1
|
Qin J, Wang C, Di M, Hu R, Huang H, Song X, Feng W, Dai C, Chen Y, Zhang R. Ultrasound-Driven Piezoelectric Heterostructures Block Early Atherosclerotic Plaques Progression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412815. [PMID: 40091396 DOI: 10.1002/smll.202412815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Atherosclerosis (AS), marked by lipid buildup and chronic inflammation in arteries, leads to major cardiovascular events. Macrophages contribute to AS by engulfing low-density lipoproteins, forming foam cells, and driving inflammation that promotes plaque growth and instability. The emerging piezocatalytic therapy uses piezoelectric materials to generate radicals that target inflammation-related macrophages for AS treatment, but the conventional materials suffer from low radical yield, substantially limiting clinical use. In this study, the construction of piezoelectric BaTiO3/Ta4C3 MXene heterostructured nanosheets (BTOMX NSs) is reported for achieving enhanced piezoelectric AS treatment by blocking early atherosclerotic plaque progression. The composite BTOMX NSs feature high electron-hole separation efficiency due to their narrowed bandgap and high surface potential under ultrasound irradiation, enabling more effective radical generation by piezocatalytic effects. Especially, these biocompatible piezoelectric nanosheets accumulate in plaques and are efficiently internalized by macrophages, where they generate radicals under ultrasound stimulation, ultimately triggering macrophage apoptosis and interrupting plaque progression. In ApoE-/- mice, the BTOMX NSs remove lesional macrophages, reduce lipid accumulation, and mitigate inflammation, decreasing plaque burden from 21.42% to 9.04%. Taken together, this work provides a paradigm for enhancing BaTiO3-based piezocatalytic performance by heterostructure construction, demonstrating an efficient, noninvasive, and safe therapeutic approach for treating early-stage AS.
Collapse
Affiliation(s)
- Junchang Qin
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chang Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Min Di
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Ruizhi Hu
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai, 200120, P. R. China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Chen Dai
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai, 200120, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ruifang Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
2
|
Liu Z, Wang L, Wu P, Yuan L. Precision tumor treatment utilizing bacteria: principles and future perspectives. Appl Microbiol Biotechnol 2025; 109:2. [PMID: 39754636 DOI: 10.1007/s00253-024-13378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor's immune-suppressive microenvironment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strategy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered bacteria could further enhance their efficacy and controllability. This comprehensive review systematically elucidates the classification and mechanisms of bacterial gene expression induction systems, as well as strategies for constructing bacterial-nanomaterial nanobiohybrids. The review concludes by highlighting the challenges associated with quality control and regulation of bacteria-based tumor therapy while also providing insights into the future prospects of this therapeutic technology. KEY POINTS: • A comprehensive overview of the current status of research on bacteria-based tumor therapy. • The classification and mechanisms of bacterial gene expression induction systems are summarized. • The challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Zhaoyou Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Lantian Wang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Pengying Wu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Lijun Yuan
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Wang T, Du M, Yuan Z, Guo J, Chen Z. Multi-functional nanosonosensitizer-engineered bacteria to overcome tumor hypoxia for enhanced sonodynamic therapy. Acta Biomater 2024; 189:519-531. [PMID: 39395706 DOI: 10.1016/j.actbio.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Ultrasound-triggered sonodynamic therapy (SDT), with high safety and acceptance, has become a promising tumor treatment. However, the dense stroma, hypoxic microenvironment of tumor, and the unpredictable treatment timing limit the effectiveness of sonosensitizers and the antitumor therapeutic effect. Thus, it is crucial to develop an imaging-guided sensitization strategy for hypoxic tumor sonosensitization to improve the efficacy of SDT. METHODS In this study, we developed a biohybrid system CB@HPP, which genetically engineered bacteria to express catalase (CB) and modified nanosonosensitizers (HPP) to the surface of these bacteria. Tumor hypoxia relief, tumor targeting, biocompatibility, and antitumor efficacy were evaluated through in vitro and in vivo experiments. In addition, the photoacoustic (PA), ultrasound (US), and fluorescence (FL) imaging effects of CB@HPP were evaluated in vivo and in vitro. RESULTS After intravenous injection, CB@HPP was able to target tumor tissue. CB@HPP possessed efficient catalase activity and successfully degraded hydrogen peroxide to produce oxygen. Increased oxygen levels relief intratumoral hypoxia, thereby enhancing CB@HPP-mediated. In addition, CB@HPP showed FL/PA/US multimodal imaging capabilities, which reflects the aggregation effect of CB@HPP in the tumor and suggest the timing of treatment. CONCLUSION The biohybrid system CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT. STATEMENT OF SIGNIFICANCE This study developed a sensitizing SDT strategy for imaging-guided drug-targeted delivery and in situ oxygen production. We designed a biohybrid system CB@HPP, which was hybridized by the engineered bacteria with catalytic oxygen production and nanosonosensitizer with multimodal imaging capability. CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, PR China
| | - Jintong Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, PR China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China; Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China.
| |
Collapse
|
4
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
5
|
Lin L, Ba Z, Tian H, Qin H, Chen X, Zhou X, Zhao S, Li L, Xue F, Li H, He L, Li X, Du J, Zhou Z, Zeng W. Ultrasound-responsive theranostic platform for the timely monitoring and efficient thrombolysis in thrombi of tPA resistance. Nat Commun 2024; 15:6610. [PMID: 39098904 PMCID: PMC11298549 DOI: 10.1038/s41467-024-50741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
There is no effective and noninvasive solution for thrombolysis because the mechanism by which certain thrombi become tissue plasminogen activator (tPA)-resistant remains obscure. Endovascular thrombectomy is the last option for these tPA-resistant thrombi, thus a new noninvasive strategy is urgently needed. Through an examination of thrombi retrieved from stroke patients, we found that neutrophil extracellular traps (NETs), ε-(γ-glutamyl) lysine isopeptide bonds and fibrin scaffolds jointly comprise the key chain in tPA resistance. A theranostic platform is designed to combine sonodynamic and mechanical thrombolysis under the guidance of ultrasonic imaging. Breakdown of the key chain leads to a recanalization rate of more than 90% in male rat tPA-resistant occlusion model. Vascular reconstruction is observed one month after recanalization, during which there was no thrombosis recurrence. The system also demonstrates noninvasive theranostic capabilities in managing pigs' long thrombi (>8 mm) and in revascularizing thrombosis-susceptible tissue-engineered vascular grafts, indicating its potential for clinical application. Overall, this noninvasive theranostic platform provides a new strategy for treating tPA-resistant thrombi.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Zhaojing Ba
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Hao Tian
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xi Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lang Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lang He
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Xiaochen Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
6
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
7
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
De A, Jee JP, Park YJ. Why Perfluorocarbon nanoparticles encounter bottlenecks in clinical translation despite promising oxygen carriers? Eur J Pharm Biopharm 2024; 199:114292. [PMID: 38636883 DOI: 10.1016/j.ejpb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Artificial Oxygen Carriers (AOCs) have emerged as ground-breaking biomedical solutions, showcasing tremendous potential for enhancing human health and saving lives. Perfluorocarbon (PFC)-based AOCs, in particular, have garnered significant interest among researchers, leading to numerous clinical trials since the 1980 s. However, despite decades of exploration, the success rate has remained notably limited. This comprehensive review article delves into the landscape of clinical trials involving PFC compounds, shedding light on the challenges and factors contributing to the lack of clinical success with PFC nanoparticles till date. By scrutinizing the existing trials, the article aims to uncover the underlying issues like pharmacological side effects of the PFC and the nanomaterials used for the designing, complex formulation strategy and poor clinical trial designs of the formulation. More over each generation of the PFC formulation were discussed with details for their failure in the clinical trials limitations that block the path of PFC-based AOCs' full potential. Furthermore, the review emphasizes a forward-looking approach by outlining the future pathways and strategies essential for achieving success in clinical trials. AOCs require advanced yet biocompatible single-componentformulations. The new trend might be a novel drug delivery technique, like gel emulsion or reverse PFC emulsion with fluoro surfactants. Most importantly, well-planned clinical trials may end in a success story.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea.
