1
|
Yang D, Li P, Dang Y, Zhu S, Shi H, Wu T, Zhang Z, Chen C, Zong Y. Identifying the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn's disease. Gene 2024; 931:148872. [PMID: 39159791 DOI: 10.1016/j.gene.2024.148872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Crohn's disease (CD) is marked by disruption of intestinal epithelial barrier, with unclear underlying molecular mechanisms. This study aimed to investigate key genes regulating the intestinal barrier in CD patients. METHODS Differential gene expression analysis and gene set enrichment analysis were conducted to identify potential key genes involved in CD within the GEO database. Single-cell RNA sequencing from ileum samples in GSE134809 of 59,831 inflamed and uninflamed cells from 11 CD patients and microarray data from ileal tissues in GSE69762 (3 controls and 4 CD patients) and GSE75214 (11 controls and 51 CD patients) with GSE179285 (49 uninflamed and 33 inflamed from CD patients) as the validation set. Protein-protein interaction and logistic regression analyses identified key downregulated genes in CD. A key gene was then investigated through immunohistochemistry of ileal tissues from 5 CD patients and in the Caco-2 cell line with RNA interference and treatment with IFN-γ and TNF-α to stimulate inflammation. RESULTS Single-cell RNA-seq identified 33 genes and microarray identified 167 genes with significant downregulation in inflamed CD samples. PCK1 was identified and validated as one of the most promising candidate genes. Reduced PCK1 expression was evident in inflamed ileal tissues. In vitro, knockdown of PCK1 resulted in decreased cell viability, increased apoptosis, and reduced nectin-2 production, while combination of IFN-γ and TNF-α significantly reduced PCK1. CONCLUSIONS PCK1 is downregulated in inflamed ileal tissues of CD patients and may be a key factor in maintaining epithelial integrity during inflammation in Crohn's disease.
Collapse
Affiliation(s)
- Deyi Yang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengchong Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Dang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyun Shi
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zinan Zhang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2-Secondary Immunodeficiencies. Healthcare (Basel) 2024; 12:1977. [PMID: 39408157 PMCID: PMC11477378 DOI: 10.3390/healthcare12191977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are among the most common chronic diseases, generating high social and economic costs. Secondary immunodeficiencies occur more often than primary ones and may result from the co-occurrence of specific diseases, treatment, nutrient deficiencies and non-nutritive bio-active compounds that result from the industrial nutrient practices. OBJECTIVES The aim of this article is to present selected secondary immunodeficiencies and their impact on the cardiovascular system. RESULTS The treatment of a patient with cardiovascular disease should include an assess-ment for immunodeficiencies, because the immune and cardiovascular systems are closely linked. CONCLUSIONS Immune system dysfunctions can significantly affect the course of cardiovascular diseases and their treatment. For this reason, comprehensive care for a patient with cardiovascular disease requires taking into account potential immunodeficiencies, which can have a significant impact on the patient's health.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Lin WY. Detecting gene-environment interactions from multiple continuous traits. Bioinformatics 2024; 40:btae419. [PMID: 38917408 PMCID: PMC11254352 DOI: 10.1093/bioinformatics/btae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
MOTIVATION Genetic variants present differential effects on humans according to various environmental exposures, the so-called "gene-environment interactions" (GxE). Many diseases can be diagnosed with multiple traits, such as obesity, diabetes, and dyslipidemia. I developed a multivariate scale test (MST) for detecting the GxE of a disease with several continuous traits. Given a significant MST result, I continued to search for which trait and which E enriched the GxE signals. Simulation studies were performed to compare MST with the univariate scale test (UST). RESULTS MST can gain more power than UST because of (1) integrating more traits with GxE information and (2) the less harsh penalty on multiple testing. However, if only few traits account for GxE, MST may lose power due to aggregating non-informative traits into the test statistic. As an example, MST was applied to a discovery set of 93 708 Taiwan Biobank (TWB) individuals and a replication set of 25 200 TWB individuals. From among 2 570 487 SNPs with minor allele frequencies ≥5%, MST identified 18 independent variance quantitative trait loci (P < 2.4E-9 in the discovery cohort and P < 2.8E-5 in the replication cohort) and 41 GxE signals (P < .00027) based on eight trait domains (including 29 traits). AVAILABILITY AND IMPLEMENTATION https://github.com/WanYuLin/Multivariate-scale-test-MST.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
4
|
