based sense.
Collapse
Affiliation(s)
- Tim Bayne
- Department of Philosophy and Cognitive Science Program Indiana University, Bloomington 1033 E. Third Street, Bloomington, Indiana 47405
| | - Elizabeth Schechter
- Department of Philosophy and Cognitive Science Program Indiana University, Bloomington 1033 E. Third Street, Bloomington, Indiana 47405.
| |
Collapse
|
13
|
Schendel K, Herron TJ, Curran B, Dronkers NF, Ivanova M, Baldo J. Case study: A selective tactile naming deficit for letters and numbers due to interhemispheric disconnection. Neuroimage Clin 2021; 30:102614. [PMID: 33770548 PMCID: PMC8022252 DOI: 10.1016/j.nicl.2021.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
The role of white matter pathways in cognition is a topic of active investigation that is vital to both the fields of clinical neurology and cognitive neuroscience. White matter pathways provide critical connectivity amongst numerous specialized brain regions thereby enabling higher level cognition. While the effects of dissections and lesions of the corpus callosum have been reported, it is less understood how unilateral focal white matter lesions may impact cognitive processes. Here, we report a unique case study in which a small left lateralized stroke in the white matter adjacent to the body of the corpus callosum selectively impaired the ability to name letters and numbers presented to the ipsilesional, left hand. Naming of letters, numbers and objects was tested in both the visual and tactile modalities in both hands. Diffusion-weighted imaging showed a marked reduction in white matter pathway integrity through the body of the corpus callosum. Clinically, this case highlights the significant impact that a focal white matter lesion can have on higher-level cognition, specifically the integration of verbal and tactile information. Moreover, this case adds to prior reports on tactile agnosia by including DTI imaging data and emphasizing the role that white matter pathways through the body of the corpus callosum play in integrating tactile input from the right hemisphere with verbal naming capabilities of the left hemisphere. Finally, the findings also provoke fresh insight into alternative strategies for rehabilitating cognitive functioning when structural connectivity may be compromised.
Collapse
Affiliation(s)
| | | | - Brian Curran
- VA Northern California Health Care System, United States
| | | | | | - Juliana Baldo
- VA Northern California Health Care System, United States
| |
Collapse
|
14
|
Music Playing and Interhemispheric Communication: Older Professional Musicians Outperform Age-Matched Non-Musicians in Fingertip Cross-Localization Test. J Int Neuropsychol Soc 2021; 27:282-292. [PMID: 32967757 DOI: 10.1017/s1355617720000946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Numerous investigations have documented that age-related changes in the integrity of the corpus callosum are associated with age-related decline in the interhemispheric transfer of information. Conversely, there is accumulating evidence for more efficient white matter organization of the corpus callosum in individuals with extensive musical training. However, the relationship between making music and accuracy in interhemispheric transfer remains poorly explored. METHODS To test the hypothesis that musicians show enhanced functional connectivity between the two hemispheres, 65 professional musicians (aged 56-90 years) and 65 age- and sex-matched non-musicians performed the fingertip cross-localization test. In this task, subjects must respond to a tactile stimulus presented to one hand using the ipsilateral (intra-hemispheric test) or contralateral (inter-hemispheric test) hand. Because the transfer of information from one hemisphere to another may imply a loss of accuracy, the value of the difference between the intrahemispheric and interhemispheric tests can be utilized as a reliable measure of the effectiveness of hemispheric interactions. RESULTS Older professional musicians show significantly greater accuracy in tactile interhemispheric transfer than non-musicians who suffer from age-related decline. CONCLUSIONS Musicians have more efficient interhemispheric communication than age-matched non-musicians. This finding is in keeping with studies showing that individuals with extensive musical training have a larger corpus callosum. The results are discussed in relation to relevant data suggesting that music positively influences aging brain plasticity.
Collapse
|
15
|
Forster MT, Behrens M, Lortz I, Conradi N, Senft C, Voss M, Rauch M, Seifert V. Benefits of glioma resection in the corpus callosum. Sci Rep 2020; 10:16630. [PMID: 33024247 PMCID: PMC7538917 DOI: 10.1038/s41598-020-73928-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/24/2020] [Indexed: 01/27/2023] Open
Abstract
Due to anticipated postoperative neuropsychological sequelae, patients with gliomas infiltrating the corpus callosum rarely undergo tumor resection and mostly present in a poor neurological state. We aimed at investigating the benefit of glioma resection in the corpus callosum, hypothesizing neuropsychological deficits were mainly caused by tumor presence. Between 01/2017 and 1/2020, 21 patients who underwent glioma resection in the corpus callosum were prospectively enrolled into this study. Neuropsychological function was assessed preoperatively, before discharge and after 6 months. Gross total tumor resection was possible in 15 patients, and in 6 patients subtotal tumor resection with a tumor reduction of 97.7% could be achieved. During a median observation time of 12.6 months 9 patients died from glioblastoma after a median of 17 months. Preoperatively, all cognitive domains were affected in up to two thirds of patients, who presented a median KPS of 100% (range 60–100%). After surgery, the proportion of impaired patients increased in all neurocognitive domains. Most interestingly, after 6 months, significantly fewer patients showed impairments in attention, executive functioning, memory and depression, which are domains considered crucial for everyday functionality. Thus, the results of our study strongly support our hypothesis that in patients with gliomas infiltrating the corpus callosum the benefit of tumor resection might outweigh morbidity.
