1
|
Kourek C, Raidou V, Antonopoulos M, Dimopoulou M, Koliopoulou A, Karatzanos E, Pitsolis T, Ieromonachos K, Nanas S, Adamopoulos S, Chamogeorgakis T, Dimopoulos S. Safety and Feasibility of Neuromuscular Electrical Stimulation in Patients with Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:3723. [PMID: 38999287 PMCID: PMC11242632 DOI: 10.3390/jcm13133723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: The aim of this study was to investigate the feasibility and safety of neuromuscular electrical stimulation (NMES) in patients on extracorporeal membrane oxygenation (ECMO) and thoroughly assess any potential adverse events. Methods: We conducted a prospective observational study assessing safety and feasibility, including 16 ICU patients on ECMO support who were admitted to the cardiac surgery ICU from January 2022 to December 2023. The majority of patients were females (63%) on veno-arterial (VA)-ECMO (81%), while the main cause was cardiogenic shock (81%) compared to respiratory failure. Patients underwent a 45 min NMES session while on ECMO support that included a warm-up phase of 5 min, a main phase of 35 min, and a recovery phase of 5 min. NMES was implemented on vastus lateralis, vastus medialis, gastrocnemius, and peroneus longus muscles of both lower extremities. Two stimulators delivered biphasic, symmetric impulses of 75 Hz, with a 400 μsec pulse duration, 5 sec on (1.6 sec ramp up and 0.8 sec ramp down) and 21 sec off. The intensity levels aimed to cause visible contractions and be well tolerated. Primary outcomes of this study were feasibility and safety, evaluated by whether NMES sessions were successfully achieved, and by any adverse events and complications. Secondary outcomes included indices of rhabdomyolysis from biochemical blood tests 24 h after the application of NMES. Results: All patients successfully completed their NMES session, with no adverse events or complications. The majority of patients achieved type 4 and 5 qualities of muscle contraction. Conclusions: NMES is a safe and feasible exercise methodology for patients supported with ECMO.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
| | - Michael Antonopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece; (M.A.); (T.P.)
| | - Maria Dimopoulou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
| | - Antigone Koliopoulou
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (A.K.); (K.I.); (S.A.); (T.C.)
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
| | - Theodoros Pitsolis
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece; (M.A.); (T.P.)
| | - Konstantinos Ieromonachos
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (A.K.); (K.I.); (S.A.); (T.C.)
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
| | - Stamatis Adamopoulos
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (A.K.); (K.I.); (S.A.); (T.C.)
| | - Themistocles Chamogeorgakis
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (A.K.); (K.I.); (S.A.); (T.C.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (V.R.); (M.D.); (E.K.); (S.N.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece; (M.A.); (T.P.)
| |
Collapse
|
2
|
Kourek C, Kanellopoulos M, Raidou V, Antonopoulos M, Karatzanos E, Patsaki I, Dimopoulos S. Safety and effectiveness of neuromuscular electrical stimulation in cardiac surgery: A systematic review. World J Cardiol 2024; 16:27-39. [PMID: 38313389 PMCID: PMC10835467 DOI: 10.4330/wjc.v16.i1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit (ICU) are major factors resulting in the development of ICU-acquired muscle weakness (ICUAW). ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery, and may be a risk factor for prolonged duration of mechanical ventilation, associated with a higher risk of readmission and higher mortality. Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay. Neuromuscular electrical stimulation (NMES) is an alternative modality of exercise in patients with muscle weakness. A major advantage of NMES is that it can be applied even in sedated patients in the ICU, a fact that might enhance early mobilization in these patients. AIM To evaluate safety, feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery. METHODS We performed a search on Pubmed, Physiotherapy Evidence Database (PEDro), Embase and CINAHL databases, selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials (RCTs) that included implementation of NMES in patients before after cardiac surgery. RCTs were assessed for methodological rigor and risk of bias via the PEDro. The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function. RESULTS Ten studies were included in our systematic review, resulting in 703 participants. Almost half of them performed NMES and the other half were included in the control group, treated with usual care. Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery. Functional capacity was assessed in 8 studies via 6MWT or other indices, and improved only in 1 study before and in 1 after cardiac surgery. Nine studies explored the effects of NMES on muscle strength and function and, most of them, found increase of muscle strength and improvement in muscle function after NMES. NMES was safe in all studies without any significant complication. CONCLUSION NMES is safe, feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery, but has no significant effect on functional capacity.
