1
|
Yuxuan H, Sixu R, Chenglin L, Xiufen Z, Cuilin Z. Targeting mitochondria quality control for myocardial ischemia-reperfusion injury. Mitochondrion 2025:102046. [PMID: 40419068 DOI: 10.1016/j.mito.2025.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025]
Abstract
Cardiovascular disease (CVD) remains the leading global cause of mortality. Acute myocardial infarction (AMI) refers to acute myocardial ischemia resulting from thrombosis secondary to coronary atherosclerosis, which poses a major threat to human health. Clinically, timely revascularization (reperfusion) represents the basis of clinical treatment for AMI. However, secondary myocardial ischemia-reperfusion injury (MIRI) caused by reperfusion often exacerbates damage, representing a major challenge in clinical practice. Mitochondria represent essential organelles for maintaining cardiac function and cellular bioenergetics in MIRI. In recent years, the role of mitochondrial quality control (MQC) in maintaining cell homeostasis and mediating MIRI has been extensively studied. This review provides a concise overview of MQC mechanisms at the molecular, organelle, and cellular levels and their possible complex regulatory network in MIRI. In addition, potential treatment strategies targeting MQC to mitigate MIRI are summarized, highlighting the gap between current preclinical research and clinical transformation. Overall, this review provides theoretical guidance for further research and clinical translational studies.
Collapse
Affiliation(s)
- He Yuxuan
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Ren Sixu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Liu Chenglin
- China-Japan Union Hospital of Jilin University, Changchun City 130033 Jilin Province, China
| | - Zheng Xiufen
- Department of Surgery, Western University, Ontario, Canada
| | - Zhu Cuilin
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Jia F, Jiang W, Zhang Y, Zhang L, Han T, Liu D, Xue J, Deng F. Biomarkers Related to Interferon-γ Pathway in Myocardial Ischemia-Reperfusion Injury and the Potential Molecular Mechanisms. Cardiovasc Toxicol 2025:10.1007/s12012-025-09999-x. [PMID: 40346414 DOI: 10.1007/s12012-025-09999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
Although reperfusion therapy can reduce the mortality of myocardial infarction, it results in myocardial ischemia-reperfusion injury (MIRI). The molecular mechanism by which the interferon-γ pathway affects MIRI is unclear, so we addressed this problem by mining transcriptome and single-cell sequencing data. The GSE160516 and GSE83472 datasets, single cell RNA sequencing (scRNA-seq) data of GSE227088 dataset and 182 interferon-γ pathway related genes (IRGs) were retrieved and incorporated into this study. The differentially expressed genes (DEGs) between MIRI and control samples were searched, the candidate genes were obtained by intersecting DEGs with IRGs. The protein-protein interaction (PPI) analysis was utilized for selecting key genes from candidate genes. Moreover, key genes with significant expression and consistent trend in GSE160516 and GSE83472 datasets were selected as biomarkers. The biological functions and regulatory mechanism of biomarkers were investigated by enrichment analysis and predicting the upstream molecules targeting them. Ulteriorly, cell clusters were identified via unsupervised cluster analysis and merged into different cell types by cell annotation. Cell types in which biomarkers observably and differentially expressed were selected as crucial cell types. Finally, cell communication and pseudo-time analysis were implemented based on crucial cell types. Totally 34 candidate genes were searched by overlapping 1,930 DEGs with 182 IRGs. Nine key genes were singled out from candidate genes, of which Myd88 and Trp53 were significantly upregulated in the MIRI samples of GSE160516 and GSE83472 datasets, so they were identified as biomarkers. Besides, they participated in pathways such as ribosome, spliceosome and cell cycle. Myd88 might be simultaneously regulated by mmu-miR-361-3p and mmu-miR-421-3p, and Trp53 could be regulated by Abl1 and Tead2. Totally 25 cell clusters were merged into six cell types, of which three crucial cell types (cardiomyocyte, fibroblast, and macrophage) could interact with each other through receptor-ligand. Pseudo-time analysis revealed states 1, 2, and 5 of macrophages might be associated with MIRI. Two biomarkers (Myd88 and Trp53) related to IRGs in MIRI were mined, providing a reference for elucidating the mechanism of interferon-γ pathway on MIRI.
Collapse
Affiliation(s)
- Fang Jia
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lisha Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Danmeng Liu
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an, 710061, Shaanxi, China
| | - Jiahong Xue
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Fuxue Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
Buja LM, McDonald MM, Zhao B, Narula N, Narula J, Barth RF. Insights from autopsy-initiated pathological studies of the pathogenesis and clinical manifestations of atherosclerosis and ischemic heart disease: Part II. Ischemic heart disease. Cardiovasc Pathol 2025; 76:107727. [PMID: 39956412 DOI: 10.1016/j.carpath.2025.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
CONTEXT Ischemic heart disease (IHD) due to coronary atherosclerosis constitutes the leading cause of morbidity and mortality worldwide. This review was undertaken to retrospectively analyze the lines of research that generated the evidence for our contemporary understanding of atherosclerosis-based coronary artery disease and to provide a rationale for continued support for autopsy-based research in order to make further progress in reduction of the morbidity and mortaility from IHD. OBJECTIVES To analyze the contributions of the autopsy to complement and validate other lines of investigation in determining the complex interactions between coronary artery alterations linked to the major manifestations of coronary atherosclerosis, namely, coronary thrombosis, acute myocardial infarction, and sudden cardiac death. DATA SOURCES Systematic search on PubMed to gather relevant studies concerning autopsy studies and reviews of the pathology and pathogenesis of atherosclerosis, ischemic heart disease, coronary atherosclerosis, coronary thrombosis, myocardial infarction and sudden cardiac death. CONCLUSIONS An extensive search of the published literature has confirmed the continuing importance of the autopsy as a powerful tool to understand the pathogenesis, clinical features, and therapeutic options for the treatment of atherosclerosis and its major manifestation, ischemic heart disease. This has been described in the Part I companion of the present review. Autopsy-initiated studies have documented the prevalence and clinicopathological significance of atherosclerosis in different human populations and its relationship to risk factors. It has been shown that the clinically silent phase of ischemic heart disease (IHD) begins in the first decades of life. Pathological studies have clarified the complex relationship between coronary atherosclerosis, coronary thrombosis, and myocardial ischemic events. These studies also have elucidated the pathological basis of sudden cardiac death. Insights from these studies also have been important in developing and evaluating strategies for continued progress in reducing the morbidity and mortality attributed to atherosclerosis and IHD.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA.
| | | | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Jagat Narula
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Qiu S, Chen H, Jiang Q. Sevoflurane pretreatment alleviates hypoxia-reoxygenation-induced myocardial cell injury by upregulating miR-21-5p. Front Cardiovasc Med 2025; 12:1515160. [PMID: 40236258 PMCID: PMC11998032 DOI: 10.3389/fcvm.2025.1515160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Background This study investigates the preventive benefits of sevoflurane against myocardial ischemia-reperfusion (I/R) injury, focusing on its effect on the modulation of miR-21-5p. Methods In the clinical study, patients with a history of myocardial ischemia or other conditions requiring surgery were enrolled. Before surgery, the patients were anesthetized with either sevoflurane or propofol. The expression levels of IMA, H-FABP, IL-1β, TNF-α, and IL-6 were also examined. Additionally, the expression of miR-21-5p and its relationships with IMA and H-FABP. A cardiomyocyte hypoxia/reoxygenation (H/R) cell model was created for the in vitro tests. The cells were treated with or without sevoflurane and then transfected with inhibitors of miR-21-5p or a negative control (NC). Evaluations were conducted on cell viability, apoptosis ratio, and oxidative stress indicators (MDA, SOD, and ROS). Furthermore, the expression levels of miR-21-5p, apoptotic markers (BCL-2, BAX), myocardial damage markers (IMA, H-FABP), and inflammatory agents (TNF-α, IL-1β, IL-6) were quantified. Results In patients with a history of myocardial ischemia, sevoflurane reduced myocardial I/R injury. These patients also showed upregulation of miR-21-5p, which expression positively linked with levels of IMA. Moreover, in H/R treated cardiac cells, sevoflurane markedly reduced the expression of BAX, MDA, ROS, SOD, inflammatory factor and the apoptotic ratio. Nevertheless, inhibition of miR-21-5p abolished these protective effects. Furthermore, in H/R myocardial cells, sevoflurane increased BCL-2 expression and cell survival; these effects were also countered by blocking miR-21-5p. Conclusion Mechanistically, we demonstrate for the first time that sevoflurane alleviates myocardial cell injury in myocardial I/R by upregulating miR-21-5p, thereby reducing inflammation, apoptosis, and oxidative stress in myocardial cells. This finding provides a potential therapeutic target for improving myocardial I/R.