Collapse
Affiliation(s)
- Marie-Therese Forster
- Department of Neurosurgery, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,University Cancer Center Frankfurt (UCT), Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Marion Behrens
- Department of Neurology, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Irina Lortz
- Department of Neurosurgery, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Nadine Conradi
- Department of Neurology, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,University Cancer Center Frankfurt (UCT), Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Martin Voss
- University Cancer Center Frankfurt (UCT), Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.,Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Maximilian Rauch
- University Cancer Center Frankfurt (UCT), Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,University Cancer Center Frankfurt (UCT), Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
16
|
de Haan EHF, Corballis PM, Hillyard SA, Marzi CA, Seth A, Lamme VAF, Volz L, Fabri M, Schechter E, Bayne T, Corballis M, Pinto Y. Split-Brain: What We Know Now and Why This is Important for Understanding Consciousness. Neuropsychol Rev 2020; 30:224-233. [PMID: 32399946 PMCID: PMC7305066 DOI: 10.1007/s11065-020-09439-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/16/2020] [Indexed: 11/25/2022]
Abstract
Recently, the discussion regarding the consequences of cutting the corpus callosum (“split-brain”) has regained momentum (Corballis, Corballis, Berlucchi, & Marzi, Brain, 141(6), e46, 2018; Pinto et al., Brain, 140(5), 1231–1237, 2017a; Pinto, Lamme, & de Haan, Brain, 140(11), e68, 2017; Volz & Gazzaniga, Brain, 140(7), 2051–2060, 2017; Volz, Hillyard, Miller, & Gazzaniga, Brain, 141(3), e15, 2018). This collective review paper aims to summarize the empirical common ground, to delineate the different interpretations, and to identify the remaining questions. In short, callosotomy leads to a broad breakdown of functional integration ranging from perception to attention. However, the breakdown is not absolute as several processes, such as action control, seem to remain unified. Disagreement exists about the responsible mechanisms for this remaining unity. The main issue concerns the first-person perspective of a split-brain patient. Does a split-brain harbor a split consciousness or is consciousness unified? The current consensus is that the body of evidence is insufficient to answer this question, and different suggestions are made with respect to how future studies might address this paucity. In addition, it is suggested that the answers might not be a simple yes or no but that intermediate conceptualizations need to be considered.
Collapse
Affiliation(s)
- Edward H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Paul M Corballis
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Steven A Hillyard
- School of Health Sciences, University of California Dan Diego, La Jolla, CA, USA
| | - Carlo A Marzi
- School of Medicine and Surgery, University of Verona, Verona, Italy
| | - Anil Seth
- Sackler Centre for Consciousness Science, Sussex University, Brighton, UK
| | - Victor A F Lamme
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Lukas Volz
- Klinik für Neurologie, Universitätsklinikum Köln, Kerpener Str, 62, Köln, Germany
| | - Mara Fabri
- Dipartimento di Medicina Sperimentale e Clinica, Via Tronto 10/A, 60020, Ancona, Italy
| | | | - Tim Bayne
- Department of Philosophy, Monash University, Melbourne, Australia
| | | | - Yair Pinto
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Prete G, Fabri M, Foschi N, Tommasi L. Voice gender categorization in the connected and disconnected hemispheres. Soc Neurosci 2020; 15:385-397. [PMID: 32130082 DOI: 10.1080/17470919.2020.1734654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of the left and right hemispheres in processing the gender of voices is controversial, some evidence suggesting a bilateral involvement, some others suggesting a right-hemispheric superiority. We investigated this issue in a gender categorization task involving healthy participants and a male split-brain patient: female or male natural voices were presented in one ear during the simultaneous presentation of white noise in the other ear (dichotic listening paradigm). Results revealed faster responses by the healthy participants for stimuli presented in the left than in the right ear, although no asymmetries emerged between the two ears in the accuracy of both the patient and the control group. Healthy participants were also more accurate at categorizing female than male voices, and an opposite-gender bias emerged - at least in females - showing faster responses in categorizing voices of the opposite gender. The results support a bilateral hemispheric involvement in voice gender categorization, without asymmetries in the patient, but with a faster categorization when voices are directly presented to the right hemisphere in the healthy sample. Moreover, when the two hemispheres directly interact with one another, a faster categorization of voices of the opposite gender emerges, and it can be an evolutionary grounded bias.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| | - Mara Fabri
- Department of Clinical and Experimental Medicine, Neuroscience and Cell Biology Section, Polytechnic University of Marche , Ancona, Italy
| | - Nicoletta Foschi
- Regional Epilepsy Center, Neurological Clinic, "Ospedali Riuniti" , Ancona, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| |
Collapse
|
18
|
de Haan EHF, Fabri M, Dijkerman HC, Foschi N, Lattanzi S, Pinto Y. Unified tactile detection and localisation in split-brain patients. Cortex 2020; 124:217-223. [PMID: 31923846 PMCID: PMC7061321 DOI: 10.1016/j.cortex.2019.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023]
Abstract
In 'split-brain' patients, the corpus callosum has been surgically severed to alleviate medically intractable, severe epilepsy. The classic claim is that after removal of the corpus callosum an object presented in the right visual field will be identified correctly verbally and with the right hand but not with the left hand. When the object is presented in the left visual field the patient verbally states that he saw nothing but nevertheless identifies it accurately with the left hand. This interaction suggests that perception, recognition and responding are separated in the two isolated hemispheres. However, there is now accumulating evidence that this interaction is not absolute. Recently, we (Pinto et al., 2017) showed that accurate detection and location of stimuli anywhere in the visual field could be performed with both hands. In this study, we explored detection and localisation of tactile stimulation on the body. In line with our previous results, we observed that split-brain patients can signal detection and localisation with either hand anywhere on the body (be it the arm or the leg) but they remain unable to match positions touched on both arms or legs simultaneously. These results add to the evidence suggesting that the effects of removal of the corpus callosum may be less severe than sometimes claimed.
Collapse
Affiliation(s)
- Edward H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain & Cognition (ABC) Center, University of Amsterdam, the Netherlands.
