1
|
Jeyavani J, Gopi N, Al-Ghanim KA, Nicoletti M, Govindarajan M, Vaseeharan B. Probiotic-based immunization improves immune responses in Oreochromis mossambicus against Aeromonas hydrophila pathogen: Insights from Bacillus licheniformis (Dahb1). Microb Pathog 2025; 204:107520. [PMID: 40158705 DOI: 10.1016/j.micpath.2025.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The study was aimed to evaluate the immunization potential of different cellular components such as whole-cell protein (WCP), extracellular protein (ECP), and cell wall protein (CWP) of probiotic Bacillus licheniformis in Oreochromis mossambicus against Aeromonas hydrophila infection. At the end of 14th and 28th days, increased humoral and cellular immune parameters in CWP, WCP, and ECP cellular component treated groups of O. mossambicus were observed. This was attributed to the elevation of reactive oxygen species (ROS), superoxide & hydroxyl radical ions, which increased the immune parameter activity by activating macrophage, the complement system and the opsonization process in cellular components treated groups. After 28 days of administration, the aquaculture bacterial pathogen A. hydrophila (1 × 107 cells/mL), increased survival rate in experimental group fish which were immunized with probiotic cellular components CWP, WCP and ECP, compared with the control group were detected. Moreover, the isolated cellular components show great anti-bacterial and anti-biofilm activity against Aeromonas hydrophila. Overall results have shed light on probiotic B. licheniformis (Dahb1) cellular components especially CWP that effectively control bacterial disease under A. hydrophila burden conditions.
Collapse
Affiliation(s)
- Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government Arts College (Autonomous), Kumbakonam, 612 002, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
2
|
Geng S, Zhou Y, Ng G, Fan Q, Cheong S, Mazur F, Boyer C, Chandrawati R. Selenium nanoparticles as catalysts for nitric oxide generation. Colloids Surf B Biointerfaces 2025; 251:114592. [PMID: 40024109 DOI: 10.1016/j.colsurfb.2025.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
The critical role of nitric oxide (NO), a potent signalling molecule, in various physiological processes has driven the development of NO delivery strategies for numerous therapeutic applications. However, NO's short half-life poses a significant challenge for its effective delivery. Glutathione peroxidase, a selenium-containing antioxidant enzyme, can catalyse the decomposition of S-nitrosothiols (endogenous NO prodrugs) to produce NO in situ. Inspired by this, we explored selenium nanoparticles (SeNPs) for their enzyme-mimicking NO-generating activity. Stabilised with polyvinyl alcohol (PVA) or chitosan (CTS), SeNPs demonstrated tuneable NO generation when exposed to varying concentrations of NO prodrug, nanoparticles, and glutathione (GSH). In the presence of GSH, a naturally occurring antioxidant in the human body, 0.1 µg mL-1 of SeNPs could catalytically generate 7.5 µM of NO under physiological conditions within 30 min. We investigated the effects of nanoparticle crystallinity and NO prodrug type on NO generation, as well as the stability and sustained NO generation of the catalytic nanoparticles. PVA-stabilised SeNPs were non-toxic to NIH 3T3 cells and effectively dispersed Pseudomonas aeruginosa biofilms upon NO generation. This study broadens the repertoire of nanomaterials for NO generation and highlights SeNPs as a non-toxic alternative for therapeutic NO delivery.
Collapse
Affiliation(s)
- Shu Geng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
4
|
Sharma P, Mohanty S, Ahmad Y. Decoding Proteomic cross-talk between hypobaric and normobaric hypoxia: Integrative analysis of oxidative stress, cytoskeleton remodeling, and inflammatory pathways. Life Sci 2025; 371:123611. [PMID: 40187642 DOI: 10.1016/j.lfs.2025.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
AIMS To investigate the differential regulation of proteomic landscapes elicited by hypobaric hypoxia (HH) and normobaric hypoxia (NH) and to shed light on the molecular cross-talk underlying pre-acclimatization strategies. MATERIALS AND METHODS Label-free LCMS-MS quantitative proteomics was employed to evaluate the lung tissues of SD rats (n = 6) subjected to 6 h of acute HH at 25,000 ft associated with reduced barometric pressure, 282 mmHg, and NH at 8 % FiO2. KEY FINDINGS Our findings indicate that NH facilitated the minimal downregulation of proteins involved in maintaining pulmonary cytoskeleton integrity, including calpain 2, vitronectin, and beta-arrestin 1, whereas HH leads to severe downregulation of these proteins, causing a greater cytoskeleton disruption. Proteins contributing to redox homeostasis such as iNOS and SOD, were upregulated in both hypoxic conditions. However, SIRT1-mediated ROS-triggered proteins, including FOXO1 and FOXO4, exhibited upregulation in HH and downregulation in NH. Other proteins, HIF-1α and IDH, were upregulated in HH compared to NH. Additionally, Hemopexin was severely downregulated in HH relative to NH. SIGNIFICANCE For the first time, this study uncovers the comparative proteomic analysis of two distinct pre-acclimatization interventions by employing varied hypoxia modeling strategies highlighting the key molecular mechanism involved in HH acclimatization induced by differential hypoxia simulating technique.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
5
|
Hussein MT, Zaccone G, Albano M, Alesci A, Marino S, Alonaizan R, Mokhtar DM. Serotonin Signaling and Macrophage Subsets in Goldfish Gills: Unraveling the Neuroimmune Network for Gill Homeostasis. Life (Basel) 2025; 15:751. [PMID: 40430179 DOI: 10.3390/life15050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Goldfish (Carassius auratus) gills function as both respiratory and immune-regulatory organs, integrating neuroendocrine and immune responses to environmental stimuli. This study explores the spatial organization and interaction of neuroendocrine cells (NECs) and immune cells within goldfish gills using confocal immunohistochemistry and transmission electron microscopy. NECs, identified near blood capillaries and nerve fibers, highlight their role in environmental sensing and physiological regulation. These cells express serotonin (5-HT), a neurotransmitter critical for neuroimmune communication. Two distinct macrophage subsets were observed: iNOS-positive macrophages, concentrated in the basal epithelium, suggest a pro-inflammatory role, whereas 5-HT-positive macrophages, dispersed in the subepithelium, likely contribute to immune modulation. The co-localization of MHC-II and CD68 in macrophages further supports an active antigen-processing system in the gills. Ultrastructural analysis revealed diverse immune cells, including rodlet cells, telocytes, and lymphocytes, within the gill epithelium. Telocytes formed intricate networks with immune cells, highlighting their role in immune coordination and tissue homeostasis. These findings provide new insights into the neuroimmune interactions in fish gills, contributing to a broader understanding of aquatic immune systems and environmental adaptability.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Giacomo Zaccone
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sebastian Marino
- University School for Advanced Studies-IUSS Pavia, 27100 Pavia, Italy
| | - Rasha Alonaizan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, Assiut 19952, Egypt
| |
Collapse
|
6
|
Hossain K, Basak A, Majumdar A. Thiocarboxylate and Acid Chloride Mediated Generation of Nitric Oxide from a Dinickel(II)-Bis(ONO) Complex Involving the Formation of Perthionitrite and O-Nitrosyl Carboxylate. J Am Chem Soc 2025; 147:15408-15428. [PMID: 40264297 DOI: 10.1021/jacs.5c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A detailed study for the generation of nitric oxide (NO) upon reaction of a binuclear Ni(II)-bis(ONO) complex with carboxylic acids (RCOOH, R = Me, Ph), thiols (RSH, R = Ph, p-F-C6H4), benzeneselenol (PhSeH), thiocarboxylates (RC(O)S-, R = Me, Ph), thiocarboxylic acids (RC(O)SH, R = Me, Ph), and acid chlorides (RC(O)Cl, R = Me, Ph) has been presented. The reactions of the binuclear Ni(II)-bis(ONO) complex with thiols/selenols give access to unusual dinickel(II)-nitrito-thiolato/selenolato complexes, while the reactions with RC(O)S-, RC(O)SH, and RC(O)Cl offer new mechanistic insights into the generation of perthionitrite (SSNO-) and O-nitrosyl carboxylates (RC(O)ONO), the well-known NO-carrying species in biology. Interestingly, while the reaction of the binuclear Ni(II)-bis(ONO) complex with RC(O)S- involved nucleophilic attack of the latter to the coordinated NO2- to generate SSNO-, the reaction with RC(O)Cl proceeds via the hitherto unknown nucleophilic attack of the coordinated NO2- to the carbonyl carbon of RC(O)Cl to generate RC(O)ONO, which, in turn, produces NO. The present comparative study thus demonstrates new reactions of metal-coordinated NO2- and detailed mechanistic investigations supported by molecular structure determinations and spectroscopic studies and establishes the hitherto unknown reaction of coordinated nitrite with RC(O)Cl to be a highly efficient method for the generation of NO in excellent yield.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Arindam Basak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Tabtimmai L, Phonchan T, Thongprik N, Kaennakam S, Yodsin N, Choowongkomon K, Sonklin C, Jadsadajerm S, Wisetsai A. New oxepin and dihydrobenzofuran derivatives from Bauhinia saccocalyx roots and their anti-inflammatory, cytotoxic, and antioxidant activities. J Nat Med 2025; 79:543-555. [PMID: 40085400 DOI: 10.1007/s11418-025-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Four new oxepin and dihydrobenzofuran derivatives, saccoxepins A-C (1-3) and saccobenzofurin A (4), along with one known compound, bauhinoxepin A (5), were isolated from the roots of Bauhinia saccocalyx. The structures were elucidated by extensive analysis of spectroscopic data in combination with ECD analysis. The EtOAc extract exhibited significant NO inhibition (94.4 ± 0.35%, 50 μg/mL), and saccoxepin A and bauhinoxepin A demonstrated strong NO suppression, with IC50 values of 49.35 µM and 30.28 µM, respectively, alongside notable antioxidant activity. Saccoxepin A and bauhinoxepin A selectively reduced interleukin-6 (IL-6) levels, while bauhinoxepin A slightly lowered tumor necrosis factor-alpha (TNF-α) at a low dose. Furthermore, bauhinoxepin A exhibited cytotoxicity against HCT-116 cells, with an IC50 of 8.88 µM. These findings suggest that the roots of B. saccocalyx possess potent antioxidant, anti-inflammatory, and anticancer activities, supporting its traditional medicinal applications and highlighting its potential as a source of therapeutic agents.