Collapse
Affiliation(s)
- Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, Athens 15772, Greece
| | - Marios Kanellopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | | | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | - Irini Patsaki
- Department of Physiotherapy, University of West Attica, Athens 12243, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
- Intensive Care Unit, Onassis Cardiac Surgery Center, Kallithea 17674, Greece.
| |
Collapse
|
3
|
Bean AC, Sahu A, Piechocki C, Gualerzi A, Picciolini S, Bedoni M, Ambrosio F. Neuromuscular electrical stimulation enhances the ability of serum extracellular vesicles to regenerate aged skeletal muscle after injury. Exp Gerontol 2023; 177:112179. [PMID: 37087025 PMCID: PMC10278579 DOI: 10.1016/j.exger.2023.112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Exercise promotes healthy aging of skeletal muscle. This benefit may be mediated by youthful factors in the circulation released in response to an exercise protocol. While numerous studies to date have explored soluble proteins as systemic mediators of rejuvenating effect of exercise on tissue function, here we showed that the beneficial effect of skeletal muscle contractile activity on aged muscle function is mediated, at least in part, by regenerative properties of circulating extracellular vesicles (EVs). Muscle contractile activity elicited by neuromuscular electrical stimulation (NMES) decreased intensity of expression of the tetraspanin surface marker, CD63, on circulating EVs. Moreover, NMES shifted the biochemical Raman fingerprint of circulating EVs in aged animals with significant changes in lipid and sugar content in response to NMES when compared to controls. As a demonstration of the physiological relevance of these EV changes, we showed that intramuscular administration of EVs derived from aged animals subjected to NMES enhanced aged skeletal muscle healing after injury. These studies suggest that repetitive muscle contractile activity enhances the regenerative properties of circulating EVs in aged animals.
Collapse
Affiliation(s)
- Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Camilla Piechocki
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | | | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
4
|
Verceles AC, Serra M, Davis D, Alon G, Wells CL, Parker E, Sorkin J, Bhatti W, Terrin ML. Combining exercise, protein supplementation and electric stimulation to mitigate muscle wasting and improve outcomes for survivors of critical illness-The ExPrES study. Heart Lung 2023; 58:229-235. [PMID: 36473808 PMCID: PMC9992240 DOI: 10.1016/j.hrtlng.2022.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) with high protein supplementation (HPRO) to preserve muscle mass and function has not been assessed in ICU patients. We compared the effects of combining NMES and HPRO with mobility and strength rehabilitation (NMES+HPRO+PT) to standardized ICU care. OBJECTIVES To assess the effectiveness of combined NMES+HPRO+PT in mitigating sarcopenia as evidenced by CT volume and cross-sectional area when compared to usual ICU care. Additionally, we assessed the effects of the combined therapy on select clinical outcomes, including nutritional status, nitrogen balance, delirium and days on mechanical ventilation. METHODS Participants were randomized by computer generated assignments to receive either NMES+HPRO+PT or standard care. Over 14 days the standardized ICU care group (N = 23) received usual critical care and rehabilitation while the NMES+HPRO+PT group (N = 16) received 30 min neuromuscular electrical stimulation of quadriceps and dorsiflexors twice-daily for 10 days and mean 1.3 ± 0.4 g/kg body weight of high protein supplementation in addition to standard care. Nonresponsive participants received passive exercises and, once responsive, were encouraged to exercise actively. Primary outcome measures were muscle volume and cross-sectional area measured using CT-imaging. Secondary outcomes included nutritional status, nitrogen balance, delirium and days on mechanical ventilation. RESULTS The NMES+HPRO+PT group (N = 16) lost less lower extremity muscle volume compared to the standard care group (N = 23) and had larger mean combined thigh cross-sectional area. The nitrogen balance remained negative in the standard care group, while positive on days 5, 9, and 14 in the NMES+HPRO+PT group. Standard care group participants experienced more delirium than the NMES+HPRO+PT group. No differences between groups when comparing length of stay or mechanical ventilation days. CONCLUSIONS The combination of neuromuscular electrical stimulation, high protein supplementation and mobility and strength rehabilitation resulted in mitigation of lower extremity muscle loss and less delirium in mechanically ventilated ICU patients. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02509520. Registered July 28, 2015.