Collapse
Affiliation(s)
- Saiwen Qiu
- Department of Anesthesiology, Lanxi Traditional Chinese Medicine Hospital, Lanxi, Zhejiang, China
| | - Hui Chen
- Department of Anesthesiology, Lanxi People’s Hospital, Lanxi, Zhejiang, China
| | - Qifang Jiang
- Department of Anesthesiology, Lanxi Traditional Chinese Medicine Hospital, Lanxi, Zhejiang, China
| |
Collapse
|
5
|
Xiao J, Wu P, Wang L, Luo J, Wang Y, Cheng Y, Zhang R, Liu Z. Pubescenoside D Ameliorates Myocardial Ischemia-Reperfusion Injury via Preventing the Dissociation of HK2 and Promoting Mitophagy by Targeting GSK-3β. Phytother Res 2025; 39:1578-1591. [PMID: 39916296 DOI: 10.1002/ptr.8434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/11/2025]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) is a critical challenge for acute myocardial infarction therapy, as there is currently no ideal drug available. Glycogen synthase kinase 3 beta (GSK-3β) serves as an promising therapeutic target for treating MI/RI. Our previous studies have demonstrated that Ilex pubescens ameliorates MI/RI. The purpose of this study is to evaluate the therapeutic efficacy and potential mechanism of the screened GSK-3β inhibitor from Ilex pubescens against MI/RI. Three-dimensional-quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, the oxygen and glucose deprivation/reperfusion (OGD/R) and left anterior descending (LAD) artery ligation-induced MI/RI mice model, and western blotting analysis were used to screen and investigate the myocardial protective efficacy and mechanism. Here, we screened Pubescenoside D (PBD) as a GSK-3β inhibitor with an IC50 value of 0.3769 μM from Ilex pubescens, using 3D-QSAR modeling, molecular docking, and kinase assay verification. Ile217, Leu88, Phe93, and Phe67 are the key binding sites for PBD and GSK-3β. PBD protects cardiomyocytes against MI/RI in vitro and in vivo. Further mechanism studies show that PBD inhibits mitochondrial permeability transition pore (mPTP) opening by preventing GSK-3β-mediated the dissociation of hexokinase2 (HK2) from the outer membrane of the mitochondria and enhances mitophagy by suppressing GSK-3β activity, subsequently reducing cardiomyocyte apoptosis. Our findings shed light on the efficacy of PBD as a promising therapeutic agent in the treatment of MI/RI targeting GSK-3β.
Collapse
Affiliation(s)
- Juanlan Xiao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lili Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianmin Luo
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Tekiyeh Maroof N, Mehrzadi S, Naseroleslami M, Aboutaleb N. Apelin13 Loaded Nano-Niosomes Confer Cardioprotection in a Rat Model of Myocardial Ischemia Reperfusion by Targeting the Nrf2/HO-1 Pathway. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10597-z. [PMID: 39971890 DOI: 10.1007/s12265-025-10597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Although apelin-13 has cardioprotective impact, its short half-life in the bloodstream has challenged its clinical application. Using nanocarriers can increase the bioavailability, functionality, and stability of drugs. Current investigation aims to find whether apelin13-loaded nano-niosomes confer cardioprotection in an animal model of myocardial ischemia/reperfusion injury (MI/R) via suppressing ferroptosis, targeting Nrf2 pathway, and AMPK/GSK-3β axis. Ligation of the left anterior coronary artery descending was done to establish the MI/R model and 15 μg/kg of apelin13-loaded nano-niosomes were intramyocardially administrated. Echocardiography, RT-PCR, immunohistochemistry, western blot, ELISA kits, and H&E staining were applied to measure the related indicators. Treatment with both apelin13 and apelin13 loaded nano-niosomes could improve cardiac function and attenuate oxidative stress, myocardial inflammatory factors, and hence ferroptosis by activating the Nrf2 and its downstream proteins HO1, NQO1, AMPK/GSK-3β signaling pathway. In conclusion, apelin13-loaded nano-niosomes are effective MI therapeutic agents against MI/R-induced ferroptosis by activation of Nrf2 via AMPK/GSK-3β axis.
Collapse
Affiliation(s)
- Neda Tekiyeh Maroof
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rolland TJ, Hudson ER, Graser LA, Zahra S, Cucinotta D, Sonkawade SD, Sharma UC, Weil BR. Mitochondrial DNA-Mediated Immune Activation After Resuscitation from Cardiac Arrest. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322318. [PMID: 40034769 PMCID: PMC11875248 DOI: 10.1101/2025.02.14.25322318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Post-cardiac arrest syndrome (PCAS) is characterized by a robust inflammatory response that contributes to significant morbidity and mortality among patients resuscitated from sudden cardiac arrest (SCA). Mitochondrial DNA (mtDNA), with its bacterial-like genomic motifs, has been implicated as a damage-associated molecular pattern in other inflammatory contexts, but its role as a pro-inflammatory stimulus in PCAS has not been studied. Accordingly, the present study was designed to determine if PCAS is characterized by a rise in circulating mtDNA and, if so, whether mtDNA is selectively released, how it activates immune cells, and if targeting mtDNA-sensing pathways attenuates leukocyte activation. Methods Plasma mtDNA and nuclear DNA (nucDNA) levels were measured in peripheral blood samples collected ∼4-hours post-ROSC from swine with PCAS (n=8) and patients hospitalized after resuscitation from out-of-hospital cardiac arrest (OHCA; n= 57). Additionally, in vitro studies were performed where porcine peripheral blood mononuclear cells (PBMCs) were treated with mtDNA or extracellular vesicles (EVs) isolated from post-ROSC plasma. Pharmacological inhibitors were utilized to inhibit toll-like receptor 9 (TLR9)- and cyclic GMP-AMP synthase (cGAS)-mediated mtDNA sensing. Results A significant ∼250-fold elevation in circulating mtDNA was observed shortly after ROSC in swine despite negligible changes in circulating nucDNA, suggesting selective release of mtDNA in PCAS. This finding was corroborated in human OHCA survivors, in which circulating mtDNA was similarly elevated during the early post-ROSC period. Circulating mtDNA was largely encapsulated within EVs in swine and humans, suggesting a conserved mechanism of release across species. In vitro studies demonstrated that PBMC internalization of mtDNA-containing-EVs was required for immune activation and promoted development of a pro-inflammatory leukocyte phenotype characterized by altered surface marker expression and increased release of TNFα, IL-1β, and IL-6. Disrupting EVs or degrading enclosed DNA attenuated these responses, which were partially restored upon reintroduction of mtDNA. Pharmacological blockade of TLR9 or cGAS pathways significantly reduced mtDNA-induced inflammation, providing insight regarding signaling pathways that may be targeted to modulate mtDNA-mediated immune activation in PCAS. Conclusions These novel findings demonstrate that brief whole-body ischemia and reperfusion in the context of resuscitation from SCA triggers selective mtDNA release, primarily within EVs, that acts as a potent driver of immune activation in PCAS. By linking EV-encapsulated mtDNA to TLR9 and cGAS activation, this study provides a foundation for the development of novel therapeutic interventions aimed at limiting mtDNA release or disrupting its downstream sensing pathways to enhance survival and improve outcomes after SCA. Clinical Perspective What is new?: Our study reveals that circulating mitochondrial DNA (mtDNA), primarily encapsulated in extracellular vesicles (EV), is selectively released into the bloodstream after resuscitation from sudden cardiac arrest.EV-encapsulated mtDNA triggers immune cell activation, evidenced by phenotypic shifts toward inflammatory dendritic cells and macrophages, as well as increased pro-inflammatory cytokine secretion.Pharmacological inhibition of TLR9 and cGAS pathways significantly attenuates the mtDNA-induced inflammatory response, pointing to novel therapeutic avenues for modulating post-resuscitation immune activation in patients with post-cardiac arrest syndrome (PCAS).What are the clinical implications?: Identification of mtDNA as a key driver of sterile inflammation in PCAS highlights a potential target for interventions aimed at reducing multi-organ damage and improving neurological outcomes.Therapeutic strategies to block mtDNA release or downstream signaling (e.g., TLR9/cGAS inhibition) may limit harmful pro-inflammatory cascades and bolster long-term survival following resuscitation from cardiac arrest.Early clinical screening for elevated EV-encapsulated mtDNA could help refine prognostic evaluations, complement current biomarkers, and guide personalized therapy to lessen the inflammatory burden of PCAS.
Collapse
|
8
|
Dwyer KD, Snyder CA, Coulombe KLK. Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies. Bioengineering (Basel) 2025; 12:154. [PMID: 40001674 PMCID: PMC11851968 DOI: 10.3390/bioengineering12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Myocardial infarction (MI) is a severe hypoxic event, resulting in the loss of up to one billion cardiomyocytes (CMs). Due to the limited intrinsic regenerative capacity of the heart, cell-based regenerative therapies, which feature the implantation of stem cell-derived cardiomyocytes (SC-CMs) into the infarcted myocardium, are being developed with the goal of restoring lost muscle mass, re-engineering cardiac contractility, and preventing the progression of MI into heart failure (HF). However, such cell-based therapies are challenged by their susceptibility to oxidative stress in the ischemic environment of the infarcted heart. To maximize the therapeutic benefits of cell-based approaches, a better understanding of the heart environment at the cellular, tissue, and organ level throughout MI is imperative. This review provides a comprehensive summary of the cardiac pathophysiology occurring during and after MI, as well as how these changes define the cardiac environment to which cell-based cardiac regenerative therapies are delivered. This understanding is then leveraged to frame how cell culture treatments may be employed to enhance SC-CMs' hypoxia resistance. In this way, we synthesize both the complex experience of SC-CMs upon implantation and the engineering techniques that can be utilized to develop robust SC-CMs for the clinical translation of cell-based cardiac therapies.