Collapse
Affiliation(s)
- Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
- Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Thanyathon Phonchan
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Natrinee Thongprik
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sutin Kaennakam
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Chanikan Sonklin
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Supachai Jadsadajerm
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Awat Wisetsai
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
8
|
Yang Z, Guo Z, Qin B, Zhang H, Chen J, Zheng G, Zou S. Establishment of the Tgf2-based anti-hemorrhagic disease system THVS and analysis of its disease resistance effects in Gobiocypris rarus. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110206. [PMID: 39978561 DOI: 10.1016/j.fsi.2025.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Grass carp reovirus (GCRV) belongs to the family of reoviridae, which mainly causes hemorrhagic disease in grass carp, with high morbidity and mortality rate, which seriously affects the efficiency of grass carp aquaculture, and at present, there is no effective treatment and new varieties of disease-resistant species. Capsid-targeted viral inactivation (CTVI) is a potent antiviral strategy based on the formation of fusion proteins between viral coat proteins and exogenous proteins, whereby the fusion proteins are integrated into the virus upon viral invasion and assembly, and the exogenous proteins directly disrupt and degrade the viral DNA/RNA to provide antiviral efficacy. The aim of this paper was to explore the potential application of CTVI in rare minnow infested with GCRV, to provide a theoretical basis for the breeding of new varieties of grass carp resistant to hemorrhagic disease. We used heat shock protein 70 (HSP70) as promoter, combined with Tgf2 transposon, assembled GCRV outer capsid protein VP3 and Staphylococcus aureus nucleases (SN) to form a fusion protein VP3-SN, constructed a Tgf2-based anti-hemorrhagic disease system (THVS) and a transgenic model of rare minnow, and investigated the apoptotic and immune responses of transgenic rare minnow in resistance to GCRV infection by HE and TUNEL staining, CAT and NO detection, and qPCR. Apoptosis, inflammation and immune responses in transgenic rare minnow against GCRV infection. The results showed that the transgenic rare minnow would limit GCRV amplification during GCRV infection, further affect oxidative stress and reduce the expression of TLR4-MYD88-NF-kB pathway, apoptosis-related genes (BCL2, Caspae3) and inflammation-related genes (IL-1β, TNFα), showing strong GCRV resistance. This experiment provides a theoretical basis and rationale for breeding new grass carp varieties resistant to hemorrhagic disease.
Collapse
Affiliation(s)
- Ziquan Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zaozao Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Qin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huimei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guodong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Atta S, Mandal A, Patra S, Majumdar A. Functional Nonheme Diiron(II) Complexes Catalyze the Direct Reduction of Nitrite to Nitric Oxide in Relevance to the Diiron Protein YtfE. Inorg Chem 2025; 64:7726-7745. [PMID: 40180608 DOI: 10.1021/acs.inorgchem.5c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The present work reports the functional modeling chemistry of YtfE, which features a nonheme diiron active site and mediates the direct reduction of NO2- to NO. The model complex, [Fe2(HPTP)Cl2]1+ (1), reduces NO2- to NO in a 100% yield within 12 h and generates [Fe4(HPTP)2(μ-O)3(μ-OH)]3+ (2). Similar to YtfE, the reaction involves stepwise oxidation of two Fe(II) centers and product (NO) inhibition, of which the latter produces [Fe2(HPTP)(NO)2Cl2]1+ (3). Complex 3 could also be synthesized by the reaction of [Fe2(HPTP)(NO)2(ClO4)]2+ (4) and chloride. Complex 1 catalyzes the reduction of NO2- to NO in the presence of PhS-, albeit with a low TON of 5, due to the formation of an insoluble product, [Fe2(HPTP)(μ-SPh)Cl2] (5). Another model complex [Fe2(HPTP)(OPr)]1+ (6), reduced NO2- to NO in an 80% yield after 24 h, generated [Fe2(HPTP)(OPr)(NO)2]1+ (7), and offered a TON of 19. The third model complex, [Fe2(HPTP)(ClO4)2]1+ (8), could reduce NO2- to NO in a 100% yield but only after 48 h. A comparison of these results establishes that easy oxidation of the Fe(II) centers, easy accessibility of the Fe(II) centers for the coordination of NO2-, and easy release of NO from the in situ generated dinitrosyl diiron complex increase the efficiency of the functional model complexes of YtfE.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
10
|
Wu PS, Wong TH, Hou CW, Chu TP, Lee JW, Lou BS, Lin MH. Cold Atmospheric Plasma Jet Promotes Wound Healing Through CK2-Coordinated PI3K/AKT and MAPK Signaling Pathways. Mol Cell Proteomics 2025; 24:100962. [PMID: 40187493 PMCID: PMC12059340 DOI: 10.1016/j.mcpro.2025.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
The promising role of cold atmospheric plasma jet (CAPJ) treatment in promoting wound healing has been widely documented in therapeutic implications. However, the fact that not all subjects respond equally to CAPJ necessitates the investigation of the underlying cellular mechanisms, which have been rarely understood so far. Given that wound healing is a complex and prolonged process, post plasma-activated medium (PAM) treated keratinocytes were collected at two time points, 2 h (receiving) and 24 h (recovery), for (phospho)proteomic analysis to systematically dissect the molecular basis of CAPJ-promoted wound healing. The receiving (phospho)proteomics datasets, referred to the time point of 2 h, revealed an apparent increase in the phosphorylation of CK2 and its-mediated PI3K/AKT and MAPK signaling pathways, accompanied by a prompted downstream physiological response of cell migration. Additionally, incorporating the network analysis of predicted kinases and their direct interactors, we reiterated that CAPJ influenced cell growth and migration, thereby paving the way for its role in subsequent wound healing processes. Further determining the proteome profiles at recovery phase, which is the time point of 24 h, displayed a totally different view from the receiving proteome which had almost no change. The upregulation of ROBOs/SLITs expression and vesicle trafficking and fusion-related proteins, along with the abundant presence of 14-3-3 family proteins, indicated that the persistent effect of PAM on the wound healing process could potentially promote keratinocyte-fibroblast cross talk and stimulate extracellular matrix synthesis upon epithelialization. Consistent with proteome patterns, CAPJ-treated wound tissues indeed showed a denser and well-organized extracellular matrix architecture, implying hastened epithelialization during wound healing. Collectively, we delineated the molecular basis of CAPJ-accelerated wound healing at early and late responses, providing valuable insights for treatment selection and the development of therapeutic strategies to achieve better outcomes.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Wei Hou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan; International PhD. Program in Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan; International PhD. Program in Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei, Taiwan; High Entropy Materials Center, National Tsing Hua University, Hsinchu, Taiwan; College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Chen Y, Li P, Huang W, Yang N, Zhang X, Cai K, Chen Y, Xie Z, Gong J, Liao Q. Structural characterization and immunomodulatory activity of an exopolysaccharide isolated from Bifidobacterium adolescentis. Int J Biol Macromol 2025; 304:140747. [PMID: 39922339 DOI: 10.1016/j.ijbiomac.2025.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Bifidobacterium adolescentis is a key probiotic that has been proven to possess various bioactivities. A water-soluble heteropolysaccharide (BEP-1A) was isolated from the probiotic and systematically investigated for the first time. The molecular weight of BEP-1A was calculated to be 9.69 × 106 Da. Combined with monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, methylation and nuclear magnetic resonance (NMR) analysis, BEP-1A was composed of mannose, glucose and galactose at a molar ratio of 0.11⁚4.30⁚1.32. The backbone included β-1,2-Glcp, β-1,3-Glcp, α-1,4-Glcp, α-1,4-Galp, α-1,6-Galp and α-1,3-Manp, with the branch at the O-2 position of α-1,6-Galp, consisting of α-1,2-Galp and α-1-Glcp. Moreover, a filamentous structure of BEP-1A was detected by scanning electron microscopy (SEM). BEP-1A presented high thermal stability based on thermogravimetric analysis (TGA). X-ray diffractometry (XRD) results revealed that BEP-1A was an amorphous molecule without a crystal structure. Furthermore, BEP-1A significantly increased the viability of RAW 264.7 macrophages, improved phagocytosis, and promoted the secretion of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). BEP-1A was also found to induce the nuclear translocation of the NF-κB subunit p65 and upregulate the phosphorylation of p65 and IκB-α, which suggested that the NF-κB pathway was involved in the BEP-1A-induced immunomodulatory effect. Overall, this study provides a theoretical basis for the development of BEP-1A as an immunomodulator in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangming District, Gongchang Road, Shenzhen, Guangdong Province 518106, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