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Marche Politechnical University, Ancona, Italy
| | | | - Nicoletta Foschi
- Epilepsy Center-Neurological Clinic, Azienda 'Ospedali Riuniti', Ancona, Italy
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Marche Politechnical University, Ancona, Italy
| | - Yair Pinto
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain & Cognition (ABC) Center, University of Amsterdam, the Netherlands
| |
Collapse
|
19
|
Monteiro M, de Oliveira-Souza R, Andrade J, Marins T, de Carvalho Rodrigues E, Bramati I, Lent R, Moll J, Tovar-Moll F. Cortical lateralization of cheirosensory processing in callosal dysgenesis. NEUROIMAGE-CLINICAL 2019; 23:101808. [PMID: 31153001 PMCID: PMC6541908 DOI: 10.1016/j.nicl.2019.101808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/17/2019] [Accepted: 03/30/2019] [Indexed: 01/27/2023]
Abstract
The paradoxical absence of a split-brain syndrome in most cases of callosal dysgenesis has originated three main hypotheses, namely, (i) bilateral cortical representation of language, (ii) bilateral thalamocortical projections of somatosensory pathways conveyed by the spinothalamic-medial lemniscus system, and (iii) a variable combination of (i) and (ii). We used functional neuroimaging to investigate the cortical representation and lateralization of somatosensory information from the palm of each hand in six cases of callosal dysgenesis (hypothesis [ii]). Cortical regions of interest were contralateral and ipsilateral S1 (areas 3a and 3b, 1 and 2 in the central sulcus and postcentral gyrus) and S2 (parts of areas 40 and 43 in the parietal operculum). The degree of cortical asymmetry was expressed by a laterality index (LI), which may assume values from −1 (fully left-lateralized) to +1 (fully right-lateralized). In callosal dysgenesis, LI values for the right and the left hands were, respectively, −1 and + 1 for both S1 and S2, indicating absence of engagement of ipsilateral S1 and S2. In controls, LI values were − 0.70 (S1) and − 0.51 (S2) for right hand stimulation, and 0.82 (S1) and 0.36 (S2) for left hand stimulation, reflecting bilateral asymmetric activations, which were significantly higher in the hemisphere contralateral to the stimulated hand. Therefore, none of the main hypotheses so far entertained to account for the callosal dysgenesis-split-brain paradox have succeeded. We conclude that the preserved interhemispheric transfer of somatosensory tactile information in callosal dysgenesis must be mediated by a fourth alternative, such as aberrant interhemispheric bundles, reorganization of subcortical commissures, or both.
We studied the cortical sensory representation of the hands in callosal dysgenesis. The representation of the hands was bilateral but asymmetric in controls. The representation of the hands was strictly contralateral in callosal dysgenesis. The representation of the hands is a distinguishing feature of callosal dysgenesis.
Collapse
Affiliation(s)
- Myriam Monteiro
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil
| | - Ricardo de Oliveira-Souza
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Theo Marins
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Ivanei Bramati
- The D'Or Institute for Research & Education (IDOR), Brazil
| | - Roberto Lent
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Jorge Moll
- The D'Or Institute for Research & Education (IDOR), Brazil
| | - Fernanda Tovar-Moll
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil.
| |
Collapse
|
20
|
Maniwa K, Yamashita H, Tsukano H, Hishida R, Endo N, Shibata M, Shibuki K. Tomographic optical imaging of cortical responses after crossing nerve transfer in mice. PLoS One 2018; 13:e0193017. [PMID: 29444175 PMCID: PMC5812646 DOI: 10.1371/journal.pone.0193017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/03/2018] [Indexed: 11/23/2022] Open
Abstract
To understand the neural mechanisms underlying the therapeutic effects of crossing nerve transfer for brachial plexus injuries in human patients, we investigated the cortical responses after crossing nerve transfer in mice using conventional and tomographic optical imaging. The distal cut ends of the left median and ulnar nerves were connected to the central cut ends of the right median and ulnar nerves with a sciatic nerve graft at 8 weeks of age. Eight weeks after the operation, the responses in the primary somatosensory cortex (S1) elicited by vibratory stimulation applied to the left forepaw were visualized based on activity-dependent flavoprotein fluorescence changes. In untreated mice, the cortical responses to left forepaw stimulation were mainly observed in the right S1. In mice with nerve crossing transfer, cortical responses to left forepaw stimulation were observed in the left S1 together with clear cortical responses in the right S1. We expected that the right S1 responses in the untreated mice were produced by thalamic inputs to layer IV, whereas those in the operated mice were mediated by callosal inputs from the left S1 to layer II/III of the right S1. To confirm this hypothesis, we performed tomographic imaging of flavoprotein fluorescence responses by macroconfocal microscopy. Flavoprotein fluorescence responses in layer IV were dominant compared to those in layer II/III in untreated mice. In contrast, responses in layer II/III were dominant compared to those in layer IV in operated mice. The peak latency of the cortical responses in the operated mice was longer than that in the untreated mice. These results confirmed our expectation that drastic reorganization in the cortical circuits was induced after crossing nerve transfer in mice.
Collapse
Affiliation(s)
- Keiichi Maniwa
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Haruyoshi Yamashita
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoto Endo
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Minoru Shibata
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
21
|
Pinto Y, de Haan EH, Lamme VA. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception. Trends Cogn Sci 2017; 21:835-851. [DOI: 10.1016/j.tics.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
|
22
|
Womack KB, Paliotta C, Strain JF, Ho JS, Skolnick Y, Lytton WW, Turtzo LC, McColl R, Diaz-Arrastia R, Bergold PJ. Measurement of Peripheral Vision Reaction Time Identifies White Matter Disruption in Patients with Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:1539-1545. [PMID: 27927083 DOI: 10.1089/neu.2016.4670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study examined whether peripheral vision reaction time (PVRT) in patients with mild traumatic brain injury (mTBI) correlated with white matter abnormalities in centroaxial structures and impairments in neuropsychological testing. Within 24 h after mTBI, crossed reaction times (CRT), uncrossed reaction times (URT), and crossed-uncrossed difference (CUD) were measured in 23 patients using a laptop computer that displayed visual stimuli predominantly to either the left or the right visual field of the retina. The CUD is a surrogate marker of the interhemispheric transfer time (ITT). Within 7 days after the injury, patients received a diffusion tensor-MRI (DTI) scan and a battery of neuropsychological tests. Nine uninjured control subjects received similar testing. Patients 18-50 years of age were included if they had a post-resuscitation Glasgow Coma Scale >13 and an injury mechanism compatible with mTBI. Healthy controls were either age- and gender-matched family members of the TBI patients or healthy volunteers. CUD deficits >2 standard deviations (SD) were seen in 40.9% of patients. The CUD of injured patients correlated with mean diffusivity (MD) (p < 0.001, ρ = -0.811) in the posterior corpus callosum. Patients could be stratified on the basis of CUD on the Stroop 1, Controlled Oral Word Association Test (COWAT), and the obsessive-compulsive component of the Basic Symptom Inventory tests. These studies suggest that the PVRT indirectly measures white matter integrity in the posterior corpus callosum, a brain region frequently damaged by mTBI.