Collapse
Affiliation(s)
- Avelino C Verceles
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Monica Serra
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies at University of Texas Health Science, San Antonio, TX, USA
| | - Derik Davis
- Division of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gad Alon
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Chris L Wells
- Department of Rehabilitation Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Elizabeth Parker
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - John Sorkin
- Department of Medicine, Division of Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore MD, USA; Department of Veterans Affairs, Baltimore VA Maryland Health Care System, Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - Waqas Bhatti
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Terrin
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Baron MV, Silva PE, Koepp J, Urbanetto JDS, Santamaria AFM, Dos Santos MP, de Mello Pinto MV, Brandenburg C, Reinheimer IC, Carvalho S, Wagner MB, Miliou T, Poli-de-Figueiredo CE, Pinheiro da Costa BE. Efficacy and safety of neuromuscular electrical stimulation in the prevention of pressure injuries in critically ill patients: a randomized controlled trial. Ann Intensive Care 2022; 12:53. [PMID: 35695996 PMCID: PMC9188909 DOI: 10.1186/s13613-022-01029-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pressure injuries (PIs), especially in the sacral region are frequent, costly, and increase morbidity and mortality of patients in an intensive care unit (ICU). These injuries can occur as a result of prolonged pressure and/or shear forces. Neuromuscular electrical stimulation (NMES) can increase muscle mass and improve local circulation, potentially reducing the incidence of PI. Methods We performed a randomized controlled trial to assess the efficacy and safety of NMES in preventing PI in critically ill patients. We included patients with a period of less than 48 h in the ICU, aged ≥ 18 years. Participants were randomly selected (1:1 ratio) to receive NMES and usual care (NMES group) or only usual care (control group—CG) until discharge, death, or onset of a PI. To assess the effectiveness of NMES, we calculated the relative risk (RR) and number needed to treat (NNT). We assessed the muscle thickness of the gluteus maximus by ultrasonography. To assess safety, we analyzed the effects of NMES on vital signs and checked for the presence of skin burns in the stimulated areas. Clinical outcomes were assessed by time on mechanical ventilation, ICU mortality rate, and length of stay in the ICU. Results We enrolled 149 participants, 76 in the NMES group. PIs were present in 26 (35.6%) patients in the CG and 4 (5.3%) in the NMES group (p ˂ 0.001). The NMES group had an RR = 0.15 (95% CI 0.05–0.40) to develop a PI, NNT = 3.3 (95% CI 2.3–5.9). Moreover, the NMES group presented a shorter length of stay in the ICU: Δ = − 1.8 ± 1.2 days, p = 0.04. There was no significant difference in gluteus maximus thickness between groups (CG: Δ = − 0.37 ± 1.2 cm vs. NMES group: Δ = 0 ± 0.98 cm, p = 0.33). NMES did not promote deleterious changes in vital signs and we did not detect skin burns. Conclusions NMES is an effective and safe therapy for the prevention of PI in critically ill patients and may reduce length of stay in the ICU. Trial registration RBR-8nt9m4. Registered prospectively on July 20th, 2018, https://ensaiosclinicos.gov.br/rg/RBR-8nt9m4
Collapse
Affiliation(s)
- Miriam Viviane Baron
- Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Porto Alegre, Brazil. .,Instituto Interdisciplinar de Educação, Ciência e Saúde, Fortaleza, Ceará, Brazil.
| | - Paulo Eugênio Silva
- Secretaria de Estado de Saúde do Distrito Federal, Hospital de Base do Distrito Federal, Distrito Federal, Brasília, Brazil
| | - Janine Koepp
- University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | | | | | | | | | - Cristine Brandenburg
- Faculdade de Educação, Ciências e Letras do Sertão Central, Quixadá, Ceará, Brazil.,Instituto Interdisciplinar de Educação, Ciência e Saúde, Fortaleza, Ceará, Brazil
| | | | - Sonia Carvalho
- Rigshospital, Inge Lehmannsvej, Copenhagen East, Denmark
| | - Mário Bernardes Wagner
- Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas Miliou
- State University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
6
|
Lago AF, Basile-Filho A, de Oliveira AS, de Souza HCD, dos Santos DO, Gastaldi AC. Effects of physical therapy with neuromuscular electrical stimulation in acute and late septic shock patients: A randomised crossover clinical trial. PLoS One 2022; 17:e0264068. [PMID: 35176099 PMCID: PMC8853464 DOI: 10.1371/journal.pone.0264068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with sepsis and immobility in the intensive care unit are associated with muscle weakness, and early mobilisation can counteract it. However, during septic shock, mobilisation is often delayed due to the severity of the illness. Neuromuscular electrical stimulation (NMES) may be an alternative to mobilise these patients early. This study aims to identify whether NMES performed within the first 72 hours of septic shock diagnosis or later is safe from a metabolic perspective. METHODS This is the analysis of two randomised controlled crossover studies. Patients with acute septic shock (within the first 72 hours of diagnosis) and sepsis and septic shock in the late phase (after 72 hours of diagnosis) were eligible. Patients were submitted in a random order to the intervention protocol (dorsal decubitus position with the lower limbs raised and NMES) and control (dorsal decubitus position with the lower limbs raised without NMES). The patients were allocated in group 1 (intervention and control) or group 2 (control and intervention) with a wash-out period of 4 to 6 hours. Metabolic variables were evaluated by indirect calorimetry. RESULTS Sixteen patients were analysed in the acute septic shock study and 21 in the late sepsis/septic shock study. There were no significant differences between Oxygen Consumption (VO2) values in the acute phase of septic shock when the baseline period, intervention, and control protocols were compared (186.59 ± 46.10; 183.64 ± 41.39; 188.97 ± 44.88, p>0.05- expressed in mL/Kg/min). The same was observed when the VO2 values in the late phase were compared (224.22 ± 53.09; 226.20 ± 49.64; 226.79 ± 58.25, p>0.05). The other metabolic variables followed the same pattern, with no significant differences between the protocols. When metabolic variables were compared between acute to late phase, significant differences were observed (p<0.05). CONCLUSIONS As metabolic rates in septic shock patients had no increase during NMES, either in the first 72 hours of diagnosis or later, NMES can be considered safe from a metabolic viewpoint, even despite the higher metabolic demand in the acute phase of shock. TRIAL REGISTRATION NCT03193164; NCT03815994. Registered on June 5, 2017; November 13, 2018 (clinicaltrials.gov/).