12
|
Mohanty A, Mohapatra A, Sundaram A, Sathiyamoorthy P, Park W, Rajendrakumar SK, Park IK. Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming. J Control Release 2025; 379:147-163. [PMID: 39788373 DOI: 10.1016/j.jconrel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge. In this study, we developed a metallomicellar nanophotosensitizer named TAGNO, which offers a synergistic tri-modal cancer treatment strategy by combining photothermal therapy (PTT), gas therapy (GT), and immunotherapy. The TAGNO nanophotosensitizer consists of a gold nanorod core, responsible for inducing the photothermal effect, coated with an amphiphilic polymer functionalized with tumor cell penetrating peptide to accommodate lipophilic small molecule BNN6, a nitric oxide (NO) donor for GT. We demonstrated that TAGNO exhibited high tumor accumulation, excellent stability, and biocompatibility, ensuring the safe delivery of NO to the tumor site. Upon near-infrared (NIR) laser irradiation, TAGNO effectively raised the temperature within tumor tissues while sparing the surrounding healthy tissues and enabled controlled NO release. Once released, the NO interacts with hydrogen peroxide in the hypoxic tumor microenvironment, forming peroxynitrite (ONOO-), which induces mitochondrial dysfunction and triggers pyroptotic cell death. Pyroptosis induced immunogenic cell death and the subsequent release of tumor antigens, activating cytotoxic T cells and promoting M1 macrophage polarization, effectively controlling both primary and secondary tumor growth. Furthermore, laser-induced NO release facilitated the relaxation of stiff tumor tissues, enhancing blood vessel dilation and oxygenation. This improvement promoted immune cell infiltration while suppressing immunosuppressive cells. Overall, this innovative combination of PTT, GT, and immunotherapy presents a potent and synergistic strategy for the treatment of malignant colon tumors, achieving complete tumor eradication.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea
| | - Aravindkumar Sundaram
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Woongkyu Park
- Photonic Energy Components Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | | | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea.
| |
Collapse
|
13
|
Al‐Thani NA, Stewart GS, Costello DA. The Role of the Urea Cycle in the Alzheimer's Disease Brain. J Neurochem 2025; 169:e70033. [PMID: 40022483 PMCID: PMC11871420 DOI: 10.1111/jnc.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder classified as the leading form of dementia in the elderly. Classical hallmarks of AD pathology believed to cause AD include Amyloid-beta (Aβ) plaques as well as neurofibrillary tau tangles (NTT). However, research into these classical hallmarks has failed to account for a causative link or therapeutic success. More recently, metabolic hallmarks of AD pathology have become a popular avenue of research. Elevated urea and ammonia detected in cases of AD point towards a dysfunctional urea cycle involved in AD. This review covers the expansive body of literature surrounding the work of researchers deciphering the role of the urea cycle in AD pathology through the study of urea cycle enzymes, metabolites, and transporters in the AD brain. Urea cycle enzymes of interest in AD pathology include OTC, NOS isoforms, ARG1, ARG2, MAOB, and ODC, which all present as promising therapeutic targets. Urea metabolites indicated in AD pathology have varying concentrations across the regions of the brain and the different cell types (neurons, microglia, astrocytes). Finally, the role of UT-B as a clearance modulator presents this protein as a key target for research in the role of the urea cycle in the AD brain. In the future, these key enzymes, pathways, and proteins relating to the urea cycle in AD should be further investigated to better understand the cell-specific urea cycle profiles in the AD brain and uncover their therapeutic potential.
Collapse
Affiliation(s)
- Najlaa A. Al‐Thani
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway InstituteUniversity College DublinDublinIreland
| | - Gavin S. Stewart
- UCD School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Derek A. Costello
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
14
|
Molaro MC, Battisegola C, Schiano ME, Failla M, Rimoli MG, Lazzarato L, Chegaev K, Sodano F. Synthesis of Arginase Inhibitors: An Overview. Pharmaceutics 2025; 17:117. [PMID: 39861764 PMCID: PMC12068017 DOI: 10.3390/pharmaceutics17010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct. In recent decades, the abnormal expression of ARG-1 or ARG-2 has been reported to be increasingly linked to a variety of diseases, including cardiovascular disease, inflammatory bowel disease, Alzheimer's disease, and cancer. Therefore, considering the current relevance of this topic and the need to address the growing demand for new and more potent ARG inhibitors in the context of various diseases, this review was conceived. We will provide an overview of all classes of ARG inhibitors developed so far including compounds of synthetic, natural, and semisynthetic origin. For the first time, the synthesis protocol and optimized reaction conditions of each molecule, including those reported in patent applications, will be described. For each molecule, its inhibitory activity in terms of IC50 towards ARG-1 and ARG-2 will be reported specifying the type of assay conducted.
Collapse
Affiliation(s)
- Maria Cristina Molaro
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Chiara Battisegola
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Marica Erminia Schiano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Maria Grazia Rimoli
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Federica Sodano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| |
Collapse
|
15
|
Thanneeru VS, Panigrahi N. Novel Quinoline Nitrate Derivatives: Synthesis, Characterization, and Evaluation of their Anticancer Activity with a Focus on Molecular Docking and NO Release. Anticancer Agents Med Chem 2025; 25:272-280. [PMID: 39354754 DOI: 10.2174/0118715206315415240830052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Nitric Oxide (NO) has recently gained recognition as a promising approach in the field of cancer therapy. The quinoline scaffold is pivotal in cancer drug research and is known for its versatility and diverse mechanisms of action. OBJECTIVE This study presents the synthesis, characterization, and evaluation of novel quinoline nitrate derivatives as potential anticancer agents. METHODS The compounds were synthesized through a multi-step process involving the preparation of substituted 1-(2-aminophenyl) ethan-1-one, followed by the synthesis of substituted 2- (chloromethyl)-3,4-dimethylquinolines, and finally, the formation of substituted (3,4- dimethylquinolin-2-yl) methyl nitrate derivatives. The synthesized compounds were characterized using various spectroscopic techniques. Molecular docking studies were conducted to assess the binding affinity of the compounds to the EGFR tyrosine kinase domain. RESULTS The docking scores revealed varying degrees of binding affinity, with compound 6k exhibiting the highest score. The results suggested a correlation between molecular docking scores and anticancer activity. Further evaluations included MTT assays to determine the cytotoxicity of the compounds against Non-Small Cell Lung Cancer (A-549) and pancreatic cancer (PANC-1) cell lines. Compounds with electron-donating groups displayed notable anticancer potential, and there was a correlation between NO release and anticancer activity. The study also investigated nitric oxide release from the compounds, revealing compound 6g as the highest NO releaser. CONCLUSION The synthesized quinoline nitrate derivatives showed promising anticancer activity, with compound 6g standing out as a potential lead compound. The correlation between molecular docking, NO release, and anticancer activity suggests the importance of specific structural features in the design of effective anticancer agents.