Wang L, Zhao J, Schank M, Hill AC, Banik P, Zhang Y, Wu XY, Lightner JW, Ning S, El Gazzar M, Moorman JP, Yao ZQ. Circulating GDF-15: a biomarker for metabolic dysregulation and aging in people living with HIV. FRONTIERS IN AGING 2024; 5:1414866. [PMID: 38895099 PMCID: PMC11183798 DOI: 10.3389/fragi.2024.1414866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Despite effective control of HIV replication by antiretroviral therapy (ART), a significant number of people living with HIV (PLWH) fail to achieve complete immune reconstitution and thus are deemed immune non-responders (INRs). Compared with immune responders (IRs) who have restored their CD4 T cell numbers and functions, CD4 T cells from these INRs exhibit prominent mitochondrial dysfunction and premature aging, which play a major role in increasing the incidence of non-AIDS, non-communicable diseases (NCDs). To date, there are no reliable biomarkers that can be used to typify and manage PLWH, especially INRs with non-AIDS NCDs. Growth differential factor-15 (GDF-15) is a transforming growth factor-β (TGF-β) family member known to regulate several biological processes involved in cell aging and stress responses. Since PLWH exhibit premature aging and metabolic dysregulation, here we measured the plasma levels of GDF-15 by ELISA and metabolic proteins by proteomic array and correlated the results with clinical parameters in ART-controlled PLWH (including INRs and IRs) and healthy subjects (HS). We found that GDF-15 levels were significantly elevated in PLWH compared to HS. GDF-15 levels were positively correlated with age and negatively associated with body mass and LDL cholesterol levels in the study subjects. Also, elevated GDF-15 levels were correlated with differential dysregulation of multiple metabolic proteins in PLWH. These results suggest that GDF-15 protein may serve as a biomarker of metabolic dysregulation and aging, and this biomarker will be useful in clinical trials targeting aging and metabolic disorders in ART-treated PLWH.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Addison C. Hill
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Puja Banik
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Janet W. Lightner
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
5
|
Machado FJDM, Marta-Enguita J, Gómez SU, Rodriguez JA, Páramo-Fernández JA, Herrera M, Zandio B, Aymerich N, Muñoz R, Bermejo R, Marta-Moreno J, López B, González A, Roncal C, Orbe J. Transcriptomic Analysis of Extracellular Vesicles in the Search for Novel Plasma and Thrombus Biomarkers of Ischemic Stroke Etiologies. Int J Mol Sci 2024; 25:4379. [PMID: 38673963 PMCID: PMC11050408 DOI: 10.3390/ijms25084379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.
Collapse
Affiliation(s)
- Florencio J. D. M. Machado
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
| | - Juan Marta-Enguita
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| | - Susan U. Gómez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
| | - Jose A. Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Antonio Páramo-Fernández
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Herrera
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Zandio
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Nuria Aymerich
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Roberto Muñoz
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS-Aragon), 50009 Zaragoza, Spain
| | - Begoña López
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Arantxa González
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| |
Collapse
|
6
|
Gao Z, Pu C, Lin L, Ou Q, Quan H. Genome-wide association study of blood lipid levels in Southern Han Chinese adults with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1334893. [PMID: 38371897 PMCID: PMC10869499 DOI: 10.3389/fendo.2023.1334893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024] Open
Abstract
Background Dyslipidemia is highly prevalent among individuals with prediabetes, further exacerbating their cardiovascular risk. However, the genetic determinants underlying diabetic dyslipidemia in Southern Han Chinese remain largely unexplored. Methods We performed a genome-wide association study (GWAS) of blood lipid traits in 451 Southern Han Chinese adults with prediabetes. Fasting plasma lipids, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were assayed. Genotyping was conducted using the Precision Medicine Diversity Array and Gene Titan platform, followed by genotype imputation using IMPUTE2 with the 1000 Genomes Project (Phase 3, Southern Han Chinese) as reference. Single nucleotide polymorphisms (SNPs) associated with lipid levels were identified using mixed linear regression, with adjustment for covariates. Results We identified 58, 215, 74 and 81 novel SNPs associated with TG, TC, HDL-C and LDL-C levels, respectively (P < 5×10-5). Several implicated loci were located in or near genes involved in lipid metabolism, including SRD5A2, PCSK7, PITPNC1, IRX3, BPI, and LBP. Pathway enrichment analysis highlighted lipid metabolism and insulin secretion. Conclusion This first GWAS of dyslipidemia in Southern Han Chinese with prediabetes identified novel genetic variants associated with lipid traits. Our findings provide new insights into genetic mechanisms underlying heightened cardiovascular risk in the prediabetic stage. Functional characterization of implicated loci is warranted.
