1
|
Derobertmasure A, Toh LS, Wotring VE, Williams PM, Morbidelli L, Stingl JC, Vinken M, Ramadan R, Chhun S, Boutouyrie P. Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. Eur J Pharm Sci 2025; 209:107063. [PMID: 40064402 DOI: 10.1016/j.ejps.2025.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Future long-duration crewed space missions beyond Low Earth Orbit (LEO) will bring new healthcare challenges for astronauts for which pharmacological countermeasures (pharmacological countermeasures) are crucial. This paper highlights current pharmacological countermeasures challenges described in the ESA SciSpacE Roadmap, with a focus on the cardiovascular system as a model to demonstrate the potential implication of the challenges and recommendations. New pharmacological approaches and procedures need to be adapted to spaceflight (spaceflight) conditions, including ethical and reglementary considerations. Potential strategies include combining pharmacological biomarkers such as pharmacogenomics with therapeutic drug monitoring, advancing microsampling techniques, and implementing a pharmacovigilance system to gain deep insights into pharmacokinetics/pharmacodynamics (PK/PD) spaceflight alteration on drug exposure. Emerging therapeutic approaches (such as long-term regimens) or manufacturing drugs in the space environment, can address specific issues related to drug storage and stability. The integration of biobanks and innovative technologies like organoids and organ-on-a-chip, artificial intelligence (AI), including machine learning will further enhance PK modelling leading to personalized treatments. These innovative pharmaceutical tools will also enable reciprocal game-changing healthcare developments to be made on Earth as well as in space and are essential to ensure space explorers receive safe effective pharmaceutical care.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France
| | - Li Shean Toh
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Virginia E Wotring
- International Space University, 1 rue Jean-Dominique Cassini, Parc d'Innovation, 6700 Illkirch-Graffenstaden, France
| | - Philip M Williams
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Wendlingweg 2, 52064, Aachen, Germany
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raghda Ramadan
- Interdisciplinary Biosciences Group, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephanie Chhun
- Faculty of Medicine, Paris Cité University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253; AP-HP, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Pierre Boutouyrie
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France.
| |
Collapse
|
2
|
Quisi A, Nacar Quisi NS, Alıcı G, Donma İ, Yıldırım A, Genç Ö. Effect of dapagliflozin on the no-reflow phenomenon in patients with acute myocardial infarction and type II diabetes mellitus. Acta Cardiol 2025:1-9. [PMID: 40366712 DOI: 10.1080/00015385.2025.2500892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE This study aimed to assess the effect of dapagliflozin on the no-reflow phenomenon in patients with type II diabetes mellitus (T2DM) and acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI). METHODS This single-center, observational cohort study included a total of 829 consecutive T2DM patients who were diagnosed with AMI and underwent PCI within 24 h of the onset of symptoms. Only patients using dapagliflozin (10 mg per day) for more than one year were considered as patients using dapagliflozin. The no-reflow phenomenon was defined as inadequate myocardial perfusion within a segment of the coronary circulation without angiographic evidence of mechanical vessel obstruction, dissection, or residual stenosis after PCI. RESULTS Four hundred and thirty-four patients were diagnosed with ST-segment elevation myocardial infarction (STEMI), and 395 patients were diagnosed with non-ST-segment elevation myocardial infarction (NSTEMI). Forward conditional logistic regression analysis demonstrated that the estimated glomerular filtration rate (OR = 0.940, 95% CI: 0.900 to 0.982, p = 0.006), SYNTAX score I (OR = 1.338, 95% CI: 1.179 to 1.520, p < 0.001), and dapagliflozin use (OR = 0.030, 95% CI: 0.004 to 0.228, p = 0.001) were independent predictors of the no-reflow phenomenon in STEMI. However, dapagliflozin use (OR = 0.112, 95% CI: 0.013 to 0.933, p = 0.043) was the only independent predictor of the no-reflow phenomenon in NSTEMI. CONCLUSION Lower rates of the no-reflow phenomenon were observed in T2DM patients taking dapagliflozin, diagnosed with AMI, and underwent PCI. However, this finding requires further investigation.
Collapse
Affiliation(s)
- Alaa Quisi
- Department of Cardiology, Medline Adana Hospital, Adana, Turkey
| | | | - Gökhan Alıcı
- Department of Cardiology, Adana City Training and Research Hospital, Adana, Turkey
| | - İdil Donma
- Department of Cardiology, Adana City Training and Research Hospital, Adana, Turkey
| | - Abdullah Yıldırım
- Department of Cardiology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ömer Genç
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Lutnik M, Weisshaar S, Litschauer B, Bayerle-Eder M, Niederdöckl J, Wolzt M. Dapagliflozin prevents vascular ischemia-reperfusion injury in healthy young males: a randomized, placebo-controlled, double-blinded trial. Sci Rep 2025; 15:16633. [PMID: 40360700 PMCID: PMC12075666 DOI: 10.1038/s41598-025-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) causes vascular endothelial dysfunction. Preclinical data suggest that the SGLT2 inhibitor dapagliflozin may protect against vascular IRI. This trial has investigated if oral treatment with dapagliflozin can mitigate the transient impairment of IRI-induced-endothelial dysfunction in the forearm resistance vasculature. 32 healthy males (n = 16 per group, age: 27 ± 4 yrs) were studied in this randomized, placebo-controlled, parallel-group, double-blinded trial. Acetylcholine (ACh; endothelium-dependent vasodilator) and glyceryltrinitrate (GTN; endothelium-independent vasodilator) were administered into the brachial artery of the non-dominant arm. The response to stepwise increasing doses on forearm blood flow (FBF) was assessed. FBF was measured before and after a cuff-induced 20-minute forearm ischemia at pre-dose and following daily intake of 10 mg dapagliflozin or placebo over 15 days. IRI reduced endothelium-dependent vasodilatation by 29% (p < 0.001, paired t-test). After a 15-day treatment period, IRI-induced endothelial dysfunction was abrogated in participants receiving dapagliflozin (FBF AChAUC ratios post- vs. pre-ischemia: dapagliflozin: 0.93; 95% CI: 0.80-1.29) but unchanged with placebo (0.81; 95% CI: 0.68-0.92; p = 0.015 vs. pre-ischemia). GTN-induced vasodilation was not altered by IRI or treatment. Dapagliflozin treatment at standard clinical doses over 15 days prevents IRI-induced vascular endothelial dysfunction in the forearm resistance vasculature of healthy young males. The underlying mechanism and the potential clinical impact remain to be demonstrated.Clinical trial registration https://clinicaltrials.gov/study/NCT05217654 NCT05217654; EudraCT number: 2021-005002-95 Date of registration: 20/01/2022.
Collapse
Affiliation(s)
- Martin Lutnik
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Weisshaar
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Litschauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michaela Bayerle-Eder
- Department of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jan Niederdöckl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Michael Wolzt
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Yang S, Deng J, Weng X, Ma Z, Lin N, Xiao Y, Zuo R, Hu Y, Zheng C, Zeng X, Lin Q, Hou K. Reduced abundance of Fusobacterium signifies cardiovascular benefits of sodium glucose cotransporter 2 inhibitor in type 2 diabetes: a single arm clinical trial. Front Pharmacol 2025; 16:1600464. [PMID: 40406484 PMCID: PMC12095364 DOI: 10.3389/fphar.2025.1600464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
Background The sodium glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin has been demonstrated cardiovascular benefits in patients with type 2 diabetes mellitus (T2DM). However, the underlying mechanism remains poorly understood. Methods We conducted an 8-week, single-arm clinical trial, which enrolled 12 patients with inadequate glycemic control on metformin monotherapy. These patients were treated with SGLT2i dapagliflozin (10 mg/day). We assessed changes in clinical parameters pertinent to glucose metabolism and risk factors of cardiovascular disease (CVD), as well as alterations in the gut microbiota using macrogene sequencing. Results Improvements were observed in anthropometric parameters, glucose metabolism, blood lipid-related indices, inflammatory markers, and endothelial cell function-related parameters. Concurrently, SGLT2i led to changes in composition and functional pathways of the gut microbiota, manifested as increased abundance of probiotics and decreased abundance of harmful bacteria. Importantly, reduced abundance of Fusobacterium was correlated with improvements in various clinical indicators. Conclusion SGLT2i represents a superior initial therapeutic option for T2DM patients at risk of CVD. The cardiovascular benefits of SGLT2i may be attributed to shifts in the gut microbiota, particularly the reduced abundance of Fusobacterium.
Collapse
Affiliation(s)
- Shuhui Yang
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Jiankun Deng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Xiaoxu Weng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Zhaojie Ma
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Nie Lin
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Yili Xiao
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Rui Zuo
- School of Public Health, Shantou University, Shantou, China
| | - Yufei Hu
- School of Public Health, Shantou University, Shantou, China
| | - Canbin Zheng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Xiaoshan Zeng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Qimao Lin
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| |
Collapse
|
5
|
Zhang M, Liu W, Dai H, Jiang H, Zhao Q, Liu W, Rui H, Liu B. Heterogeneity of Renal Endothelial Cells, Interact with Neighboring Cells, and Endothelial Injury in Chronic Kidney Disease: Mechanisms and Therapeutic Implications. Int J Med Sci 2025; 22:2103-2118. [PMID: 40303495 PMCID: PMC12035827 DOI: 10.7150/ijms.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Chronic kidney disease (CKD) is closely associated with endothelial dysfunction, leading to symptoms such as albuminuria, edema, and coagulopathy. Recent advancements in single-cell sequencing have deepened our understanding of the heterogeneity of renal endothelial cells, which is significantly influenced by their microenvironment. Understanding the influence of neighboring cells on endothelial heterogeneity is essential for elucidating the mechanisms underlying vascular dysfunction and CKD progression. This review explores the latest research on renal endothelial cell heterogeneity and their interactions with neighboring cells. We further discuss the mechanisms of endothelial injury in CKD, including alterations to the endothelial glycocalyx, inflammation, oxidative stress, and dysfunction of the glomerular filtration barrier. Renal endothelial injury contributes to complications, including cardiovascular disease, diabetic nephropathy, and impaired vascular function. Therapeutic strategies encompass antihypertensive, hypoglycemic, and lipid-lowering treatments, supplemented by emerging approaches such as anti-inflammatory therapies, gene therapy, and lifestyle modifications. Through reviewing the relationship between endothelial injury and CKD progression, we emphasize potential strategies to enhance prognosis and mitigate disease progression.