Collapse
Affiliation(s)
| | - Naresh Panigrahi
- Department of Pharmaceutical Chemistry, GITAM Deemed to be University, Vishakapatnam, India
| |
Collapse
|
16
|
Kalaichelvan A, Kim J, Kim G, Lee JH, Udayantha HMV, Kodagoda YK, Warnakula WADLR, Ganepola GANP, Jo Y, Arachchi UPE, Jayamali BPMV, Wan Q, Jung S, Lee J. Exploring the immunological functions of thioredoxin domain-containing protein 17 (TXNDC17) in chub mackerel (Scomber japonicus): Immune response and cellular redox homeostasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105303. [PMID: 39675595 DOI: 10.1016/j.dci.2024.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
All organisms have evolved sophisticated antioxidant networks and enzymes to counteract reactive radicals, among which thioredoxin (Trx) systems are especially noteworthy. Thioredoxin domain-containing protein 17 (TXNDC17) is a ubiquitously expressed enzyme with oxidoreductase activity belonging to the Trx protein family. This study successfully uncovered and analyzed the TXNDC17 gene in Scomber japonicus (SjTXNDC17). The gene consists of a 372-base-pair coding sequence that encodes a protein of 123 amino acids, with an estimated molecular weight of 14.1 kDa. Structural analysis revealed that SjTXNDC17 contains a TRX-related protein 14 domain with two redox-responsive cysteine residues in the 42WCPDC46 motif. Spatial expression analysis indicated that SjTXNDC17 had the highest constitutive expression in the brain. Stimulation with polyinosinic-polycytidylic acid (poly I:C), Vibrio harveyi, and Streptococcus iniae, significantly upregulated the mRNA levels of SjTXNDC17 in the head kidney. The antioxidant activity of the recombinant SjTXNDC17 protein was evidenced by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, insulin reduction, and cupric ion-reducing antioxidant capacity assays. SjTXNDC17 overexpression in fathead minnow (FHM) cells significantly reduced reactive oxygen species (ROS) levels and decreased apoptosis. The anti-apoptotic effect was driven by the upregulation of the Bcl2 gene and the downregulation of the Bax gene, as well as the suppression of JNK signaling pathway genes. Moreover, overexpression of SjTXNDC17 facilitated M2 polarization and suppressed nitric oxide production in macrophages. Collectively, these results demonstrate that SjTXNDC17 plays a crucial role in both the immune response and cellular redox balance in Scomber japonicus.
Collapse
Affiliation(s)
- Arthika Kalaichelvan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
17
|
Ham HJ, Kim J. Targeted nutritional strategies in postoperative care. Anesth Pain Med (Seoul) 2025; 20:34-45. [PMID: 39809503 PMCID: PMC11834873 DOI: 10.17085/apm.24067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025] Open
Abstract
Immunonutrition, which uses specific nutrients to modulate the immune response, has emerged as a vital adjunct to perioperative care. Surgery-induced stress triggers immune responses that can lead to complications, such as infections and delayed wound healing. Traditional nutritional support often overlooks the immunological needs of surgical patients. Immunonutrition addresses this oversight by providing key nutrients, such as arginine, omega-3 fatty acids, glutamine, nucleotides, and antioxidants (vitamins C and E) to enhance immune function and support tissue repair. This review examined the efficacy and safety of immunonutrition in surgical settings, guided by the recommendations of the American Society for Parenteral and Enteral Nutrition and the European Society for Clinical Nutrition and Metabolism. Both organizations recommend immunonutrition for high-risk or malnourished patients undergoing major surgery and support its use in reducing complications and improving recovery. The key nutrients in immunonutrition aim to improve immune cell function, reduce inflammation, and enhance wound healing. Clinical studies and meta-analyses have demonstrated that immunonutrition lowers the infection rate, shortens the length of hospital stay, and accelerates recovery. Challenges hindering the clinical application of immunonutrition include cost, logistics, and a lack of standardized and personalized protocols. Future studies should focus on biomarker-driven approaches, pharmacogenomics, and innovative nutrient formulations. Addressing these issues will help to integrate immunonutrition into clinical practice, ultimately improving surgical outcomes and patient recovery.
Collapse
Affiliation(s)
- Hye Jin Ham
- Department of Nutrition Care, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Kruszewska-Naczk B, Grinholc M, Rapacka-Zdonczyk A. Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth. Antioxidants (Basel) 2024; 13:1583. [PMID: 39765911 PMCID: PMC11673782 DOI: 10.3390/antiox13121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial blue light (aBL) has become a promising non-invasive method that uses visible light, typically within the 405-470 nm wavelength range, to efficiently inactivate a wide variety of pathogens. However, the mechanism of antimicrobial blue light (aBL) has not been fully understood. In this study, our research group investigated the sensitivity of Escherichia coli BW25113 single-gene deletion mutants to individual stressors generated by aBL. Sixty-four aBL-sensitive mutants were tested under conditions mimicking the stress generated by irradiation with aBL, with their growth defects compared to the wild-type strain. Results revealed no positive correlation between aBL and single stressors, indicating that aBL's effectiveness is due to the simultaneous generation of multiple stressors. This multifactorial effect suggests that aBL targets microbial cells more precisely than single stressors such as hydrogen peroxide. No single gene knockout conferred specific resistance, highlighting aBL's potential as an antimicrobial strategy.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (B.K.-N.); (M.G.)
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (B.K.-N.); (M.G.)
| | - Aleksandra Rapacka-Zdonczyk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (B.K.-N.); (M.G.)
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
19
|
Liu J, Chen W, Chen S, Li S, Swevers L. Similarly to BmToll9-1, BmToll9-2 Is a Positive Regulator of the Humoral Immune Response in the Silkworm, Bombyx mori. INSECTS 2024; 15:1005. [PMID: 39769607 PMCID: PMC11678180 DOI: 10.3390/insects15121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Toll receptors play important roles in the development and innate immunity of insects. Previously, we reported the immunological function of BmToll9-2 in silkworm, Bombyx mori, larvae. In this study, we focused on the role of BmToll9-2 as a regulator in the Toll signaling pathway. The expressions of most signaling genes in the Toll pathway, as well as immune effectors, were reduced after the RNAi of BmToll9-2. Coincidentally, hemolymph from BmToll9-2-silenced larvae exhibited decreased antibacterial activity in the growth of Escherichia coli, demonstrated either by growth curve or inhibitory zone experiments. The oral administration of heat-inactivated E. coli and Staphylococcus aureus following the RNAi of BmToll9-2 up-regulated the expression of most signaling genes in the Toll pathway and downstream immune effectors. The above results indicate that BmToll9-2 is positively involved in the Toll signaling pathway. As a positive regulator, BmToll9-2 is shown to be activated preferentially against E. coli and, in turn, positively modulates the humoral immune response in antibacterial activity.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Weijian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sihua Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuqiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15431 Athens, Greece;
| |
Collapse
|
20
|
Roberts JM, Milo S, Metcalf DG. Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide. Microorganisms 2024; 12:2543. [PMID: 39770746 PMCID: PMC11677572 DOI: 10.3390/microorganisms12122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent. NO can be considered an underappreciated antimicrobial that could be levied against infected, at-risk, and hard-to-heal wounds due to the inherent lack of bacterial resistance, and tolerance by human tissues. NO produced within a wound dressing may be an effective method of disrupting biofilms and killing microorganisms in hard-to-heal wounds such as diabetic foot ulcers, venous leg ulcers, and pressure injuries. We have conducted a narrative review of the evidence underlying the key antimicrobial and antibiofilm mechanisms of action of NO for it to serve as an exogenously-produced antimicrobial agent in dressings used in the treatment of hard-to-heal wounds.
Collapse
Affiliation(s)
| | | | - Daniel Gary Metcalf
- Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK; (J.M.R.); (S.M.)
| |
Collapse
|
21
|
Karmakar S, Patra S, Halder R, Karmakar S, Majumdar A. Reduction of Nitrite in an Iron(II)-Nitrito Compound by Thiols and Selenol Produces Dinitrosyl Iron Complexes via an {FeNO} 7 Intermediate. Inorg Chem 2024; 63:23202-23220. [PMID: 39569438 DOI: 10.1021/acs.inorgchem.4c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Reaction of an Fe(II) complex, [Fe(6-COO--tpa)]1+ (1), with PhE- and NO2- produced [Fe(6-COO--tpa)(EPh)] (E = S, 2a; Se, 3) and [Fe(6-COO--tpa)(κ2-O,O'-NO2)] (4), respectively (6-COOH-tpa is bis(2-pyridylmethyl)(6-carboxyl-2-pyridylmethyl)amine). Treatment of 4 with 2 equiv of PhEH (E = S, Se) produced NO in ∼40% yields, respectively, along with 1 and the DNICs, [Fe(EPh)2(NO)2]1- (E = S, Se). Treatment of 4 with excess PhEH produced NO in similar yields, while 4 was converted to the same DNICs and 2a/3 (instead of 1). The DNICs have been proposed to be generated via the reaction of PhE- with an in situ generated, unstable {FeNO}7 intermediate, [Fe(6-COO--tpa)(NO)]1+ (6), which has also been synthesized separately. Compound 6 reacts with PhS- to generate [Fe(SPh)2(NO)2]1-, thus supporting the proposed reaction pathway. Finally, while the treatment of two unique compounds, featuring inbuilt proton sources, [Fe(6-COO--tpa)(S-C6H4-p-COOH)] (7) and [Fe(6-COO--tpa)(S-C6H4-o-OH)] (8), with 0.5 and 1 equiv of NO2- could produce NO only in 8-26% yields, treatment of 4 with HS-C6H4-p-COOH and HS-C6H4-o-OH produced NO in much higher yields (65-77%). The combined results delineated the importance of coordination of NO2- for the proton-assisted reduction of NO2- to generate NO.