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea; Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea.
| |
Collapse
|
9
|
Dong F, An J, Guo W, Dang J, Huang S, Feng F, Zhang J, Wang D, Yin J, Fang J, Cheng H, Zhang J. Programmable ultrasound imaging guided theranostic nanodroplet destruction for precision therapy of breast cancer. ULTRASONICS SONOCHEMISTRY 2024; 105:106854. [PMID: 38537562 PMCID: PMC11059134 DOI: 10.1016/j.ultsonch.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Ultrasound-stimulated contrast agents have gained significant attention in the field of tumor treatment as drug delivery systems. However, their limited drug-loading efficiency and the issue of bulky, imprecise release have resulted in inadequate drug concentrations at targeted tissues. Herein, we developed a highly efficient approach for doxorubicin (DOX) precise release at tumor site and real-time feedback via an integrated strategy of "programmable ultrasonic imaging guided accurate nanodroplet destruction for drug release" (PND). We synthesized DOX-loaded nanodroplets (DOX-NDs) with improved loading efficiency (15 %) and smaller size (mean particle size: 358 nm). These DOX-NDs exhibited lower ultrasound activation thresholds (2.46 MPa). By utilizing a single diagnostic transducer for both ultrasound stimulation and imaging guidance, we successfully vaporized the DOX-NDs and released the drug at the tumor site in 4 T1 tumor-bearing mice. Remarkably, the PND group achieved similar tumor remission effects with less than half the dose of DOX required in conventional treatment. Furthermore, the ultrasound-mediated vaporization of DOX-NDs induced tumor cell apoptosis with minimal damage to surrounding normal tissues. In summary, our PND strategy offers a precise and programmable approach for drug delivery and therapy, combining ultrasound imaging guidance. This approach shows great potential in enhancing tumor treatment efficacy while minimizing harm to healthy tissues.
Collapse
Affiliation(s)
- Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, 211899, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
11
|
Ko MJ, Yoo W, Min S, Zhang YS, Joo J, Kang H, Kim DH. Photonic control of image-guided ferroptosis cancer nanomedicine. Coord Chem Rev 2024; 500:215532. [PMID: 38645709 PMCID: PMC11027759 DOI: 10.1016/j.ccr.2023.215532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Photonic nanomaterials, characterized by their remarkable photonic tunability, empower a diverse range of applications, including cutting-edge advances in cancer nanomedicine. Recently, ferroptosis has emerged as a promising alternative strategy for effectively killing cancer cells with minimizing therapeutic resistance. Novel design of photonic nanomaterials that can integrate photoresponsive-ferroptosis inducers, -diagnostic imaging, and -synergistic components provide significant benefits to effectively trigger local ferroptosis. This review provides a comprehensive overview of recent advancements in photonic nanomaterials for image-guided ferroptosis cancer nanomedicine, offering insights into their strengths, constraints, and their potential as a future paradigm in cancer treatment.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Cambridge, MA 02139, USA
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Tang Y, Shu Z, Zhu M, Li S, Ling Y, Fu Y, Hu Z, Wang J, Yang Z, Liao J, Xu L, Yu M, Peng Z. Size-Tunable Nanoregulator-Based Radiofrequency Ablation Suppresses MDSCs and Their Compensatory Immune Evasion in Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2302013. [PMID: 37665720 DOI: 10.1002/adhm.202302013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Radiofrequency ablation (RFA) is a widely used therapy for hepatocellular carcinoma (HCC). However, in cases of insufficient RFA (iRFA), nonlethal temperatures in the transition zone increase the risk of postoperative relapse. The pathological analysis of HCC tissues shows that iRFA-induced upregulation of myeloid-derived suppressor cells (MDSCs) in residual tumors is critical for postoperative recurrence. Furthermore, this study demonstrates, for the first time, that combining MDSCs suppression strategy during iRFA can unexpectedly lead to a compensatory increase in PD-L1 expression on the residual MDSCs, attributed to relapse due to immune evasion. To address this issue, a novel size-tunable hybrid nano-microliposome is designed to co-deliver MDSCs inhibitors (IPI549) and αPDL1 antibodies (LPIP) for multipathway activation of immune responses. The LPIP is triggered to release immune regulators by the mild heat in the transition zone of iRFA, selectively inhibiting MDSCs and blocking the compensatory upregulation of PD-L1 on surviving MDSCs. The combined strategy of LPIP + iRFA effectively ablates the primary tumor by activating immune responses in the transition zone while suppressing the compensatory immune evasion of surviving MDSCs. This approach avoids the relapse of the residual tumor in a post-iRFA incomplete ablation model and appears to be a promising strategy in RFA for the eradication of HCC.