Collapse
Affiliation(s)
| | | | - Kareen L. K. Coulombe
- Institute for Biology, Engineering, and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA; (K.D.D.); (C.A.S.)
| |
Collapse
|
9
|
Xu H, Chen X, Luo S, Jiang J, Pan X, He Y, Deng B, Liu S, Wan R, Lin L, Tan Q, Chen X, Yao Y, He B, An Y, Li J. Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis. Redox Biol 2025; 79:103471. [PMID: 39740362 PMCID: PMC11750285 DOI: 10.1016/j.redox.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.
Collapse
Affiliation(s)
- Honglin Xu
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shangfei Luo
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yu He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liwen Lin
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bin He
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yajuan An
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
10
|
Moldovan R, Ichim VA, Beliș V. Immunohistochemical study of ATP1A3 and plakophilin 2 as new potential markers in the diagnosis of myocardial ischemia. Leg Med (Tokyo) 2025; 72:102565. [PMID: 39733715 DOI: 10.1016/j.legalmed.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Radu Moldovan
- Emergency County Hospital "Dr. Constantin Opriș", Baia Mare, Department of Forensic Medicine, Street George Coșbuc 31, Baia Mare, Maramureș, 430031, Romania.
| | - Vlad Andrei Ichim
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Internal Medicine, Street Victor Babeș 8, Cluj-Napoca, Cluj, 400347, Romania
| | - Vladimir Beliș
- University of Medicine and Pharmacy "Carol Davila" Bucharest Departament of Foresic Medicine, Street Bulevardul Eroii Sanitari 8, Bucharest, 050474, Romania
| |
Collapse
|
11
|
Yusof NLM, Yellon DM, Davidson SM. Novel Selective Cardiac Myosin-Targeted Inhibitors Alleviate Myocardial Ischaemia-Reperfusion Injury. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07663-0. [PMID: 39754660 DOI: 10.1007/s10557-024-07663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility. These CMIs are well tolerated and safe in clinical trials. We hypothesised that, by limiting hypercontraction, CMIs may reduce hypercontracture and protect hearts in the setting of ischaemia and reperfusion (IR). METHODS We investigated the ability of MYK-461 and CK-274 to inhibit hypercontracture of adult rat cardiomyocytes (ARVC) in vitro following ATP depletion. A suitable dose of CMIs for subsequent in vivo IR studies was identified using cardiac echocardiography of healthy male Sprague Dawley rats. Rats were anaesthetized and subject to coronary artery ligation for 30 min followed by 2 h of reperfusion. Prior to reperfusion, CMI or vehicle was administered intraperitoneally. Ischaemic preconditioning (IPC) was used as a positive control group. Infarct size was assessed by tetrazolium chloride staining and extent of hypercontracture was assessed by histological staining. RESULTS Treatment with CMIs inhibited ARVC hypercontracture in vitro. MYK-461 (2 mg/kg) and CK-274 (0.5 mg/kg to 2 mg/kg) significantly reduced infarct size vs. vehicle. IR caused extensive contraction band necrosis, which was reduced significantly by IPC but not by CMIs, likely due to assay limitations. GDC-0326, an inhibitor of PI3Kα, abrogated CK-274-mediated protection following IR injury. GDC-0326 reduced phosphorylation of AKT when administered together with CK-274. CONCLUSION This study identifies CMIs as novel cardioprotective agents in the setting of IR injury.
Collapse
Affiliation(s)
- Nur Liyana Mohammed Yusof
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
12
|
Aljakna Khan A, Sabatasso S. Autophagy in myocardial ischemia and ischemia/reperfusion. Cardiovasc Pathol 2025; 74:107691. [PMID: 39218167 DOI: 10.1016/j.carpath.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Myocardial infarction (MI) is a life-threatening condition that leads to loss of viable heart tissue. The best way to treat acute MI and limit the infarct size is to re-open the occluded coronary artery and restore the supply of oxygenated and nutrient-rich blood, but reperfusion can cause additional damage. Autophagy is an intracellular process that recycles damaged cytoplasmic components (molecules and organelles) by loading them into autophagosomes and degrading them in autolysosomes. Autophagy is increased in in vivo animal models of permanent ischemia and ischemia/reperfusion but by different molecular mechanisms. While autophagy is protective during permanent ischemia, it is detrimental during ischemia/reperfusion. Its modulation is being investigated as a potential target to reduce reperfusion injury. This review provides a synopsis of the current knowledge about autophagy, summarizes findings specifically in permanent ischemia and ischemia/reperfusion, and briefly discusses the potential implication of experimental findings.
Collapse
Affiliation(s)
- Aleksandra Aljakna Khan
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Unit of Forensic medicine, University Centre of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024; 985:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8 mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
14
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
15
|
Buja LM. Pathobiology of myocardial and cardiomyocyte injury in ischemic heart disease: Perspective from seventy years of cell injury research. Exp Mol Pathol 2024; 140:104944. [PMID: 39577392 DOI: 10.1016/j.yexmp.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
This review presents a perspective on the pathobiology of acute myocardial infarction, a major manifestation of ischemic heart disease, and related mechanisms of ischemic and toxic cardiomyocyte injury, based on advances and insights that have accrued over the last seventy years, including my sixty years of involvement in the field as a physician-scientist-pathologist. This analysis is based on integration of my research within the broader context of research in the field. A particular focus has been on direct measurements in cardiomyocytes of electrolyte content by electron probe X-ray microanalysis (EPXMA) and Ca2+ fluxes by fura-2 microspectrofluorometry. These studies established that increased intracellular Ca2+ develops at a transitional stage in the progression of cardiomyocyte injury in association with ATP depletion, other electrolyte alterations, altered cell volume regulation, and altered membrane phospholipid composition. Subsequent increase in total calcium with mitochondrial calcium accumulation can occur. These alterations are characteristic of oncosis, which is an initial pre-lethal state of cell injury with cell swelling due to cell membrane dysfunction in ATP depleted cells; oncosis rapidly progresses to necrosis/necroptosis with physical disruption of the cell membrane, unless the adverse stimulus is rapidly reversed. The observed sequential changes fit a three-stage model of membrane injury leading to irreversible cell injury. The data establish oncosis as the primary mode of cardiomyocyte injury in evolving myocardial infarcts. Oncosis also has been documented to be the typical form of non-ischemic cell injury due to toxins. Cardiomyocytes with less energy impairment have the capability of undergoing apoptosis and autophagic death as well as oncosis, as is seen in pathological remodeling in chronic heart failure. Work is ongoing to apply the insights from experimental studies to better understand and ameliorate myocardial ischemia and reperfusion injury in patients. The perspective and insights in this review are derived from basic principles of pathology, an integrative discipline focused on mechanisms of disease affecting the cell, the organizing unit of living organisms.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, United States of America.
| |
Collapse
|
16
|
Pan L, Fu M, Tang XL, Ling Y, Su Y, Ge J. Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07635-4. [PMID: 39531114 DOI: 10.1007/s10557-024-07635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Macrophage-mediated inflammation plays a crucial role in the pathophysiological process of myocardial ischemia/reperfusion (I/R) injury. Recent studies have highlighted the importance of mitochondrial function and inflammasome activation in the inflammatory process. Kirenol, a well-known natural compound, has been shown to regulate inflammation in various diseases. This study investigated whether Kirenol could exert anti-inflammatory effects on macrophages during myocardial I/R injury. METHODS Mouse myocardial I/R models were established by 45 min of ischemia followed by 24 h of reperfusion. Saline or Kirenol treatment was administered. In vivo assessments included the evaluation of cardiac function, infarcted area, and immune cell infiltration. Subsequently, bone marrow-derived macrophages (BMDMs) were isolated, and mitochondrial function and pyroptosis were assessed. Furthermore, the study compared the cardioprotective effects of Kirenol with a specific NOX1/NOX4 inhibitor, GKT137831. RESULTS Kirenol gavage improved cardiac function, decreased infarct area, and alleviated inflammatory infiltration in mice subjected to myocardial I/R injury. Mechanistically, Kirenol inhibited NOX1 and NOX4 and enhanced mitochondrial function, ultimately attenuating the pyroptosis of macrophages. The therapeutic effects of Kirenol and GKT137831 were not significantly different. CONCLUSION This study demonstrates that Kirenol mitigates myocardial I/R injury by inhibiting NOX1 and NOX4, restoring mitochondrial function, and ameliorating macrophage pyroptosis.