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ritapravo Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suchismita Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
22
|
Sengupta A, Chakraborty S, Biswas S, Patra SK, Ghosh S. S-nitrosoglutathione (GSNO) induces necroptotic cell death in K562 cells: Involvement of p73, TSC2 and SIRT1. Cell Signal 2024; 124:111377. [PMID: 39222864 DOI: 10.1016/j.cellsig.2024.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nitric oxide and Reactive Nitrogen Species are known to effect tumorigenicity. GSNO is one of the main NO carrying signalling moiety in cell. In the current study, we tried to delve into the effect of GSNO induced nitrosative stress in three different myelogenous leukemic K562, U937 and THP-1 cell lines. METHOD WST-8 assay was performed to investigate cell viability. RT-PCR and western-blot analysis were done to investigate mRNA and protein expression. Spectrophotometric and fluorimetric assays were done to investigate enzyme activities. RESULT We found that GSNO exposure led to reduced cell viability and the mode of cell death in K562 was non apoptotic in nature. GSNO promoted impaired autophagic flux and necroptosis. GSNO treatment heightened phosphorylation of AMPK and TSC2 and inhibited mTOR pathway. We observed increase in NAD+/ NADH ratio following GSNO treatment. Increase in both SIRT1 m-RNA and protein expression was observed. While total SIRT activity remained unaltered. GSNO increased tumor suppressor TAp73/ oncogenic ∆Np73 ratio in K562 cells which was correlated with cell mortality. Surprisingly, GSNO did not alter cellular redox status or redox associated protein expression. However, steep increase in total SNO and PSNO content was observed. Furthermore, inhibition of autophagy, AMPK phosphorylation or SIRT1 exacerbated the effect of GSNO. Altogether our work gives insights into GSNO mediated necroptotic event in K562 cells which can be excavated to develop NO based anticancer therapeutics. CONCLUSION Our data suggests that GSNO could induce necroptotic cell death in K562 through mitochondrial dysfunctionality and PTM of different cellular proteins.
Collapse
Affiliation(s)
- Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanchita Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
23
|
Kim MJ, Kim HJ. Anti-Inflammatory Effects of Apostichopus japonicus Extract in Porphyromonas gingivalis-Stimulated RAW 264.7 Cells. Curr Issues Mol Biol 2024; 46:13405-13417. [PMID: 39727927 PMCID: PMC11727614 DOI: 10.3390/cimb46120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Apostichopus japonicus has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of Apostichopus japonicus extract in RAW 264.7 cells stimulated by Porphyromonas gingivalis. The cytotoxicity of Apostichopus japonicus extract was evaluated using the MTS assay. Its effect on NO production was then measured using the NO assay. The mRNA expression of inducible nitric oxide synthase (iNOS) and the pro-inflammatory cytokines IL-1β and IL-6 were assessed using quantitative real-time PCR (qRT-PCR). Western blotting was performed to investigate the expression of regulatory proteins involved in the NF-κB and MAPK signaling pathways. Apostichopus japonicus extract significantly inhibited NO production without cytotoxicity in RAW 264.7 cells. Following Porphyromonas gingivalis stimulation, treatment with the extract decreased iNOS mRNA expression and protein levels, which are responsible for NO production. The extract also suppressed the mRNA expression of pro-inflammatory cytokines. Additionally, Apostichopus japonicus extract inhibited NF-κB activation by regulating signaling molecules such as IKK and IκBα, while also preventing the phosphorylation of MAPK, including ERK, p38, and JNK, showing anti-inflammatory potential. Therefore, it may be a promising natural candidate for the development of new preventive and therapeutic strategies for periodontitis.
Collapse
Affiliation(s)
- Min-jeong Kim
- Department of Convergence Technology for Food Industry, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Hyun-jin Kim
- Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
24
|
Ma L, Wang H, Liu Y, Sun J, Yan X, Lu Z, Hao C, Qie X. Single von Willebrand factor C-domain protein-2 confers immune defense against bacterial infections in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 279:135241. [PMID: 39233173 DOI: 10.1016/j.ijbiomac.2024.135241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Single-domain von Willebrand factor type C proteins (SVWCs), primarily found in arthropods, responds to infections caused by various pathogens. Three SVWCs have been identified in the silkworm and BmSVWC2 might play a crucial role in the immune system. However, the regulatory mechanism of BmSVWC2 remains largely unknown. This study aimed to investigate the biochemical functions of BmSVWC2 in the immune system of B. mori comprehensively. Phylogenetic analysis revealed that BmSVWC1, BmSVWC3, and BmSVWC2 were distributed in diverse groups, suggesting distinct biochemical functions. The mRNA and protein levels of BmSVWC2 increased significantly in response to bacterial infection. BmSVWC2 exhibited clear binding activity to the polysaccharide pathogen-associated molecular patterns of bacteria and fungi, enhancing bacterial clearance in vivo but not in vitro. RNA-sequencing assays of the fat body and hemocytes showed that numerous immune genes were markedly up-regulated with higher level of BmSVWC2, primarily affecting recognition, signaling, and response production of the Toll and immune deficiency (IMD) signaling pathways. This led to the production of various antimicrobial peptides and significant antibacterial activities in the hemolymph. BmSVWC2 up-regulated phagocytosis-related genes in the fat body and hemocytes, and phagocytosis assays confirmed that BmSVWC2 improved the phagocytic ability of hemocytes against bacteria. Additionally, BmSVWC2 induced the expression of nitric oxide synthetase (NOS) in the fat body, and bioassays confirmed that BmSVWC2 increased NOS activity in the fat body and hemolymph, resulting in nitric oxide accumulation. However, BmSVWC2 did not affect phenoloxidase activity, despite it caused differential expression of a few serine proteases and serine protease inhibitors. Co-immunoprecipitation and mass spectrometry assays showed that BmSVWC2 interacted with 30 K proteins, such as 30 K protein 2, 30 K pBmHPC-19, 30 K 19G1-like, 30 K protein 8, 30 K protein 7, 30 K pBmHPC-23, and low molecular mass lipoprotein 4-like. Our study provides a comprehensive characterization of BmSVWC2 and elucidates the mechanism underlying its regulation of immune responses activation.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
25
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Wheat W, Chow L, Still-Brooks K, Moore-Foster R, Herman J, Hunter R, Garry F, Dow S. Immune modulatory effects of tulathromycin, gamithromycin, and oxytetracycline in cattle. BMC Vet Res 2024; 20:456. [PMID: 39385141 PMCID: PMC11462805 DOI: 10.1186/s12917-024-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
Certain classes of antibiotics, including tetracyclines and macrolides, are known to exert immune suppressive effects in other species but the immune modulatory effects of these antibiotics have not been previously studied in cattle. To address this question, we investigated the effects of oxytetracycline, gamithromycin, and tulathromycin on T cell and macrophage responses to activation, using in vitro assays. In addition, we assessed the impact of these antibiotics on T cell responses in vivo following treatment of healthy cattle with currently recommended doses of each of the three antibiotics. We found that all 3 antibiotics markedly suppressed T cell proliferation in vitro at relevant therapeutic drug concentrations and significantly suppressed macrophage activation responses to LPS. In cattle treated with a single dose of each antibiotic, we observed significant suppression of T cell proliferation and cytokine production beginning as early as 6 h after administration, with increasing immune suppression observed at 48 h. Taken together, these results indicate that commonly used antibiotics in cattle exert significant immune modulatory activity, in addition to their antimicrobial activity. These off-target effects should be considered when using antibiotics for prophylaxis or metaphylaxis in high-risk dairy or beef cattle (192 words).