Collapse
Affiliation(s)
- Yuhao Tang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zhilin Shu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meiyan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Shuping Li
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yunyan Ling
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yizhen Fu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zili Hu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Jiongliang Wang
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zhenyun Yang
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Junbin Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Li Xu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
14
|
Ullah A, Khan M, Yibang Z, Raza F, Hasnat M, Cao J, Qi X, Hussain A, Liu D. Hollow Mesoporous Silica Nanoparticles for Dual Chemo-starvation Therapy of Hepatocellular Carcinoma. Pharm Res 2023; 40:2215-2228. [PMID: 37700104 DOI: 10.1007/s11095-023-03599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE This study aims at chemotherapy and starvation therapy of HCC via starvation and apoptosis. METHODS Hollow mesoporous organosilica nanoparticles (HMONs) with the thioether-hybrid structure were developed using an organic/inorganic co-templating assembly approach. Hydrofluoric acid was used to remove the internal MSN core for yielding large radial mesopores for loading drug cargos. The morphology and structure of NPs were determined using TEM and SEM. HMONs were stepwise surface modified with glucose oxidase (GOx), oxygen (O2) and Doxorubicin (DOX), and cancer cell membrane (CCM) for yielding CCM-coated HMONs (targeted stealth biorobots; TSBRs) for starvation, apoptotic, and enhanced cell uptake properties, respectively. The surface area and pore size distribution were determined via BET and BJH assays. The catalytic ability of GOx-modified NPs was measured using in vitro glucose conversion approach authenticated by H2O2 and pH determination assays. MTT assay was used to determine the cytotoxicities of NPs. Cell uptake and apoptotic assay were used for the NPs internalization and apoptosis mechanisms. The subcutaneous HepG2 tumor model was established in mice. The long-term in vivo toxicity was determined using blood assays. RESULTS The prepared NPs were spherical, hollow and mesoporous with excellent surface area and pore size distribution. The GOx-modified NPs exhibited excellent catalytic activity. The TSBRs showed better cytotoxicity and reduce the tumor size and weight. The NPs showed long-term safety in vivo. CONCLUSION TSBRs destroyed cancer cells by starvation and chemotherapy in both in-vitro and in-vivo settings which demonstrates its anti-cancer potential.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Zhang Yibang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abid Hussain
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
15
|
Huang D, Wang J, Wen B, Zhao Y. Emerging diagnostic and therapeutic technologies based on ultrasound-triggered biomaterials. MATERIALS FUTURES 2023; 2:032001. [DOI: 10.1088/2752-5724/acdf05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Ultrasound (US) is a kind of acoustic wave with frequency higher than 20 kHz. Learning from the echo detection ability of bats and dolphins, scientists applied US for clinical imaging by sending out US waves and detecting echoes with shifted intensities and frequencies from human tissue. US has long played a critical role in noninvasive, real-time, low-cost and portable diagnostic imaging. With the in-depth study of US in multidisciplinary fields, US and US-responsive materials have shown practical value in not only disease diagnosis, but also disease treatment. In this review, we introduce the recently proposed and representative US-responsive materials for biomedical applications, including diagnostic and therapeutic applications. We focused on US-mediated physicochemical therapies, such as sonodynamic therapy, high-intensity focused US ablation, sonothermal therapy, thrombolysis, etc, and US-controlled delivery of chemotherapeutics, gases, genes, proteins and bacteria. We conclude with the current challenges facing the clinical translation of smart US-responsive materials and prospects for the future development of US medicine.
Collapse
|
16
|
Gao J, Qin H, Wang F, Liu L, Tian H, Wang H, Wang S, Ou J, Ye Y, Peng F, Tu Y. Hyperthermia-triggered biomimetic bubble nanomachines. Nat Commun 2023; 14:4867. [PMID: 37567901 PMCID: PMC10421929 DOI: 10.1038/s41467-023-40474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoparticle-based drug delivery systems have gained much attention in the treatment of various malignant tumors during the past decades. However, limited tumor penetration of nanodrugs remains a significant hurdle for effective tumor therapy due to the existing biological barriers of tumoral microenvironment. Inspired by bubble machines, here we report the successful fabrication of biomimetic nanodevices capable of in-situ secreting cell-membrane-derived nanovesicles with smaller sizes under near infrared (NIR) laser irradiation for synergistic photothermal/photodynamic therapy. Porous Au nanocages (AuNC) are loaded with phase transitable perfluorohexane (PFO) and hemoglobin (Hb), followed by oxygen pre-saturation and indocyanine green (ICG) anchored 4T1 tumor cell membrane camouflage. Upon slight laser treatment, the loaded PFO undergoes phase transition due to surface plasmon resonance effect produced by AuNC framework, thus inducing the budding of outer cell membrane coating into small-scale nanovesicles based on the pore size of AuNC. Therefore, the hyperthermia-triggered generation of nanovesicles with smaller size, sufficient oxygen supply and anchored ICG results in enhanced tumor penetration for further self-sufficient oxygen-augmented photodynamic therapy and photothermal therapy. The as-developed biomimetic bubble nanomachines with temperature responsiveness show great promise as a potential nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Juanfeng Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
18
|
Huang D, Wang J, Che J, Wen B, Kong W. Ultrasound-responsive microparticles from droplet microfluidics. BIOMEDICAL TECHNOLOGY 2023; 1:1-9. [DOI: 10.1016/j.bmt.2022.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
19
|
Shafi S, Zafar S, Hassan Gilliani MR, Hussain D, Aitani A, Majeed S. Silica-based nanocarriers. BIONANOCATALYSIS : FROM DESIGN TO APPLICATIONS 2023:179-195. [DOI: 10.1016/b978-0-323-91760-5.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Du M, Wang T, Feng R, Zeng P, Chen Z. Establishment of ultrasound-responsive SonoBacteriaBot for targeted drug delivery and controlled release. Front Bioeng Biotechnol 2023; 11:1144963. [PMID: 36911192 PMCID: PMC9998949 DOI: 10.3389/fbioe.2023.1144963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Bacteria-driven biohybrid microbots have shown great potential in cancer treatment. However, how precisely controlling drug release at the tumor site is still an issue. To overcome the limitation of this system, we proposed the ultrasound-responsive SonoBacteriaBot (DOX-PFP-PLGA@EcM). Doxorubicin (DOX) and perfluoro-n-pentane (PFP) were encapsulated in polylactic acid-glycolic acid (PLGA) to form ultrasound-responsive DOX-PFP-PLGA nanodroplets. Then, DOX-PFP-PLGA@EcM is created by DOX-PFP-PLGA amide-bonded to the surface of E. coli MG1655 (EcM). The DOX-PFP-PLGA@EcM was proved to have the characteristics of high tumor-targeting efficiency, controlled drug release capability, and ultrasound imaging. Based on the acoustic phase change function of nanodroplets, DOX-PFP-PLGA@EcM enhance the signal of US imaging after ultrasound irradiation. Meanwhile, the DOX loaded into DOX-PFP-PLGA@EcM can be released. After being intravenously injected, DOX-PFP-PLGA@EcM can efficiently accumulate in tumors without causing harm to critical organs. In conclusion, the SonoBacteriaBot has significant benefits in real-time monitoring and controlled drug release, which has significant potential applications for therapeutic drug delivery in clinical settings.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Wang
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Renjie Feng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Penghui Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
21
|
Mendez-Encinas MA, Carvajal-Millan E. Theranostic nanogels. DESIGN AND APPLICATIONS OF THERANOSTIC NANOMEDICINES 2023:27-51. [DOI: 10.1016/b978-0-323-89953-6.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Wang R, Yao Y, Gao Y, Liu M, Yu Q, Song X, Han X, Niu D, Jiang L. CD133-Targeted Hybrid Nanovesicles for Fluorescent/Ultrasonic Imaging-Guided HIFU Pancreatic Cancer Therapy. Int J Nanomedicine 2023; 18:2539-2552. [PMID: 37207110 PMCID: PMC10188615 DOI: 10.2147/ijn.s391382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