Collapse
Affiliation(s)
- Lei Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqiang Fu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang-Lin Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunlong Ling
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Nie Y, Lin L, Yang Q, Hu J, Sun M, Xiang F, Cao X, Yu J, Wang Y, Teng J, Ding X, Shen B, Zhang Z. Mitochondrial Dysfunction and Ion Imbalance in a Rat Model of Hemodialysis-Induced Myocardial Stunning. Biomedicines 2024; 12:2402. [PMID: 39457714 PMCID: PMC11504215 DOI: 10.3390/biomedicines12102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hemodialysis-induced myocardial stunning (HIMS) is a frequent complication in patients undergoing maintenance hemodialysis, characterized by transient left ventricular dysfunction due to ischemic episodes. Mitochondrial dysfunction and fluctuations in key ions such as potassium (K+) and calcium (Ca2+) are implicated in the pathogenesis of HIMS. This study aims to investigate the role of mitochondrial dysfunction and the protective potential of mitochondrial ATP-sensitive potassium channels (mitoKATP) in mitigating HIMS. Methods: A 5/6 nephrectomy rat model was established to mimic chronic kidney disease and the subsequent HIMS. The effects of mitoKATP channel modulators were evaluated by administering diazoxide (DZX), a mitoKATP opener, and 5-hydroxydecanoate (5-HD), a mitoKATP blocker, before hemodialysis. Mitochondrial function was assessed by measuring membrane potential, ATP synthase activity, and intramitochondrial Ca2+ levels. Myocardial function was evaluated using speckle tracking echocardiography. Results: Rats undergoing hemodialysis exhibited significant reductions in left ventricular strain and synchrony. DZX administration significantly improved mitochondrial function and reduced myocardial strain compared to controls. Conversely, 5-HD worsened mitochondrial swelling and disrupted myocardial function. Higher K+ and Ca2+ concentrations in the dialysate were associated with improved mitochondrial energy metabolism and myocardial strain. Conclusions: Mitochondrial dysfunction and ion imbalances during hemodialysis are key contributors to HIMS. The activation of mitoKATP channels provides mitochondrial protection and may serve as a potential therapeutic strategy to mitigate HIMS.
Collapse
Affiliation(s)
- Yuxin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Liyu Lin
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Qiang Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Minmin Sun
- Department of Echocardiography, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China;
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
18
|
Jin B, Zhang Z, Zhang Y, Yang M, Wang C, Xu J, Zhu Y, Mi Y, Jiang J, Sun Z. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol 2024; 15:1482986. [PMID: 39411064 PMCID: PMC11473306 DOI: 10.3389/fphar.2024.1482986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.
Collapse
Affiliation(s)
- Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
19
|
Tucker SM, Essajee SI, Warne CM, Dick GM, Heard MP, Crowe N, Goulopoulou S, Tune JD. Impaired balance between coronary blood flow and myocardial metabolism in postpartum swine. J Mol Cell Cardiol 2024; 194:96-104. [PMID: 38971217 DOI: 10.1016/j.yjmcc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.
Collapse
Affiliation(s)
- Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael P Heard
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Nicole Crowe
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics Loma Linda University, Loma Linda, CA, United States of America
| | - Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
20
|
Shu Q, Zhou J, Zhang B, Zhang F, Zhou X, Wu Y, Chang H, Hu L, Cai R, Yu Q. Electroacupuncture alleviates myocardial ischemia-reperfusion injury by inhibiting hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. Eur J Neurosci 2024; 60:4861-4876. [PMID: 39054660 DOI: 10.1111/ejn.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.
Collapse
Affiliation(s)
- Qi Shu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhou
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Zhang
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Zhou
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wu
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Huimin Chang
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Hu
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Ronglin Cai
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute for Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Qing Yu
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Patel KP, Baumbach A. Delineation of acute coronary syndromes: the acute total occlusion vs. ST-segment paradigm. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2024; 10:381-383. [PMID: 38637318 DOI: 10.1093/ehjqcco/qcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Kush P Patel
- Barts Heart Centre, St Bartholomew's Hospital, London, EC1A 7BE, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Andreas Baumbach
- Barts Heart Centre, St Bartholomew's Hospital, London, EC1A 7BE, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
22
|
Feng J, Han L, Liu Y, Li K, Wu Y. A bibliometric study related to the treatment of myocardial ischemia-reperfusion Injury. J Cardiothorac Surg 2024; 19:409. [PMID: 38951938 PMCID: PMC11218281 DOI: 10.1186/s13019-024-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is defined as the restoration of blood flow to the myocardium after a brief interruption of blood supply, causing more severe damage to the ischemic myocardium. However, currently, reperfusion therapy is the preferred therapy for ischemic cardiomyopathy, which undoubtedly causes MIRI, and thus it has become a challenging issue affecting the prognosis of coronary artery disease. METHODS A search was conducted in the Web of Science Core Collection database for papers relevant to MIRI therapy published between 1 January 2000 and 1 October 2023. Bibliometric analyses were performed using VOSviewer and CiteSpace to elucidate the progress and hotspots. RESULTS 3304 papers from 64 countries, 2134 research institutions and 13,228 authors were enrolled in the study. Of these, China contributed the most papers and had the biggest impact, while the United States had the most extensive partnership. The Fourth Military Medical University was the primary research institution. The most valuable authors include Chattipakorn, Nipon, Chattipakorn, Siriporn c, Yang, Jian and Yang, Yang. CONCLUSION Over the past 20 years, research on MIRI therapies has made significant strides. Further studies are necessary to explore the interactions between various therapeutic options. Future investigations will emphasize nanocarriers, cardiac regeneration, and stem cell therapies. Our study identifies MIRI research hotspots from a bibliometric perspective, forecasts future trends, and offers fresh insights into MIRI therapy research.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, 330006, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, 330006, China
| | - Yunman Liu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, 330006, China
| | - Kai Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, 330006, China.
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical college, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
23
|
Lin L, Wang L, Li A, Li Y, Gu X. CircDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through miR-338-3p/SRSF1 axis. J Bioenerg Biomembr 2024; 56:235-245. [PMID: 38613636 PMCID: PMC11116235 DOI: 10.1007/s10863-023-09992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/24/2023] [Indexed: 04/15/2024]
Abstract
Acute myocardial infarction (AMI) is one of the most prevalent cardiovascular diseases, accounting for a high incidence rate and high mortality worldwide. Hypoxia/reoxygenation (H/R)-induced myocardial cell injury is the main cause of AMI. Several studies have shown that circular RNA contributes significantly to the pathogenesis of AMI. Here, we established an AMI mouse model to investigate the effect of circDiaph3 in cardiac function and explore the functional role of circDiaph3 in H/R-induced cardiomyocyte injury and its molecular mechanism. Bioinformatics tool and RT-qPCR techniques were applied to detect circDiaph3 expression in human patient samples, heart tissues of AMI mice, and H/R-induced H9C2 cells. CCK-8 was used to examine cell viability, while annexin-V/PI staining was used to assess cell apoptosis. Myocardial reactive oxygen species (ROS) levels were detected by immunofluorescence. Western blot was used to detect the protein expression of anti-apoptotic Bcl-2 while pro-apoptotic Bax and cleaved-Caspase-3. Furthermore, ELISA was used to detect inflammatory cytokines production. While bioinformatics tool and RNA pull-down assay were used to verify the interaction between circDiaph3 and miR-338-3p. We found that circDiaph3 expression was high in AMI patients and mice, as well as in H/R-treated H9C2 cells. CircDiaph3 silencing ameliorated apoptosis and inflammatory response of cardiomyocytes in vivo. Moreover, the knockdown of cirDiaph3 mitigated H/R-induced apoptosis and the release of inflammatory mediators like IL-1β, IL-6, and TNF-α in H9C2 cells. Mechanistically, circDiaph3 induced cell apoptosis and inflammatory responses in H/R-treated H9C2 cells by sponging miR-338-3p. Overexpressing miR-338-3p in H/R-treated cells prominently reversed circDiaph3-induced effects. Notably, miR-338-3p inhibited SRSF1 expression in H/R-treated H9C2 cells. While overexpressing SRSF1 abrogated miR-338-3p-mediated alleviation of apoptosis and inflammation after H/R treatment. To summarize, circDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through the miR-338-3p/SRSF1 axis. These findings suggest that the circDiaph3/miR-338-3pp/SRSF1 axis could be a potential therapeutic target for treating H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Li Wang
- Department of Emergency, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Aimin Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Yanzhuo Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Xiaolong Gu
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China.
| |
Collapse
|
24
|
Tan H, Li W, Pang Z, Weng X, Gao J, Chen J, Wang Q, Li Q, Yang H, Dong Z, Wang Z, Zhu G, Tan Y, Fu Y, Han C, Cai S, Qian J, Huang Z, Song Y, Ge J. Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Adv Healthc Mater 2024; 13:e2303267. [PMID: 38198534 PMCID: PMC11468776 DOI: 10.1002/adhm.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two. Herein, inspired by the application research of chimeric antigen receptor macrophages (CAR-Ms) in solid tumors, a genetically modified macrophage-based synergistic drug delivery strategy that effectively challenging the three major barriers in an integrated manner is developed. This strategy involves the overexpression of exogenous macrophages with CCR2 (C-C chemokine receptor type 2) and cleavage-resistant MerTK, as well as surface clicking with liposomal PEP-20 (a CD47 antagonist). In MI/R mice model, this synergistic strategy can effectively restore cardiac efferocytosis after intravenous injection, thereby alleviating the inflammatory response, ultimately preserving cardiac function. This therapy focuses on inhibiting the initiation and promoting active resolution of inflammation, providing new insights for immune-regulatory therapy.