Collapse
Affiliation(s)
- W Wheat
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - L Chow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - K Still-Brooks
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Moore-Foster
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Herman
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Hunter
- Hunter Cattle Co, Wheatland, WY, USA
| | - F Garry
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Dow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
27
|
Subhasinghe I, Matsuyama-Kato A, Ahmed KA, Ayalew LE, Gautam H, Popowich S, Chow-Lockerbie B, Tikoo SK, Griebel P, Gomis S. Oligodeoxynucleotides containing CpG motifs upregulate bactericidal activities of heterophils and enhance immunoprotection of neonatal broiler chickens against Salmonella Typhimurium septicemia. Poult Sci 2024; 103:104078. [PMID: 39096829 PMCID: PMC11345621 DOI: 10.1016/j.psj.2024.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024] Open
Abstract
In the past, we demonstrated that oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimicking bacterial DNA, stimulate the innate immune system of neonatal broiler chickens and protect them against Escherichia coli and Salmonella Typhimurium (S. Typhimurium) septicemia. The first line of innate immune defense mechanism is formed by heterophils and plays a critical protective role against bacterial septicemia in avian species. Therefore, the objectives of this study were 1) to explore the kinetics of CpG-ODN mediated antibacterial mechanisms of heterophils following single or twice administration of CpG-ODN in neonatal broiler chickens and 2) to investigate the kinetics of the immunoprotective efficacy of single versus twice administration of CpG-ODN against S. Typhimurium septicemia. In this study, we successfully developed and optimized flow cytometry-based assays to measure phagocytosis, oxidative burst, and degranulation activity of heterophils. Birds that received CpG-ODN had significantly increased (p < 0.05) phagocytosis, oxidative burst, and degranulation activity of heterophils as early as 24 h following CpG-ODN administration. Twice administration of CpG-ODN significantly increased the phagocytosis activity of heterophils. In addition, our newly developed CD107a based flow cytometry assay demonstrated a significantly higher degranulation activity of heterophils following twice than single administration of CpG-ODN. However, the oxidative burst activity of heterophils was not significantly different between birds that received CpG-ODN only once or twice. Furthermore, delivery of CpG-ODN twice increased immunoprotection against S. Typhimurium septicemia compared to once but the difference was not statistically significant. In conclusion, we demonstrated enhanced bactericidal activity of heterophils after administration of CpG-ODN to neonatal broiler chickens. Further investigations will be required to identify other activated innate immune cells and the specific molecular pathways associated with the CpG-ODN mediated activation of heterophils.
Collapse
Affiliation(s)
- Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ayumi Matsuyama-Kato
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Philip Griebel
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; VIDO-InterVac., University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
28
|
Lee HH, Seong JY, Kang H, Cho H. Euglena gracilis Enhances Innate and Adaptive Immunity through Specific Expression of Dectin-1 in CP-Induced Immunosuppressed Mice. Nutrients 2024; 16:3158. [PMID: 39339758 PMCID: PMC11434765 DOI: 10.3390/nu16183158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Euglena gracilis (E. gracilis), a species of unicellular algae, can accumulate large amounts of β-1,3-glucan paramylon, a polysaccharide, in its cytoplasm and has recently attracted interest as a bioproduct due to its various health benefits. In this study, the immune-enhancing effect of E. gracilis powder (EP) was investigated in vitro and in vivo. METHODS In vitro, the production of NO and cytokines and the mechanism of the signaling pathway of β-1,3-glucan were identified in RAW264.7 cells. In vivo, cyclophosphamide-induced (CP-induced) immunosuppressed C57BL/6 female mice were orally administered with three different concentrations (100, 300, and 600 mg/kg) of EP daily. After 14 days, the organs and whole blood were collected from each animal for further study. RESULTS The weight loss of CP-treated mice was reversed by treatment with EP to levels comparable to those of control mice. In addition, the frequencies of NK1.1+, CD3+, CD4+, CD8+, and B220+ in immune cells isolated from the spleen were increased by EP treatment compared with water or RG. The secretion of TNF-α, IFN-γ, and IL-12 from splenocytes was also increased by EP treatment, as was the level of IgM in the serum of the mice. Finally, EP treatment specifically upregulated the expression of dectin-1 in the liver of CP-treated mice. CONCLUSIONS E. gracilis could be a good candidate for a natural immune stimulator in the innate and adaptive response by secreting TNF-α, IFN-γ, and IL-12 through stimulating dectin-1 expression on the surface of immune cells.
Collapse
Affiliation(s)
- Hwan Hee Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji-Yeon Seong
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
29
|
Albert T, Kumar A, Caranto J, Moënne-Loccoz P. Vibrational analyses of the reaction of oxymyoglobin with NO using a photolabile caged NO donor at cryogenic temperatures. J Inorg Biochem 2024; 258:112633. [PMID: 38852292 PMCID: PMC11216511 DOI: 10.1016/j.jinorgbio.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The NO dioxygenation reaction catalyzed by heme-containing globin proteins is a crucial aerobic detoxification pathway. Accordingly, the second order reaction of NO with oxymyoglobin and oxyhemoglobin has been the focus of a large number of kinetic and spectroscopic studies. Stopped-flow and rapid-freeze-quench (RFQ) measurements have provided evidence for the formation of a Fe(III)-nitrato complex with millisecond lifetime prior to release of the nitrate product, but the temporal resolution of these techniques is insufficient for the characterization of precursor species. Most mechanistic models assume the formation of an initial Fe(III)-peroxynitrite species prior to homolytic cleavage of the OO bond and recombination of the resulting NO2 and Fe(IV)=O species. Here we report vibrational spectroscopy measurements for the reaction of oxymyoglobin with a photolabile caged NO donor at cryogenic temperatures. We show that this approach offers efficient formation and trapping of the Fe(III)-nitrato, enzyme-product, complex at 180 K. Resonance Raman spectra of the Fe(III)-nitrato complex trapped via RFQ in the liquid phase and photolabile NO release at cryogenic temperatures are indistinguishable, demonstrating the complementarity of these approaches. Caged NO is released by irradiation <180 K but diffusion into the heme pocket is fully inhibited. Our data provide no evidence for Fe(III)-peroxynitrite of Fe(IV)=O species, supporting low activation energies for the NO to nitrate conversion at the oxymyoglobin reaction site. Photorelease of NO at cryogenic temperatures allows monitoring of the reaction by transmittance FTIR which provides valuable quantitative information and promising prospects for the detection of protein sidechain reorganization events in NO-reacting metalloenzymes.
Collapse
Affiliation(s)
- Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Arun Kumar
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Jonathan Caranto
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
30
|
Kim JH, Choi KS, Yang HS, Kang HS, Hong HK. In vitro impact of Bisphenol A on the immune functions of primary cultured hemocytes of Pacific abalone (Haliotis discus hannai). MARINE POLLUTION BULLETIN 2024; 206:116770. [PMID: 39053261 DOI: 10.1016/j.marpolbul.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 μM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 μM and LC50 = 5.8 μM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyun-Sil Kang
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Jeju 63068, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
31
|
Negi M, Kaushik N, Lamichhane P, Patel P, Jaiswal A, Choi EH, Kaushik NK. Nitric oxide water-driven immunogenic cell death: Unfolding mitochondrial dysfunction's role in sensitizing lung adenocarcinoma to ferroptosis and autophagic cell death. Free Radic Biol Med 2024; 222:1-15. [PMID: 38763209 DOI: 10.1016/j.freeradbiomed.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma (LUAD), significantly influences cancer-related mortality and is frequently considered by poor therapeutic responses due to genetic alterations. Cancer cells possess an inclination to develop resistance to individual treatment modalities, thus it is necessary to investigate several pathways simultaneously to obtain insights that will aid in the establishment of improved therapeutic approaches. Exploring regulated cell death (RCD) mechanisms offers promising avenues to augment immunotherapy by reshaping the tumor microenvironment (TME). Here, we investigated the prospective of microwave plasma-infused nitric oxide water (NOW) to initiate immunogenic cell death (ICD) while concurrently modulating autophagy and ferroptosis signaling in LUAD-associated A549 cells. Plasma treatment results in stable NO species nitrite/nitrate (NO2-/NO3-) in the water, altering its physicochemical properties. Analysis of ICD markers reveals increased expression of damage-associated molecular patterns (DAMPs) at both protein and mRNA levels post-NOW exposure. Intracellular reactive oxygen and nitrogen species (RONS) accumulation suggests NO-mediated mitochondrial dysfunction, triggering autophagy induction. Flow cytometry and western blotting confirm alterations in autophagy regulators Beclin 1 and SQSTM1. Furthermore, NOW treatment induces lipid peroxidation and upregulates ferroptosis-associated genes, as determined by qRT-PCR. Transmission electron microscopy (TEM) imaging reveals autophagosome formation and loss of cristae structures, corroborating the occurrence of autophagy and ferroptosis. Our findings propose that NOW may considered as inducer of ICD and the stimulation of other RCD-related proteins may enhance the anti-tumor immunogenicity.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea
| | - Prajwal Lamichhane
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
32
|
Salikhova DI, Shedenkova MO, Sudina AK, Belousova EV, Krasilnikova IA, Nekrasova AA, Nefedova ZA, Frolov DA, Fatkhudinov TK, Makarov AV, Surin AM, Savostyanov KV, Goldshtein DV, Bakaeva ZV. Neuroprotective and anti-inflammatory properties of proteins secreted by glial progenitor cells derived from human iPSCs. Front Cell Neurosci 2024; 18:1449063. [PMID: 39165834 PMCID: PMC11333358 DOI: 10.3389/fncel.2024.1449063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Margarita O. Shedenkova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Anastasya K. Sudina
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina V. Belousova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina A. Krasilnikova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Anastasya A. Nekrasova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Zlata A. Nefedova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniil A. Frolov
- Institute of Information Technologies, MIREA-Russian Technological University, Moscow, Russia
| | - Timur Kh. Fatkhudinov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Andrey V. Makarov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Alexander M. Surin
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Kirill V. Savostyanov
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Dmitry V. Goldshtein
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Zanda V. Bakaeva
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
33
|
Kamal K, Richardsdotter‐Andersson E, Dondalska A, Wahren‐Herlenius M, Spetz A. A Non-Coding Oligonucleotide Recruits Cutaneous CD11b + Cells that Inhibit Thelper Responses and Promote Tregs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400260. [PMID: 38896803 PMCID: PMC11336929 DOI: 10.1002/advs.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Skin-resident antigen-presenting cells (APC) play an important role in maintaining peripheral tolerance via immune checkpoint proteins and induction of T regulatory cells (Tregs). However, there is a lack of knowledge on how to expand or recruit immunoregulatory cutaneous cells without causing inflammation. Here, it is shown that administration of a non-coding single-stranded oligonucleotide (ssON) leads to CCR2-dependent accumulation of CD45+CD11b+Ly6C+ cells in the skin that express substantial levels of PD-L1 and ILT3. Transcriptomic analyses of skin biopsies reveal the upregulation of key immunosuppressive genes after ssON administration. Functionally, the cutaneous CD11b+ cells inhibit Th1/2/9 responses and promote the induction of CD4+FoxP3+ T-cells. In addition, ssON treatment of imiquimod-induced inflammation results in significantly reduced Th17 responses. It is also shown that induction of IL-10 production in the presence of cutaneous CD11b+ cells isolated after ssON administrations is partly PD-L1 dependent. Altogether, an immunomodulatory ssON is identified that can be used therapeutically to recruit cutaneous CD11b+ cells with the capacity to dampen Th cells.