Background Pancreatic cancer is regarded as one of the most lethal types of tumor in the world, and optional way to treat the tumor are urgently needed. Cancer stem cells (CSCs) play a key role in the occurrence and development of pancreatic tumors. CD133 is a specific antigen for targeting the pancreatic CSCs subpopulation. Previous studies have shown that CSC-targeted therapy is effective in inhibiting tumorigenesis and transmission. However, CD133 targeted therapy combined with HIFU for pancreatic cancer is absent. Purpose To improve therapeutic efficiency and minimize side effects, we carry a potent combination of CSCs antibody with synergist by an effective and visualized delivery nanocarrier to pancreatic cancer. Materials and Methods Multifunctional CD133-targeted nanovesicles (CD133-grafted Cy5.5/PFOB@P-HVs) with encapsulated perfluorooctyl bromide (PFOB) in a 3-mercaptopropyltrimethoxysilane (MPTMS) shell modified with poly ethylene glycol (PEG) and superficially modified with CD133 and Cy 5.5 were constructed following the prescribed order. The nanovesicles were characterized for the biological and chemical characteristics feature. We explored the specific targeting capacity in vitro and the therapeutic effect in vivo. Results The in vitro targeting experiment and in vivo FL and ultrasonic experiments showed the aggregation of CD133-grafted Cy5.5/PFOB@P-HVs around CSCs. In vivo FL imaging experiments demonstrated that the nanovesicles assemble for the highest concentration in the tumor at 24 h after administration. Under HIFU irradiation, the synergistic efficacy of the combination of the CD133-targeting carrier and HIFU for tumor treatment was obvious. Conclusion CD133-grafted Cy5.5/PFOB@P-HVs combined with HIFU irradiation could enhance the tumor treatment effect not only by improving the delivery of nanovesicles but also by enhancing the HIFU thermal and mechanical effects in the tumor microenvironment, which is a highly effective targeted therapy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Yijing Yao
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People’s Republic of China
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Qian Yu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People’s Republic of China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211800, People’s Republic of China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People’s Republic of China
- Correspondence: Lixin Jiang; Dechao Niu, Email ;
| |
Collapse
|
23
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
24
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022; 61:e202209610. [DOI: 10.1002/anie.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Xianjun Ye
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Xiao Liu
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Wenhao Pan
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Lei Zhang
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Nianan He
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Aizong Shen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| |
Collapse
|
26
|
Liu Q, Zhang W, Jiao R, Lv Z, Lin X, Xiao Y, Zhang K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203921. [PMID: 36002305 PMCID: PMC9561875 DOI: 10.1002/advs.202203921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Indexed: 05/19/2023]
Abstract
Independent of tumor type and non-invasive or minimally-invasive feature, current physical treatments including ultrasound therapy, microwave ablation (MWA), and radiofrequency ablation (RFA) are widely used as the local treatment methods in clinics for directly killing tumors and activating systematic immune responses. However, the activated immune responses are inadequate and incompetent for tumor recession, and the incomplete thermal ablation even aggravates the immunosuppressive tumor microenvironment (ITM), resulting in the intractable tumor recurrence and metastasis. Intriguingly, nanomedicine provides a powerful platform as they can elevate energy utilization efficiency and augment oncolytic effects for mitigating ITM and potentiating the systematic immune responses. Especially after combining with clinical immunotherapy, the anti-tumor killing effect by activating or enhancing the human anti-tumor immune system is reached, enabling the effective prevention against tumor recurrence and metastasis. This review systematically introduces the cutting-edge progress and direction of nanobiotechnologies and their corresponding nanomaterials. Moreover, the enhanced physical treatment efficiency against tumor progression, relapse, and metastasis via activating or potentiating the autologous immunity or combining with exogenous immunotherapeutic agents is exemplified, and their rationales are analyzed. This review offers general guidance or directions to enhance clinical physical treatment from the perspectives of immunity activation or magnification.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Wei Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Rong Jiao
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Zheng Lv
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Xia Lin
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Yunping Xiao
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Kun Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| |
Collapse
|
27
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Xianjun Ye
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Xiao Liu
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Wenhao Pan
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Nianan He
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Jinming Hu
- China University of Science and Technology Department of Polymer Science and Engineering 96 Jinzhai RoadDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China 230026 Hefei CHINA
| | - Shiyong Liu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
28
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
29
|
Zhang X, Lu H, Tang N, Chen A, Wei Z, Cao R, Zhu Y, Lin L, Li Q, Wang Z, Tian L. Low-Power Magnetic Resonance-Guided Focused Ultrasound Tumor Ablation upon Controlled Accumulation of Magnetic Nanoparticles by Cascade-Activated DNA Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31677-31688. [PMID: 35786850 DOI: 10.1021/acsami.2c07235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a promising non-invasive surgical technique with spatial specificity and minimal off-target effects. Despite the expanding clinical applications, the major obstacles associated with MRgFUS still lie in low magnetic resonance imaging (MRI) sensitivity and safety issues. High ultrasound power is required to resist the energy attenuation during the delivery to the tumor site and may cause damage to the surrounding healthy tissues. Herein, a surface modification strategy is developed to simultaneously strengthen MRI and ultrasound ablation of MRgFUS by prolonging Fe3O4 nanoparticles' blood circulation and tumor-environment-triggered accumulation and retention at the tumor site. Specifically, reactive oxygen species-labile methoxy polyethylene glycol and pH-responsive DNA cross-linkers are modified on the surface of Fe3O4 nanoparticles, which can transform nanoparticles into aggregations through the cascade responsive reactions at the tumor site. Notably, DNA is selected as the pH-responsive cross-linker because of its superior biocompatibility as well as the fast and sensitive response to the weak acidity of 6.5-6.8, corresponding to the extracellular pH of tumor tissues. Due to the significantly enhanced delivery and retention amount of Fe3O4 nanoparticles at the tumor site, the MRI sensitivity was enhanced by 1.7-fold. In addition, the ultrasound power was lowered by 35% to reach a sufficient thermal ablation effect. Overall, this investigation demonstrates a feasible resolution to promote the MRgFUS treatment by enhancing the therapeutic efficacy and reducing the side effects, which will be helpful to guide the clinical practice in the future.
Collapse
Affiliation(s)
- Xindan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Na Tang
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - An Chen
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rong Cao
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yi Zhu
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhongling Wang
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
30
|
Jiang F, Wang L, Tang Y, Wang Y, Li N, Wang D, Zhang Z, Lin L, Du Y, Ou X, Zou J. US/MR Bimodal Imaging-Guided Bio-Targeting Synergistic Agent for Tumor Therapy. Int J Nanomedicine 2022; 17:2943-2960. [PMID: 35814614 PMCID: PMC9270014 DOI: 10.2147/ijn.s363645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Breast cancer is detrimental to the health of women due to the difficulty of early diagnosis and unsatisfactory therapeutic efficacy of available breast cancer therapies. High intensity focused ultrasound (HIFU) ablation is a new method for the treatment of breast tumors, but there is a problem of low ablation efficiency. Therefore, the improvement of HIFU efficiency to combat breast cancer is immediately needed. This study aimed to describe a novel anaerobic bacteria-mediated nanoplatform, comprising synergistic HIFU therapy for breast cancer under guidance of ultrasound (US) and magnetic resonance (MR) bimodal imaging. Methods The PFH@CL/Fe3O4 nanoparticles (NPs) (Perfluorohexane (PFH) and superparamagnetic iron oxides (SPIO, Fe3O4) with cationic lipid (CL) NPs) were synthesized using the thin membrane hydration method. The novel nanoplatform Bifidobacterium bifidum-mediated PFH@CL/Fe3O4 NPs were constructed by electrostatic adsorption. Thereafter, US and MR bimodal imaging ability of B. bifidum-mediated PFH@CL/Fe3O4 NPs was evaluated in vitro and in vivo. Finally, the efficacy of HIFU ablation based on B. bifidum-PFH@CL/Fe3O4 NPs was studied. Results B. bifidum combined with PFH@CL/Fe3O4 NPs by electrostatic adsorption and enhanced the tumor targeting ability of PFH@CL/Fe3O4 NPs. US and MR bimodal imaging clearly displayed the distribution of the bio-targeting nanoplatform in vivo. It was conducive for accurate and effective guidance of HIFU synergistic treatment of tumors. Furthermore, PFH@CL/Fe3O4 NPs could form microbubbles by acoustic droplet evaporation and promote efficiency of HIFU ablation under guidance of bimodal imaging. Conclusion A bio-targeting nanoplatform with high stability and good physicochemical properties was constructed. The HIFU synergistic agent achieved early precision imaging of tumors and promoted therapeutic effect, monitored by US and MR bimodal imaging during the treatment process.