Collapse
Affiliation(s)
- Meiyu Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100310, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Salerno N, Ielapi J, Cersosimo A, Leo I, Di Costanzo A, Armentaro G, De Rosa S, Sciacqua A, Sorrentino S, Torella D. Early hemodynamic impact of SGLT2 inhibitors in overweight cardiometabolic heart failure: beyond fluid offloading to vascular adaptation- a preliminary report. Cardiovasc Diabetol 2025; 24:141. [PMID: 40140861 PMCID: PMC11948974 DOI: 10.1186/s12933-025-02699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Heart failure (HF) is increasingly recognized as a heterogeneous cardiometabolic disorder, often in the context of overweight/obesity independently from diabetes. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce HF hospitalizations and cardiovascular mortality across ejection fraction (EF) categories, yet their early hemodynamic effects in cardiometabolic HF, and with preserved ejection fraction (HFpEF) in particular, remain underexplored. METHODS A prospective, single-center study included 20 consecutive HF patients receiving SGLT2i alongside optimized therapy. Transthoracic echocardiography and non-invasive bioimpedance assessments (NICaS system) were performed at baseline and after 4 weeks. RESULTS The median patient age was 75 years [58-84], with 14 patients (70%) being overweight/obese, and only 4 patients with diabetes. The majority (65%) had HF with preserved EF (HFpEF), 25% with mildly reduced EF (HFmrEF), and 10% with reduced EF (HFrEF). At a median follow-up of 33 days [30-68], significant reductions were observed in body weight (67.65 kg [46-99.20] to 65.50 kg [46.30-97], p = 0.027) and systolic blood pressure (130 mmHg [100-150] to 116.50 mmHg [100-141], p = 0.015). Hemodynamic assessments revealed a significant decrease in total peripheral resistance index (TPRi, 3616.50 dynes·sec·cm3 [1600-5024] to 3098.50 dynes·sec·cm3 [1608-4684], p = 0.002). The left atrial volume index decreased significantly (42.84 ml/m² [27-69.40] to 41.15 ml/m² [26-62.60], p < 0.001); a significant decrease in peak tricuspid regurgitation velocity [2.52 m/Sect. (1.30-3.20]), vs. 2.21 m/Sect. (1.44-2.92), p = 0.023] and in pulmonary artery systolic pressure (PASP) [31.0 mmHg (15.0-40.0) vs. 25.50 mmHg (15.0-38.0-), p = 0.010] was observed. Patients with HFrEF or HFmrEF showed significant reduction in total body water (66.33 [51.45-74.45] vs. 58.68 [55.13-66.50]), while HFpEF patients (overweight/obese, n = 11, 79%) had a significant reduction in TPRi (3681 dynes·sec·cm3 [1600-5024] vs. 3085 dynes·sec·cm3 [1608-4684] p = 0.005). CONCLUSIONS Early hemodynamic responses to SGLT2i may differ across HF subtypes. In overweight patients with cardiometabolic HFpEF, our preliminary findings suggest an association with reduced vascular resistance, while in HFrEF/HFmrEF, the primary benefit appears to be volume unloading. However, the vascular effects of SGLT2i remain uncertain, and given the small sample size, these results should be interpreted as hypothesis-generating. Our findings also highlight the potential role of non-invasive hemodynamic monitoring in guiding therapy in HF.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Jessica Ielapi
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Angelica Cersosimo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Assunta Di Costanzo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| |
Collapse
|
7
|
Kristensen DK, Mose FH, Buus NH, Duus CL, Mårup FH, Bech JN, Nielsen SF. SGLT2 inhibition improves endothelium-independent vasodilatory function in type 2 diabetes: A double-blind, randomized, placebo-controlled crossover trial. Diabetes Obes Metab 2025; 27:1123-1131. [PMID: 39610328 DOI: 10.1111/dom.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
AIMS The objective of this study was to examine the effects of empagliflozin on endothelium-dependent and endothelium-independent vasodilatation and systemic hemodynamic parameters and to assess the role of the nitric oxide (NO) system in patients with type 2 diabetes (T2DM). MATERIALS AND METHODS In this double-blind, placebo-controlled cross over trial, patients with T2DM were treated with either empagliflozin 10 mg or matching placebo for 4 weeks. Following a 2-week washout, participants were crossed over to 4 weeks of the opposite treatment. Forearm blood flow (FBF) was measured after each treatment period using venous occlusion plethysmography. Acetylcholine and sodium nitroprusside (SNP) were infused into the brachial artery to assess endothelium-dependent and endothelium-independent vasodilatory function, respectively. Total peripheral resistance, 24-h blood pressure (BP) and biochemical markers of NO activity were measured as well. RESULTS Sixteen participants completed the trial. The mean age was 68 ± 8 years, and 69% were male. The SNP response increased by 21% (geometric mean ratio 1.21, 95% CI: 1.09; 1.33) during treatment with empagliflozin compared to placebo (p ≤ 0.001), but not during acetylcholine infusion (p = 0.290). Empagliflozin decreased 24-h systolic BP by 5 mmHg (95% CI: -9; -1 mmHg) (p = 0.015), diastolic BP by 2 mmHg (95% CI: -5; 0 mmHg) (p = 0.029) and systemic vascular resistance by 48 dyn×s/m5 (95% CI: -94; -1 dyn×s/m5) (p = 0.044). Furthermore, empagliflozin reduced plasma levels of nitrite and urinary levels of NOx. CONCLUSIONS Empagliflozin improves endothelium-independent vasodilation, reduces vascular resistance and lowers 24-h BP in patients with T2DM, whereas no change in endothelial-dependent vasodilation was observed. TRIAL REGISTRATION EU Clinical Trials Register number: 2019-004303-12 (https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-004303-12/DK).
Collapse
Affiliation(s)
- Didde Kidmose Kristensen
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital, Herning, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Frank Holden Mose
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital, Herning, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Niels Henrik Buus
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Frederik Husum Mårup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Jesper Nørgaard Bech
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital, Herning, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | |
Collapse
|
8
|
Chee YJ, Dalan R, Cheung C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int J Mol Sci 2025; 26:1708. [PMID: 40004172 PMCID: PMC11855323 DOI: 10.3390/ijms26041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The endothelium is pivotal in multiple physiological processes, such as maintaining vascular homeostasis, metabolism, platelet function, and oxidative stress. Emerging evidence in the past decade highlighted the immunomodulatory function of endothelium, serving as a link between innate, adaptive immunity and inflammation. This review examines the regulation of the immune-inflammatory axis by the endothelium, discusses physiological immune functions, and explores pathophysiological processes leading to endothelial dysfunction in various metabolic disturbances, including hyperglycemia, obesity, hypertension, and dyslipidaemia. The final section focuses on the novel, repurposed, and emerging therapeutic targets that address the immune-inflammatory axis in endothelial dysfunction.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
9
|
Osman AAM, Seres-Bokor A, Ducza E. Diabetes mellitus therapy in the light of oxidative stress and cardiovascular complications. J Diabetes Complications 2025; 39:108941. [PMID: 39671854 DOI: 10.1016/j.jdiacomp.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Type 2 diabetes is a chronic disease requiring comprehensive pharmacological and non-pharmacological interventions to slow its progression and prevent or delay its micro- and macrovascular complications. Oxidative stress contributes to the development and progression of type 2 diabetes as well as to the development of its complications through several mechanisms. Therefore, therapeutic targeting of oxidative stress could aid in managing this disease and its complications. In our study, we have collected information on the most frequently used antidiabetic drugs (metformin, glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors) in the EU and the USA based on their antioxidant effects. Based on our results, we can conclude that the antioxidant effects of the investigated antidiabetics may contribute significantly to the management of the disease and its complications and may open new therapeutic perspectives in their prevention.
Collapse
Affiliation(s)
- Alaa A M Osman
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
10
|
Pandey A, Alcaraz M, Saggese P, Soto A, Gomez E, Jaldu S, Yanagawa J, Scafoglio C. Exploring the Role of SGLT2 Inhibitors in Cancer: Mechanisms of Action and Therapeutic Opportunities. Cancers (Basel) 2025; 17:466. [PMID: 39941833 PMCID: PMC11815934 DOI: 10.3390/cancers17030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer cells utilize larger amounts of glucose than their normal counterparts, and the expression of GLUT transporters is a known diagnostic target and a prognostic factor for many cancers. Recent evidence has shown that sodium-glucose transporters are also expressed in different types of cancer, and SGLT2 has raised particular interest because of the current availability of anti-diabetic drugs that block SGLT2 in the kidney, which could be readily re-purposed for the treatment of cancer. The aim of this article is to perform a narrative review of the existing literature and a critical appraisal of the evidence for a role of SGLT2 inhibitors for the treatment and prevention of cancer. SGLT2 inhibitors block Na-dependent glucose uptake in the proximal kidney tubules, leading to glycosuria and the improvement of blood glucose levels and insulin sensitivity in diabetic patients. They also have a series of systemic effects, including reduced blood pressure, weight loss, and reduced inflammation, which also make them effective for heart failure and kidney disease. Epidemiological evidence in diabetic patients suggests that individuals treated with SGLT2 inhibitors may have a lower incidence and better outcomes of cancer. These studies are confirmed by pre-clinical evidence of an effect of SGLT2 inhibitors against cancer in xenograft and genetically engineered models, as well as by in vitro mechanistic studies. The action of SGLT2 inhibitors in cancer can be mediated by the direct inhibition of glucose uptake in cancer cells, as well as by systemic effects. In conclusion, there is evidence suggesting a potential role of SGLT2 inhibitors against different types of cancer. The most convincing evidence exists for lung and breast adenocarcinomas, hepatocellular carcinoma, and pancreatic cancer. Several ongoing clinical trials will provide more information on the efficacy of SGLT2 inhibitors against cancer.