Collapse
Affiliation(s)
- Kahkashan Kamal
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | | | - Aleksandra Dondalska
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | - Marie Wahren‐Herlenius
- Department of MedicineKarolinska University HospitalKarolinska InstitutetVisionsgatan 18, L8SolnaSE‐171 76Sweden
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| |
Collapse
|
34
|
Li Y, Hu X, Dong G, Wang X, Liu T. Acne treatment: research progress and new perspectives. Front Med (Lausanne) 2024; 11:1425675. [PMID: 39050538 PMCID: PMC11266290 DOI: 10.3389/fmed.2024.1425675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Acne is a chronic inflammatory skin disease that primarily affects adolescents and is attributed to various factors, including hormonal changes, genetic predisposition, and environmental influences. It typically manifests in areas rich in sebaceous glands such as the face, chest, and back. Symptoms of acne can range from mild to severe and may present as pimples, pustules, nodules, cysts, and scarring. The appearance of acne can significantly impact both the physical and mental well-being of patients, potentially leading to feelings of anxiety, depression, and social withdrawal. The pathogenesis of acne is multifaceted involving genetic predisposition as well as environmental factors such as hormonal imbalances, inflammation, abnormal follicular sebaceous unit keratinization, proliferation of follicular microorganisms like Propionibacterium acnes, increased sebum production, and dietary influences. Traditional treatment methods for acne include topical drug therapy, oral drug therapy, photoelectric therapy, and chemical peeling. With ongoing research into the pathogenesis of acne, treatment methods are rapidly evolving with novel antibiotics, probiotics, biological agents, topical anti-androgen drugs, topical vitamin A acid metabolism blockers, antimicrobial peptides, immunotherapy, micro-needling, and micro-needling patches. This article aims to provide a comprehensive review of recent advancements in acne treatment.
Collapse
Affiliation(s)
| | | | | | | | - Tao Liu
- Department of Dermatology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
35
|
Mathakala V, Ullakula T, Palempalli UMD. Seagrass as a potential nutraceutical to decrease pro-inflammatory markers. BMC Complement Med Ther 2024; 24:260. [PMID: 38987758 PMCID: PMC11234661 DOI: 10.1186/s12906-024-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The Pro-inflammatory mediators such as prostaglandin E2, nitric oxide and TNF-α are the key players in the stimulation of the inflammatory responses. Thus, the pro-inflammatory mediators are considered to be potential targets for screening nutraceutical with anti-inflammatory activity. METHODS In this context, we explored the anti-inflammatory potency of seagrass extract with western blot (Bio-Rad) analysis by using LPS induced RAW macrophages as in-vitro models, western blot analysis, In-silico methods using Mastero 13.0 software. RESULTS The anti-inflammatory activity of Seagrass was demonstrated through down regulation of Pro-inflammatory markers such as Cyclooxygenase-2, induced Nitric oxide synthase and prostaglandin E synthase-1. The results were validated by docking the phytochemical constituents of seagrass namely Isocoumarin, Hexadecanoic acid, and Cis-9 Octadecenoic acid, 1,2 Benzene dicarboxylic acid and beta-sitosterol with TNF-alpha, COX-2, iNOS and PGES-1. CONCLUSION The methanolic extract of seagrass Halophila beccarii is a potential nutraceutical agent for combating against inflammation with a significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Vani Mathakala
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India
| | - Tejaswini Ullakula
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India
| | - Uma Maheswari Devi Palempalli
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India.
| |
Collapse
|
36
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
37
|
Ge Y, Wang J, Gu D, Cao W, Feng Y, Wu Y, Liu H, Xu Z, Zhang Z, Xie J, Geng S, Cong J, Liu Y. Low-temperature plasma jet suppresses bacterial colonisation and affects wound healing through reactive species. Wound Repair Regen 2024; 32:407-418. [PMID: 38602090 DOI: 10.1111/wrr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-β levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - DongHua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhe Zhang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shuang Geng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Junrui Cong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
38
|
Lee RJ, Adappa ND, Palmer JN. Akt activator SC79 stimulates antibacterial nitric oxide generation in human nasal epithelial cells in vitro. Int Forum Allergy Rhinol 2024; 14:1147-1162. [PMID: 38197521 PMCID: PMC11219270 DOI: 10.1002/alr.23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND The role of Akt in nasal immunity is unstudied. Akt phosphorylates and activates endothelial nitric oxide synthase (eNOS) expressed in epithelial ciliated cells. Nitric oxide (NO) production by ciliated cells can have antibacterial and antiviral effects. Increasing nasal NO may be a useful antipathogen strategy in chronic rhinosinusitis (CRS). We previously showed that small-molecule Akt activator SC79 induces nasal cell NO production and suppresses IL-8 via the transcription factor Nrf-2. We hypothesized that SC79 NO production may additionally have antibacterial effects. METHODS NO production was measured using fluorescent dye DAF-FM. We tested effects of SC79 during co-culture of Pseudomonas aeruginosa with primary nasal epithelial cells, using CFU counting and live-dead staining to quantify bacterial killing. Pharmacology determined the mechanism of SC79-induced NO production and tested dependence on Akt. RESULTS SC79 induced dose-dependent, Akt-dependent NO production in nasal epithelial cells. The NO production required eNOS and Akt. The NO released into the airway surface liquid killed P. aeruginosa. No toxicity (LDH release) or inflammatory effects (IL8 transcription) were observed over 24 h. CONCLUSIONS Together, these data suggest multiple immune pathways are stimulated by SC79, with antipathogen effects. This in vitro pilot study suggests that a small-molecule Akt activator may have clinical utility in CRS or respiratory other infection settings, warranting future in vivo studies.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
- Department of Physiology, University of Pennsylvania Perelman School of Medicine
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
39
|
Yuschen X, Choi JH, Seo J, Sun Y, Lee E, Kim SW, Park HY. Effects of Acute Beetroot Juice Supplementation and Exercise on Cardiovascular Function in Healthy Men in Preliminary Study: A Randomized, Double-Blinded, Placebo-Controlled, and Crossover Trial. Healthcare (Basel) 2024; 12:1240. [PMID: 38998775 PMCID: PMC11241253 DOI: 10.3390/healthcare12131240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Nitrate-rich beetroot juice (NRBRJ) can potentially enhance exercise performance and improve cardiovascular function, leading to an increased use of NRBRJ over the years. However, the combined effects of NRBRJ supplementation and exercise on cardiovascular function remain unclear. Therefore, this study compared cardiovascular function responses to submaximal exercise with either placebo (PLA) or NRBRJ supplementation in healthy men. Twelve healthy men (aged 25.2 ± 2.3 years) completed the 30-min submaximal cycle ergometer exercise trials corresponding to 70% maximal heart rate (HRmax) with either PLA or NRBRJ supplementation in a random order. The mean exercise load, heart rate (HR), stroke volume (SV), cardiac output (CO), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and total peripheral resistance (TPR) were measured during exercise. The brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) were measured before and after exercise. NRBRJ supplementation was more effective than PLA in increasing the mean exercise load and decreasing DBP and MAP during submaximal exercise. Furthermore, baPWV decreased in the NRBRJ trial and was considerably lower after exercise in the NRBRJ-supplemented group than in the PLA-supplemented group. FMD significantly increased in the PLA and NRBRJ trials; however, NRBRJ supplementation demonstrated a significantly higher FMD before and after exercise than PLA supplementation. In conclusion, acute NRBRJ supplementation and exercise were more effective than PLA supplementation and exercise in improving aerobic exercise capacity and cardiovascular function in healthy men.