Collapse
Affiliation(s)
- Alessandra Fabiane Lago
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anibal Basile-Filho
- Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil
| | - Anamaria Siriani de Oliveira
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniele Oliveira dos Santos
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ada Clarice Gastaldi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Neuromuscular Electrical Stimulation Improves Energy Substrate Metabolism and Survival in Mice With Acute Endotoxic Shock. Shock 2021; 53:236-241. [PMID: 31935202 PMCID: PMC6964866 DOI: 10.1097/shk.0000000000001354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the therapeutic benefits of neuromuscular electrical stimulation (NMES). C57BL/6 mice were administered lipopolysaccharide (LPS; 20 mg/kg body weight) by intraperitoneal injection and divided into control (C) and NMES groups (n = 10–12 each). The latter received NMES to the bilateral gastrocnemius muscle for 1 h at low or high frequency (LF = 2 Hz and HF = 50 Hz, respectively) and low or high voltage (LV = 10 V and HV = 50 V, respectively). In LF–LV and LF–HV groups, NMES was performed twice and the results were compared with those for mice that received one round of NMES. Changes in energy metabolism were measured by indirect calorimetry up to 24 h; survival was evaluated up to 72 h after LPS administration; peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α expression in the liver and gastrocnemius muscle was evaluated by quantitative PCR; and plasma concentration of interleukin (IL)-6 was determined by enzyme-linked immunosorbent assay. Survival was improved only in the LF–LV group with one round of NMES (P < 0.01) and the LF–HV group with two rounds of NMES (P < 0.05). Fatty acid oxidation (FAO) was slightly increased in these two groups, whereas carbohydrate oxidation (CHO) was decreased or not changed. Significant upregulation of PGC-1α in muscle as well as a decrease in plasma IL-6 level were also observed in these two groups (P < 0.05). Thus, NMES exerts therapeutic effects under conditions that induce a mild switch in energy metabolism from glucose to lipid predominant metabolism through PGC-1α upregulation and suppression of inflammation, and may be an effective early intervention even in hemodynamically unstable patients.
Collapse
|
8
|
Kourek C, Karatzanos E, Psarra K, Ntalianis A, Mitsiou G, Delis D, Linardatou V, Pittaras T, Vasileiadis I, Dimopoulos S, Nanas S. Endothelial progenitor cells mobilization after maximal exercise in patients with chronic heart failure. Hellenic J Cardiol 2021; 62:70-72. [PMID: 32304815 DOI: 10.1016/j.hjc.2020.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evaggelismos General Hospital, Athens, Greece
| | - Argyrios Ntalianis
- Heart Failure Unit, Department of Clinical Therapeutics, Alexandra Hospital, NKUA, Athens, Greece
| | - Georgios Mitsiou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Dimitrios Delis
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Vasiliki Linardatou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | - Ioannis Vasileiadis
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece; Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens, Greece.
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| |
Collapse
|
9
|
Kourek C, Karatzanos E, Psarra K, Georgiopoulos G, Delis D, Linardatou V, Gavrielatos G, Papadopoulos C, Nanas S, Dimopoulos S. Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J Cardiol 2020; 12:526-539. [PMID: 33312438 PMCID: PMC7701904 DOI: 10.4330/wjc.v12.i11.526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Patients with CHF are characterized by impaired vasodilation and inflammation of the vascular endothelium. They also have low levels of endothelial progenitor cells (EPCs). EPCs are bone marrow derived cells involved in endothelium regeneration, homeostasis, and neovascularization. Exercise has been shown to improve vasodilation and stimulate the mobilization of EPCs in healthy people and patients with cardiovascular comorbidities. However, the effects of exercise on EPCs in different stages of CHF remain under investigation. AIM To evaluate the effect of a symptom-limited maximal cardiopulmonary exercise testing (CPET) on EPCs in CHF patients of different severity. METHODS Forty-nine consecutive patients (41 males) with stable CHF [mean age (years): 56 ± 10, ejection fraction (EF, %): 32 ± 8, peak oxygen uptake (VO2, mL/kg/min): 18.1 ± 4.4] underwent a CPET on a cycle ergometer. Venous blood was sampled before and after CPET. Five circulating endothelial populations were quantified by flow cytometry: Three subgroups of EPCs [CD34+/CD45-/CD133+, CD34+/CD45-/CD133+/VEGFR2 and CD34+/CD133+/vascular endothelial growth factor receptor 2 (VEGFR2)] and two subgroups of circulating endothelial cells (CD34+/CD45-/CD133- and CD34+/CD45-/CD133-/VEGFR2). Patients were divided in two groups of severity according to the median value of peak VO2 (18.0 mL/kg/min), predicted peak VO2 (65.5%), ventilation/carbon dioxide output slope (32.5) and EF (reduced and mid-ranged EF). EPCs values are expressed as median (25th-75th percentiles) in cells/106 enucleated cells. RESULTS Patients with lower peak VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 60 (25-76) vs post CPET: 90 (70-103) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 1 (1-4) vs post CPET: 5 (3-8) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133- [pre CPET: 186 (141-361) vs post CPET: 488 (247-658) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 2 (1-2) vs post CPET: 3 (2-5) cells/106 enucleated cells, P < 0.001], while patients with higher VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 42 (19-73) vs post CPET: 90 (39-118) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 2 (1-3) vs post CPET: 6 (3-9) cells/106 enucleated cells, P < 0.001], CD34+/CD133+/VEGFR2 [pre CPET: 10 (7-18) vs post CPET: 14 (10-19) cells/106 enucleated cells, P < 0.01], CD34+/CD45-/CD133- [pre CPET: 218 (158-247) vs post CPET: 311 (254-569) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 1 (1-2) vs post CPET: 4 (2-6) cells/106 enucleated cells, P < 0.001]. A similar increase in the mobilization of at least four out of five cellular populations was observed after maximal exercise within each severity group regarding predicted peak, ventilation/carbon dioxide output slope and EF as well (P < 0.05). However, there were no statistically significant differences in the mobilization of endothelial cellular populations between severity groups in each comparison (P > 0.05). CONCLUSION Our study has shown an increased EPCs and circulating endothelial cells mobilization after maximal exercise in CHF patients, but this increase was not associated with syndrome severity. Further investigation, however, is needed.