Collapse
Affiliation(s)
- Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ningshan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Disen Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhong Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Li Lin
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xia Ou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Jianzhong Zou, State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China, Tel +86-13708302390, Email
| |
Collapse
|
31
|
Liu S, Hou X, Zhu W, Zhang F, Chen W, Yang B, Luo X, Wu D, Cao Z. Lipid Perfluorohexane Nanoemulsion Hybrid for MRI-Guided High-Intensity Focused Ultrasound Therapy of Tumors. Front Bioeng Biotechnol 2022; 10:846446. [PMID: 35433665 PMCID: PMC9009408 DOI: 10.3389/fbioe.2022.846446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MRI-guided HIFU) is a non-invasive strategy of diagnosis and treatment that is applicable in tumor ablation. Here, we prepared a multifunctional nanotheranostic agent (SSPN) by loading perfluorohexane (PFH) and superparamagnetic iron oxides (SPIOs) in silica lipid for MRI-guided HIFU ablation of tumors. PFH was introduced to improve the ablation effect of HIFU and the ultrasound (US) contrast performance. Due to its liquid-to-gas transition characteristic, it is sensitive to temperature. SPIOs were used as an MRI contrast agent. Silica lipid was selected because it is a more stable carrier material compared with normal lipid. Previous studies have shown that SSPNs have good biocompatibility, stability, imaging, and therapeutic effects. Therefore, this system is expected to develop an important therapeutic agent for MRI-guided HIFU therapy against tumors.
Collapse
Affiliation(s)
- Sitong Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiuqi Hou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Wenjian Zhu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Fang Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiling Chen
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, China
- Sinopharm Tongmei General Hosptial, Datong, China
| | - Binjian Yang
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, China
- Sinopharm Tongmei General Hosptial, Datong, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, China
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Dalin Wu, ; Zhong Cao,
| | - Zhong Cao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Dalin Wu, ; Zhong Cao,
| |
Collapse
|
32
|
Masood U, Riaz R, Shah SU, Majeed AI, Abbas SR. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets for potential treatment of deep venous thrombosis. RSC Adv 2022; 12:26665-26672. [PMID: 36275167 PMCID: PMC9488110 DOI: 10.1039/d2ra04467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Current thrombolytic therapies for deep venous thrombosis are limited due to the wide side effect profile. Contrast mediated sonothrombolysis is a promising approach for thrombus treatment. The current study examines the effectiveness of in vitro streptokinase (SK) loaded phase-change nanodroplet (PCND) mediated sonothrombolysis at 7 MHz for the diagnosis of deep venous thrombosis. Lecithin shell and perfluorohexane core nanodroplets were prepared via the thin-film hydration method and morphologically characterized. Sonothrombolysis was performed at 7 MHz at different mechanical indexes of samples i.e., only sonothrombolysis, PCND mediated sonothrombolysis, sonothrombolysis with SK and SK loaded PCND mediated sonothrombolysis. Thrombolysis efficacy was assessed by measuring clot weight changes during 30 min US exposure, recording the mean gray intensity from the US images of the clot by computer software ImageJ, and spectrophotometric quantification of the hemoglobin in the clot lysate. In 15 minutes of sonothrombolysis performed at high mechanical index (0.9 and 1.2), SK loaded PCNDs showed a 48.61% and 74.29% reduction of mean gray intensity. At 0.9 and 1.2 MI, 86% and 92% weight loss was noted for SK-loaded PCNDs in confidence with spectrophotometric results. A significant difference (P < 0.05) was noted for SK-loaded PCND mediated sonothrombolysis compared to other groups. Loading of SK inside the PCNDs enhanced the efficacy of sonothrombolysis. An increase in MI and time also increased the efficacy of sonothrombolysis. This in vitro study showed the potential use of SK-loaded perfluorohexane core PCNDs as sonothrombolytic agents for deep venous thrombosis. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets.![]()
Collapse
Affiliation(s)
- Usama Masood
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Ramish Riaz
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saeed Ullah Shah
- Department of Cardiology, Shifa International Hospitals Ltd., Islamabad, Pakistan
| | - Ayesha Isani Majeed
- Department of Radiology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
33
|
Sabuncu S, Yildirim A. Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. NANO CONVERGENCE 2021; 8:39. [PMID: 34851458 PMCID: PMC8636532 DOI: 10.1186/s40580-021-00287-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/05/2021] [Indexed: 05/06/2023]
Abstract
The use of ultrasound in the clinic has been long established for cancer detection and image-guided tissue biopsies. In addition, ultrasound-based methods have been widely explored to develop more effective cancer therapies such as localized drug delivery, sonodynamic therapy, and focused ultrasound surgery. Stabilized fluorocarbon microbubbles have been in use as contrast agents for ultrasound imaging in the clinic for several decades. It is also known that microbubble cavitation could generate thermal, mechanical, and chemical effects in the tissue to improve ultrasound-based therapies. However, the large size, poor stability, and short-term cavitation activity of microbubbles limit their applications in cancer imaging and therapy. This review will focus on an alternative type of ultrasound responsive material; gas-stabilizing nanoparticles, which can address the limitations of microbubbles with their nanoscale size, robustness, and high cavitation activity. This review will be of interest to researchers who wish to explore new agents to develop improved methods for molecular ultrasound imaging and therapy of cancer.
Collapse
Affiliation(s)
- Sinan Sabuncu
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Adem Yildirim
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
34
|
Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, Deng H, Shen Q. pH-Sensitive Molecular-Switch-Containing Polymer Nanoparticle for Breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune Activation. Adv Healthc Mater 2021; 10:e2100683. [PMID: 34535975 DOI: 10.1002/adhm.202100683] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Ferritin internalized into tumor cells is degraded and releases iron ions via ferritinophagy. Iron ions participate in Fenton reaction to produce reactive oxygen species for lipid peroxidation and ferroptosis. Inhibition of indoleamine-2,3-dioxygenase (IDO) decreases tryptophan elimination to induce T cells activation for tumor immunosuppression relief. The active tumor targeting nanoparticles containing ferritin and a pH-sensitive molecular-switch (FPBC@SN) are developed to utilize ferritinophagy-cascade ferroptosis and tumor immunity activation for cancer therapy. FPBC@SN disintegrates in acidic cytoplasm and releases sorafenib (SRF) and IDO inhibitor (NLG919). SRF upregulates nuclear receptor coactivator 4 (NCOA4) to induce ferritin and endogenous iron pool degradation by ferritinophagy, then obtained iron ions participate in the Fenton reaction to produce lipid peroxide (LPO). Meanwhile, SRF blocks glutathione synthesis to downregulate glutathione peroxidase 4 (GPX4) which can scavenge LPO as a different pathway from ferritinophagy to promote ferroptosis in tumor cells. NLG919 inhibits IDO to reduce tryptophan metabolism, so immunity in tumors is aroused to anti-tumor. In vitro and in vivo experiments prove FPBC@SN inhibits tumor cell growth and metastasis, indicating the potential of FPBC@SN for breast cancer therapy based on the combination of ferritinophagy-cascade ferroptosis and tumor immunity activation.