Collapse
Affiliation(s)
- Aparamita Pandey
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Martín Alcaraz
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Pasquale Saggese
- Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Soto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Estefany Gomez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Shreya Jaldu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA;
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| |
Collapse
|
11
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [PMID: 39866213 PMCID: PMC11755123 DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China.
| |
Collapse
|
12
|
Ishiwata S, Kasai T, Sato A, Suda S, Matsumoto H, Shitara J, Yatsu S, Murata A, Shimizu M, Kato T, Hiki M, Nanako S, Kato M, Kawana F, Naito R, Miyauchi K, Daida H, Minamino T. Tofogliflozin reduces sleep apnea severity in patients with type 2 diabetes mellitus and heart failure: a prospective study. Hypertens Res 2025; 48:388-397. [PMID: 39528646 DOI: 10.1038/s41440-024-01982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Sleep apnea (SA) is prevalent among patients with heart failure (HF) and contributes to a poor prognosis. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have demonstrated efficacy in reducing the risk of serious clinical events in patients with HF. Additionally, SGLT2 inhibitors may reduce the risk of incident SA and mitigate its severity in patients with cardiovascular disease and T2DM. We aimed to investigate whether the SGLT2 inhibitor tofogliflozin reduced the severity of SA, as assessed using the apnea-hypopnea index (AHI), in patients with HF and T2DM and whether a decrease in AHI correlates with changes in body composition and cardiorenal function parameters. This is a single-arm, prospective pathophysiologic study involving patients with HF, T2DM, and SA, defined as having an AHI of 15 events/h and more. SA was assessed using polysomnography. Changes in AHI before and 6 months after starting oral administration of tofogliflozin (20 mg) were assessed. Additionally, body composition and cardiorenal functions were assessed before and 6 months after tofogliflozin administration. Ten patients with HF, T2DM, and SA were finally enrolled (60% men, 66.9 ± 13.4 years). Tofogliflozin reduced AHI from 43.2 [30.2] to 35.3 [13.1] events/h (p = 0.024) at 6 months. Hemoglobin A1c, body weight, and body water content decreased significantly. However, no significant changes were observed in the cardiorenal function parameters. A linear relationship was observed between the changes in body water content and AHI (r = 0.642, p = 0.045). Tofogliflozin reduced AHI, possibly associated with a reduction in body water content.
Collapse
Affiliation(s)
- Sayaki Ishiwata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital, Tokyo, Japan
| | - Takatoshi Kasai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital, Tokyo, Japan.
- Department of Cardiovascular Management and Remote Monitoring, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Akihiro Sato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoko Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital, Tokyo, Japan
| | - Hiroki Matsumoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Shitara
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichiro Yatsu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Azusa Murata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Megumi Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Kato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaru Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiroshita Nanako
- Department of Cardiovascular Management and Remote Monitoring, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsue Kato
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fusae Kawana
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Naito
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
13
|
Korakas E, Thymis J, Oikonomou E, Mourouzis K, Kountouri A, Pliouta L, Pililis S, Pavlidis G, Lampsas S, Katogiannis K, Palaiodimou L, Tsivgoulis G, Siasos G, Ikonomidis I, Raptis A, Lambadiari V. Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i. J Clin Med 2024; 13:7497. [PMID: 39768420 PMCID: PMC11678541 DOI: 10.3390/jcm13247497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The association between diabetic nephropathy and arterial elasticity and endothelial function is well established. In this study, we compared the effect of the combination of dulaglutide and dapagliflozin versus DPP-4 inhibitors on the endothelial glycocalyx, arterial stiffness, myocardial function, and albuminuria. Methods: Overall, 60 patients were randomized to combined dulaglutide and dapagliflozin treatment (n = 30) or DPP-4 inhibitors (DPP-4i, n = 30) (ClinicalTrials.gov: NCT06611904). We measured at baseline and 4 and 12 months post-treatment: (i) the perfused boundary region of the sublingual arterial microvessels, (ii) pulse wave velocity (PWV) and central systolic blood pressure (cSBP), (iii) global left ventricular longitudinal strain (GLS), and (iv) urine albumin-to-creatinine ratio (UACR). Results: After twelve months, dual therapy showed greater improvements vs. DPP-4i in PBR (2.10 ± 0.31 to 1.93 ± 0.23 μm vs. 2.11 ± 0.31 to 2.08 ± 0.28 μm, p < 0.001), UACR (326 ± 61 to 142 ± 47 mg/g vs. 345 ± 48 to 306 ± 60 mg/g, p < 0.01), and PWV (11.77 ± 2.37 to 10.7 ± 2.29 m/s vs. 10.64 ± 2.44 to 10.54 ± 2.84 m/s, p < 0.001), while only dual therapy showed improvement in cSBP (130.21 ± 17.23 to 123.36 ± 18.42 mmHg). These effects were independent of glycemic control. Both treatments improved GLS, but the effect of dual therapy was significantly higher compared to DPP-4i (18.19% vs. 6.01%, respectively). Conclusions: Twelve-month treatment with dulaglutide and dapagliflozin showed a greater improvement in arterial stiffness, endothelial function, myocardial function, and albuminuria than DPP-4is. Early initiation of combined therapy as an add-on to metformin should be considered in these patients.
Collapse
Affiliation(s)
- Emmanouil Korakas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - John Thymis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (K.M.)
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Medical School, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (K.M.)
| | - Aikaterini Kountouri
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Loukia Pliouta
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Sotirios Pililis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - George Pavlidis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Stamatios Lampsas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Lina Palaiodimou
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece (G.T.)
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece (G.T.)
| | - Gerasimos Siasos
- Cardiovascular Division, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Athanasios Raptis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| |
Collapse
|
14
|
Martha S, Jangam PH, Bhansali SG. Influence of Dapagliflozin Dosing on Low-Density Lipoprotein Cholesterol in Type 2 Diabetes Mellitus: A Systematic Literature Review and Meta-Analysis. J Clin Pharmacol 2024; 64:1528-1540. [PMID: 39087862 DOI: 10.1002/jcph.6105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
A systematic literature review and meta-analysis was performed to evaluate the effects of dapagliflozin on low-density lipoprotein (LDL) cholesterol in type 2 diabetes mellitus. Data on changes in LDL cholesterol, adverse cardiac events (ACEs), glycated hemoglobin (HbA1c), and fasting blood glucose (FBG) were pooled in a meta-analysis. Data from dose comparison trials were separately pooled, and meta-analysis was conducted by using RevMan (5.4.1) and R (4.1.2). Dapagliflozin increased LDL cholesterol by 2.33 mg/dL (95% CI, 1.46 to 3.19; I2 = 0%; P < .00001), increased risk of ACEs by 1.56 (95% CI, 1.02 to 2.39; I2 = 0%; P < .04), decreased HbA1c by -0.41% (95% CI, -0.44 to -0.39; I2 = 85%; P < .00001), and decreased FBG by -13.51 mg/dL (95% CI, -14.43 to -12.59; I2 = 92%; P < .00001) versus any placebo or active comparator. Dapagliflozin 10 mg monotherapy increased LDL cholesterol by 1.71 mg/dL (95% CI, -1.20 to 4.62; I2 = 53%; P = .25) versus a 5 mg dose and by 1.04 mg/dL (95% CI, -1.17 to 3.26; I2 = 62%; P = .36) versus a 2.5 mg dose. Dapagliflozin 10 mg monotherapy increased LDL cholesterol by 3.13 mg/dL (95% CI, 1.31 to 4.95; I2 = 0%; P = .0008), increased the risk of ACEs by 1.26 (95% CI, 0.56 to 2.87; I2 = 0%; P = .58), decreased HbA1c by -0.4% (95% CI, -0.45 to -0.35; I2 = 89%; P < .00001), and decreased FBG by -8.39 mg/dL (95% CI, -10 to -6.77; I2 = 96%; P < .00001) versus a placebo or active comparator. Dapagliflozin monotherapy resulted in a minimal but statistically significantly (P = .0002) increase in LDL cholesterol. However, this minor change does not increase the risk of ACEs (P = .17) when compared with placebo or active comparator.
Collapse
Affiliation(s)
- Srinivas Martha
- Excelra Knowledge Solutions, NSL SEZ ARENA, IDA Uppal, Hyderabad, Telangana, India
| | | | - Suraj G Bhansali
- Excelra Knowledge Solutions, NSL SEZ ARENA, IDA Uppal, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Mghaieth Zghal F, Abbassi M, Silini A, Ben Halima M, Jebberi Z, Daly F, Ouali S, Farhati A, Ben Mansour N, Boudiche S, Mourali MS. Impact of sodium-glucose cotransporter inhibitors in acute coronary syndrome patients on endothelial function and atherosclerosis related-biomarkers: ATH-SGLT2i pilot study. Medicine (Baltimore) 2024; 103:e40536. [PMID: 39813066 PMCID: PMC11596703 DOI: 10.1097/md.0000000000040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
Little is known about the effects of sodium-glucose co-transporter 2 inhibitors (SGLT2i) on atherosclerosis. We aimed to determine if a 90-day intake of Dapagliflozin could improve atherosclerosis biomarkers (namely endothelial function assessed by flow-mediated dilatation [FMD] and carotid intima-media thickness [CIMT]) in diabetic and non-diabetic acute coronary syndrome (ACS) patients when initiated in the early in-hospital phase. ATH-SGLT2i was a prospective, single-center, observational trial that included 113 SGLT2i naive patients who were admitted for ACS and who were prescribed Dapagliflozin at a fixed dose of 10 mg during their hospital stay for either type 2 diabetes or for heart failure. After 90 days of follow-up, subjects who had a continuous intake of Dapagliflozin formed the SGLT2i group, while patients who did not take Dapagliflozin formed the non-SGLT2i group. In each of these main study groups, we considered diabetic and non-diabetic subgroups. The primary endpoint was the difference in between baseline and 90 days in FMD (∆FMD) and in FMD rate (∆FMD%). The secondary outcome was change in CIMT (∆CIMT). We enrolled 54 patients in the SGLT2i group aged 59 ± 9 years (70.4% males) which 30 were diabetics, and 59 in the non-SGLT2i group aged 63 ± 11 years (78% males) which 34 were diabetics. After 90 days, ∆FMD and ∆ FMD% were higher in the SGLT2i group in comparison with the non-SGLT2i group (0.05 ± 0.15 vs -0.05 ± 0.11, P < .001 and 1.78 ± 3.63 vs -0.88 ± 4, P < .001). Within the SGLT2i group, the improvement of FMD% was higher in non-diabetic patients (2.85 ± 3.46 vs 0.9 ± 3.59, P = .05). Multivariate analysis showed that Dapagliflozin intake was independently associated with FMD% improvement (HR = 2.24). After 90 days, CIMT showed no significant difference between the SGLT2i and the non-SGLT2i groups. In this pilot study, a 90-day intake of Dapagliflozin at the fixed dose of 10 mg started in the acute phase of an ACS, was associated with endothelial function improvement in diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Fathia Mghaieth Zghal
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Manel Abbassi
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ahlem Silini
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- National Institute of Public Health, Tunis, Tunisia
| | - Manel Ben Halima
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Zeynab Jebberi
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Foued Daly
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Sana Ouali
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Abdeljelil Farhati
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Nadia Ben Mansour
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- National Institute of Public Health, Tunis, Tunisia
| | - Selim Boudiche
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Mohamed Sami Mourali
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
16
|
Ahn Y, Aung N, Ahn HS. A Comprehensive Review of Clinical Studies Applying Flow-Mediated Dilation. Diagnostics (Basel) 2024; 14:2499. [PMID: 39594169 PMCID: PMC11592698 DOI: 10.3390/diagnostics14222499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Flow-mediated dilation (FMD) is a noninvasive method to evaluate vascular endothelial function, which manifests the vascular inflammatory response, cell proliferation, and autoregulation. Since FMD is noninvasive and assesses commonly in the brachial artery by ultrasound, compared to other invasive methods such as optical coherence tomography (OCT) and intravascular ultrasound (IVUS), it is widely used to evaluate endothelial function and allows serial assessment. In this review, we present the currently accepted mechanisms and methods of FMD measurement with the studies applied in the current clinical practice using FMD. After all, the association with cardiovascular diseases is of substance, and so we introduce clinical studies of FMD related to cardiovascular disease such as diabetes, hyperlipidemia, chronic kidney disease, coronary artery disease, and peripheral vascular disease. In addition, studies related to pregnancy and COVID-19 were also inspected. Yet, endothelial examination is not endorsed as a cardiovascular prevention measure, for the lack of a clear standardized value methodology. Still, many studies recommend practicable FMD and would be a better prognostic value in the cardiovascular prognosis in future clinical research.