Collapse
Affiliation(s)
- Xie Yuschen
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jae-Ho Choi
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yerin Sun
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eunjoo Lee
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
40
|
Salti T, Braunstein I, Haimovich Y, Ziv T, Benhar M. Widespread S-persulfidation in activated macrophages as a protective mechanism against oxidative-inflammatory stress. Redox Biol 2024; 72:103125. [PMID: 38574432 PMCID: PMC11000178 DOI: 10.1016/j.redox.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Talal Salti
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Haimovich
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
41
|
Lynch SM, Heeran AB, Burke C, Lynam-Lennon N, Eustace AJ, Dean K, Robson T, Rahman A, Marcone S. Precision Oncology, Artificial Intelligence, and Novel Therapeutic Advancements in the Diagnosis, Prevention, and Treatment of Cancer: Highlights from the 59th Irish Association for Cancer Research (IACR) Annual Conference. Cancers (Basel) 2024; 16:1989. [PMID: 38893110 PMCID: PMC11171401 DOI: 10.3390/cancers16111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK;
| | - Aisling B. Heeran
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Alex J. Eustace
- Life Sciences Institute, Dublin City University, D09 NR58 Dublin, Ireland;
| | - Kellie Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| |
Collapse
|
42
|
Pandey R, Pinon V, Garren M, Maffe P, Mondal A, Brisbois EJ, Handa H. N-Acetyl Cysteine-Decorated Nitric Oxide-Releasing Interface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24248-24260. [PMID: 38693878 PMCID: PMC11103652 DOI: 10.1021/acsami.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.
Collapse
Affiliation(s)
- Rashmi Pandey
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Vicente Pinon
- Pharmaceutical
and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
44
|
Zhang C, Zhang X, Zhou Z. Dual-site lysosome-targeted fluorescent sensor for fast distinguishing visualization of HClO and ONOO - in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124064. [PMID: 38428215 DOI: 10.1016/j.saa.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
As two of important highly reactive species / nitrogen species, hypochloric acid (HClO) and peroxynitrite (ONOO-) are involved in various pathological and physiological processes, which are important factors that affect and reflect the functional state of lysosome. Nevertheless, many of their roles are still indefinite because of lack of suitable analytical methods for HClO and ONOO- detection in lysosome. Herein, we designed a lysosome-targeted probe to monitor HClO and ONOO-, which was a hydrid of the benzothiazole derivative, methyl thioether (HClO recognition site) and morpholino hydrazone (ONOO- recognition and lysosome target site). The probe exhibited high sensitivity, good selectivity and fast response toward HClO and ONOO- without spectral crosstalk, and can be employed for quantitative monitoring HClO and ONOO- with LOD of 63 and 83 nM, respectively. In addition, the dual-site probe was lysosome targetable and could be used for detection of HClO and ONOO- in living cells. Furthermore, the excellent behavior made it was suitable for imaging of HClO and ONOO- in zebrafish. Thus, the present probe provides a potent tool for distinguishing monitoring HClO and ONOO- and exploring the role of HClO and ONOO- in biological systems.
Collapse
Affiliation(s)
- Chunxiang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Xiangyang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Zile Zhou
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China.
| |
Collapse
|
45
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
46
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
47
|
Jian M, Chen X, Liu S, Liu Y, Liu Y, Wang Q, Tu W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F-53B in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170948. [PMID: 38365036 DOI: 10.1016/j.scitotenv.2024.170948] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) can adsorb and desorb organic pollutants, which may alter their biotoxicities. Although the toxicity of perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) to organisms has been reported, the comparative study of their combined toxic effects with MPs on aquatic organisms is limited. In this study, adult female zebrafish were exposed to 10 μg/L PFOS/F-53B and 50 μg/L MPs alone or in combination for 14 days to investigate their single and combined toxicities. The results showed that the presence of MPs reduced the concentration of freely dissolved PFOS and F-53B in the exposure solution but did not affect their bioaccumulation in the zebrafish liver and gut. The combined exposure to PFOS and MPs had the greatest impact on liver oxidative stress, immunoinflammatory, and energy metabolism disorders. 16S rRNA gene sequencing analysis revealed that the combined exposure to F-53B and MPs had the greatest impact on gut microbiota. Functional enrichment analysis predicted that the alternations in the gut microbiome could interfere with signaling pathways related to immune and energy metabolic processes. Moreover, significant correlations were observed between changes in gut microbiota and immune and energy metabolism indicators, highlighting the role of gut microbiota in host health. Together, our findings demonstrate that combined exposure to PFOS/F-53B and MPs exacerbates liver immunotoxicity and disturbances in energy metabolism in adult zebrafish compared to single exposure, potentially through dysregulation of gut microbiota.
Collapse
Affiliation(s)
- Minfei Jian
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xi Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yingxin Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
48
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
49
|
Martins MC, Alves CM, Teixeira M, Folgosa F. The flavodiiron protein from Syntrophomonas wolfei has five domains and acts both as an NADH:O 2 or an NADH:H 2 O 2 oxidoreductase. FEBS J 2024; 291:1275-1294. [PMID: 38129989 DOI: 10.1111/febs.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Flavodiiron proteins (FDPs) are a family of enzymes with a significant role in O2 /H2 O2 and/or NO detoxification through the reduction of these species to H2 O or N2 O, respectively. All FDPs contain a minimal catalytic unit of two identical subunits, each one having a metallo-β-lactamase-like domain harboring the catalytic diiron site, and a flavodoxin-like domain. However, more complex and diverse arrangements in terms of domains are found in this family, of which the class H enzymes are among the most complex. One of such FDPs is encoded in the genome of the anaerobic bacterium Syntrophomonas wolfei subsp. wolfei str. Goettingen G311. Besides the core domains, this protein is predicted to have three additional ones after the flavodoxin core domain: two short-chain rubredoxins and a NAD(P)H:rubredoxin oxidoreductase-like domain. This enzyme, FDP_H, was produced and characterized and the presence of the predicted cofactors was investigated by a set of biochemical and spectroscopic methodologies. Syntrophomonas wolfei FDP_H exhibited a remarkable O2 reduction activity with a kcat = 52.0 ± 1.2 s-1 and a negligible NO reduction activity (~ 100 times lower than with O2 ), with NADH as an electron donor, that is, it is an oxygen-selective FDP. In addition, this enzyme showed the highest turnover value for H2 O2 reduction (kcat = 19.1 ± 2.2 s-1 ) ever observed among FDPs. Kinetic studies of site-directed mutants of iron-binding cysteines at the two rubredoxin domains demonstrated the essential role of these centers since their absence leads to a significant decrease or even abolishment of O2 and H2 O2 reduction activities.
Collapse
Affiliation(s)
- Maria C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
50
|
Li L, Jia L, Hou S, Zhang T, Zhou M, Chen T, Song J. Temporal and spatial effects on C-reactive protein's regulation of inducible nitric oxide synthase production in periodontal disease. J Periodontol 2024; 95:268-280. [PMID: 37515488 DOI: 10.1002/jper.22-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/14/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Inducible nitric oxide synthase (iNOS) is associated with inflammation and osteoclastic differentiation in periodontal disease. This study was conducted to compare the time-dependent variation in iNOS production between the gingiva and other periodontal tissues and to explore the potential association with C-reactive protein (CRP) in early periodontal disease. METHODS Ligature-induced periodontal disease models (0-14 days) were established in wild-type and CRP knockout rats. Changes in CRP, iNOS, and autophagy levels were examined in the gingiva and other periodontal tissues. Macrophages were treated with lipopolysaccharide and chloroquine to explore the role of autophagy in iNOS production. iNOS, CRP, and autophagy-related proteins were analyzed using Western blotting, immunostaining, and enzyme-linked immunosorbent assays. mRNA expression was detected by quantitative real-time polymerase chain reaction. Hematoxylin and eosin staining was used for histological analysis. Cathepsin K immunostaining and microcomputed tomography of the maxillae were performed to compare alveolar bone resorption. RESULTS iNOS and CRP levels increased rapidly in periodontal tissues, as observed on Day 2 of ligature, then decreased more rapidly in the gingiva than in other periodontal tissues. CRP deficiency did not prevent iNOS generation, but effectively accelerated iNOS reduction and delayed alveolar bone loss. The CRP effect on iNOS was accompanied by a change in autophagy, which was reduced by CRP knockout. CONCLUSIONS The regulation of iNOS by CRP shows temporospatial variation in early periodontal disease and is potentially associated with autophagy. These findings may contribute to the early detection and targeted treatment of periodontal disease.
Collapse
Affiliation(s)
- Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Lurong Jia
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Siyu Hou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Tingwei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Mengjiao Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|