Collapse
Affiliation(s)
- Zhenshu Gao
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Changchun Pu
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Leweihua Lin
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Qianying Ou
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| |
Collapse
|
7
|
Cui HK, Tang CJ, Gao Y, Li ZA, Zhang J, Li YD. An integrative analysis of single-cell and bulk transcriptome and bidirectional mendelian randomization analysis identified C1Q as a novel stimulated risk gene for Atherosclerosis. Front Immunol 2023; 14:1289223. [PMID: 38179058 PMCID: PMC10764496 DOI: 10.3389/fimmu.2023.1289223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background The role of complement component 1q (C1Q) related genes on human atherosclerotic plaques (HAP) is less known. Our aim is to establish C1Q associated hub genes using single-cell RNA sequencing (scRNA-seq) and bulk RNA analysis to diagnose and predict HAP patients more effectively and investigate the association between C1Q and HAP (ischemic stroke) using bidirectional Mendelian randomization (MR) analysis. Methods HAP scRNA-seq and bulk-RNA data were download from the Gene Expression Omnibus (GEO) database. The C1Q-related hub genes was screened using the GBM, LASSO and XGBoost algorithms. We built machine learning models to diagnose and distinguish between types of atherosclerosis using generalized linear models and receiver operating characteristics (ROC) analyses. Further, we scored the HALLMARK_COMPLEMENT signaling pathway using ssGSEA and confirmed hub gene expression through qRT-PCR in RAW264.7 macrophages and apoE-/- mice. Furthermore, the risk association between C1Q and HAP was assessed through bidirectional MR analysis, with C1Q as exposure and ischemic stroke (IS, large artery atherosclerosis) as outcomes. Inverse variance weighting (IVW) was used as the main method. Results We utilized scRNA-seq dataset (GSE159677) to identify 24 cell clusters and 12 cell types, and revealed seven C1Q associated DEGs in both the scRNA-seq and GEO datasets. We then used GBM, LASSO and XGBoost to select C1QA and C1QC from the seven DEGs. Our findings indicated that both training and validation cohorts had satisfactory diagnostic accuracy for identifying patients with HPAs. Additionally, we confirmed SPI1 as a potential TF responsible for regulating the two hub genes in HAP. Our analysis further revealed that the HALLMARK_COMPLEMENT signaling pathway was correlated and activated with C1QA and C1QC. We confirmed high expression levels of C1QA, C1QC and SPI1 in ox-LDL-treated RAW264.7 macrophages and apoE-/- mice using qPCR. The results of MR indicated that there was a positive association between the genetic risk of C1Q and IS, as evidenced by an odds ratio (OR) of 1.118 (95%CI: 1.013-1.234, P = 0.027). Conclusion The authors have effectively developed and validated a novel diagnostic signature comprising two genes for HAP, while MR analysis has provided evidence supporting a favorable association of C1Q on IS.
Collapse
Affiliation(s)
- Hong-Kai Cui
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao-Jie Tang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zi-Ang Li
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Zhang
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong-Dong Li
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Bhardwaj A, Singh A, Midha V, Sood A, Wander GS, Mohan B, Batta A. Cardiovascular implications of inflammatory bowel disease: An updated review. World J Cardiol 2023; 15:553-570. [PMID: 38058397 PMCID: PMC10696203 DOI: 10.4330/wjc.v15.i11.553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Emerging data highlights the heightened risk of atherosclerotic cardiovascular diseases (ASCVD) in patients with chronic inflammatory disorders, particularly those afflicted with inflammatory bowel disease (IBD). This review delves into the epidemiological connections between IBD and ASCVD, elucidating potential underlying mechanisms. Furthermore, it discusses the impact of current IBD treatments on cardiovascular risk. Additionally, the cardiovascular adverse effects of novel small molecule drugs used in moderate-to-severe IBD are investigated, drawing parallels with observations in patients with rheumatoid arthritis. This article aims to comprehensively evaluate the existing evidence supporting these associations. To achieve this, we conducted a meticulous search of PubMed, spanning from inception to August 2023, using a carefully selected set of keywords. The search encompassed topics related to IBD, such as Crohn's disease and ulcerative colitis, as well as ASCVD, including coronary artery disease, cardiovascular disease, atrial fibrillation, heart failure, conduction abnormalities, heart blocks, and premature coronary artery disease. This review encompasses various types of literature, including retrospective and prospective cohort studies, clinical trials, meta-analyses, and relevant guidelines, with the objective of providing a comprehensive overview of this critical intersection of inflammatory bowel disease and cardiovascular health.