Collapse
Affiliation(s)
- Kyle B Womack
- 1 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center , Dallas, Texas.,2 Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, Texas.,3 Berman Laboratory for Learning and Memory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas , Dallas, Texas
| | - Christopher Paliotta
- 1 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jeremy F Strain
- 3 Berman Laboratory for Learning and Memory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas , Dallas, Texas.,4 Department of Neurology, Washington University , St. Louis, Missouri
| | - Johnson S Ho
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - Yosef Skolnick
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - William W Lytton
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - L Christine Turtzo
- 6 National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | - Roderick McColl
- 7 Department of Radiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ramon Diaz-Arrastia
- 6 National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland.,8 Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Peter J Bergold
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| |
Collapse
|
23
|
Tamè L, Braun C, Holmes NP, Farnè A, Pavani F. Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol 2016; 33:48-66. [PMID: 27314449 DOI: 10.1080/02643294.2016.1159547] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of somatosensory input, in the context of motor control.
Collapse
Affiliation(s)
- Luigi Tamè
- a Department of Psychological Sciences , Birkbeck, University of London , London , UK
| | - Christoph Braun
- b MEG-Center, University of Tübingen , Tübingen , Germany.,c Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen , Tübingen , Germany.,d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy
| | | | - Alessandro Farnè
- g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France.,h University Claude Bernard Lyon I , Lyon , France
| | - Francesco Pavani
- d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy.,g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France
| |
Collapse
|
24
|
Tamè L, Longo MR. Inter-hemispheric integration of tactile-motor responses across body parts. Front Hum Neurosci 2015; 9:345. [PMID: 26124718 PMCID: PMC4466437 DOI: 10.3389/fnhum.2015.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
In simple detection tasks, reaction times (RTs) are faster when stimuli are presented to the visual field or side of the body ipsilateral to the body part used to respond. This advantage, the crossed-uncrossed difference (CUD), is thought to reflect inter-hemispheric interactions needed for sensorimotor information to be integrated between the two cerebral hemispheres. However, it is unknown whether the tactile CUD is invariant when different body parts are stimulated. The most likely structure mediating such processing is thought to be the corpus callosum (CC). Neurophysiological studies have shown that there are denser callosal connections between regions that represent proximal parts of the body near the body midline and more sparse connections for regions representing distal extremities. Therefore, if the information transfer between the two hemispheres is affected by the density of callosal connections, stimuli presented on more distal regions of the body should produce a greater CUD compared to stimuli presented on more proximal regions. This is because interhemispheric transfer of information from regions with sparse callosal connections will be less efficient, and hence slower. Here, we investigated whether the CUD is modulated as a function of the different body parts stimulated by presenting tactile stimuli unpredictably on body parts at different distances from the body midline (i.e., Middle Finger, Forearm, or Forehead of each side of the body). Participants detected the stimulus and responded as fast as possible using either their left or right foot. Results showed that the magnitude of the CUD was larger on the finger (~2.6 ms) and forearm (~1.8 ms) than on the forehead (≃0.9 ms). This result suggests that the interhemispheric transfer of tactile stimuli varies as a function of the strength of callosal connections of the body parts.
Collapse
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London London, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London London, UK
| |
Collapse
|
25
|
Fabri M, Pierpaoli C, Barbaresi P, Polonara G. Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol 2014; 6:895-906. [PMID: 25550994 PMCID: PMC4278150 DOI: 10.4329/wjr.v6.i12.895] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/02/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI.
Collapse
|
26
|
Tamè L, Pavani F, Papadelis C, Farnè A, Braun C. Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 2014; 36:1506-23. [PMID: 25514844 DOI: 10.1002/hbm.22719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Animal, as well as behavioural and neuroimaging studies in humans have documented integration of bilateral tactile information at the level of primary somatosensory cortex (SI). However, it is still debated whether integration in SI occurs early or late during tactile processing, and whether it is somatotopically organized. To address both the spatial and temporal aspects of bilateral tactile processing we used magnetoencephalography in a tactile repetition-suppression paradigm. We examined somatosensory evoked-responses produced by probe stimuli preceded by an adaptor, as a function of the relative position of adaptor and probe (probe always at the left index finger; adaptor at the index or middle finger of the left or right hand) and as a function of the delay between adaptor and probe (0, 25, or 125 ms). Percentage of response-amplitude suppression was computed by comparing paired (adaptor + probe) with single stimulations of adaptor and probe. Results show that response suppression varies differentially in SI and SII as a function of both spatial and temporal features of the stimuli. Remarkably, repetition suppression of SI activity emerged early in time, regardless of whether the adaptor stimulus was presented on the same and the opposite body side with respect to the probe. These novel findings support the notion of an early and somatotopically organized inter-hemispheric integration of tactile information in SI.
Collapse
Affiliation(s)
- Luigi Tamè
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | | | | | | |
Collapse
|
27
|
Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev 2014; 47:22-35. [DOI: 10.1016/j.neubiorev.2014.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
|
28
|
Prete G, Fabri M, Foschi N, Brancucci A, Tommasi L. The “consonance effect” and the hemispheres: A study on a split-brain patient. Laterality 2014; 20:257-69. [DOI: 10.1080/1357650x.2014.959525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Nguyen RH, Forshey TM, Holden JK, Francisco EM, Kirsch B, Favorov O, Tommerdahl M. Vibrotactile discriminative capacity is impacted in a digit-specific manner with concurrent unattended hand stimulation. Exp Brain Res 2014; 232:3601-12. [PMID: 25080130 DOI: 10.1007/s00221-014-4045-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 07/14/2014] [Indexed: 01/13/2023]
Abstract
A number of perceptual and neurophysiological studies have investigated the effects of delivering unilateral versus bilateral tactile sensory stimulation. While a number of studies indicate that perceptual discrimination degrades with opposite-hand stimulation, there have been no reports that examined the digit specificity of cross-hemispheric interactions to discriminative capabilities. The purpose of this study was to determine whether unattended hand (UH) stimulation significantly degraded or improved amplitude discriminative capacity on the attended hand (AH) in a digit-specific manner. The methods are based on a sensory perceptual task (vibrotactile amplitude discriminative capacity on the tips of the fingers D2 and D3 of the left hand) in the absence and presence of conditioning stimuli delivered to D2 and D3 of the right hand. Non-specific equal-amplitude stimulation to D2 and D3 of the UH significantly worsened amplitude discrimination (AD) performance, while delivering unequal-amplitude stimuli to D2 and D3 of the UH worsened task performance only under the condition in which the unattended stimuli failed to appropriately match the stimulus parameters on the AH. Additionally, delivering single-site stimuli to D2 or D3 of the UH resulted in degraded performance on the AD task when the stimulus amplitude did not match the amplitude of the stimulus applied to homologous digits of the AH. The findings demonstrate that there is a reduction in performance under conditions where UH stimulation least matched stimulation applied to the AH, while there was little or no change in performance when stimulus conditions on the homologous digit(s) of the contralateral sites were similar. Results suggest that bilateral interactions influence perception in a context-dependent manner that is digit specific.