Collapse
Affiliation(s)
- Tiantian Zuo
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tianxu Fang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jun Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie Yang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Rui Xu
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhihua Wang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Huizi Deng
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qi Shen
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
35
|
Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, Wang D, Chen T, Shi C, Luo L. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35376-35388. [PMID: 34313109 DOI: 10.1021/acsami.1c08339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Escorting therapeutics for malignancies by nano-encapsulation to ameliorate treatment effects and mitigate side effects has been pursued in precision medicine. However, the majority of drug delivery systems suffer from uncontrollable drug release kinetics and thus lead to unsatisfactory triggered-release efficiency along with severe side effects. Herein, we developed a unique nanovesicle delivery system that shows near-infrared (NIR) light-triggered drug release behavior and minimal premature drug release. By co-encapsulation of superparamagnetic iron oxide (SPIO) nanoparticles, the ultrasound contrast agent perfluorohexane (PFH), and cisplatin in a silicate-polyaniline vesicle, we achieved the controllable release of cisplatin in a thermal-responsive manner. Specifically, vaporization of PFH triggered by the heat generated from NIR irradiation imparts high inner vesicle pressure on the nanovesicles, leading to pressure-induced nanovesicle collapse and subsequent cisplatin release. Moreover, the multimodal imaging capability can track tumor engagement of the nanovesicles and assess their therapeutic effects. Due to its precise inherent NIR-triggered drug release, our system shows excellent tumor eradication efficacy and biocompatibility in vivo, empowering it with great prospects for future clinical translation.
Collapse
Affiliation(s)
- Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanyuan You
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yiyong Liu
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Lizhen He
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Wang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Tianfeng Chen
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
36
|
Zeng Z, Liu JB, Peng CZ. Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation. Curr Med Chem 2021; 29:1369-1378. [PMID: 34238143 DOI: 10.2174/0929867328666210708085110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
This review describes how phase-changeable nanoparticles enable highly efficient high-intensity focused ultrasound ablation (HIFU). HIFU is effective in the clinical treatment of solid malignant tumors. However, it has intrinsic disadvantages for treating some deep lesions, such as damage to surrounding normal tissues. When phase-changeable nanoparticles are used in HIFU treatment, they could serve as good synergistic agents because they are transported in the blood and permeated and accumulated effectively in tissues. HIFU's thermal effects can trigger nanoparticles to undergo a special phase transition, thus enhancing HIFU ablation efficiency. Nanoparticles can also carry anticancer agents and release them in the targeted area to achieve chemo-synergistic therapy response. Although the formation of nanoparticles is complicated and HIFU applications are still in an early stage, the potential for their use in synergy with HIFU treatment shows promising results.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, United States
| | - Cheng-Zhong Peng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Tang Y, Chen C, Jiang B, Wang L, Jiang F, Wang D, Wang Y, Yang H, Ou X, Du Y, Wang Q, Zou J. Bifidobacterium bifidum-Mediated Specific Delivery of Nanoparticles for Tumor Therapy. Int J Nanomedicine 2021; 16:4643-4659. [PMID: 34267516 PMCID: PMC8275162 DOI: 10.2147/ijn.s315650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hypoxia is considered to be obstructive to tumor treatment, but the reduced oxygen surroundings provide a suitable habitat for Bifidobacterium bifidum (BF) to colonize. The anaerobe BF selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. Therefore, BF may be a potential targeting agent which could be used effectively in tumor treatment. We aimed to determine whether a novel BF-mediated strategy, that was designed to deliver AP-PFH/PLGA NPs (aptamers CCFM641-5-functionalized Perfluorohexane (PFH) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles) by aptamer-directed approach into solid tumor based on the tumor-targeting ability of BF, could improve efficiency of high intensity focused ultrasound (HIFU) treatment of breast cancer. Methods We synthesized AP-PFH/PLGA NPs using double emulsion method and carbodiimide method. Then, we evaluated targeting ability of AP-PFH/PLGA NPs to BF in vivo. Finally, we studied the efficacy of HIFU ablation based on BF plus AP-PFH/PLGA NPs (BF-mediated HIFU ablation) in tumor. Results The elaborately designed AP-PFH/PLGA NPs can target BF colonized in tumor to achieve high tumor accumulation, which can significantly enhance HIFU therapeutic efficiency. We also found that, compared with traditional chemotherapy, this therapy not only inhibits tumor growth, but also significantly prolongs the survival time of mice. More importantly, this treatment strategy has no obvious side effects. Conclusion We successfully established a novel therapy method, BF-mediated HIFU ablation, which provides an excellent platform for highly efficient and non-invasive therapy of tumor.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Disen Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Ou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
38
|
Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Depending on the local or targeted treatment, independence on tumor type and minimally-invasive and noninvasive feature, various thermal ablation technologies have been established, but they still suffer from the intractable paradox between safety and efficacy. It has been extensively accepted that improving energy utilization efficiency is the primary means of decreasing thermal ablation power and shortening ablation time, which is beneficial for concurrently improving both treatment safety and treatment efficiency. Recent efforts have been made to receive a significant advance in various thermal methods including non-invasive high-intensity focused ultrasound, minimally-invasive radiofrequency and microwave, and non-invasive and minimally-invasive photothermal ablation, and so on. Especially, various nanobiotechnologies and design methodologies were employed to elevate the energy utilization efficiency for acquiring unexpected ablation outcomes accompanied with tremendously reduced power and time. More significantly, some combined technologies, for example, chemotherapy, photodynamic therapy (PDT), gaseous therapy, sonodynamic therapy (SDT), immunotherapy, chemodynamic therapy (CDT), or catalytic nanomedicine, were used to assist these ablation means to repress or completely remove tumors. We discussed and summarized the ablation principles and energy transformation pathways of the four ablation means, and reviewed and commented the progress in this field including newly developed technology or new material types with a highlight on nanobiotechnology-inspired design principles, and provided the deep insights into the existing problems and development direction. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Fanlei Kong
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Hongyan Li
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China.,Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Guo L, Ping J, Qin J, Yang M, Wu X, You M, You F, Peng H. A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1293. [PMID: 34069019 PMCID: PMC8156057 DOI: 10.3390/nano11051293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Although hollow mesoporous silica nanoparticles (HMSNs) have been intensively studied as nanocarriers, selecting the right HMSNs for specific drugs still remains challenging due to the enormous diversity in so far reported HMSNs and drugs. To this end, we herein made a comprehensive study on drug loading in HMSNs from the viewpoint of impacting factors and loading efficiency. Specifically, two types of HMSNs with negative and positive zeta potential were delicately constructed, and three categories of drugs were selected as delivery targets: highly hydrophobic and lipophobic (oily), hydrophobic, and hydrophilic. The results indicated that (i) oily drugs could be efficiently loaded into both of the two HMSNs, (ii) HMSNs were not good carriers for hydrophobic drugs, especially for planar drugs, (iii) HMSNs had high loading efficiency towards oppositely charged hydrophilic drugs, i.e., negatively charged HMSNs for cationic molecules and vice versa, (iv) entrapped drugs would alter zeta potential of drug-loaded HMSNs. This work may provide general guidelines about designing high-payload HMSNs by reference to the physicochemical property of drugs.