Collapse
Affiliation(s)
- Christos Kourek
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Eleftherios Karatzanos
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evaggelismos Hospital, Athens 10676, Greece
| | | | - Dimitrios Delis
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Vasiliki Linardatou
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Gerasimos Gavrielatos
- Department of Cardiology, Tzaneio General Hospital of Piraeus, Piraeus 18536, Greece
| | - Costas Papadopoulos
- 2 Cardiology Department, Korgialenio-Benakio Red Cross Hospital, Athens 11526, Greece
| | - Serafim Nanas
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Stavros Dimopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece.
| |
Collapse
|
10
|
Dimopoulos S, Raidou V, Elaiopoulos D, Chatzivasiloglou F, Markantonaki D, Lyberopoulou E, Vasileiadis I, Marathias K, Nanas S, Karabinis A. Sonographic muscle mass assessment in patients after cardiac surgery. World J Cardiol 2020; 12:351-361. [PMID: 32843937 PMCID: PMC7415234 DOI: 10.4330/wjc.v12.i7.351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients undergoing cardiac surgery particularly those with comorbidities and frailty, experience frequently higher rates of post-operative morbidity, mortality and prolonged hospital length of stay. Muscle mass wasting seems to play important role in prolonged mechanical ventilation (MV) and consequently in intensive care unit (ICU) and hospital stay. AIM To investigate the clinical value of skeletal muscle mass assessed by ultrasound early after cardiac surgery in terms of duration of MV and ICU length of stay. METHODS In this observational study, we enrolled consecutively all patients, following their admission in the Cardiac Surgery ICU within 24 h of cardiac surgery. Bedside ultrasound scans, for the assessment of quadriceps muscle thickness, were performed at baseline and every 48 h for seven days or until ICU discharge. Muscle strength was also evaluated in parallel, using the Medical Research Council (MRC) scale. RESULTS Of the total 221 patients enrolled, ultrasound scans and muscle strength assessment were finally performed in 165 patients (patients excluded if ICU stay < 24 h). The muscle thickness of rectus femoris (RF), was slightly decreased by 2.2% [(95% confidence interval (CI): - 0.21 to 0.15), n = 9; P = 0.729] and the combined muscle thickness of the vastus intermedius (VI) and RF decreased by 3.5% [(95%CI: - 0.4 to 0.22), n = 9; P = 0.530]. Patients whose combined VI and RF muscle thickness was below the recorded median values (2.5 cm) on day 1 (n = 80), stayed longer in the ICU (47 ± 74 h vs 28 ± 45 h, P = 0.02) and remained mechanically ventilated more (17 ± 9 h vs 14 ± 9 h, P = 0.05). Moreover, patients with MRC score ≤ 48 on day 3 (n = 7), required prolonged MV support compared to patients with MRC score ≥ 49 (n = 33), (44 ± 14 h vs 19 ± 9 h, P = 0.006) and had a longer duration of extracorporeal circulation was (159 ± 91 min vs 112 ± 71 min, P = 0.025). CONCLUSION Skeletal quadriceps muscle thickness assessed by ultrasound shows a trend to a decrease in patients after cardiac surgery post-ICU admission and is associated with prolonged duration of MV and ICU length of stay.
Collapse
Affiliation(s)
- Stavros Dimopoulos
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece.