Collapse
Affiliation(s)
- Richard H Nguyen
- Department of Biomedical Engineering, University of North Carolina, CB #7575, Chapel Hill, NC, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Polonara G, Mascioli G, Foschi N, Salvolini U, Pierpaoli C, Manzoni T, Fabri M, Barbaresi P. Further evidence for the topography and connectivity of the corpus callosum: an FMRI study of patients with partial callosal resection. J Neuroimaging 2014; 25:465-73. [PMID: 25039660 DOI: 10.1111/jon.12136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE This functional MRI study was designed to describe activated fiber topography and trajectories in the corpus callosum (CC) of six patients carrying different degree of partial callosal resection. METHODS Patients receiving gustatory, tactile, and visual stimulation according to a block-design protocol were scanned in a 1.5 Tesla magnet. Diffusion tensor imaging (DTI) data were also acquired to visualize spared interhemispheric fibers. RESULTS Taste stimuli evoked bilateral activation of the primary gustatory area in all patients and foci in the anterior CC, when spared. Tactile stimuli to the hand evoked bilateral foci in the primary somatosensory area in patients with an intact posterior callosal body and only contralateral in the other patients. Callosal foci occurred in the CC body, if spared. In patients with an intact splenium central visual stimulation induced bilateral activation of the primary visual area as well as foci in the splenium itself. CONCLUSION Present data show that interhemispheric fibers linking sensory areas crossed through the CC at the sites where the different sensory stimuli evoked activation foci, and that topography of callosal foci evoked by sensory stimulation in spared CC portions is consistent with that previously observed in subjects with intact CC.
Collapse
Affiliation(s)
- G Polonara
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prete G, Marzoli D, Brancucci A, Fabri M, Foschi N, Tommasi L. The processing of chimeric and dichotic emotional stimuli by connected and disconnected cerebral hemispheres. Behav Brain Res 2014; 271:354-64. [PMID: 24971689 DOI: 10.1016/j.bbr.2014.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
Hemispheric asymmetries have been widely explored in both the visual and the auditory domain, but little is known about hemispheric asymmetries in audio-visual integration. We compared the performance of a partially callosotomized patient, a total split-brain patient and a control group during the evaluation of the emotional valence of chimeric faces and dichotic syllables (an emotional syllable in one ear and white noise in the other ear) presented unimodally (only faces or only syllables) or bimodally (faces and syllables presented simultaneously). Stimuli could convey happy and sad expressions and participants were asked to evaluate the emotional content of each presentation, using a 5-point Likert scale (from very sad to very happy). In unimodal presentations, the partially callosotomized patient's judgments depended on the emotional valence of the stimuli processed by the right hemisphere, whereas those of the total split-brain patient showed the opposite lateralization; in these conditions, the control group did not show asymmetries. Moreover, in bimodal presentations, results provided support for the valence hypothesis (i.e., left asymmetry for positive emotions and vice versa) in both the control group and the partially callosotomized patient, whereas the total split-brain patient showed a tendency to evaluate the emotional content of the right hemiface even when asked to focus on the acoustic modality. We conclude that partial and total hemispheric disconnections reveal opposite patterns of hemispheric asymmetry in auditory, visual and audio-visual emotion processing. These results are discussed in the light of the right-hemisphere hypothesis and the valence hypothesis.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Neuroscience and Imaging, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.
| | - Daniele Marzoli
- Department of Psychological Science, Humanities and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brancucci
- Department of Psychological Science, Humanities and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Mara Fabri
- Department of Clinical and Experimental Medicine, Neuroscience and Cell Biology Section, Polytechnic University of Marche, Ancona, Italy
| | - Nicoletta Foschi
- Regional Epilepsy Centre, Neurological Clinic, "Ospedali Riuniti", Ancona, Italy
| | - Luca Tommasi
- Department of Psychological Science, Humanities and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
32
|
Laothamatas J, Sammet CL, Golay X, Van Cauteren M, Lekprasert V, Tangpukdee N, Krudsood S, Leowattana W, Wilairatana P, Swaminathan SV, DeLaPaz RL, Brown TR, Looareesuwan S, Brittenham GM. Transient lesion in the splenium of the corpus callosum in acute uncomplicated falciparum malaria. Am J Trop Med Hyg 2014; 90:1117-1123. [PMID: 24615139 PMCID: PMC4047739 DOI: 10.4269/ajtmh.13-0665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/07/2014] [Indexed: 02/05/2023] Open
Abstract
Patients with acute uncomplicated Plasmodium falciparum malaria have no evident neurologic disorder, vital organ dysfunction, or other severe manifestations of infection. Nonetheless, parasitized erythrocytes cytoadhere to the endothelium throughout their microvasculature, especially within the brain. We aimed to determine if 3 Tesla magnetic resonance imaging studies could detect evidence of cerebral abnormalities in these patients. Within 24 hours of admission, initial magnetic resonance imaging examinations found a lesion with restricted water diffusion in the mid-portion of the splenium of the corpus callosum of 4 (40%) of 10 male patients. The four patients who had a splenial lesion initially had evidence of more severe hemolysis and thrombocytopenia than the six patients who had no apparent abnormality. Repeat studies four weeks later found no residua of the lesions and resolution of the hematologic differences. These observations provide evidence for acute cerebral injury in the absence of severe or cerebral malaria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Sornchai Looareesuwan
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Institute of Neurology, University College London, London, United Kingdom; Philips Healthcare, Best, The Netherlands; The Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Departments of Radiology and Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Gary M. Brittenham
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Institute of Neurology, University College London, London, United Kingdom; Philips Healthcare, Best, The Netherlands; The Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Departments of Radiology and Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
33
|
Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum. Proc Natl Acad Sci U S A 2014; 111:7843-8. [PMID: 24821757 DOI: 10.1073/pnas.1400806111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function.