Collapse
Affiliation(s)
- Haipeng Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Weiyan Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityMinistry of Education826 Zhangheng Road, Pudong New AreaShanghai201210P. R. China
| | - Xueyi Weng
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jinfeng Gao
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jing Chen
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiaozi Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiyu Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Hongbo Yang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheng Dong
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhengmin Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Guangrui Zhu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yiwen Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yuyuan Fu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Chengzhi Han
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Shiteng Cai
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Juying Qian
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheyong Huang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yanan Song
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Junbo Ge
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| |
Collapse
|
25
|
Hu T, Zou HX, Zhang ZY, Wang YC, Hu FJ, Huang WX, Liu JC, Lai SQ, Huang H. Resveratrol protects cardiomyocytes against ischemia/reperfusion-induced ferroptosis via inhibition of the VDAC1/GPX4 pathway. Eur J Pharmacol 2024; 971:176524. [PMID: 38561102 DOI: 10.1016/j.ejphar.2024.176524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Nanchang, China
| | - Yi-Cheng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wen-Xiong Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
26
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
27
|
Jia Y, Pan J. CKLF1, transcriptionally activated by FOXC1, promotes hypoxia/reoxygenation‑induced oxidative stress and inflammation in H9c2 cells by NLRP3 inflammasome activation. Exp Ther Med 2024; 27:59. [PMID: 38234613 PMCID: PMC10790169 DOI: 10.3892/etm.2023.12347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 01/19/2024] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a clinical challenge in the treatment of ischemic heart disease. The present study aimed to establish a hypoxia/reoxygenation (H/R)-induced H9c2 cell model to explore the role and mechanism of chemokine-like factor 1 (CKLF1) in myocardial I/R injury. First, CKLF1 expression was measured in H/R-induced H9c2 cells by reverse transcription-quantitative PCR and western blotting. Subsequently, after CKLF1 silencing, cell viability and apoptosis were evaluated by Cell Counting Kit-8 assay and flow cytometry. In addition, 2,7-dichlorodihydrofluorescein diacetate staining was used to assess the levels of cellular reactive oxygen species. Additionally, the levels of superoxide dismutase, glutathione peroxidase and malondialdehyde, and the contents of inflammatory factors IL-6, IL-1β and TNF-α were detected using corresponding commercially available kits. Western blotting was used to examine the expression levels of proteins involved in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. The JASPAR database predicted that forkhead box protein C1 (FOXC1) would bind to the CKLF1 promoter region, and dual luciferase and chromatin immunoprecipitation assays were performed to verify it. Subsequently, FOXC1 overexpression and CKLF1 silencing were used to clarify the regulatory mechanism of FOXC1 on CKLF1 in H/R-induced H9c2 cells. The results revealed that CKLF1 expression was markedly enhanced in H/R-stimulated H9c2 cells. CKLF1 knockdown enhanced the viability and inhibited the apoptosis of H9c2 cells exposed to H/R. Moreover, the oxidative stress and inflammation induced by H/R were alleviated following CKLF1 silencing. CKLF1 knockdown also inhibited NLRP3 inflammasome activation. Furthermore, FOXC1 bound to the CKLF1 promoter region to upregulate CKLF1 expression, and FOXC1 overexpression alleviated the effects of CKLF1 knockdown on H9c2 cell damage induced by H/R via activation of the NLRP3 inflammasome. In conclusion, CKLF1 transcriptionally activated by FOXC1 may promote H/R-induced oxidative stress and inflammation in H9c2 cells via NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yinfeng Jia
- Department of Cardiovascular Medicine, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Jiansheng Pan
- Department of Cardiovascular Medicine, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| |
Collapse
|
28
|
Zhang J, Su R, Wang Y, Wang H, Li S, Yang X, Liu G. Protective effect of small extracellular vesicles (EVs) derived from ACE2-modified human umbilical cord mesenchymal stem cells against renal ischemia-reperfusion injury. Nephrology (Carlton) 2024; 29:5-17. [PMID: 37667547 DOI: 10.1111/nep.14237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023]
Abstract
AIM Acute kidney injury is a severe disease that is closely associated with substantial morbidity and mortality. The most common cause of AKI is renal ischemia-reperfusion injury. Mesenchymal stem cells (MSCs) have previously been shown to have renoprotective effects. However, extracellular vesicles secreted by MSCs are thought to be the key for the therapeutic effects of MSCs. This study investigated whether small EVs derived from ACE2-modified human umbilical cord MSCs could alleviate RIRI and explored their underlying molecular mechanisms METHODS: A lentivirus carrying an ACE2 overexpression vector was constructed and used to infect MSCs. The small EVs were isolated from MSC-conditioned medium by ultracentrifugation. HK-2 cells were cocultured with MSC-ACE2-EVs and subjected to hypoxia/reoxygenation injury. MSCs-ACE2-EVs were injected into RIRI mice. Biochemical and morphological characteristics were assessed, and the levels of inflammatory-related factors, oxidative stress products, and apoptosis in HK-2 cells and kidney tissues were assessed RESULTS: In vitro, MSC-ACE2-EVs had stronger anti-inflammatory, antioxidative stress, and antiapoptotic effects in HK-2 cells subjected to H/R than MSC-NC-EVs. In vivo, MSC-ACE2-EVs could target the injured kidney, reduce blood creatinine and urea nitrogen levels, and protect the kidney from I/R, and this effect may have been related to the activation of the Nrf2/HO-1 signalling pathway CONCLUSION: Taken together, our results demonstrated the anti-inflammatory, antioxidative stress, and antiapoptotic effects of MSC-ACE2-EVs, which protected against I/R injury in vitro and vivo. MSC-ACE2-EVs may be therapeutic agents for RIRI.
Collapse
Affiliation(s)
- Jiaying Zhang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Rongyun Su
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Yinghui Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Honggang Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Shan Li
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Xue Yang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
29
|
Li Z, Xing J. Contribution and therapeutic value of mitophagy in cerebral ischemia-reperfusion injury after cardiac arrest. Biomed Pharmacother 2023; 167:115492. [PMID: 37716121 DOI: 10.1016/j.biopha.2023.115492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Cardiopulmonary resuscitation and related life support technologies have improved substantially in recent years; however, mortality and disability rates from cardiac arrest (CA) remain high and are closely associated with the high incidence of cerebral ischemia-reperfusion injury (CIRI), which is explained by a "double-hit" model (i.e., resulting from both ischemia and reperfusion). Mitochondria are important power plants in the cell and participate in various biochemical processes, such as cell differentiation and signaling in eukaryotes. Various mitochondrial processes, including energy metabolism, calcium homeostasis, free radical production, and apoptosis, are involved in several important stages of the progression and development of CIRI. Mitophagy is a key mechanism of the endogenous removal of damaged mitochondria to maintain organelle function and is a critical target for CIRI treatment after CA. Mitophagy also plays an essential role in attenuating ischemia-reperfusion in other organs, particularly during post-cardiac arrest myocardial dysfunction. Regulation of mitophagy may influence necroptosis (a programmed cell death pathway), which is the main endpoint of organ ischemia-reperfusion injury. In this review, we summarize the main signaling pathways related to mitophagy and their associated regulatory proteins. New therapeutic methods and drugs targeting mitophagy in ischemia-reperfusion animal models are also discussed. In-depth studies of the mechanisms underlying the regulation of mitophagy will enhance our understanding of the damage and repair processes in CIRI after CA, thereby contributing to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
30
|
Al-Katat A, Bergeron A, Parent L, Lorenzini M, Fiset C, Calderone A. Rapamycin treatment unmasks a sex-specific pattern of scar expansion of the infarcted rat heart: The relationship between mTOR and K ATP channel. IUBMB Life 2023; 75:717-731. [PMID: 36988388 DOI: 10.1002/iub.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) with the macrolide rapamycin or pharmacological suppression of KATP channel opening translated to scar expansion of the myocardial infarcted (MI) adult female rodent heart. The present study tested the hypotheses that rapamycin-mediated scar expansion was sex-specific and that mTOR signaling directly influenced KATP channel subunit expression/activity. Scar size was significantly larger in post-MI male rats as compared to the previous data reported in post-MI female rats. The reported scar expansion of rapamycin-treated post-MI female rats was not observed following the administration of the macrolide to post-MI male rats. Protein levels of the KATP channel subunits Kir6.2 and SUR2A and phosphorylation of the serine2448 residue of mTOR were similar in the normal heart of adult male and female rats. By contrast, greater tuberin inactivation characterized by the increased phosphorylation of the threonine1462 residue and reduced raptor protein levels were identified in the normal heart of adult female rats. Rapamycin pretreatment of phorbol 12,13-dibutyrate (PDBu)-treated neonatal rat ventricular cardiomyocytes (NNVMs) suppressed hypertrophy, inhibited p70S6K phosphorylation, and attenuated SUR2A protein upregulation. In the presence of low ATP levels, KATP channel activity detected in untreated NNVMs was significantly attenuated in PDBu-induced hypertrophied NNVMs via a rapamycin-independent pathway. Thus, rapamycin administration to post-MI rats unmasked a sex-specific pattern of scar expansion and mTOR signaling in PDBu-induced hypertrophied NNVMs significantly increased SUR2A protein levels. However, the biological advantage associated with SUR2A protein upregulation was partially offset by an mTOR-independent pathway that attenuated KATP channel activity in PDBu-induced hypertrophied NNVMs.