Collapse
Affiliation(s)
- Arshia Bhardwaj
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Gurpreet Singh Wander
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Bishav Mohan
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India.
| |
Collapse
|
9
|
Yu W, Li L, Tan X, Liu X, Yin C, Cao J. Development and validation of risk prediction and neural network models for dilated cardiomyopathy based on WGCNA. Front Med (Lausanne) 2023; 10:1239056. [PMID: 37869159 PMCID: PMC10585101 DOI: 10.3389/fmed.2023.1239056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a progressive heart condition characterized by ventricular dilatation and impaired myocardial contractility with a high mortality rate. The molecular characterization of DCM has not been determined yet. Therefore, it is crucial to discover potential biomarkers and therapeutic options for DCM. Methods The hub genes for the DCM were screened using Weighted Gene Co-expression Network Analysis (WGCNA) and three different algorithms in Cytoscape. These genes were then validated in a mouse model of doxorubicin (DOX)-induced DCM. Based on the validated hub genes, a prediction model and a neural network model were constructed and validated in a separate dataset. Finally, we assessed the diagnostic efficiency of hub genes and their relationship with immune cells. Results A total of eight hub genes were identified. Using RT-qPCR, we validated that the expression levels of five key genes (ASPN, MFAP4, PODN, HTRA1, and FAP) were considerably higher in DCM mice compared to normal mice, and this was consistent with the microarray results. Additionally, the risk prediction and neural network models constructed from these genes showed good accuracy and sensitivity in both the combined and validation datasets. These genes also demonstrated better diagnostic power, with AUC greater than 0.7 in both the combined and validation datasets. Immune cell infiltration analysis revealed differences in the abundance of most immune cells between DCM and normal samples. Conclusion The current findings indicate an underlying association between DCM and these key genes, which could serve as potential biomarkers for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Wei Yu
- Chongqing Medical University, Chongqing, China
| | - Lingjiao Li
- Chongqing Medical University, Chongqing, China
| | | | - Xiaozhu Liu
- Chongqing Medical University, Chongqing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Junyi Cao
- Department of Medical Quality Control, The First People’s Hospital of Zigong City, Zigong, China
| |
Collapse
|
10
|
Zhang F, Ding Y, Zhang B, He M, Wang Z, Lu C, Kang Y. Analysis of Methylome, Transcriptome, and Lipid Metabolites to Understand the Molecular Abnormalities in Polycystic Ovary Syndrome. Diabetes Metab Syndr Obes 2023; 16:2745-2763. [PMID: 37720421 PMCID: PMC10503565 DOI: 10.2147/dmso.s421947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aimed to identify differentially methylated genes (DMGs) and differentially expressed genes (DEGs) to investigate new biomarkers for the diagnosis and treatment of polycystic ovary syndrome (PCOS). Methods To explore the potential biomarkers of PCOS diagnosis and treatment, we performed methyl-binding domain sequencing (MBD-seq) and RNA sequencing (RNA-seq) on ovarian granulosa cells (GCs) from PCOS patients and healthy controls. MBD-seq was also performed on the ovarian tissue of constructed prenatally androgenized (PNA) mice. Differential methylation and expression analysis were implemented to identify DMGs and DEGs, respectively. The identified gene was further verified by real-time quantitative PCR (RT-qPCR) and methylation-specific PCR (MSP) in clinical samples. Furthermore, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was carried out on PCOS patients and healthy controls to identify differential lipid metabolites. Results Compared to the control group, 13,526 DMGs related to the promoter region and 2429 DEGs were found. The function analysis of DMGs and DEGs showed that they were mainly enriched in glycerophospholipid, ovarian steroidogenesis, and other lipid metabolic pathways. Moreover, 5753 genes in DMGs related to the promoter region were screened in the constructed PNA mice. Integrating the DMGs data from PCOS patients and PNA mice, we identified the following 8 genes: CDC42EP4, ERMN, EZR, PIK3R1, ARHGEF18, NECTIN2, TSC2, and TACSTD2. RT-qPCR and MSP verification results showed that the methylation and expression of TACSTD2 were consistent with sequencing data. Additionally, 15 differential lipid metabolites were shown in the serum of PCOS patients. The differential lipids were involved in glycerophospholipid and glycerolipid metabolism. Conclusion Using integration of methylome and lipid metabolites profiling we identified 8 potential epigenetic markers and 15 potential lipid metabolite markers for PCOS. Our results suggest that aberrant DNA methylation and lipid metabolite disorders may provide novel insights into the diagnosis and etiology of PCOS.