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Dimitrios Elaiopoulos
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Foteini Chatzivasiloglou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Despoina Markantonaki
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Efterpi Lyberopoulou
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Ioannis Vasileiadis
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Katerina Marathias
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Serafeim Nanas
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Andreas Karabinis
- Department of Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
11
|
Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L, Zhong L. Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 2020; 21:2311-2320. [PMID: 32236630 PMCID: PMC7185085 DOI: 10.3892/mmr.2020.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
Neuregulin-1 (NRG-1) is a type of epidermal growth factor‑like protein primarily distributed in the nervous and cardiovascular systems. When sepsis occurs, the incidence of cardiac dysfunction in myocardial injury is high and the mechanism is complicated. It directly causes myocardial cell damage, whilst also causing damage to the structure and function of myocardial cells, weakening of endothelial function and coronary microcirculation, autonomic dysfunction, and activation of myocardial inhibitory factors. Studies investigating NRG‑1 have been performed using a variety of methods, including in vitro models, and animal and human clinical trials; however, the results are not consistent. NRG‑1/ErbBs signaling is involved in a variety of cardiac processes, from the development of the myocardium and cardiac conduction systems to the promotion of angiogenesis in cardiomyocytes, and in cardio‑protective effects during injury. NRG‑1 may exert a multifaceted cardiovascular protective effect by activating NRG‑1/ErbBs signaling and regulating multiple downstream signaling pathways, thereby improving myocardial cell dysfunction in sepsis, and protecting cardiomyocytes and endothelial cells. It may alleviate myocardial microvascular endothelial injury in sepsis; its anti‑inflammatory effects inhibit the production of myocardial inhibitory factors in sepsis, improve myocardial ischemia, decrease oxidative stress, regulate the disruption to the homeostasis of the autonomic nervous system, improve diastolic function, and offer protective effects at multiple target sites. As the mechanism of action of NRG‑1 intersects with the pathways involved in the pathogenesis of sepsis, it may be applicable as a treatment strategy to numerous pathological processes in sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Sun R, Huang J, Sun B. Mobilization of endothelial progenitor cells in sepsis. Inflamm Res 2019; 69:1-9. [DOI: 10.1007/s00011-019-01299-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
|
13
|
Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell Tissue Res 2019; 379:223-230. [PMID: 31754781 DOI: 10.1007/s00441-019-03119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Roodbari
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Saberianpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Koutsioumpa E, Makris D, Theochari A, Bagka D, Stathakis S, Manoulakas E, Sgantzos M, Zakynthinos E. Effect of Transcutaneous Electrical Neuromuscular Stimulation on Myopathy in Intensive Care Patients. Am J Crit Care 2018; 27:495-503. [PMID: 30385541 DOI: 10.4037/ajcc2018311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Critical illness polyneuropathy or myopathy is a severe disorder that may adversely affect patients in the intensive care unit, resulting in reduced mobilization, decline in muscle mass, and prolonged recovery periods. OBJECTIVE To examine whether the application of trans-cutaneous electrical neuromuscular stimulation (TENMS) reduces the incidence or severity of myopathy related to critical illness in intensive care unit patients. METHODS A total of 80 patients aged 18 years or older with an intensive care unit stay of 96 hours or more and receipt of mechanical ventilation for 96 hours or more were initially enrolled in a prospective, open-label randomized controlled trial in a university hospital. Patients received either conventional physical therapy alone (control group) or conventional physical therapy plus TENMS (TENMS group) for 10 days. Myopathy was assessed histologically (by needle biopsy of the quadriceps muscles) on the 4th and 14th days of the intensive care unit stay. RESULTS Of the 68 patients who completed the study, 27 (40%) had myopathy on the 14th day: 11 patients in the TENMS group (9 mild, 1 moderate, and 1 severe) and 16 patients in the control group (13 mild, 2 moderate, and 1 severe). Patients who progressed from mild to moderate or severe myopathy between the 4th and 14th days had significantly lower body mass index (P = .001) and longer time periods with inadequate nutrition (P = .049) compared with the other patients. Mean (SD) Rankin scale scores at 6 months were 3.2 (1.8) and 3.8 (2.1) in the TENMS and control groups, respectively (P = .09). CONCLUSION TENMS had no significant impact on myopathy in the critically ill patients in this study.
Collapse
Affiliation(s)
- Evangelia Koutsioumpa
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Demosthenes Makris
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina Theochari
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitra Bagka
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stathis Stathakis
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efstratios Manoulakas
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Markos Sgantzos
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Epaminondas Zakynthinos
- Evangelia Koutsioumpa is a physiotherapist, Athina Theochari is a nurse, and Dimitra Bagka and Efstratios Manoulakas are physicians, intensive care unit, University General Hospital of Larissa, Thessaly, Greece. Demosthenes Makris and Epaminondas Zakynthinos are professors, intensive care medicine, Stathis Stathakis is a physician, Anatomy Section, and Markos Sgantzos is a professor, anatomy and history of medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
15
|
Effects of Neuromuscular Electrical Stimulation of the Quadriceps and Diaphragm in Critically Ill Patients: A Pilot Study. Crit Care Res Pract 2018; 2018:4298583. [PMID: 30123586 PMCID: PMC6079614 DOI: 10.1155/2018/4298583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Deep and respiratory muscle disorders are commonly observed in critically ill patients. Neuromuscular electrical stimulation (NMES) is an alternative to mobilize and to exercise that does not require active patient participation and can be used on bedridden patients. Objective Evaluate the effectiveness of the NMES therapy in quadriceps versus diaphragm subjects in mechanical ventilation (MV). Methods Sixty-seven subjects in MV were included, divided into 3 groups: (a) control group (CG, n=26), (b) stimulation of quadriceps (quadriceps group–QG, n=24), and (c) stimulation of diaphragm (diaphragm group–DG, n=17). The QG and DG patients received consecutive daily electrical stimulation sessions at specific points from the first day of randomization until ICU discharge. Respiratory and peripheral muscle strength, MV time, length of hospitalization, and functional independence score (the Functional Status Score-ICU) were recorded. Results There were studied n=24 (QG), n=17 (DG), and n=26 (CG) patients. Peripheral muscle strength improved significantly in the QG (p=0.030). Functional independence at ICU discharge was significantly better in QG (p=0.013), and the QG presented a better Barthel Index compared to DG and CG (p=0.0049) and also presented better FSS compared to CG (p=0.001). Conclusions Electrical stimulation of quadriceps had best outcomes for peripheral muscle strength compared with controls or electrical stimulation of diaphragm among mechanically ventilated critically ill subjects and promoted functional independence and decreased length of hospitalization.