Collapse
Affiliation(s)
- Aya Al-Katat
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Lucie Parent
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Lorenzini
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Celine Fiset
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
31
|
Wei X, Li Y, Luo P, Dai Y, Jiang T, Xu M, Hao Y, Zhang C, Liu Y. Development and Validation of Robust Ferroptosis-Related Genes in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:344. [PMID: 37623357 PMCID: PMC10455596 DOI: 10.3390/jcdd10080344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Despite the evidence that ferroptosis is involved in myocardial ischemia-reperfusion (MIR), the critical regulator of ferroptosis in MIR remains unclear. (2) Methods: We included three GEO datasets and a set of ferroptosis-related genes with 259 genes. Following the identification of the differentially expressed ferroptosis-related genes (DEFRGs) and hub genes, we performed the functional annotation, protein-protein interaction network, and immune infiltration analysis. The GSE168610 dataset, a cell model, and an animal model were then used to verify key genes. (3) Results: We identified 17 DEFRGs and 9 hub genes in the MIR samples compared to the control. Heme oxygenase 1 (Hmox1), activating transcription factor 3 (Atf3), epidermal growth factor receptor (Egfr), and X-box binding protein 1 (Xbp1) were significantly upregulated in response to ischemic and hypoxic stimuli. In contrast, glutathione peroxidase 4 (Gpx4) and vascular endothelial growth factor A (Vegfa) were consistently decreased in either the oxygen and glucose deprivation/reoxygenation cell or the MIR mouse model. (4) Conclusions: This study emphasized the relevance of ferroptosis in MIR. It has been successfully demonstrated that nine ferroptosis-related genes (Hmox1, Atf3, Egfr, Gpx4, Cd44, Vegfa, asparagine synthetase (Asns), Xbp1, and bromodomain containing 4 (Brd4)) are involved in the process. Additional studies are needed to explore potential therapeutic targets for MIR.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Hao
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (Y.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
33
|
Kloka JA, Friedrichson B, Wülfroth P, Henning R, Zacharowski K. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023; 12:1345. [PMID: 37408180 DOI: 10.3390/cells12101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion injury is a very common complication of various indicated therapies such as the re-opening of vessels in the myocardium or brain as well as reflow in hemodynamic shutdown (cardiac arrest, severe trauma, aortic cross-clamping). The treatment and prevention of reperfusion injury has therefore been a topic of immense interest in terms of mechanistic understanding, the exploration of interventions in animal models and in the clinical setting in major prospective studies. While a wealth of encouraging results has been obtained in the lab, the translation into clinical success has met with mixed outcomes at best. Considering the still very high medical need, progress continues to be urgently needed. Multi-target approaches rationally linking interference with pathophysiological pathways as well as a renewed focus on aspects of microvascular dysfunction, especially on the role of microvascular leakage, are likely to provide new insights.
Collapse
Affiliation(s)
- Jan Andreas Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | | | | | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
34
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Feng Y, Imam Aliagan A, Tombo N, Bopassa JC. Mitofilin Heterozygote Mice Display an Increase in Myocardial Injury and Inflammation after Ischemia/Reperfusion. Antioxidants (Basel) 2023; 12:921. [PMID: 37107296 PMCID: PMC10135852 DOI: 10.3390/antiox12040921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondrial inner membrane protein (Mitofilin/Mic60) is part of a big complex that constituent the mitochondrial inner membrane organizing system (MINOS), which plays a critical role in maintaining mitochondrial architecture and function. We recently showed that Mitofilin physically binds to Cyclophilin D, and disruption of this interaction promotes the opening of mitochondrial permeability transition pore (mPTP) and determines the extent of I/R injury. Here, we investigated whether Mitofilin knockout in the mouse enhances myocardial injury and inflammation after I/R injury. We found that full-body deletion (homozygote) of Mitofilin induces a lethal effect in the offspring and that a single allele expression of Mitofilin is sufficient to rescue the mouse phenotype in normal conditions. Using non-ischemic hearts from wild-type (WT) and Mitofilin+/- (HET) mice, we report that the mitochondria structure and calcium retention capacity (CRC) required to induce the opening of mPTP were similar in both groups. However, the levels of mitochondrial dynamics proteins involved in both fusion/fission, including MFN2, DRP1, and OPA1, were slightly reduced in Mitofilin+/- mice compared to WT. After I/R, the CRC and cardiac functional recovery were reduced while the mitochondria structure was more damaged, and myocardial infarct size was increased in Mitofilin+/- mice compared to WT. Mitofilin+/- mice exhibited an increase in the mtDNA release in the cytosol and ROS production, as well as dysregulated SLC25As (3, 5, 11, and 22) solute carrier function, compared to WT. In addition, Mitofilin+/- mice displayed an increase in the transcript of pro-inflammatory markers, including IL-6, ICAM, and TNF-α. These results suggest that Mitofilin knockdown induces mitochondrial cristae damage that promotes dysregulation of SLC25As solute carriers, leading to an increase in ROS production and reduction in CRC after I/R. These effects are associated with an increase in the mtDNA release into the cytosol, where it activates signaling cascades leading to nuclear transcription of pro-inflammatory cytokines that aggravate I/R injury.
Collapse
Affiliation(s)
| | | | | | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
36
|
He W, Berthiaume JM, Previs S, Kasumov T, Zhang GF. Ischemia promotes acyl-CoAs dephosphorylation and propionyl-CoA accumulation. Metabolomics 2023; 19:12. [PMID: 36750484 PMCID: PMC11238255 DOI: 10.1007/s11306-023-01975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Our untargeted metabolic data unveiled that Acyl-CoAs undergo dephosphorylation, however little is known about these novel metabolites and their physiology/pathology relevance. OBJECTIVES To understand the relationship between acyl-CoAs dephosphorylation and energy status as implied in our previous work, we seek to investigate how ischemia (energy depletion) triggers metabolic changes, specifically acyl-CoAs dephosphorylation in this work. METHODS Rat hearts were isolated and perfused in Langendorff mode for 15 min followed by 0, 5, 15, and 30 minutes of global ischemia. The heart tissues were harvested for metabolic analysis. RESULTS As expected, ATP and phosphocreatine were significantly decreased during ischemia. Most short- and medium-chain acyl-CoAs progressively increased with ischemic time from 0 to 15 min, whereas a 30-minute ischemia did not lead to further change. Unlike other acyl-CoAs, propionyl-CoA accumulated progressively in the hearts that underwent ischemia from 0 to 30 min. Progressive dephosphorylation occurred to all assayed acyl-CoAs and free CoA regardless their level changes during the ischemia. CONCLUSION The present work further confirms that dephosphorylation of acyl-CoAs is an energy-dependent process and how this dephosphorylation is mediated warrants further investigations. It is plausible that dephosphorylation of acyl-CoAs and limited anaplerosis are involved in ischemic injuries to heart. Further investigations are warranted to examine the mechanisms of acyl-CoA dephosphorylation and how the dephosphorylation is possibly involved in ischemic injuries.
Collapse
Affiliation(s)
- Wentao He
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Jessica M Berthiaume
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, 44104, USA
- Inotiv Westminster, 7581 W 103rd Ave, Westminster, CO, 80021, USA
| | - Stephen Previs
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Takhar Kasumov
- Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
37
|
Tian H, Xiong Y, Xia Z. Resveratrol ameliorates myocardial ischemia/reperfusion induced necroptosis through inhibition of the Hippo pathway. J Bioenerg Biomembr 2023; 55:59-69. [PMID: 36562913 DOI: 10.1007/s10863-022-09954-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a major cause of poor hemodynamic reconstitution outcomes after myocardial infarction or circulatory arrest. Currently, the search for effective therapeutic agents and tools is a focus of research in the field of myocardial I/R injury. Resveratrol (Res) has been extensively studied in recent years because of its good cardiovascular therapeutic effects, but its specific mechanism of action has not been fully elucidated. Therefore, the aim of this study was to investigate the mechanism of interaction between myocardial I/R injury and Res in vitro and in vivo. In our in vivo study, we used PI/TUNEL staining and western blotting to detect relevant necroptotic key molecules such as RIP1, RIP3 and p-MLKL/MLKL to observe myocardial necroptosis. The extent of myocardial injury was determined using hematoxylin and eosin (HE) staining and 2,3,5-triphenyltetrazolium chloride (TTC) staining as well as serum levels of CK-MB and LDH and echocardiography. In the in vitro study, cellular injury was assessed by CCK-8 and cell supernatant LDH levels. In addition, we used small interfering RNA (siRNA) transfection to knock down YAP, a key effector molecule of the Hippo pathway, to validate the molecular mechanism of action by which Res exerts myocardial protection. The localization of YAP in H9c2 cardiomyocytes was examined using immunofluorescence. Our data demonstrated that Res could ameliorate myocardial I/R-induced necroptosis by modulating the Hippo pathway, and that the beneficial effect of Res might be associated with nuclear translocation of the transcriptional regulator YAP.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China.
| |
Collapse
|
38
|
Tang X, Nishimura A, Ariyoshi K, Nishiyama K, Kato Y, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Han J, Kanda Y, Umezawa K, Urano Y, Akaike T, Nishida M. Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice. Mar Drugs 2023; 21:52. [PMID: 36662225 PMCID: PMC9863521 DOI: 10.3390/md21010052] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.