Collapse
|
34
|
Assessing proprioceptive function: evaluating joint position matching methods against psychophysical thresholds. Phys Ther 2014; 94:553-61. [PMID: 24262599 PMCID: PMC6281037 DOI: 10.2522/ptj.20130103] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The importance of assessing proprioceptive function for rehabilitation after neurological or orthopedic injury has long been recognized. Yet, neither the validity nor the accuracy of the available tests is firmly established. Testing typically involves repeated matching of a given joint position with the same or opposite limb where the difference between the 2 positions indicates proprioceptive acuity. OBJECTIVES The aim of this study was to compare position sense acuity between ipsilateral and contralateral matching methods against a psychophysical threshold method to establish the accuracy and relationships between these models. DESIGN A repeated-measures design was used. METHOD Assessment of forearm position sense for a 10-degree reference position in 27 young adults who were healthy. RESULTS Psychophysical thresholds were revealed to be the most precise and least variable acuity measure. The mean (±SD) threshold (1.05°±0.47°) was significantly lower than mean position errors obtained by both joint position matching tasks (ipsilateral: 1.51°±0.64°; contralateral: 1.84°±0.73°)-a 44% to 75% difference in measurement accuracy. Individual participant position errors correlated poorly with respective thresholds, indicating a lack of concurrent validity. Position errors for both matching methods correlated only mildly with each other. LIMITATIONS The data represent performance of a healthy, young adult cohort. Differences between methods will likely be more pronounced in aging and clinical populations. CONCLUSIONS Threshold testing and joint position matching methods examine different physiological aspects of proprioceptive function. Because threshold testing is based on passive motion, it most closely reflects afferent sensory feedback processing (ie, proprioception). Matching methods require active motion and are consequently influenced by additional sensorimotor processes. Factors such as working memory and transmission between brain hemispheres also influence joint matching task outcomes.
Collapse
|
35
|
Prete G, D'Ascenzo S, Laeng B, Fabri M, Foschi N, Tommasi L. Conscious and unconscious processing of facial expressions: evidence from two split-brain patients. J Neuropsychol 2013; 9:45-63. [PMID: 24325712 DOI: 10.1111/jnp.12034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/15/2013] [Indexed: 02/06/2023]
Abstract
We investigated how the brain's hemispheres process explicit and implicit facial expressions in two 'split-brain' patients (one with a complete and one with a partial anterior resection). Photographs of faces expressing positive, negative or neutral emotions were shown either centrally or bilaterally. The task consisted in judging the friendliness of each person in the photographs. Half of the photograph stimuli were 'hybrid faces', that is an amalgamation of filtered images which contained emotional information only in the low range of spatial frequency, blended to a neutral expression of the same individual in the rest of the spatial frequencies. The other half of the images contained unfiltered faces. With the hybrid faces the patients and a matched control group were more influenced in their social judgements by the emotional expression of the face shown in the left visual field (LVF). When the expressions were shown explicitly, that is without filtering, the control group and the partially callosotomized patient based their judgement on the face shown in the LVF, whereas the complete split-brain patient based his ratings mainly on the face presented in the right visual field. We conclude that the processing of implicit emotions does not require the integrity of callosal fibres and can take place within subcortical routes lateralized in the right hemisphere.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Neuroscience and Imaging, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Tagliabue M, McIntyre J. When kinesthesia becomes visual: a theoretical justification for executing motor tasks in visual space. PLoS One 2013; 8:e68438. [PMID: 23861903 PMCID: PMC3702599 DOI: 10.1371/journal.pone.0068438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023] Open
Abstract
Several experimental studies in the literature have shown that even when performing purely kinesthetic tasks, such as reaching for a kinesthetically felt target with a hidden hand, the brain reconstructs a visual representation of the movement. In our previous studies, however, we did not observe any role of a visual representation of the movement in a purely kinesthetic task. This apparent contradiction could be related to a fundamental difference between the studied tasks. In our study subjects used the same hand to both feel the target and to perform the movement, whereas in most other studies, pointing to a kinesthetic target consisted of pointing with one hand to the finger of the other, or to some other body part. We hypothesize, therefore, that it is the necessity of performing inter-limb transformations that induces a visual representation of purely kinesthetic tasks. To test this hypothesis we asked subjects to perform the same purely kinesthetic task in two conditions: INTRA and INTER. In the former they used the right hand to both perceive the target and to reproduce its orientation. In the latter, subjects perceived the target with the left hand and responded with the right. To quantify the use of a visual representation of the movement we measured deviations induced by an imperceptible conflict that was generated between visual and kinesthetic reference frames. Our hypothesis was confirmed by the observed deviations of responses due to the conflict in the INTER, but not in the INTRA, condition. To reconcile these observations with recent theories of sensori-motor integration based on maximum likelihood estimation, we propose here a new model formulation that explicitly considers the effects of covariance between sensory signals that are directly available and internal representations that are ‘reconstructed’ from those inputs through sensori-motor transformations.
Collapse
Affiliation(s)
- Michele Tagliabue
- Centre d'Etude de la Sensorimotricité, (CNRS UMR 8194), Université Paris Descartes, Institut des Neurosciences et de la Cognition, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
37
|
Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural Plast 2013; 2013:251308. [PMID: 23476810 PMCID: PMC3586479 DOI: 10.1155/2013/251308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI and diffusion tensor imaging data on the cortical representation of tactile, gustatory, auditory, and visual sensitivity and of motor activation, obtained in 36 normal volunteers and in 6 patients with partial callosotomy. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (auditory and visual stimuli). Reconstruction of callosal fibers connecting activated primary gustatory, motor, somatosensory, auditory, and visual cortices by diffusion tensor tracking showed bundles crossing, respectively, through the genu, anterior and posterior body, and splenium, at sites harboring fMRI foci. These data confirm that the CC commissure has a topographical organization and demonstrate that its functional topography can be explored with fMRI.