Collapse
Affiliation(s)
- Yuran Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul 06591, Republic of Korea;
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
- National Institute for Health and Care Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London E1 4NS, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Hyo-Suk Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul 06591, Republic of Korea;
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
17
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Shigeno R, Horie I, Haraguchi A, Niimi R, Chiba K, Tashiro S, Kawazoe Y, Sato S, Osaki M, Kawakami A, Abiru N. A Randomized Controlled Trial on the Effect of Luseogliflozin on Bone Microarchitecture Evaluated Using HR-pQCT in Elderly Type 2 Diabetes. Diabetes Ther 2024; 15:2233-2248. [PMID: 39153152 PMCID: PMC11410743 DOI: 10.1007/s13300-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION Bone fragility is a critical issue in the treatment of elderly people with type 2 diabetes (T2D). In the Canagliflozin Cardiovascular Assessment Study, the subjects with T2D who were treated with canagliflozin showed a significant increase in fracture events compared to a placebo group as early as 12 weeks post-initiation. In addition, it has been unclear whether sodium-glucose co-transporter 2 (SGLT2) inhibitors promote bone fragility. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to prospectively evaluate the short-term effect of the SGLT2 inhibitor luseogliflozin on bone strength and microarchitecture in elderly people with T2D. METHODS This was a single-center, randomized, open-label, active-controlled pilot trial for ≥ 60-year-old Japanese individuals with T2D without osteoporosis. A total of 22 subjects (seven women and 15 men) were randomly assigned to a Lusefi group (added luseogliflozin 2.5 mg) or a control group (added metformin 500 mg) and treated for 48 weeks. We used the second-generation HR-pQCT (Xtreme CT II®, Scanco Medical, Brüttisellen, Switzerland) before and 48 weeks after the treatment to evaluate the subjects' bone microarchitecture and estimate their bone strength. RESULTS Twenty subjects (Lusefi group, n = 9; control group, n = 11) completed the study, with no fracture events. As the primary outcome, the 48-week changes in the bone strength (stiffness and failure load) estimated by micro-finite element analysis were not significantly different between the groups. As the secondary outcome, the changes in all of the cortical/trabecular microarchitectural parameters at the radius and tibia from baseline to 48 weeks were not significantly different between the groups. CONCLUSIONS In the pilot trial, we observed no negative effect of 48-week luseogliflozin treatment on bone microarchitecture or bone strength in elderly people with T2D. TRIAL REGISTRATION UMIN-CTR no. 000036202 and jRCT 071180061.
Collapse
Affiliation(s)
- Riyoko Shigeno
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryuji Niimi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yurika Kawazoe
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
19
|
Bradarić B, Bulum T, Brkljačić N, Mihaljević Ž, Benić M, Bradarić Lisić B. The Influence of Dapagliflozin on Foot Microcirculation in Patients with Type 2 Diabetes with and without Peripheral Arterial Disease-A Pilot Study. Pharmaceuticals (Basel) 2024; 17:1127. [PMID: 39338292 PMCID: PMC11435400 DOI: 10.3390/ph17091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The results of large cardiovascular studies indicate that SGLT-2 inhibitors may increase the risk of leg amputations. This study aims to investigate whether dapagliflozin therapy affects peripheral vascular oxygenation, i.e., microcirculation in the foot, as measured by transcutaneous oxygen pressure (TcPO2) in patients with type 2 diabetes (T2DM) and peripheral arterial disease (PAD) compared to patients without PAD. The patients with PAD were randomized into two groups. In the first 35 patients with PAD, dapagliflozin was added to the therapy; in the other 26 patients with PAD, other antidiabetic drugs were added to the therapy. Dapagliflozin was added to the therapy in all patients without PAD. TcPO2 measurement, Ankle Brachial Index (ABI), anthropometric measurements, and laboratory tests were performed. After a follow-up period of 119.35 days, there was no statistically significant difference in the reduction of mean TcPO2 values between the group with T2DM with PAD treated with dapagliflozin and the group with T2DM with PAD treated with other antidiabetic drugs (3.88 mm Hg, SD = 15.13 vs. 1.48 mm Hg, SD = 11.55, p = 0.106). Patients with control TcPO2 findings suggestive of hypoxia (TcPO2 < 40 mm Hg) who were treated with dapagliflozin had a clinically significant decrease in mean TcPO2 of 10 mm Hg or more (15.8 mm Hg and 12.90 mm Hg). However, the aforementioned decrease in TcPO2 was not statistically significantly different from the decrease in TcPO2 in the group with PAD treated with other diabetic medications (p = 0.226, p = 0.094). Based on the available data, dapagliflozin appears to affect tissue oxygenation in T2DM with PAD. However, studies with a larger number of patients and a longer follow-up period are needed to determine the extent and significance of this effect.
Collapse
Affiliation(s)
- Božena Bradarić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Tomislav Bulum
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neva Brkljačić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | | | | | - Božo Bradarić Lisić
- Professional Study Program in Physiotherapy, University of Applied Health Sciences, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Msane S, Khathi A, Sosibo A. Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: A Narrative Review. Nutrients 2024; 16:2692. [PMID: 39203828 PMCID: PMC11357349 DOI: 10.3390/nu16162692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Intermittent fasting has drawn significant interest in the clinical research community due to its potential to address metabolic complications such as obesity and type 2 diabetes mellitus. Various intermittent fasting regimens include alternate-day fasting (24 h of fasting followed by 24 h of eating), time-restricted fasting (fasting for 14 h and eating within a 10 h window), and the 5:2 diet (fasting for two days and eating normally for the other five days). Intermittent fasting is associated with a reduced risk of type 2 diabetes mellitus-related complications and can slow their progression. The increasing global prevalence of type 2 diabetes mellitus highlights the importance of early management. Since prediabetes is a precursor to type 2 diabetes mellitus, understanding its progression is essential. However, the long-term effects of intermittent fasting on prediabetes are not yet well understood. Therefore, this review aims to comprehensively compile existing knowledge on the therapeutic effects of intermittent fasting in managing type 2 diabetes mellitus and prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Aubrey Sosibo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
21
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H, Sako A. The Significance of Endothelial Dysfunction in Long COVID-19 for the Possible Future Pandemic of Chronic Kidney Disease and Cardiovascular Disease. Biomolecules 2024; 14:965. [PMID: 39199353 PMCID: PMC11352301 DOI: 10.3390/biom14080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Various symptoms have been reported to persist beyond the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is referred to as long coronavirus disease 19 (long COVID-19). Over 65 million individuals suffer from long COVID-19. However, the causes of long COVID-19 are largely unknown. Since long COVID-19 symptoms are observed throughout the body, vascular endothelial dysfunction is a strong candidate explaining the induction of long COVID-19. The angiotensin-converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is ubiquitously expressed in endothelial cells. We previously found that the risk factors for atherosclerotic cardiovascular disease (ASCVD) and a history of ASCVD raise the risk of severe COVID-19, suggesting a contribution of pre-existing endothelial dysfunction to severe COVID-19. Here, we show a significant association of endothelial dysfunction with the development of long COVID-19 and show that biomarkers for endothelial dysfunction in patients with long COVID-19 are also crucial players in the development of ASCVD. We consider the influence of long COVID-19 on the development of chronic kidney disease (CKD) and ASCVD. Future assessments of the outcomes of long COVID-19 in patients resulting from therapeutic interventions that improve endothelial function may imply the significance of endothelial dysfunction in the development of long COVID-19.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Akahito Sako
- Department of General Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan;
| |
Collapse
|
22
|
Barkas F, Sener YZ, Golforoush PA, Kheirkhah A, Rodriguez-Sanchez E, Novak J, Apellaniz-Ruiz M, Akyea RK, Bianconi V, Ceasovschih A, Chee YJ, Cherska M, Chora JR, D'Oria M, Demikhova N, Kocyigit Burunkaya D, Rimbert A, Macchi C, Rathod K, Roth L, Sukhorukov V, Stoica S, Scicali R, Storozhenko T, Uzokov J, Lupo MG, van der Vorst EPC, Porsch F. Advancements in risk stratification and management strategies in primary cardiovascular prevention. Atherosclerosis 2024; 395:117579. [PMID: 38824844 DOI: 10.1016/j.atherosclerosis.2024.117579] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for advancements in risk assessment and management strategies. Although significant progress has been made recently, identifying and managing apparently healthy individuals at a higher risk of developing atherosclerosis and those with subclinical atherosclerosis still poses significant challenges. Traditional risk assessment tools have limitations in accurately predicting future events and fail to encompass the complexity of the atherosclerosis trajectory. In this review, we describe novel approaches in biomarkers, genetics, advanced imaging techniques, and artificial intelligence that have emerged to address this gap. Moreover, polygenic risk scores and imaging modalities such as coronary artery calcium scoring, and coronary computed tomography angiography offer promising avenues for enhancing primary cardiovascular risk stratification and personalised intervention strategies. On the other hand, interventions aiming against atherosclerosis development or promoting plaque regression have gained attention in primary ASCVD prevention. Therefore, the potential role of drugs like statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, omega-3 fatty acids, antihypertensive agents, as well as glucose-lowering and anti-inflammatory drugs are also discussed. Since findings regarding the efficacy of these interventions vary, further research is still required to elucidate their mechanisms of action, optimize treatment regimens, and determine their long-term effects on ASCVD outcomes. In conclusion, advancements in strategies addressing atherosclerosis prevention and plaque regression present promising avenues for enhancing primary ASCVD prevention through personalised approaches tailored to individual risk profiles. Nevertheless, ongoing research efforts are imperative to refine these strategies further and maximise their effectiveness in safeguarding cardiovascular health.