Collapse
Affiliation(s)
- Xiaokang Tang
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Kohei Ariyoshi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Hyoung-Kyu Kim
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 47392, Republic of Korea
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
39
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Azizidoost S, Farzaneh M. MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Curr Stem Cell Res Ther 2023; 18:27-34. [PMID: 35466882 DOI: 10.2174/1574888x17666220422094150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is defined as a class of disorders affecting the heart and blood vessels. Cardiomyocytes and endothelial cells play important roles in cardiac regeneration and heart repair. However, the proliferating capacity of cardiomyocytes is limited. To overcome this issue, mesenchymal stem cells (MSCs) have emerged as an alternative strategy for CVD therapy. MSCs can proliferate and differentiate (or trans-differentiate) into cardiomyocytes. Several in vitro and in vivo differentiation protocols have been used to obtain MSCs-derived cardiomyocytes. It was recently investigated that microRNAs (miRNAs) by targeting several signaling pathways, including STAT3, Wnt/β-catenin, Notch, and TBX5, play a crucial role in regulating cardiomyocytes' differentiation of MSCs. In this review, we focused on the role of miRNAs in the differentiation of MSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Wal P, Aziz N, Singh YK, Wal A, Kosey S, Rai AK. Myocardial Infarction as a Consequence of Mitochondrial Dysfunction. Curr Cardiol Rev 2023; 19:23-30. [PMID: 37157208 PMCID: PMC10636795 DOI: 10.2174/1573403x19666230508114311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023] Open
Abstract
Acute myocardial infarction is an event of myocardial necrosis caused by unstable ischemic syndrome. Myocardial infarction (MI) occurs when blood stops flowing to the cardiac tissue or myocardium and the heart muscle gets damaged due to poor perfusion and reduced oxygen supply. Mitochondria can serve as the arbiter of cell fate in response to stress. Oxidative metabolism is the function of mitochondria within the cell. Cardiac cells being highly oxidative tissue generates about 90% of their energy through oxidative metabolism. In this review, we focused on the role of mitochondria in energy generation in myocytes as well as its consequences on heart cells causing cell damage. The role of mitochondrial dysfunction due to oxidative stress, production of reactive oxygen species, and anaerobic production of lactate as a failure of oxidative metabolism are also discussed.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Yash Kumar Singh
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Awani Kumar Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| |
Collapse
|
42
|
Tu M, Tan VP, Yu JD, Tripathi R, Bigham Z, Barlow M, Smith JM, Brown JH, Miyamoto S. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death Differ 2022; 29:2472-2486. [PMID: 35760846 PMCID: PMC9751115 DOI: 10.1038/s41418-022-01032-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023] Open
Abstract
Mitophagy, a mitochondria-specific form of autophagy, removes dysfunctional mitochondria and is hence an essential process contributing to mitochondrial quality control. PTEN-induced kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin are critical molecules involved in stress-induced mitophagy, but the intracellular signaling mechanisms by which this pathway is regulated are unclear. We tested the hypothesis that signaling through RhoA, a small GTPase, induces mitophagy via modulation of the PINK1/Parkin pathway as a protective mechanism against ischemic stress. We demonstrate that expression of constitutively active RhoA as well as sphingosine-1-phosphate induced activation of endogenous RhoA in cardiomyocytes result in an accumulation of PINK1 at mitochondria. This is accompanied by translocation of Parkin to mitochondria and ubiquitination of mitochondrial proteins leading to recognition of mitochondria by autophagosomes and their lysosomal degradation. Expression of RhoA in cardiomyocytes confers protection against ischemia, and this cardioprotection is attenuated by siRNA-mediated PINK1 knockdown. In vivo myocardial infarction elicits increases in mitochondrial PINK1, Parkin, and ubiquitinated mitochondrial proteins. AAV9-mediated RhoA expression potentiates these responses and a concurrent decrease in infarct size is observed. Interestingly, induction of mitochondrial PINK1 accumulation in response to RhoA signaling is neither mediated through its transcriptional upregulation nor dependent on depolarization of the mitochondrial membrane, the canonical mechanism for PINK1 accumulation. Instead, our results reveal that RhoA signaling inhibits PINK1 cleavage, thereby stabilizing PINK1 protein at mitochondria. We further show that active RhoA localizes at mitochondria and interacts with PINK1, and that the mitochondrial localization of RhoA is regulated by its downstream effector protein kinase D. These findings demonstrate that RhoA activation engages a unique mechanism to regulate PINK1 accumulation, induce mitophagy and protect against ischemic stress, and implicates regulation of RhoA signaling as a potential strategy to enhance mitophagy and confer protection under stress conditions.
Collapse
Affiliation(s)
- Michelle Tu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Valerie P Tan
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Justin D Yu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Raghav Tripathi
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Zahna Bigham
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Melissa Barlow
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Jeffrey M Smith
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
43
|
Yang Y, Chen T, Liu J, Chen S, Cai R, Wu L, Hu J, Lin Q, Qi X, Liu Z, Cheng Y. Integrated chemical profiling, network pharmacology and pharmacological evaluation to explore the potential mechanism of Xinbao pill against myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:255-273. [PMID: 35148221 PMCID: PMC8845110 DOI: 10.1080/13880209.2022.2025859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Xinbao pill (XBW), a traditional Chinese herbal formula, is widely used in clinical treatment for cardiovascular diseases; however, the therapeutic effect of XBW on myocardial ischaemia-reperfusion injury (MI/RI) is unclear. OBJECTIVE This study evaluates the cardioprotective effect and molecular mechanism of XBW against MI/RI. MATERIALS AND METHODS A phytochemistry-based network pharmacology analysis was used to uncover the mechanism of XBW against MI/RI. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was used to identify chemicals. MI/RI-related targets of XBW were predicted using TargetNet database, OMIC database, etc. Sprague-Dawley (SD) rats under anterior descending artery ligation model were divided into Sham, MI/RI and XBW (180 mg/kg, intragastric administration). After 30 min ischaemia and 24 h reperfusion, heart tissues were collected for measurement of myocardial infarct size. After oxygen glucose deprivation for 6 h, H9c2 cells were treated with XBW (60, 240 and 720 μg/mL) and diazoxide (100 μM) for 18 h of reperfusion. RESULTS Thirty-seven chemicals were identified in XBW; 50 MI/RI-related targets of XBW were predicted using indicated databases. XBW significantly reduced infarct size and creatine kinase MB (CK-MB) level after MI/RI; XBW protected H9c2 cells against OGD/R injury. Gene ontology (GO) and KEGG pathway enrichment analyses by String database showed that the cardioprotective effect of XBW was associated with autophagy and apoptosis signalling pathways. Experimental investigation also verified that XBW suppressed apoptosis, autophagy and endoplasmic reticulum (ER) stress. CONCLUSIONS XBW showed therapeutic effects against MI/RI mainly via attenuating apoptosis though suppressing excessive autophagy and ER stress.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ting Chen
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiaming Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sixuan Chen
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongqing Cai
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Liqiong Wu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiexiong Hu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Qiongying Lin
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Xiaoxiao Qi
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- CONTACT Zhongqiu Liu
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Yuanyuan Cheng School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Hammarsten O, Wernbom M, Mills NL, Mueller C. How is cardiac troponin released from cardiomyocytes? EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:718-720. [PMID: 35972428 PMCID: PMC9522257 DOI: 10.1093/ehjacc/zuac091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ola Hammarsten
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Mathias Wernbom
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christian Mueller
- Cardiovascular research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
45
|
Soares DJ. Bridging a Century-Old Problem: The Pathophysiology and Molecular Mechanisms of HA Filler-Induced Vascular Occlusion (FIVO)-Implications for Therapeutic Interventions. Molecules 2022; 27:5398. [PMID: 36080164 PMCID: PMC9458226 DOI: 10.3390/molecules27175398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Biocompatible hyaluronic acid (HA, hyaluronan) gel implants have altered the therapeutic landscape of surgery and medicine, fostering an array of innovative products that include viscosurgical aids, synovial supplements, and drug-eluting nanomaterials. However, it is perhaps the explosive growth in the cosmetic applications of injectable dermal fillers that has captured the brightest spotlight, emerging as the dominant modality in plastic surgery and aesthetic medicine. The popularity surge with which injectable HA fillers have risen to in vogue status has also brought a concomitant increase in the incidence of once-rare iatrogenic vaso-occlusive injuries ranging from disfiguring facial skin necrosis to disabling neuro-ophthalmological sequelae. As our understanding of the pathophysiology of these injuries has evolved, supplemented by more than a century of astute observations, the formulation of novel therapeutic and preventative strategies has permitted the amelioration of this burdensome complication. In this special issue article, we review the relevant mechanisms underlying HA filler-induced vascular occlusion (FIVO), with particular emphasis on the rheo-mechanical aspects of vascular blockade; the thromboembolic potential of HA mixtures; and the tissue-specific ischemic susceptibility of microvascular networks, which leads to underperfusion, hypoxia, and ultimate injury. In addition, recent therapeutic advances and novel considerations on the prevention and management of muco-cutaneous and neuro-ophthalmological complications are examined.