Collapse
Affiliation(s)
- Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Bohan Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhijiang Wang
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, People’s Republic of China
| | - Chunbo Lu
- Department of Obstetrics and Gynecology, Qiuai Central Health Center, Ningbo, People’s Republic of China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Yu L, Zhang Y, Liu C, Wu X, Wang S, Sui W, Zhang Y, Zhang C, Zhang M. Heterogeneity of macrophages in atherosclerosis revealed by single-cell RNA sequencing. FASEB J 2023; 37:e22810. [PMID: 36786718 DOI: 10.1096/fj.202201932rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shasha Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol 2023; 11:971091. [PMID: 36910156 PMCID: PMC9997679 DOI: 10.3389/fcell.2023.971091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Cai R, Chang C, Zhong X, Su Q. Lowering of Blood Lipid Levels with a Combination of Pitavastatin and Ezetimibe in Patients with Coronary Heart Disease: A Meta-Analysis. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023; 7. [DOI: 10.15212/cvia.2023.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
Abstract
Objectives: According to the findings of randomized controlled trials, blood lipid levels in patients with coronary heart disease (CHD) can be significantly decreased through a combination of pitavastatin and ezetimibe; however, the effects and clinical applications of this treatment remain controversial. This meta-analysis was aimed at objectively assessing the efficacy and safety of pitavastatin and ezetimibe in lowering blood lipid levels.
Design: Relevant studies were retrieved from electronic databases, including PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure, VIP, and WanFang Data, from database inception to June 8, 2022. The levels of low-density lipoprotein cholesterol, total cholesterol, triglycerides, and high-density lipoprotein cholesterol in patients’ serum after treatment were the primary endpoint.
Results: Nine randomized controlled trials (2586 patients) met the inclusion criteria. The meta-analysis indicated that pitavastatin plus ezetimibe resulted in significantly lower levels of LDL-C [standardized mean difference (SMD)=−0.86, 95% confidence interval (CI) (−1.15 to −0.58), P<0.01], TC [SMD=−0.84, 95% CI (−1.10 to −0.59), P<0.01], and TG [SMD=−0.59, 95% CI (−0.89 to −0.28), P<0.01] than pitavastatin alone.
Conclusions: Pitavastatin plus ezetimibe significantly decreased serum LDL-C, TC, and TG levels in patients with CHD.
Collapse
|
14
|
Cao X, Zhang M, Li H, Chen K, Wang Y, Yang J. Histone Deacetylase9 Represents the Epigenetic Promotion of M1 Macrophage Polarization and Inflammatory Response via TLR4 Regulation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408136. [PMID: 35941971 PMCID: PMC9356872 DOI: 10.1155/2022/7408136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Atherosclerosis is a chronic inflammatory response mediated by various factors, where epigenetic regulation involving histone deacetylation is envisaged to modulate the expression of related proteins by regulating the binding of transcription factors to DNA, thereby influencing the development of atherosclerosis. The mechanism of atherosclerosis by histone deacetylation is partly known; hence, this project aimed at investigating the role of histone deacetylase 9 (HDAC9) in atherosclerosis. For this purpose, serum was separated from blood samples following clotting and centrifugation from atherosclerotic and healthy patients (n = 40 each), and then, various tests were performed. The results indicated that toll-like receptor 4 (TLR4) was not only positively correlated to the HDAC9 gene, but was also upregulated in atherosclerosis, where it was also significantly upregulated in the atherosclerosis cell model of oxidized low-density lipoprotein-induced macrophages. Conversely, the TLR4 was significantly downregulated in instances of loss of HDAC9 function, cementing the bridging relationship between HDAC9 and macrophage polarization, where the HDAC9 was found to upregulate M1 macrophage polarization which translated into the release of higher content of proinflammatory cytokines such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), which tend to significantly decrease following the deletion of TLR4. Hence, this study reports novel relation between epigenetic control and atherosclerosis, which could partly be explained by histone deacetylation.
Collapse
Affiliation(s)
- Xi Cao
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Man Zhang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Li
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Kaiming Chen
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Central Laboratory of Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jia Yang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|