Collapse
Affiliation(s)
- Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Yusuf Ziya Sener
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elena Rodriguez-Sanchez
- Division of Cardiology, Department of Medicine, Department of Physiology, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Jan Novak
- 2(nd) Department of Internal Medicine, St. Anne's University Hospital in Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Apellaniz-Ruiz
- Genomics Medicine Unit, Navarra Institute for Health Research - IdiSNA, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ralph Kwame Akyea
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, United Kingdom
| | - Vanessa Bianconi
- Department of Medicine and Surgery, University of Perugia, Italy
| | - Alexandr Ceasovschih
- Internal Medicine Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - Mariia Cherska
- Cardiology Department, Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Joana Rita Chora
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Mario D'Oria
- Division of Vascular and Endovascular Surgery, Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nadiia Demikhova
- Sumy State University, Sumy, Ukraine; Tallinn University of Technology, Tallinn, Estonia
| | | | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l'institut du Thorax, Nantes, France
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Krishnaraj Rathod
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Barts Interventional Group, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Vasily Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Svetlana Stoica
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Institute of Cardiovascular Diseases Timisoara, Timisoara, Romania
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Tatyana Storozhenko
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Prevention and Treatment of Emergency Conditions, L.T. Malaya Therapy National Institute NAMSU, Kharkiv, Ukraine
| | - Jamol Uzokov
- Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | | | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336, Munich, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074, Aachen, Germany
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Mylonas N, Nikolaou PE, Karakasis P, Stachteas P, Fragakis N, Andreadou I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7274. [PMID: 39000380 PMCID: PMC11242615 DOI: 10.3390/ijms25137274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Panagiotis Stachteas
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| |
Collapse
|
24
|
Buttice L, Ghani M, Suthakar J, Gnanalingham S, Carande E, Kennedy BWC, Pitcher A, Gamble JHP, Ahmad M, Lewis A, Jüni P, Rider OJ, Stephens JW, Bray JJH. The effect of sodium-glucose cotransporter-2 inhibitors on inflammatory biomarkers: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2024; 26:2706-2721. [PMID: 38602398 DOI: 10.1111/dom.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
AIMS To conduct a meta-analysis of randomized controlled trials (RCTs) to assess the effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on inflammatory biomarkers. METHODS Medline, Embase and the Cochrane Library were searched for RCTs investigating the effect of SGLT2 inhibitors on inflammatory biomarkers, adipokine profiles and insulin sensitivity. RESULTS Thirty-eight RCTs were included (14 967 participants, 63.3% male, mean age 62 ± 8.6 years) with a median (interquartile range) follow-up of 16 (12-24) weeks. Meta-analysis showed that SGLT2 inhibitors significantly improved adiponectin, interleukin-6, tumour necrosis factor receptor-1 (vs. placebo alone: standardized mean difference [SMD] 0.34 [95% confidence interval {CI} 0.23, 0.45], mean difference [MD] -0.85 pg/mL [95% CI -1.32, -0.38], SMD -0.13 [95% CI -0.20, -0.06], respectively), leptin and homeostatic model assessment of insulin resistance index (vs. CONTROL SMD -0.20 [95% CI -0.33, -0.07], MD -0.83 [95% CI -1.32, -0.33], respectively). There were no significant changes in C-reactive protein (CRP), tumour necrosis factor-α, plasminogen activator inhibitor-1, fibroblast growth factor-21 or monocyte chemoattractant protein-1. CONCLUSIONS Our analysis shows that SGLT2 inhibitors likely improve adipokine biomarkers and insulin sensitivity, but there is little evidence that SGLT2 inhibitors improve other inflammatory biomarkers including CRP.
Collapse
Affiliation(s)
| | | | | | | | - Elliott Carande
- Grange University Hospital, Cwmbran, UK
- Institute of Life Sciences 2, Swansea Bay University Health Board and Swansea University Medical School, Swansea, UK
| | | | - Alex Pitcher
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | - Andrew Lewis
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Peter Jüni
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jeffrey W Stephens
- Institute of Life Sciences 2, Swansea Bay University Health Board and Swansea University Medical School, Swansea, UK
- Diabetes Research Group, School of Medicine, Swansea University, Swansea, UK
| | - Jonathan J H Bray
- University College London (UCL), London, UK
- Institute of Life Sciences 2, Swansea Bay University Health Board and Swansea University Medical School, Swansea, UK
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
25
|
Mani S, Balasubramanian A, Veluswami K, Rao S, Aggarwal S. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Cardiovascular Outcomes: A Review of Literature. Cureus 2024; 16:e63796. [PMID: 39099905 PMCID: PMC11297731 DOI: 10.7759/cureus.63796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Coronary arterial diseases are a major contributor to disease and death worldwide and are most often compounded by several other underlying medical conditions. A key concern is type 2 diabetes mellitus (T2DM). Despite progress in medical advancements, these life-threatening illnesses are still underdiagnosed and undermanaged. A relatively newer class of anti-diabetic drugs, the sodium-glucose cotransporter-2 inhibitors (SGL2-Is), also termed gliflozins, have shown promising results in reducing cardiovascular risk, regardless of diabetic status. These drugs have on-target (promoting renal glycosuria and diuresis by acting on the SGLT-2 channels in the proximal convoluted tubule) and off-target effects contributing to the reported cardiovascular benefit. Some emerging theories about its impact on myocardial energetics, calcium balance, and renal physiology exist. In this review article, we explored three major cardiovascular outcome trials: the Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58 (DECLARE-TIMI 58) trial, the CANagliflozin cardioVascular Assessment Study (CANVAS) program, and the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose (EMPA-REG OUTCOME) trial to evaluate the cardiovascular effects of SGLT2-Is.
Collapse
Affiliation(s)
- Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli, IND
| | | | | | - Sudipta Rao
- Internal Medicine, JSS Medical College, Mysore, IND
| | | |
Collapse
|
26
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
27
|
Tudurachi BS, Anghel L, Tudurachi A, Sascău RA, Zanfirescu RL, Stătescu C. Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications. Biomedicines 2024; 12:1314. [PMID: 38927520 PMCID: PMC11201699 DOI: 10.3390/biomedicines12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Radu Andy Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Răzvan-Liviu Zanfirescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| |
Collapse
|
28
|
Tsai HR, Lin YJ, Yeh JI, Lin SM, Liu PPS, Chang YC, Lee YC, Loh CH, Huang HK. Use of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients With Type 2 Diabetes and the Incidence of Retinal Vein Occlusion in Taiwan. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38864813 PMCID: PMC11174139 DOI: 10.1167/iovs.65.6.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/05/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose The purpose of this study was to evaluate the risk of newly diagnosed retinal vein occlusion (RVO) in patients with type 2 diabetes (T2D) using sodium-glucose cotransporter-2 inhibitors (SGLT-2i) compared to dipeptidyl peptidase-4 inhibitors (DPP-4i). Methods Claims data from the National Health Insurance Research Database of Taiwan were used in this nationwide retrospective cohort study. A target trial emulation framework was applied. Patients with T2D with no prior diagnosis of RVO who had newly commenced treatment with SGLT-2i or DPP-4i between May 1, 2016, and December 31, 2020, were included. Potential systematic differences in baseline characteristics between the paired groups were controlled using stabilized inverse probability of treatment weighting. The outcome of interest was incident RVO. The hazard ratio (HR) for SGLT-2i compared with that of DPP-4i was estimated using a Cox regression model. Results Data from 123,567 and 578,665 patients receiving SGLT-2i and DPP-4i, respectively, were analyzed. The incidence of RVO was lower in patients newly receiving SGLT-2i (0.59 events per 1000 person-years) compared to those receiving DPP-4i (0.77 events per 1000 person-years) over a mean follow-up of 1.61 years. SGLT-2i users had a significantly lower risk of developing RVO compared with DPP-4i users (HR = 0.76, 95% confidence interval [CI] = 0.59-0.98). In the individual outcome analysis, SGLT-2i use was significantly associated with a lower risk of branch RVO (HR = 0.71, 95% CI = 0.52-0.96), but not central RVO (HR = 0.84, 95% CI = 0.57-1.24). Conclusions The risk of developing RVO was lower in patients with T2D receiving SGLT-2i compared with that in those receiving DPP-4i.