Collapse
Affiliation(s)
- Mara Fabri
- Sezione di Neuroscienze e Biologia Cellulare, Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | | |
Collapse
|
38
|
Gröschel S, Sohns JM, Schmidt-Samoa C, Baudewig J, Becker L, Dechent P, Kastrup A. Effects of age on negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 2013; 71:10-8. [PMID: 23296182 DOI: 10.1016/j.neuroimage.2012.12.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 12/19/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to a contralateral activation of the primary and secondary somatosensory cortices, peripheral sensory stimulation has been shown to elicit responses in the ipsilateral primary somatosensory cortex (SI). In particular, evidence is accumulating that processes of interhemispheric inhibition as depicted by negative blood oxygenation level dependent (BOLD) signal changes are part of somatosensory processes. The aim of the study was to analyze age-related differences in patterns of cerebral activation in the somatosensory system in general and processes of interhemispheric inhibition in particular. For this, a functional magnetic resonance imaging (fMRI) study was performed including 14 younger (mean age 23.3±0.9years) and 13 healthy older participants (mean age 73.2±8.3years). All subjects were scanned during peripheral electrical median nerve stimulation (40Hz) to obtain BOLD responses in the somatosensory system. Moreover, the individual current perception threshold (CPT) as a quantitative measure of sensory function was determined in a separate psychophysical testing. Significant increases in BOLD signal across the entire group could be measured within the contralateral SI, in the bilateral secondary somatosensory cortex (SII), the contralateral supplementary motor area and the insula. Negative BOLD signal changes were delineated in ipsilateral SI/MI as well as in the ipsilateral thalamus and basal ganglia. After comparing the two groups, only the cortical deactivation in ipsilateral SI in the early stimulation phase as well as the activation in contralateral SI and SII in the late stimulation block remained as statistically significant differences between the two groups. The psychophysical experiments yielded a significant age-dependent effect of CPT change with less difference in the older group which is in line with the significantly smaller alterations in maximal BOLD signal change in the contra- and ipsilateral SI found between the two groups. Healthy aging seems to be associated with a decrease in intracerebral inhibition as reflected by smaller negative BOLD signal changes during fMRI tasks. This finding could constitute an important link between age-related neurophysiological changes and behavioral alterations in humans.
Collapse
Affiliation(s)
- Sonja Gröschel
- Department of Neurology, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation. J Neurosci 2012; 32:5667-77. [PMID: 22514328 DOI: 10.1523/jneurosci.5957-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.
Collapse
|
40
|
Yamashita H, Chen S, Komagata S, Hishida R, Iwasato T, Itohara S, Yagi T, Endo N, Shibata M, Shibuki K. Restoration of contralateral representation in the mouse somatosensory cortex after crossing nerve transfer. PLoS One 2012; 7:e35676. [PMID: 22536423 PMCID: PMC3334974 DOI: 10.1371/journal.pone.0035676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer.
Collapse
Affiliation(s)
- Haruyoshi Yamashita
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Shanlin Chen
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
- Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Seiji Komagata
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Naoto Endo
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Minoru Shibata
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
41
|
Lejeune F, Marcus L, Berne-Audeoud F, Streri A, Debillon T, Gentaz E. Intermanual Transfer of Shapes in Preterm Human Infants From 33 to 34 + 6 Weeks Postconceptional Age. Child Dev 2012; 83:794-800. [DOI: 10.1111/j.1467-8624.2012.01753.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
van der Knaap LJ, van der Ham IJM. How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 2011; 223:211-21. [PMID: 21530590 DOI: 10.1016/j.bbr.2011.04.018] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 11/16/2022]
Abstract
The corpus callosum is the largest white matter structure in the human brain, connecting cortical regions of both hemispheres. Complete and partial callosotomies or callosal lesion studies have granted more insight into the function of the corpus callosum, namely the facilitation of communication between the cerebral hemispheres. How the corpus callosum mediates this information transfer is still a topic of debate. Some pose that the corpus callosum maintains independent processing between the two hemispheres, whereas others say that the corpus callosum shares information between hemispheres. These theories of inhibition and excitation are further explored by reviewing recent behavioural studies and morphological findings to gain more information about callosal function. Additional information regarding callosal function in relation to altered morphology and dysfunction in disorders is reviewed to add to the discussion of callosal involvement in interhemispheric transfer. Both the excitatory and inhibitory theories seem likely candidates to describe callosal function, however evidence also exists for both functions within the same corpus callosum. For future research it would be beneficial to investigate the functional role of the callosal sub regions to get a better understanding of function and use more appropriate experimental methods to determine functional connectivity when looking at interhemispheric transfer.
Collapse
|
43
|
Ragert P, Nierhaus T, Cohen LG, Villringer A. Interhemispheric interactions between the human primary somatosensory cortices. PLoS One 2011; 6:e16150. [PMID: 21347308 PMCID: PMC3037378 DOI: 10.1371/journal.pone.0016150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/13/2010] [Indexed: 11/26/2022] Open
Abstract
In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20–25 ms after median nerve stimulation.
Collapse
Affiliation(s)
- Patrick Ragert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | |
Collapse
|
44
|
Topographical organization of human corpus callosum: an fMRI mapping study. Brain Res 2010; 1370:99-111. [PMID: 21081115 DOI: 10.1016/j.brainres.2010.11.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
Abstract
The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study, the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI data on the cortical representation of tactile, gustatory, and visual sensitivity and of motor activation, obtained in 36 volunteers. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (visual stimuli). These findings demonstrate that the functional topography of the CC can be explored with fMRI.
Collapse
|
45
|
Chaim TM, Schaufelberger MS, Ferreira LK, Duran FLS, Ayres AM, Scazufca M, Menezes PR, Amaro E, Leite CC, Murray RM, McGuire PK, Rushe TM, Busatto GF. Volume reduction of the corpus callosum and its relationship with deficits in interhemispheric transfer of information in recent-onset psychosis. Psychiatry Res 2010; 184:1-9. [PMID: 20817487 DOI: 10.1016/j.pscychresns.2010.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/26/2010] [Accepted: 06/08/2010] [Indexed: 01/11/2023]
Abstract
The present study aimed to investigate the presence of corpus callosum (CC) volume deficits in a population-based recent-onset psychosis (ROP) sample, and whether CC volume relates to interhemispheric communication deficits. For this purpose, we used voxel-based morphometry comparisons of magnetic resonance imaging data between ROP (n =122) and healthy control (n = 94) subjects. Subgroups (38 ROP and 39 controls) were investigated for correlations between CC volumes and performance on the Crossed Finger Localization Test (CFLT). Significant CC volume reductions in ROP subjects versus controls emerged after excluding substance misuse and non-right-handedness. CC reductions retained significance in the schizophrenia subgroup but not in affective psychoses subjects. There were significant positive correlations between CC volumes and CFLT scores in ROP subjects, specifically in subtasks involving interhemispheric communication. From these results, we can conclude that CC volume reductions are present in association with ROP. The relationship between such deficits and CFLT performance suggests that interhemispheric communication impairments are directly linked to CC abnormalities in ROP.