Collapse
Affiliation(s)
- Lanying Guo
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Jiantao Ping
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Jinglei Qin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Mu Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Xi Wu
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Mei You
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Fangtian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
| | - Hongshang Peng
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| |
Collapse
|
40
|
Kumar R, Jha K, Barman D. Nanotechnology in Oral Cancer Prevention and Therapeutics: A Literature Review. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe concept of nanotechnology revolves around the delivery of nano particle incorporated drugs which are originally engineered technology. Nanoparticles are used for targeted delivery and controlled release of a curative agents. Nanotechnology is gaining importance and is likely to be routine element of regular dental clinics. Nanomaterials are being incorporated in toothpastes, mouth rinses for improved efficiencies. It has found its use in restorative dental materials, anti-cariogenic enamel surface polishing agents, implant materials, etc. Few nanoparticles possess antimicrobial propertiesand intercepts bacterial activity. Nano dentistry is cost-effectiveness and timesaving compared to other techniques. Nano particles have also been beneficial to annihilate drug resistance, prevention of metastasis or lesion recurrence by earmarking malignant stem cells. Remarkable achievements were made in using nanoparticles for detecting and treating multiple variety of malignancies including colon cancer, prostate cancer, lung cancer, breast cancer, head and neck cancer, etc. This review was made to highlight the various clinical applications of nanotechnology in the diagnosis and curative care for oral cancer.
Collapse
Affiliation(s)
- Ritwika Kumar
- School of Materials Science and Nano Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Kunal Jha
- Department of Public Health Dentistry, Kalinga Institute of Dental Sciences, KIIT University, BBSR, Bhubaneswar, Odisha, India
| | - Diplina Barman
- Private Dental Practitioner, Hooghly, West Bengal, India
| |
Collapse
|
41
|
Song F, Gao H, Li D, Petrov AV, Petrov VV, Wen D, Sukhorukov GB. Low intensity focused ultrasound responsive microcapsules for non-ablative ultrafast intracellular release of small molecules. J Mater Chem B 2021; 9:2384-2393. [PMID: 33554993 DOI: 10.1039/d0tb02788j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Focused ultrasound (FU) is in demand for clinical cancer therapy, but the possible thermal injury to the normal peripheral tissues limits the usage of the ablative FU for tumors with a large size; therefore research efforts have been made to minimize the possible side effects induced by the FU treatment. Non-ablative focused ultrasound assisted chemotherapy could open a new avenue for the development of cancer therapy technology. Here, low intensity focused ultrasound (LIFU) for controlled quick intracellular release of small molecules (Mw ≤ 1000 Da) without acute cell damage is demonstrated. The release is achieved by a composite poly(allylamine hydrochloride) (PAH)/poly-(sodium 4-styrenesulfonate) (PSS)/SiO2 microcapsules which are highly sensitive to LIFU and can be effectively broken by weak cavitation effects. Most PAH/PSS/SiO2 capsules in B50 rat neuronal cells can be ruptured and release rhodamine B (Rh-B) into the cytosol within only 30 s of 0.75 W cm-2 LIFU treatment, as demonstrated by the CLSM results. While the same LIFU treatment shows no obvious damage to cells, as proved by the live/dead experiment, showing that 90% of cells remain alive.
Collapse
Affiliation(s)
- Fengyan Song
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Danyang Li
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Arseniy V Petrov
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Vladimir V Petrov
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Dongsheng Wen
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Chemical and Processing Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
42
|
Chen W, Wang J, Cheng L, Du W, Wang J, Pan W, Qiu S, Song L, Ma X, Hu Y. Polypyrrole-Coated Mesoporous TiO 2 Nanocomposites Simultaneously Loading DOX and Aspirin Prodrugs for a Synergistic Theranostic and Anti-Inflammatory Effect. ACS APPLIED BIO MATERIALS 2021; 4:1483-1492. [PMID: 35014497 DOI: 10.1021/acsabm.0c01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although a number of therapeutic strategies have been applied in cancer therapy, treatment for cancer metastasis is challenging due to unsatisfactory cure rate and easy cancer recurrence. In our work, nanocomposites (NCs) based on polypyrrole-coated mesoporous TiO2 with a suitable size are prepared through a modified soft-templating strategy, which integrates double prodrugs (doxorubicin (DOX) prodrug and aspirin prodrug) with superior drug loading capacity. Under external stimulation of near-infrared (NIR) and ultrasound (US), the prepared nanocomposites have an excellent photothermal conversion efficiency (over 50.8%) and a satisfactory sonodynamic therapeutic effect, and simultaneous prodrug activation and drug release occur rapidly under external stimulation. Through intravenous injection, the tumor area can be clearly seen through thermal imaging, benefiting from the enhanced permeability and retention (EPR) effect. Through synergistic therapy, cancer cell toxicity and the tumor inhibition effect are significantly enhanced. Moreover, downregulated inflammatory factors also reduce the risk of cancer recurrence. In general, the designed NCs provide a potential alternative for synergistic therapy as well as downregulation of inflammatory cytokines.
Collapse
Affiliation(s)
- Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Jing Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Wanwan Pan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, Anhui, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Swan Lake Road 1, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
43
|
Sun S, Wang P, Sun S, Liang X. Applications of Micro/Nanotechnology in Ultrasound-based Drug Delivery and Therapy for Tumor. Curr Med Chem 2021; 28:525-547. [PMID: 32048951 DOI: 10.2174/0929867327666200212100257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Ultrasound has been broadly used in biomedicine for both tumor diagnosis as well as therapy. The applications of recent developments in micro/nanotechnology promote the development of ultrasound-based biomedicine, especially in the field of ultrasound-based drug delivery and tumor therapy. Ultrasound can activate nano-sized drug delivery systems by different mechanisms for ultrasound- triggered on-demand drug release targeted only at the tumor sites. Ultrasound Targeted Microbubble Destruction (UTMD) technology can not only increase the permeability of vasculature and cell membrane via sonoporation effect but also achieve in situ conversion of microbubbles into nanoparticles to promote cellular uptake and therapeutic efficacy. Furthermore, High Intensity Focused Ultrasound (HIFU), or Sonodynamic Therapy (SDT), is considered to be one of the most promising and representative non-invasive treatment for cancer. However, their application in the treatment process is still limited due to their critical treatment efficiency issues. Fortunately, recently developed micro/nanotechnology offer an opportunity to solve these problems, thus improving the therapeutic effect of cancer. This review summarizes and discusses the recent developments in the design of micro- and nano- materials for ultrasound-based biomedicine applications.