Collapse
|
16
|
Sachetti A, Carpes MF, Dias AS, Sbruzzi G. Safety of neuromuscular electrical stimulation among critically ill patients: systematic review. Rev Bras Ter Intensiva 2018; 30:219-225. [PMID: 29995088 PMCID: PMC6031422 DOI: 10.5935/0103-507x.20180036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To review the evidence on the safety of neuromuscular electrical stimulation when used in the intensive care unit. METHODS A systematic review was conducted; a literature search was performed of the MEDLINE (via PubMed), PEDro, Cochrane CENTRAL and EMBASE databases, and a further manual search was performed among the references cited in randomized studies. Randomized clinical trials that compared neuromuscular electrical stimulation to a control or placebo group in the intensive care unit and reporting on the technique safety in the outcomes were included. Hemodynamic variables and information on adverse effects were considered safety parameters. Articles were independently analyzed by two reviewers, and the data analysis was descriptive. RESULTS The initial search located 1,533 articles, from which only four randomized clinical trials were included. Two studies assessed safety based on hemodynamic variables, and only one study reported an increase in heart rate, respiratory rate and blood lactate, without clinical relevance. The other two studies assessed safety based on reported adverse effects. In one, 15% of patients described a prickling sensation, without any clinically relevant abnormalities. In the other, one patient suffered a superficial burn due to improper parameter configuration. CONCLUSION Neuromuscular electrical stimulation is safe for critically ill patients; however, it should be applied by duly trained professionals and with proper evidence-based parameters.
Collapse
Affiliation(s)
- Amanda Sachetti
- Curso de Medicina, Escola de Saúde, IMED - Passo Fundo (RS),
Brasil
| | | | - Alexandre Simões Dias
- Hospital de Clínicas de Porto Alegre, Universidade Federal
do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | - Graciele Sbruzzi
- Hospital de Clínicas de Porto Alegre, Universidade Federal
do Rio Grande do Sul - Porto Alegre (RS), Brasil
| |
Collapse
|
17
|
Lago AF, de Oliveira AS, de Souza HCD, da Silva JS, Basile-Filho A, Gastaldi AC. The effects of physical therapy with neuromuscular electrical stimulation in patients with septic shock: Study protocol for a randomized cross-over design. Medicine (Baltimore) 2018; 97:e9736. [PMID: 29419665 PMCID: PMC5944671 DOI: 10.1097/md.0000000000009736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Septic shock is a potentially fatal organ dysfunction caused by an imbalance of the host response to infection. The changes in microcirculation during sepsis can be explained by the alterations in the endothelial barrier function. Endothelial progenitor cells (EPCs) are a potential recovery index of endothelial function and it an increase in response to neuromuscular electrical stimulation (NMES) was demonstrated. Therefore, the objective of this study is to investigate the effects of NMES in patients with septic shock. METHODS AND ANALYSIS It is a study protocol for a randomized cross-over design in an intensive care unit of a tertiary University hospital. Thirty-one patients aged 18 to 65 years. The study will be divided in 2 phases: the phase one will be held in the first 72 hours of septic shock and the phase two after 3 days of first assessment. Patients will be randomly selected to the intervention protocol (decubitus position with the limbs raised and NMES) and control protocol (decubitus position with the limbs raised without NMES). After this procedure, the patients will be allocated in group 1 (intervention and control protocol) or group 2 (control and intervention protocol) with a wash-out period of 4 to 6 hours between them. The main outcome is mobilization of EPCs. The secondary outcome is metabolic and hemodynamic data. A linear mixed model will be used for analysis of dependent variables and estimated values of the mean of the differences of each effect.