Collapse
Affiliation(s)
- Tiffany M Chaim
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Corballis MC, Birse K, Paggi A, Manzoni T, Pierpaoli C, Fabri M. Mirror-image discrimination and reversal in the disconnected hemispheres. Neuropsychologia 2010; 48:1664-9. [PMID: 20167229 DOI: 10.1016/j.neuropsychologia.2010.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 02/09/2010] [Indexed: 01/18/2023]
Abstract
Two callosotomized patients and 24 neurologically normal subjects performed simple binary discriminations between upright letters flashed in one or other visual field. Where discrimination of the letters F and R by name either showed a left-hemisphere advantage or no hemispheric effect, discrimination of whether the same letters were normal or backward showed a right-hemisphere advantage. These results suggest that discrimination of mirror-image letters depends on matching to an exemplar, for which the right-hemisphere is dominant, while letter naming depends on abstract category recognition. One commissurotomized patient, DDV, showed systematic left-right reversal of the letters in the left visual field, classifying the normal letters as reversed and reversed ones as normal, and persisted with this reversal when the letters were shown in free vision. This suggests that reversed exemplars of the letters may be laid down the right cerebral hemisphere. There was no such reversal in the other patient (DDC).
Collapse
Affiliation(s)
- Michael C Corballis
- Department of Psychology, University of Auckland, Private Bag 92019, Auckland 1164, New Zealand.
| | | | | | | | | | | |
Collapse
|
47
|
Dodge NC, Jacobson JL, Molteno CD, Meintjes EM, Bangalore S, Diwadkar V, Hoyme EH, Robinson LK, Khaole N, Avison MJ, Jacobson SW. Prenatal alcohol exposure and interhemispheric transfer of tactile information: Detroit and Cape Town findings. Alcohol Clin Exp Res 2009; 33:1628-37. [PMID: 19519722 PMCID: PMC2768060 DOI: 10.1111/j.1530-0277.2009.00994.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous research has demonstrated that heavy prenatal alcohol exposure affects the size and shape of the corpus callosum (CC) and compromises interhemispheric transfer of information. The aim of this study was to confirm the previous reports of poorer performance on a finger localization test (FLT) of interhemispheric transfer in a cohort of heavily exposed children and to extend these findings to a cohort of moderately exposed young adults. METHODS In Study 1, the FLT was administered to 40 heavily exposed and 23 nonexposed children from the Cape Coloured community of Cape Town, South Africa, who were evaluated for fetal alcohol syndrome (FAS) dysmorphology and growth. Anatomical images of the CC were obtained using structural MRI on a subset of these children. In Study 2, the FLT was administered to a cohort of 85 moderate-to-heavily exposed young adults participating in a 19-year follow-up assessment of the Detroit Prenatal Alcohol Exposure cohort, whose alcohol exposure had been ascertained prospectively during gestation. RESULTS In Study 1, children with FAS showed more transfer-related errors than controls after adjustment for confounding, and increased transfer-related errors were associated with volume reductions in the isthmus and splenium of the CC. In Study 2, transfer-related errors were associated with quantity of alcohol consumed per occasion during pregnancy. More errors were made if the mother reported binge drinking (> or =5 standard drinks) during pregnancy than if she drank regularly (M > or = 1 drink/day) without binge drinking. CONCLUSIONS These findings confirm a previous report of impaired interhemispheric transfer of tactile information in children heavily exposed to alcohol in utero and extend these findings to show that these deficits are also seen in more moderately exposed individuals, particularly those exposed to binge-like pregnancy drinking.
Collapse
Affiliation(s)
- Neil C. Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| | - Joseph L. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine
| | | | - Ernesta M. Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town
| | | | - Vaibhav Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| | - Eugene H. Hoyme
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota
| | - Luther K. Robinson
- Department of Pediatrics, State University New York School of Medicine and Biomedical Sciences
| | - Nathaniel Khaole
- Women’s Health and Genetics, National Health Department, South Africa
| | - Malcolm J. Avison
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, Tennessee
| | - Sandra W. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| |
Collapse
|
48
|
Direct evidence of inter-hemispheric modulation by callosal fibers: a cortical spreading depression study in well-nourished and early-malnourished adult rats. Exp Brain Res 2007; 186:39-46. [DOI: 10.1007/s00221-007-1201-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 10/25/2007] [Indexed: 11/26/2022]
|
49
|
Sann C, Streri A. Inter-manual transfer of object texture and shape in human neonates. Neuropsychologia 2007; 46:698-703. [PMID: 18006025 DOI: 10.1016/j.neuropsychologia.2007.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/17/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
Two experiments, using habituation/reaction to novelty procedure, were performed to assess human neonates' ability to process and exchange information about texture (Experiment 1) or shape (Experiment 2) between their hands, without visual control. Forty-eight newborn infants (24 per experiment) received a haptic habituation either with their right or left hand followed by a haptic discrimination test in the opposite hand. Results revealed two patterns of behaviour, according to the object property to be processed. After a tactual habituation to a texture in one hand, newborns held the novel texture longer in the other hand. On the contrary, after a tactual habituation to a shape in one hand, the familiar shape was held longer in the opposite hand. The findings suggest that inter-manual transfer is possible at birth despite of the relative immaturity of the corpus callosum. The discrepancies of performances between object properties are discussed in relation to the possibility of a different haptic processing of texture and shape in the newborn brain.
Collapse
Affiliation(s)
- Coralie Sann
- Psychology for Perception"Laboratory, FRE 2929 CNRS, Paris Descartes University, Institute of Psychology, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
50
|
Streri A, Lemoine C, Devouche E. Development of inter-manual transfer of shape information in infancy. Dev Psychobiol 2007; 50:70-6. [DOI: 10.1002/dev.20258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|