Collapse
Affiliation(s)
- Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
Li Y, Lu J, Zhang J, Zhu X, Liu J, Zhang Y. Phase-Change Nanotherapeutic Agents Based on Mesoporous Carbon for Multimodal Imaging and Tumor Therapy. ACS APPLIED BIO MATERIALS 2020; 3:8705-8713. [DOI: 10.1021/acsabm.0c01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| |
Collapse
|
45
|
|
46
|
Ancona A, Troia A, Garino N, Dumontel B, Cauda V, Canavese G. Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. ULTRASONICS SONOCHEMISTRY 2020; 67:105132. [PMID: 32339870 DOI: 10.1016/j.ultsonch.2020.105132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 05/11/2023]
Abstract
Nanoparticles able to promote inertial cavitation when exposed to focused ultrasound have recently gained much attention due to their vast range of possible applications in the biomedical field, such as enhancing drug penetration in tumor or supporting ultrasound contrast imaging. Due to their nanometric size, these contrast agents could penetrate through the endothelial cells of the vasculature to target tissues, thus enabling higher imaging resolutions than commercial gas-filled microbubbles. Herein, Zinc Oxide NanoCrystals (ZnO NCs), opportunely functionalized with amino-propyl groups, are developed as novel nanoscale contrast agents that are able, for the first time, to induce a repeatedly and over-time sustained inertial cavitation as well as ultrasound contrast imaging. The mechanism behind this phenomenon is investigated, revealing that re-adsorption of air gas nanobubbles on the nanocrystal surface is the key factor for this re-chargeable cavitation. Moreover, inertial cavitation and significant echographic signals are obtained at physiologically relevant ultrasound conditions (MI < 1.9), showing great potential for low side-effects in in-vivo applications of the novel nanoscale agent from diagnostic imaging to gas-generating theranostic nanoplatforms and to drug delivery.
Collapse
Affiliation(s)
- Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Adriano Troia
- Ultrasounds & Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica (I.N.Ri.M.), Strada delle Cacce 91, 10135 Turin, Italy
| | - Nadia Garino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
47
|
Li L, Guan Y, Xiong H, Deng T, Ji Q, Xu Z, Kang Y, Pang J. Fundamentals and applications of nanoparticles for ultrasound‐based imaging and therapy. NANO SELECT 2020. [DOI: 10.1002/nano.202000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lujing Li
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Yupeng Guan
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Haiyun Xiong
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Tian Deng
- Department of Stomatology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Qiao Ji
- Department of Ultrasound The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Zuofeng Xu
- Department of Ultrasound The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Yang Kang
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Jun Pang
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| |
Collapse
|
48
|
Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020; 262:120341. [PMID: 32911255 DOI: 10.1016/j.biomaterials.2020.120341] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Bacteria biofilm has extracellular polymeric substances to protect bacteria from external threats, which is a stubborn problem for human health. Herein, a kind of gasifiable nanodroplet is fabricated to ablate Staphylococcus aureus (S. aureus) biofilm. Upon NIR pulsed laser irradiation, the nanodroplets can gasify to generate destructive gas shockwave, which further potentiates initial acoustic cavitation effect, thus synergistically disrupting the protective biofilm and killing resident bacteria. More importantly, the gasification can further promote antibiotic release in deep biofilm for residual bacteria eradication. The nanodroplets not only exhibit deep biofilm penetration capacity and high potency to ablate biofilms, but also good biocompatibility without detectable side effects. In vivo mouse implant model indicates that the nanodroplets can accumulate at the S. aureus infected implant sites. Upon pulsed laser treatment, the nanodroplets efficiently eradicate bacteria biofilm in implanted catheter by synergistic contribution of gas shockwave-enhanced cavitation and deep antibiotic release. Current phase changeable nanodroplets with synergistic physical and chemical therapeutic modalities are promising to combat complex bacterial biofilms with drug resistance, which provides an alternative visual angle for biofilm inhibition in biomedicine.
Collapse
|
49
|
He H, Du L, Guo H, An Y, Lu L, Chen Y, Wang Y, Zhong H, Shen J, Wu J, Shuai X. Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001251. [PMID: 32677157 DOI: 10.1002/smll.202001251] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Ferroptosis is attracting significant attention due to its effectiveness in tumor treatment. The efficiency to produce toxic lipid peroxides (LPOs) at the tumor site plays a key role in ferroptosis. A hybrid PFP@Fe/Cu-SS metal organic framework (MOF) is synthesized and shown to increase intratumoral LPO content through redox reactions generating ·OH. In addition, glutathione (GSH) depletion through disulfide-thiol exchange leads to the inactivation of glutathione peroxide 4 (GPX4), which results in a further increase in LPO content. This MOF exhibits high inhibitory effect on the growth of xenografted Huh-7 tumors in mice. The coadministration of a ferroptosis inhibitor reduces the antitumor effect of the MOF, leading to a restoration of GPX4 activity and an increase in tumor growth. Moreover, the construction of Cu into mesoporous PFP@Fe/Cu-SS not only allows the MOF to be used as a contrast agent for T1 -weighted magnetic resonance imaging, but also renders its photothermal conversion capacity. Thus, near-infrared irradiation is able to induce photothermal therapy and transform the encapsulated liquid perfluoropentane into microbubbles for ultrasound imaging.
Collapse
Affiliation(s)
- Haozhe He
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng An
- University of Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yali Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xintao Shuai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
50
|
Zhu P, Chen Y, Shi J. Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO 3 -Mediated Piezoelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001976. [PMID: 32537778 DOI: 10.1002/adma.202001976] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound theranostics features non-invasiveness, minor energy attenuation, and high tissue-penetrating capability, and is playing ever-important roles in the diagnosis and therapy of diseases in clinics. Herein, ultrasound is employed as a microscopic pressure resource to generate reactive oxygen species (ROS) for piezocatalytic tumor therapy under catalytic mediation by piezoelectric tetragonal BaTiO3 (T-BTO). Under the ultrasonic vibration, the electrons and holes are unpaired and they are separated by the piezoelectricity, resulting in the establishment of a strong built-in electric field, which subsequently catalyzes the generation of ROS such as toxic hydroxyl (• OH) and superoxide radicals (• O2 - ) in situ for tumor eradication. This modality shows intriguing advantages over typical sonoluminescence-activated sonodynamic therapy, such as more stable sensitizers and dynamical control of redox reaction outcomes. Furthermore, according to the finite element modeling simulation, the built-in electric field is capable of modulating the band alignment to make the toxic ROS generation energetically favorable. Both detailed in vitro cellular level evaluation and in vivo tumor xenograft assessment have demonstrated that an injectable T-BTO-nanoparticles-embedded thermosensitive hydrogel will substantially induce ultrasound irradiation-triggered cytotoxicity and piezocatalytic tumor eradication, accompanied by high therapeutic biosafety in vivo.
Collapse
Affiliation(s)
- Piao Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|