Collapse
Affiliation(s)
- Hou-Ren Tsai
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Jie Lin
- Health Information Center, Tzu Chi University, Hualien, Taiwan
| | - Jih-I Yeh
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Man Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Peter Pin-Sung Liu
- Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yung-Ching Chang
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Chieh Lee
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
| | - Ching-Hui Loh
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huei-Kai Huang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
29
|
Mondal S, Pramanik S, Khare VR, Fernandez CJ, Pappachan JM. Sodium glucose cotransporter-2 inhibitors and heart disease: Current perspectives. World J Cardiol 2024; 16:240-259. [PMID: 38817648 PMCID: PMC11135334 DOI: 10.4330/wjc.v16.i5.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024] Open
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic medications with remarkable cardiovascular (CV) benefits proven by multiple randomised controlled trials and real-world data. These drugs are also useful in the prevention of CV disease (CVD) in patients with diabetes mellitus (DM). Although DM as such is a huge risk factor for CVD, the CV benefits of SGLT-2i are not just because of antidiabetic effects. These molecules have proven beneficial roles in prevention and management of nondiabetic CVD and renal disease as well. There are various molecular mechanisms for the organ protective effects of SGLT-2i which are still being elucidated. Proper understanding of the role of SGLT-2i in prevention and management of CVD is important not only for the cardiologists but also for other specialists caring for various illnesses which can directly or indirectly impact care of heart diseases. This clinical review compiles the current evidence on the rational use of SGLT-2i in clinical practice.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospitals, Siliguri 734010, West Bengal, India
| | - Vibhu Ranjan Khare
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Cornelius James Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
30
|
Sharma A, Aruna D, Beatrice A. A Study to Evaluate the Effect of Sodium-Glucose Co-transporter 2 (SGLT2) Inhibitors on Oxidative Stress Parameters in Type 2 Diabetes Mellitus Patients. Cureus 2024; 16:e58536. [PMID: 38765344 PMCID: PMC11101606 DOI: 10.7759/cureus.58536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Diabetes mellitus (DM) is a global health issue with 50 million diabetics currently residing in India. Hyperglycemia causes tissue damage due to mitochondrial overproduction of reactive oxygen species. Sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) have shown a decrease in oxidative stress by either amelioration of free-radical generation or potentiation of cellular antioxidative capacity in preclinical studies. However, there is a paucity of published clinical studies. Hence, this study was undertaken to evaluate the effect of co-administration of SGLT2i with other drugs on oxidative stress in type 2 DM (T2DM) patients. Methods A prospective, parallel, open-label study in T2DM patients attending endocrinology OPD was conducted for a period of 12 months. At the clinician's discretion, patients were grouped as SGLT2i as an add-on to standard drugs vs standard drugs alone. Blood samples were collected at baseline and at the end of 12 weeks to estimate malondialdehyde (MDA), nitric oxide (NO), and glutathione (GSH) levels. Secondary parameters - glycemic indices and lipid profile - were estimated every four weeks. Results A total of 32 patients were enrolled in the study (16 per group). There was a significant decrease in MDA (p < 0.05) and NO (p < 0.01) and a highly significant increase in GSH (p < 0.001) at 12 weeks from baseline in the SGLT2i group. A reduction in fasting blood sugar (FBS) and post-prandial blood sugar (PPBS) and a 0.56% difference in HbA1c were also noted in the SGLT2i group. Significant lowering of low-density lipoprotein (LDL, p < 0.05) and elevation in HDL levels (p < 0.05) from baseline was seen in the SGLT2i group. Conclusion Co-administration of SGLT2i with antidiabetic drugs demonstrated a significant effect in improving oxidative stress biomarkers and glycemic and lipid profiles among T2DM patients.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, IND
| | - D Aruna
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, IND
| | - Anne Beatrice
- Department of Endocrinology, Nizam's Institute of Medical Sciences, Hyderabad, IND
| |
Collapse
|
31
|
Stachteas P, Karakasis P, Patoulias D, Clemenza F, Fragakis N, Rizzo M. The effect of sodium-glucose co-transporter-2 inhibitors on markers of subclinical atherosclerosis. Ann Med 2024; 55:2304667. [PMID: 38233735 PMCID: PMC10798275 DOI: 10.1080/07853890.2024.2304667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Despite the widespread use of classical cholesterol-lowering drugs to mitigate the adverse impacts of dyslipidaemia on atherosclerosis, many patients still face a substantial residual risk of developing atherosclerotic cardiovascular disease (CVD). This risk is partially attributed to non-traditional pathophysiological pathways. Latest evidence suggests that sodium glucose co-transporter-2 (SGLT2) inhibitors are beneficial for patients suffering from type 2 diabetes mellitus (T2DM) or established CVD by reducing morbidity and mortality. However, the underlying mechanisms of this benefit have not been clearly elucidated. It has been hypothesized that one possible mechanism could be the attenuation of subclinical atherosclerosis (SA) progression. AIM The objective of this narrative review is to examine the present evidence concerning the impact of SGLT2 inhibitors on markers of SA. RESULTS The current evidence on the efficacy of SGLT2 on SA, endothelial function and arterial stiffness remains controversial. Findings from observational and randomized studies are quite heterogeneous; however, they converge that the antiatherosclerotic activity of SGLT2 inhibitors is not strong enough to be widely used for prevention of atherosclerosis progression in patients with or without T2DM. CONCLUSIONS Further research is needed to investigate the underlying mechanisms and the possible beneficial impact of SGLT2i on primary and secondary CVD prevention through attenuation of premature atherosclerosis progression.
Collapse
Affiliation(s)
- Panagiotis Stachteas
- Second Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Francesco Clemenza
- Department for the Study and Treatment of Cardiothoracic Diseases and for Cardiothoracic Transplants, Cardiology Unit, IRCCS – ISMETT, Palermo, Italy
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
32
|
Zhang Q, Deng Z, Li T, Chen K, Zeng Z. SGLT2 inhibitor improves the prognosis of patients with coronary heart disease and prevents in-stent restenosis. Front Cardiovasc Med 2024; 10:1280547. [PMID: 38274313 PMCID: PMC10808651 DOI: 10.3389/fcvm.2023.1280547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary heart disease is a narrowing or obstruction of the vascular cavity caused by atherosclerosis of the coronary arteries, which leads to myocardial ischemia and hypoxia. At present, percutaneous coronary intervention (PCI) is an effective treatment for coronary atherosclerotic heart disease. Restenosis is the main limiting factor of the long-term success of PCI, and it is also a difficult problem in the field of intervention. Sodium-glucose cotransporter 2 (SGLT2) inhibitor is a new oral glucose-lowering agent used in the treatment of diabetes in recent years. Recent studies have shown that SGLT2 inhibitors can effectively improve the prognosis of patients after PCI and reduce the occurrence of restenosis. This review provides an overview of the clinical studies and mechanisms of SGLT2 inhibitors in the prevention of restenosis, providing a new option for improving the clinical prognosis of patients after PCI.
Collapse
Affiliation(s)
| | | | | | | | - Zhihuan Zeng
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Verma S, Mudaliar S, Greasley PJ. Potential Underlying Mechanisms Explaining the Cardiorenal Benefits of Sodium-Glucose Cotransporter 2 Inhibitors. Adv Ther 2024; 41:92-112. [PMID: 37943443 PMCID: PMC10796581 DOI: 10.1007/s12325-023-02652-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/17/2023] [Indexed: 11/10/2023]
Abstract
There is a bidirectional pathophysiological interaction between the heart and the kidneys, and prolonged physiological stress to the heart and/or the kidneys can cause adverse cardiorenal complications, including but not limited to subclinical cardiomyopathy, heart failure and chronic kidney disease. Whilst more common in individuals with Type 2 diabetes, cardiorenal complications also occur in the absence of diabetes. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were initially approved to reduce hyperglycaemia in patients with Type 2 diabetes. Recently, these agents have been shown to significantly improve cardiovascular and renal outcomes in patients with and without Type 2 diabetes, demonstrating a robust reduction in hospitalisation for heart failure and reduced risk of progression of chronic kidney disease, thus gaining approval for use in treatment of heart failure and chronic kidney disease. Numerous potential mechanisms have been proposed to explain the cardiorenal effects of SGLT2i. This review provides a simplified summary of key potential cardiac and renal mechanisms underlying the cardiorenal benefits of SGT2i and explains these mechanisms in the clinical context. Key mechanisms related to the clinical effects of SGLT2i on the heart and kidneys explained in this publication include their impact on (1) tissue oxygen delivery, hypoxia and resultant ischaemic injury, (2) vascular health and function, (3) substrate utilisation and metabolic health and (4) cardiac remodelling. Knowing the mechanisms responsible for SGLT2i-imparted cardiorenal benefits in the clinical outcomes will help healthcare practitioners to identify more patients that can benefit from the use of SGLT2i.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Sunder Mudaliar
- Endocrinology/Diabetes Section, Veterans Affairs Medical Centre, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Peter J Greasley
- Early Discovery and Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
34
|
De Luca M, Crisci G, Armentaro G, Cicco S, Talerico G, Bobbio E, Lanzafame L, Green CG, McLellan AG, Debiec R, Caferra P, Scicali R, Cannatà A, Israr MZ, Heaney LM, Salzano A. Endothelial Dysfunction and Heart Failure with Preserved Ejection Fraction-An Updated Review of the Literature. Life (Basel) 2023; 14:30. [PMID: 38255646 PMCID: PMC10817572 DOI: 10.3390/life14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) is a clinical syndrome consisting of typical symptoms and signs due to structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressures and/or inadequate cardiac output. The vascular system plays a crucial role in the development and progression of HF regardless of ejection fraction, with endothelial dysfunction (ED) as one of the principal features of HF. The main ED manifestations (i.e., impaired endothelium-dependent vasodilation, increased oxidative stress, chronic inflammation, leukocyte adhesion, and endothelial cell senescence) affect the systemic and pulmonary haemodynamic and the renal and coronary circulation. The present review is aimed to discuss the contribution of ED to HF pathophysiology-in particular, HF with preserved ejection fraction-ED role in HF patients, and the possible effects of pharmacological and non-pharmacological approaches. For this purpose, relevant data from a literature search (PubMed, Scopus, EMBASE, and Medline) were reviewed. As a result, ED, assessed via venous occlusion plethysmography or flow-mediated dilation, was shown to be independently associated with poor outcomes in HF patients (e.g., mortality, cardiovascular events, and hospitalization due to worsening HF). In addition, SGLT2 inhibitors, endothelin antagonists, endothelial nitric oxide synthase cofactors, antioxidants, and exercise training were shown to positively modulate ED in HF. Despite the need for future research to better clarify the role of the vascular endothelium in HF, ED represents an interesting and promising potential therapeutic target.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100 Catanzaro, Italy
| | - Sebastiano Cicco
- Internal Medicine Unit “Guido Baccelli” and Arterial Hypertension Unit “Anna Maria Pirrelli”, Department of Precision and Regenerative Medicine and Jonic Area (DiMePReJ), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, 70124 Bari, Italy
| | | | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Kuggen, 417 56 Gothenburg, Sweden
| | - Lorena Lanzafame
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Christopher G. Green
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abbie G. McLellan
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Radek Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Paolo Caferra
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonio Cannatà
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Cardiovascular Sciences, Faculty of Life Sciences & Medicine, King’s College, London SE1 8WA, UK
| | - Muhammad Zubair Israr
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Liam M. Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Andrea Salzano
- Cardiac Unit, AORN A Cardarelli, 80131 Naples, Italy
- Cardiac Unit, University Hospital of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
35
|
Dimitriadis K, Adamopoulou E, Pyrpyris N, Sakalidis A, Leontsinis I, Manta E, Mantzouranis E, Beneki E, Soulaidopoulos S, Konstantinidis D, Fragkoulis C, Aggeli K, Tsioufis K. The effect of SGLT2 inhibitors on the endothelium and the microcirculation: from bench to bedside and beyond. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:741-757. [PMID: 37500266 DOI: 10.1093/ehjcvp/pvad053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIMS The beneficial cardiovascular effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors irrespective of the presence of diabetes mellitus are nowadays well established and they already constitute a significant pillar for the management of heart failure, irrespective of the ejection fraction. The exact underlying mechanisms accountable for these effects, however, remain largely unknown. The direct effect on endothelial function and microcirculation is one of the most well studied. The broad range of studies presented in this review aims to link all available data from the bench to bedside and highlight the existing gaps as well as the future directions in the investigations concerning the effects of SGLT2 inhibitors on the endothelium and the microcirculation. METHODS AND RESULTS An extensive search has been conducted using the MEDLINE/PubMed database in order to identify the relevant studies. Preclinical data suggest that SGLT2 inhibitors directly affect endothelial function independently of glucose and specifically via several interplaying molecular pathways, resulting in improved vasodilation, increased NO production, enhanced mitochondrial homeostasis, endothelial cell viability, and angiogenesis as well as attenuation of oxidative stress and inflammation. Clinical data systematically confirm this beneficial effect on the endothelium, whereas the evidence concerning the effect on the microcirculation is conflicting. CONCLUSION Preclinical and clinical studies indicate that SGLT2 inhibitors attenuate endothelial and microvascular dysfunction via a combination of mechanisms, which play a role in their beneficial cardiovascular effect.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eleni Adamopoulou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Athanasios Sakalidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Ioannis Leontsinis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eleni Manta
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Emmanouil Mantzouranis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Stergios Soulaidopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| |
Collapse
|
36
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
37
|
Fan G, Guo DL, Zuo H. The impact of sodium-glucose Cotransporter-2 inhibitors on lipid profile: A meta-analysis of 28 randomized controlled trials. Eur J Pharmacol 2023; 959:176087. [PMID: 37777105 DOI: 10.1016/j.ejphar.2023.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
AIM The present study aimed to evaluate the impact of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on blood lipid profile. METHODS We searched the PubMed, Cochrane Library, Medline, and EMBASE databases from the inception to July 2023 for randomized controlled trials (RCTs) comparing SGLT2i with placebo regarding lipid profile changes. The "Meta" package of R software was applied for data synthesis. RESULTS A total of 28 RCTs were included and 5192 patients participated in the present study, including 2686 patients who received SGLT2is intervention and 2506 patients who were in the control group. SGLT2is significantly increased blood low density lipoprotein cholesterol (LDL-C) levels [mean difference (MD): 0.09 mmol/L, 95% confidence interval (CI) (0.03, 0.16), 95% prediction interval (PI) (-0.06, 0.24), P = 0.0046] and high density lipoprotein cholesterol (HDL-C) levels [MD: 0.08 mmol/L, 95% CI (0.06, 0.11), 95% PI (-0.00, 0.17), P < 0.0001]. However, we observed neutral effect of SGLT2is on total cholesterol (TC) [MD: 0.08 mmol/L, 95% CI (-0.08, 0.24), 95% PI (-0.24, 0.40), P = 0.3150] and triglyceride (TG) [MD: -0.03 mmol/L, 95% CI (-0.23, 0.16), 95% PI (-0.70, 0.63), P = 0.7382]. CONCLUSION Our study determined that SGLT2is increase both LDL-C and HDL-C levels, but exerts not significant effect on TC and TG levels.