Collapse
Affiliation(s)
- Alessandra Fabiane Lago
- Department of Physiotherapy, Rehabilitation and Functional Performance Post Graduation Program
| | | | | | | | - Anibal Basile-Filho
- Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ada Clarice Gastaldi
- Department of Physiotherapy, Rehabilitation and Functional Performance Post Graduation Program
| |
Collapse
|
18
|
Effect of neuromuscular stimulation and individualized rehabilitation on muscle strength in Intensive Care Unit survivors: A randomized trial. J Crit Care 2017; 40:76-82. [PMID: 28364678 DOI: 10.1016/j.jcrc.2017.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/20/2017] [Accepted: 03/19/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE Intensive Care Unit (ICU) survivors experience muscle weakness leading to restrictions in functional ability. Neuromuscular electrical stimulation (NMES) has been an alternative to exercise in critically ill patients. The aim of our study was to investigate its effects along with individualized rehabilitation on muscle strength of ICU survivors. MATERIAL AND METHODS Following ICU discharge, 128 patients (age: 53±16years) were randomly assigned to daily NMES sessions and individualized rehabilitation (NMES group) or to control group. Muscle strength was assessed by the Medical Research Council (MRC) score and hand grip at hospital discharge. Secondary outcomes were functional ability and hospital length of stay. RESULTS MRC, handgrip, functional status and hospital length of stay did not differ at hospital discharge between groups (p>0.05). ΔMRC% one and two weeks after ICU discharge tended to be higher in NMES group, while it was significant higher in NMES group of patients with ICU-acquired weakness at two weeks (p=0.05). CONCLUSIONS NMES and personalized physiotherapy in ICU survivors did not result in greater improvement of muscle strength and functional status at hospital discharge. However, in patients with ICU-aw NMES may be effective. The potential benefits of rehabilitation strategies should be explored in larger number of patients in future studies. CLINICAL TRIAL REGISTRATION www.Clinicaltrials.gov: NCT01717833.
Collapse
|
19
|
Miranda Rocha AR, Martinez BP, Maldaner da Silva VZ, Forgiarini Junior LA. Early mobilization: Why, what for and how? Med Intensiva 2017; 41:429-436. [PMID: 28283324 DOI: 10.1016/j.medin.2016.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/02/2023]
Abstract
Early mobilization strategies in the intensive care unit may result in the prevention and reduction of polyneuromyopathy in the critical patient, improved quality of life, shortened ICU and hospital stay, and lesser mortality during hospitalization. However, it is well known that factors such as the protocol used, the population included in the studies, the timing of the strategy, the severity of the patients and different barriers directly influence the outcomes. This study examines the main protocols described in the literature and their associated results. The main techniques used were kinesitherapy, transfer and locomotion training, as well as neuromuscular electrical stimulation and cycle ergometry. Although two trials and a meta-analysis found no positive results with mobilization, programs that focus on specific populations, such as patients with weakness due to immobility and with preserved neuromuscular excitability can derive more positive effects from such treatment.
Collapse
Affiliation(s)
- A R Miranda Rocha
- Rehabilitation Division, Hélvio Auto Hospital, Alagoas, Brazil; University Center Cesmac, Alagoas, Brazil.
| | - B P Martinez
- State University of Bahia (UNEB), Bahia, Brazil; Federal University of Bahia (UFBA), Bahia, Brazil
| | | | - L A Forgiarini Junior
- Postgraduate Program in Rehabilitation and Inclusion, Methodist University Center (IPA), Rio Grande do Sul, Brazil; Postgraduate Program in Biosciences and Rehabilitation, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Stefanou C. Electrical muscle stimulation in thomboprophylaxis: review and a derived hypothesis about thrombogenesis-the 4th factor. SPRINGERPLUS 2016; 5:884. [PMID: 27386332 PMCID: PMC4920783 DOI: 10.1186/s40064-016-2521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Electrical muscle stimulation (EMS) is an FDA-approved thromboprophylactic method. Thrombus pathogenesis is considered to depend on factors related to components of the vessel wall, the velocity of blood, and blood consistency-collectively known as, the Virchow's triad. OBJECTIVE The testimony supporting the thromboprophylactic effects of the EMS is reviewed. An emphasis is placed on the fact that, EMS has demonstrated, in certain circumstances, an efficacy rate that cannot be fully explained by the Virchow's triad; also that, in reviewing relevant evidence and the theorized pathophysiological mechanisms, several findings collectively point to a potentially missed point. Remarkably, venous thromboembolic disease (VTE) is extremely more common in the lower versus the upper extremities even when the blood velocities equalize; EMS had synergistic effects with intermittent compressive devices, despite their presumed identical mechanism of action; sleep is not thrombogenic; non-peroperative EMS is meaningful only if applied ≥5 times daily; neural insult increases VTEs more than the degree expected by the hypomobility-related blood stasis; etc. These phenomena infer the presence of a 4th thrombogenetic factor: neural supply to the veins provides direct antithrombic effects, by inducing periodic vessel diameter changes and/or by neuro-humoral, chemically acting factors. EMS may stimulate or substitute the 4th factor. This evidence-based hypothesis is analyzed. CONCLUSION A novel pathophysiologic mechanism of thrombogenesis is supported; and, based on this, the role of EMS in thromboprophylaxis is expanded. Exploration of this mechanism may provide new targets for intervention.
Collapse
Affiliation(s)
- Christos Stefanou
- ICU, Limassol General Hospital, Eptanisou 2, Agios Nicolaos, 3100 Limassol, Cyprus
| |
Collapse
|