Collapse
Affiliation(s)
- Danny J. Soares
- American Foundation for Aesthetic Medicine (AFFAM), Fruitland Park, FL 34731, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
46
|
Li Y, Gao Y, Li G. Preclinical multi-target strategies for myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:967115. [PMID: 36072870 PMCID: PMC9444048 DOI: 10.3389/fcvm.2022.967115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite promising breakthroughs in diagnosing and treating acute coronary syndromes, cardiovascular disease’s high global mortality rate remains indisputable. Nearly half of these patients died of ischemic heart disease. Primary percutaneous coronary intervention (PCI) and coronary artery bypass grafting can rapidly restore interrupted blood flow and become the most effective method for salvaging viable myocardium. However, restoring blood flow could increase the risk of other complications and myocardial cell death attributed to myocardial ischemia-reperfusion injury (IRI). How to reduce the damage of blood reperfusion to ischemic myocardium has become an urgent problem to be solved. In preclinical experiments, many treatments have substantial cardioprotective effects against myocardial IRI. However, the transition from these cardioprotective therapies to clinically beneficial therapies for patients with acute myocardial infarction remains elusive. The reasons for the failure of the clinical translation may be multi-faceted, and three points are summarized here: (1) Our understanding of the complex pathophysiological mechanisms of myocardial IRI is far from enough, and the classification of specific therapeutic targets is not rigorous, and not clear enough; (2) Most of the clinical patients have comorbidities, and single cardioprotective strategies including ischemia regulation strategies cannot exert their due cardioprotective effects under conditions of hyperglycemia, hypertension, hyperlipidemia, and aging; (3) Most preclinical experimental results are based on adult, healthy animal models. However, most clinical patients had comorbidities and received multiple drug treatments before reperfusion therapy. In 2019, COST Action proposed a multi-target drug combination initiative for prospective myocardial IRI; the optimal cardioprotective strategy may be a combination of additive or synergistic multi-target therapy, which we support. By establishing more reasonable preclinical models, screening multi-target drug combinations more in line with clinical practice will benefit the translation of clinical treatment strategies.
Collapse
|
47
|
Rao P, Li C, Wang L, Jiang Y, Yang L, Li H, Yang P, Tao J, Lu D, Sun L. ZNF143 regulates autophagic flux to alleviate myocardial ischemia/reperfusion injury through Raptor. Cell Signal 2022; 99:110444. [PMID: 35988805 DOI: 10.1016/j.cellsig.2022.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
The exact role of autophagy in myocardial ischemia/reperfusion (I/R) injury is still controversial. Excessive or insufficient autophagy may lead to cell death. Therefore, how to regulate autophagic balance during myocardial ischemia/reperfusion is critical to the treatment of myocardial I/R injury. Raptor is an mTOR regulatory related protein and closely related to the induction of autophagy. ZNF143 is widely expressed in various cells and acts as a transcription factor, which is involved in the regulation of autophagy, cell growth and development. In this study, we aimed to explore the mechanism by which ZNF143 regulated autophagy in myocardial I/R injury and the relationship between ZNF143 and Raptor. In our results, we found that ZNF143 expression was down-regulated in myocardial I/R. Inhibition of ZNF143 expression further enhanced autophagy and restored the deficiency of autophagic flux caused by myocardial I/R, subsequently alleviating myocardial I/R injury. On the other hand, overexpression of ZNF143 up-regulated Raptor expression and reduced autophagic activity, consequently exacerbating myocardial I/R injury. Taken together, our study revealed that ZNF143 might be a key target of the regulation of autophagy and a novel therapeutic target of myocardial I/R injury.
Collapse
Affiliation(s)
- Peng Rao
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Limeiting Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Yongliang Jiang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Ping Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Jun Tao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China.
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
48
|
Simon F, Larena-Avellaneda A, Wipper S. Experimental Atherosclerosis Research on Large and Small Animal Models in Vascular Surgery. J Vasc Res 2022; 59:221-228. [PMID: 35760040 PMCID: PMC9533439 DOI: 10.1159/000524795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Animal models have significantly advanced our understanding of the mechanisms of atherosclerosis formation and the evaluation of therapeutic options. The current focus of research is on preventive strategies and includes pharmacologic and biologic interventions directed primarily against smooth-muscle cell proliferation, endovascular devices for recanalization and/or drug delivery, and an integrated approach using both devices and pharmacobiologic agents. The experience over many decades with animal models in vascular research has established that a single, ideal, naturally available model for atherosclerosis does not exist. The spectrum ranges from large animals such as pigs to small animal experiments with genetically modified rodents such as the ApoE-/- mouse with correspondingly differently pronounced changes in their lipid and lipoprotein levels. The development of transgenic variants of currently available models, e.g., an ApoE-deficient rabbit line, has widened our options. Nevertheless, an appreciation of the individual features of natural or stimulated disease in each species is of importance for the proper design and execution of relevant experiments.
Collapse
Affiliation(s)
- Florian Simon
- University Hospital Düsseldorf, Clinic for Vascular and Endovascular Surgery, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Axel Larena-Avellaneda
- Department of Vascular and Endovascular Surgery, Asklepios Clinic Altona, Hamburg, Germany
| | - Sabine Wipper
- Department for Vascular Surgery, University Hospital Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Feng Y, Imam Aliagan A, Tombo N, Draeger D, Bopassa JC. RIP3 Translocation into Mitochondria Promotes Mitofilin Degradation to Increase Inflammation and Kidney Injury after Renal Ischemia-Reperfusion. Cells 2022; 11:cells11121894. [PMID: 35741025 PMCID: PMC9220894 DOI: 10.3390/cells11121894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
The receptor-interacting protein kinase 3 (RIP3) has been reported to regulate programmed necrosis-necroptosis forms of cell death with important functions in inflammation. We investigated whether RIP3 translocates into mitochondria in response to renal ischemia-reperfusion (I/R) to interact with inner mitochondrial protein (Mitofilin) and promote mtDNA release into the cytosol. We found that release of mtDNA activates the cGAS-STING pathway, leading to increased nuclear transcription of pro-inflammatory markers that exacerbate renal I/R injury. Monolateral C57/6N and RIP3-/- mice kidneys were subjected to 60 min of ischemia followed by either 12, 24, or 48 h of reperfusion. In WT mice, we found that renal I/R injury increased RIP3 levels, as well as its translocation into mitochondria. We observed that RIP3 interacts with Mitofilin, likely promoting its degradation, resulting in increased mitochondria damage and mtDNA release, activation of the cGAS-STING-p65 pathway, and increased transcription of pro-inflammatory markers. All of these effects observed in WT mice were decreased in RIP3-/- mice. In HK-2, RIP3 overexpression or Mitofilin knockdown increased cell death by activating the cGAS-STING-p65 pathway. Together, this study point to an important role of the RIP3-Mitofilin axis in the initiation and development of renal I/R injury.
Collapse
Affiliation(s)
| | | | | | | | - Jean C. Bopassa
- Correspondence: ; Tel.: +1-210-567-0429; Fax: +1-210-567-4410
| |
Collapse
|
50
|
MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis. Cardiovasc Ther 2022; 2022:7332298. [PMID: 35692373 PMCID: PMC9173999 DOI: 10.1155/2022/7332298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Reperfusion therapy, the standard treatment for acute myocardial infarction (MI), can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, molecular mechanisms that regulate cardiomyocyte death remain largely unknown. The abnormal expression of lncRNA MIR22HG has been found in types of diseases. The current study was aimed at exploring the function and mechanism of MIR22HG in I/R injury. In this study, mouse myocardial cells (HL-1) treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used as the in vitro models, and myocardial ischemia reperfusion injury (MIRI) animal models in vivo were established in male C57BL/6 mice. Experiments including CCK-8, flow cytometry, TUNEL, HE staining, RT-qPCR, western blotting, and luciferase reporter assays were performed to explore the function and potential mechanism of MIR22HG in MIRI in vitro and in vivo. Bioinformatics analysis was performed to predict the binding site between miR-9-3p and MIR22HG (or SH2B3). Our results indicated that the MIR22HG level was upregulated in cardiomyocytes after OGD/R treatment. The knockdown of MIR22HG promoted cell viability and inhibited apoptosis and extracellular matrix (ECM) production in OGD/R-treated HL-1 cells. In mechanism, MIR22HG binds to miR-9-3p, and miR-9-3p targets the SH2B3 3
untranslated region (UTR). Moreover, SH2B3 expression was positively regulated by MIR22HG but negatively modulated by miR-9-3p. Rescue assays suggested that the suppressive effect of MIR22HG knockdown on cell viability, apoptosis, and ECM accumulation was reversed by the overexpression of SH2B3. The in vivo experiments demonstrated that MIR22HG knockdown alleviated cardiomyocyte apoptosis and reduced myocardial infarct size in MIRI mice. In summary, MIR22HG knockdown alleviates myocardial injury through the miR-9-3p/SH2B3 axis.
Collapse
|