Collapse
Affiliation(s)
- Gang Fan
- Cardiology Department of Xianyang Central Hospital, Xianyang, Shaanxi Province, 712000, PR China.
| | - Dian Long Guo
- Cardiology Department of Xianyang First People's Hospital, Xianyang, Shaanxi Province, 712000, PR China
| | - Hong Zuo
- Cardiology Department of Xianyang Central Hospital, Xianyang, Shaanxi Province, 712000, PR China.
| |
Collapse
|
38
|
Jarosz-Popek J, Eyileten C, Gager GM, Nowak A, Szwed P, Wicik Z, Palatini J, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The interaction between non-coding RNAs and SGLT2: A review. Int J Cardiol 2023; 398:131419. [PMID: 39492411 DOI: 10.1016/j.ijcard.2023.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks. However, the exact molecular mechanisms responsible for those benefits have not been fully discovered. MicroRNAs (miRNA) and circularRNAs (circRNAs) are endogenous, single-stranded, non-coding RNAs (ncRNAs) that can control protein-coding genes, affecting significant molecular and cellular processes regulating homeostasis. CircRNAs particularly regulate gene expression at the transcriptional and post-transcriptional level by sponging to miRNAs and by altering interactions between proteins.
Collapse
Affiliation(s)
- Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szwed
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland
| | - Jeff Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
39
|
Peppa M, Manta A, Mavroeidi I, Asimakopoulou A, Syrigos A, Nastos C, Pikoulis E, Kollias A. Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics 2023; 15:2526. [PMID: 38004506 PMCID: PMC10675228 DOI: 10.3390/pharmaceutics15112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Type 2 diabetes mellitus is a major health problem worldwide with a steadily increasing prevalence reaching epidemic proportions. The major concern is the increased morbidity and mortality due to diabetic complications. Traditional but also nontraditional risk factors have been proposed to explain the pathogenesis of type 2 diabetes mellitus and its complications. Hyperglycemia has been considered an important risk factor, and the strict glycemic control can have a positive impact on microangiopathy but not macroangiopathy and its related morbidity and mortality. Thus, the therapeutic algorithm has shifted focus from a glucose-centered approach to a strategy that now emphasizes target-organ protection. Sodium-glucose transporter 2 inhibitors is an extremely important class of antidiabetic medications that, in addition to their glucose lowering effect, also exhibit cardio- and renoprotective effects. Various established and novel biomarkers have been described, reflecting kidney and cardiovascular function. In this review, we investigated the changes in established but also novel biomarkers of kidney, heart and vascular function associated with sodium-glucose transporter 2 inhibitors treatment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Athina Asimakopoulou
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Alexandros Syrigos
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Constantinos Nastos
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Anastasios Kollias
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| |
Collapse
|
40
|
Sun R, Yuan L, Shen Y, Shen Z, Ding B, Ma J. Impact of Fixed Combination of Metformin and Pioglitazone on Insulin Resistance of Patients with Type 2 Diabetes: Results of a Randomized Open-Label Study. Diabetes Metab Syndr Obes 2023; 16:2911-2919. [PMID: 37753480 PMCID: PMC10518260 DOI: 10.2147/dmso.s423322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
AIM To compare the effect of metformin, a fixed combination of metformin and pioglitazone, or dapagliflozin on insulin resistance in patients with newly diagnosed type 2 diabetes. METHODS In this 6-week randomized open-label trial, 58 patients were randomly assigned to insulin with metformin, a fixed combination of metformin and pioglitazone, or dapagliflozin for 4 weeks. Hyperinsulinemic euglycemic clamp tests and FreeStyle Libre Pro Sensor were used to evaluate the insulin sensitivity represented by glucose-infusion rate (M value) and glycemic control, respectively. The main outcome was changes in insulin resistance compared with baseline. RESULTS The baseline characteristics were well matched among the three groups. When compared to baseline, insulin sensitivity after treatment was significantly improved. Further study revealed that the fixed combination of metformin and pioglitazone provided superior M-value improvement compared with metformin, but not different from dapagliflozin. Moreover, a greater reduction in insulin dose was observed in the fixed combination of metformin and pioglitazone group than the metformin or dapagliflozin group. However, there were no significant differences in the parameters of glycemic control within the groups. CONCLUSION In patients with newly diagnosed type 2 diabetes, a fixed combination of metformin and pioglitazone provided greater improvement in insulin resistance than metformin alone and similar changes in insulin resistance to dapagliflozin.
Collapse
Affiliation(s)
- Rui Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lu Yuan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yun Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
41
|
Meng Q, Ma J, Suo L, Pruekprasert N, Chakrapani P, Cooney RN. Galantamine improves glycemic control and diabetic nephropathy in Lepr db/db mice. Sci Rep 2023; 13:15544. [PMID: 37731032 PMCID: PMC10511534 DOI: 10.1038/s41598-023-42665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Galantamine, a centrally acting acetylcholinesterase inhibitor, has been shown to attenuate inflammation and insulin resistance in patients with metabolic syndrome. We investigated the effects of galantamine on glycemic control and development of diabetic nephropathy (DN) in Leprdb/db mice. Galantamine significantly reduced food intake, body weight, blood glucose and HbA1c levels. Insulin resistance (HOMA-IR, QUICKI), HOMA-β and elevations in plasma inflammatory cytokine levels (TNF-α, IL-6 and HMGB-1) were all attenuated by galantamine. Galantamine also ameliorated diabetes-induced kidney injury as evidenced by improvements in renal function (BUN, creatinine, albuminuria), histologic injury and apoptosis. Improved glycemic control and nephropathy were associated with increased circulating GLP-1, decreased renal P-38 MAPK and caspase-1 activation and reduced SGLT-2 expression. These findings provide insights into the mechanisms by which galantamine improves glycemic control and attenuates DN in the Leprdb/db mouse model.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Julia Ma
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Prithi Chakrapani
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
42
|
Tai S, Zhou Y, Fu L, Ding H, Zhou Y, Yin Z, Yang R, Liu Z, Zhou S. Dapagliflozin impedes endothelial cell senescence by activating the SIRT1 signaling pathway in type 2 diabetes. Heliyon 2023; 9:e19152. [PMID: 37664712 PMCID: PMC10469571 DOI: 10.1016/j.heliyon.2023.e19152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) clinically reduce atherosclerosis and lower blood pressure. However, their impact on endothelial dysfunction in type 2 diabetes (T2D) remains unclear. In this study, we investigated the protective effect and underlying mechanism of the SGLT2 inhibitor dapagliflozin in diabetes. Methods Vascular reactivity was measured to assess the vasoprotective effect of dapagliflozin in a mouse model of high glucose (HG)-induced T2D. Pulse wave velocity was measured to quantify arterial stiffness. Protein expression was assessed by western blotting and immunofluorescence, oxidative stress was evaluated using dihydroethidium, nitric oxide was evaluated using the Griess reaction, and cellular senescence was assessed based on senescence-associated beta-galactosidase (SA-β-gal) activity and the expression of senescence markers. Furthermore, the endothelial nitric oxide synthase (eNOS) acetylation status was determined and eNOS interactions with SIRT1 were evaluated by coimmunoprecipitation assays. Results Dapagliflozin protected against impaired endothelium-dependent vasorelaxation and improved arterial stiffness in the mouse model of T2D; mouse aortas had significantly reduced levels of senescence activity and senescence-associated inflammatory factors. HG-induced increases in senescence activity, protein marker levels, and oxidative stress in vitro were all ameliorated by dapagliflozin. The decreases in eNOS phosphorylation and nitric oxide (NO) production in senescent endothelial cells were restored by dapagliflozin. SIRT1 expression was reduced in HG-induced senescent endothelial cells, and dapagliflozin restored SIRT1 expression. SIRT1 inhibition diminished the antisenescence effects of dapagliflozin. Coimmunoprecipitation showed that SIRT1 was physically associated with eNOS, suggesting that the effects of dapagliflozin are dependent on SIRT1 activation. Conclusion These findings indicate that dapagliflozin protects against endothelial cell senescence by regulating SIRT1 signaling in diabetic mice.
Collapse
Affiliation(s)
- Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Zhou
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyao Fu
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiqing Ding
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yuying Zhou
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rukai Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhenjiang Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
43
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Significance of Endothelial Dysfunction Amelioration for Sodium-Glucose Cotransporter 2 Inhibitor-Induced Improvements in Heart Failure and Chronic Kidney Disease in Diabetic Patients. Metabolites 2023; 13:736. [PMID: 37367894 DOI: 10.3390/metabo13060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Beyond lowering plasma glucose levels, sodium-glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression of cardiovascular disease (CVD), but is also associated with the progression of CKD. In patients with type 2 diabetes, hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia induce the development of endothelial dysfunction. SGLT2is have been shown to improve endothelial dysfunction, as assessed by flow-mediated vasodilation, in individuals at high risk of CVD. Along with an improvement in endothelial dysfunction, SGLT2is have been shown to improve oxidative stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of glycation end products, and nitric oxide bioavailability. The improvements in endothelial dysfunction and such endothelium-derived factors may play an important role in preventing the development of coronary artery disease, coronary microvascular dysfunction and diabetic cardiomyopathy, which cause HF, and play a role in retarding CKD. The suppression of the development of HF and the progression of CKD achieved by SGLT2is might have been largely induced by their capacity to improve vascular endothelial function.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
44
|
Kishimoto S, Higashi Y, Imai T, Eguchi K, Fukumoto K, Tomiyama H, Maemura K, Tanaka A, Node K. Lack of impact of ipragliflozin on endothelial function in patients with type 2 diabetes: sub-analysis of the PROTECT study. Cardiovasc Diabetol 2023; 22:119. [PMID: 37210524 PMCID: PMC10199575 DOI: 10.1186/s12933-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND We assessed the impact of 24 months of treatment with ipragliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on endothelial function in patients with type 2 diabetes as a sub-analysis of the PROTECT study. METHODS In the PROTECT study, patients were randomized to receive either standard antihyperglycemic treatment (control group, n = 241 ) or add-on ipragliflozin treatment (ipragliflozin group, n = 241) in a 1:1 ratio. Among the 482 patients in the PROTECT study, flow-mediated vasodilation (FMD) was assessed in 32 patients in the control group and 26 patients in the ipragliflozin group before and after 24 months of treatment. RESULTS HbA1c levels significantly decreased after 24 months of treatment compared to the baseline value in the ipragliflozin group, but not in the control group. However, there was no significant difference between the changes in HbA1c levels in the two groups (7.4 ± 0.8% vs. 7.0 ± 0.9% in the ipragliflozin group and 7.4 ± 0.7% vs. 7.3 ± 0.7% in the control group; P = 0.08). There was no significant difference between FMD values at baseline and after 24 months in both groups (5.2 ± 2.6% vs. 5.2 ± 2.6%, P = 0.98 in the ipragliflozin group; 5.4 ± 2.9% vs. 5.0 ± 3.2%, P = 0.34 in the control group). There was no significant difference in the estimated percentage change in FMD between the two groups (P = 0.77). CONCLUSIONS Over a 24-month period, the addition of ipragliflozin to standard therapy in patients with type 2 diabetes did not change endothelial function assessed by FMD in the brachial artery. TRIAL REGISTRATION Registration Number for Clinical Trial: jRCT1071220089 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1071220089 ).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| | - Takumi Imai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazuo Eguchi
- Department of General Internal Medicine, Saitama Red Cross Hospital, Saitama, Japan
| | - Kazuo Fukumoto
- Department of Medical Education and General Practice, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| |
Collapse
|
45
|
Balogh DB, Wagner LJ, Fekete A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: Focus on Inflammation, Oxidative Stress, and Fibrosis. Int J Mol Sci 2023; 24:7789. [PMID: 37175496 PMCID: PMC10177821 DOI: 10.3390/ijms24097789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.
Collapse
Affiliation(s)
- Dora Bianka Balogh
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| | - Laszlo Jozsef Wagner
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Fekete
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| |
Collapse
|
46
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
47
|
Kudo A, Machii N, Ono T, Saito H, Oshiro Y, Takahashi R, Oshiro K, Taneda Y, Higa M, Nakachi K, Yagi S, Masuzaki H, Sata M, Shimabukuro M. Effect of dapagliflozin on 24-hour glycemic variables in Japanese patients with type 2 diabetes mellitus receiving basal insulin supported oral therapy (DBOT): a multicenter, randomized, open-label, parallel-group study. BMJ Open Diabetes Res Care 2023; 11:11/2/e003302. [PMID: 37028805 PMCID: PMC10083793 DOI: 10.1136/bmjdrc-2022-003302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/04/2023] [Indexed: 04/09/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the impacts of dapagliflozin on 24-hour glucose variability and diabetes-related biochemical variables in Japanese patients with type 2 diabetes who had received basal insulin supported oral therapy (BOT). RESEARCH DESIGN AND METHODS Changes in mean daily blood glucose level before and after 48-72 hours of add-on or no add-on of dapagliflozin (primary end point) and diabetes-related biochemical variables and major safety variables during the 12 weeks (secondary end point) were evaluated in the multicenter, randomized, two-arm, open-label, parallel-group comparison study. RESULTS Among 36 participants, 18 were included in the no add-on group and 18 were included in the dapagliflozin add-on group. Age, gender, and body mass index were comparable between the groups. There were no changes in continuous glucose monitoring metrics in the no add-on group. In the dapagliflozin add-on group, mean glucose (183-156 mg/dL, p=0.001), maximum glucose (300-253, p<0.01), and SD glucose (57-45, p<0.05) decreased. Time in range increased (p<0.05), while time above the range decreased in the dapagliflozin add-on group but not in the no add-on group. After 12-week treatment with dapagliflozin add-on, 8-hydroxy-2'-deoxyguanosine (8OHdG), as well as hemoglobin A1c (HbA1c), decreased. CONCLUSIONS This study showed that the mean daily blood glucose and other daily glucose profiles were amended after 48-72 hours of dapagliflozin add-on in Japanese patients with type 2 diabetes who received BOT. The diabetes-related biochemical variables such as HbA1c and urinary 8OHdG were also obtained during the 12 weeks of dapagliflozin add-on without major adverse events. A preferable 24-hour glucose profile in 'time in ranges' and an improvement in reactive oxygen species by dapagliflozin warrant us to evaluate these benefits in larger clinical studies. TRIAL REGISTRATION NUMBER UMIN000019457.
Collapse
Affiliation(s)
- Akihiro Kudo
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Noritaka Machii
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshio Ono
- Department of Diabetes and Endocrinology, Iwaki City Medical Center, Iwaki, Japan
| | - Haruka Saito
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Ryu Takahashi
- Department of Diabetes and Endocrinology, Ohama Daiichi Hospital, Naha, Japan
| | | | | | - Moritake Higa
- Department of Diabetes and Lifestyle-Related Disease Center, Tomishiro Central Hospital, Tomigusuku, Japan
| | - Ken Nakachi
- Department of Diabetes and Endocrinology, Shonan Hospital, Okinawa, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology and Metabolism, Second Department of Internal Medicine, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
48
|
Yaribeygi H, Maleki M, Atkin SL, Kesharwani P, Jamialahmadi T, Sahebkar A. Anti‐inflammatory effects of sodium‐glucose cotransporter‐2 inhibitors in COVID‐19. IUBMB Life 2023. [DOI: 10.1002/iub.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/13/2023] [Indexed: 03/29/2023]
|
49
|
Salemkour Y, Lenoir O. Endothelial Autophagy Dysregulation in Diabetes. Cells 2023; 12:947. [PMID: 36980288 PMCID: PMC10047205 DOI: 10.3390/cells12060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a major public health issue that affected 537 million people worldwide in 2021, a number that is only expected to increase in the upcoming decade. Diabetes is a systemic metabolic disease with devastating macro- and microvascular complications. Endothelial dysfunction is a key determinant in the pathogenesis of diabetes. Dysfunctional endothelium leads to vasoconstriction by decreased nitric oxide bioavailability and increased expression of vasoconstrictor factors, vascular inflammation through the production of pro-inflammatory cytokines, a loss of microvascular density leading to low organ perfusion, procoagulopathy, and/or arterial stiffening. Autophagy, a lysosomal recycling process, appears to play an important role in endothelial cells, ensuring endothelial homeostasis and functions. Previous reports have provided evidence of autophagic flux impairment in patients with type I or type II diabetes. In this review, we report evidence of endothelial autophagy dysfunction during diabetes. We discuss the mechanisms driving endothelial autophagic flux impairment and summarize therapeutic strategies targeting autophagy in diabetes.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- PARCC, Inserm, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
50
|
Kourtidou C, Rafailidis V, Varouktsi G, Kanakis E, Liakopoulos V, Vyzantiadis TA, Savopoulos C, Marinaki S, Stangou M, Tziomalos K. Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage. J Pers Med 2023; 13:536. [PMID: 36983717 PMCID: PMC10052523 DOI: 10.3390/jpm13030536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Sodium glucose co-transporter 2 (SGLT2) inhibitors reduce cardiovascular morbidity and delay the progression of kidney disease in patients with type 2 diabetes mellitus (T2DM). However, the mechanisms underpinning these benefits are not entirely clear. More specifically, it is uncertain whether these agents exert cardiorenal protective effects through a direct action on the vascular wall. The aim of the present study was to evaluate the effects of SGLT2 inhibitors on markers of subclinical vascular damage. METHODS In total, 40 adult patients with T2DM and glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 and age- and gender-matched patients with T2DM and GFR > 60 mL/min/1.73 m2 were consecutively enrolled. Indices of arterial stiffness (pulse wave velocity, augmentation index (AIx), AIx adjusted to a heart rate of 75 beats/min (Alx@75) and central systolic, diastolic, pulse and mean pressure), carotid atherosclerosis (stenosis, intima-media thickness (cIMT) and maximal plaque thickness) and peripheral arterial disease (ankle brachial index (ABI)) were determined. The chi-squared and Mann-Whitney U-test were used to detect differences in categorical and continuous variables between groups, respectively. RESULTS In total, 15 patients were treated with SGLT2 inhibitors and 25 patients were not receiving these agents. Serum low-density lipoprotein cholesterol levels were lower in the former whereas other cardiovascular risk factors, the prevalence of established cardiovascular disease, anthropometric and demographic characteristics, and vital signs did not differ between the 2 groups. The AIx was lower in patients treated with SGLT2 inhibitors (21.9 ± 11.3 vs. 29.7 ± 12% in patients not treated with SGLT2 inhibitors; p < 0.05). The AIx@75 was also lower in the former (21.3 ± 10.9 and 32.6 ± 11.3%, respectively, p < 0.005). Other markers of arterial stiffness were similar in the 2 groups. In addition, markers of carotid atherosclerosis and the ABI did not differ between patients treated and not treated with SGLT2 inhibitors. CONCLUSIONS Treatment with SGLT2 inhibitors appears to reduce arterial stiffness. Accordingly, these agents might improve cardiovascular outcomes not only in patients with T2DM and established cardiorenal disease but also in lower-risk patients.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Vasileios Rafailidis
- Department of Radiology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Garyfallia Varouktsi
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Efthimios Kanakis
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | | | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|