1
|
Qi J, Gao X, Han Y, Yang M, Wei C, Zhang L, Chu J. Qing-Xin-Jie-Yu Granule attenuates myocardial infarction-induced inflammatory response by regulating the MK2/TTP pathway. PHARMACEUTICAL BIOLOGY 2025; 63:128-140. [PMID: 39980416 PMCID: PMC11849043 DOI: 10.1080/13880209.2025.2467377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
CONTEXT Qing-Xin-Jie-Yu Granule (QXJYG) has shown promise in the treatment of myocardial infarction. However, the mechanism of action of QXJYG underlying its anti-inflammation remain unknown. OBJECTIVE The study aimed to evaluate the effectiveness and mechanism of QXJYG in a mouse model of myocardial infarction and hypoxia-induced H9C2 cells. MATERIALS AND METHODS Myocardial infarction was induced in mice via left anterior descending coronary artery ligation, and hypoxia-induced H9C2 cells was served as the in vitro model. The cardiac function was evaluated by echocardiography, while myocardial tissue pathology was examined using HE and Masson's trichrome staining. Changes in serum markers of cardiac injury were measured using ELISA kits. The levels of inflammatory cytokines in both the serum and cardiac tissue were quantified using the Bio-Plex Pro Mouse Chemokine assay, and hypoxia-induced inflammatory factors in H9C2 cells were assessed by RT-qPCR. Additionally, western blot analysis was conducted to evaluate the expression of proteins related to the MK2/TTP signaling pathway both in vivo and in vitro experiments. RESULTS QXJYG significantly enhanced cardiac function in mice with myocardial infarction, as evidenced by improved myocardial tissue structure, reduced collagen fiber deposition, and lowered serum levels of creatine kinase isoenzyme MB (CK-MB), cardiac Troponin T (cTnT), and brain Natriuretic Peptide (BNP). QXJYG may reduce the expression of inflammatory factors in both the heart and serum of myocardial infarction-induced mice and attenuate hypoxia-induced levels of inflammatory factors in cardiomyocytes by decreasing the ratio of p-MK2/MK2 and increasing the protein expression of TTP. DISCUSSION AND CONCLUSIONS QXJYG improved cardiac function and reduced injury, fibrosis, and inflammation after myocardial infarction, likely through modulation of the MK2/TTP signaling pathway.
Collapse
Affiliation(s)
- Jianghan Qi
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaoyao Gao
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Han
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meiling Yang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chenyi Wei
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ling Zhang
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfeng Chu
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Holthaus M, Xiong X, Eghbalzadeh K, Großmann C, Geißen S, Piontek F, Mollenhauer M, Abdallah AT, Kamphausen T, Rothschild M, Wahlers T, Paunel-Görgülü A. Loss of peptidylarginine deiminase 4 mitigates maladaptive cardiac remodeling after myocardial infarction through inhibition of inflammatory and profibrotic pathways. Transl Res 2025; 280:1-16. [PMID: 40252995 DOI: 10.1016/j.trsl.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Inflammation and progressive fibrosis represent predictive risk factors for heart failure (HF) development following myocardial infarction (MI). Peptidylargininine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues in polypeptides and has recently been identified as a contributor to HF pathogenesis. This study aimed to evaluate the role of PAD4 in monocytes / macrophages (Mo/Mφ) and cardiac fibroblasts (CFs) for cardiac repair following MI and HF progression. Cardiac Padi4 expression significantly increased in mice subjected to MI by permanent coronary artery ligation as well as in humans who died from MI. Transcriptome analysis revealed marked downregulation of inflammation-related genes in infarcted hearts and cardiac Mo/Mφ from global PAD4 knockout (PAD4-/-) mice on day 7 post-MI accompanied by increased frequency of reparative CD206+ macrophages. Mechanistically, pharmacological and genetic PAD4 inhibition abrogated nuclear NF-κB translocation and inflammatory gene expression in bone marrow-derived macrophages (BMDM). Simultaneously, reduced inflammation and diminished cardiac levels of transforming growth factor-β (TGF-β) along with impaired IL-6 / TGF-β signaling in PAD4-/- CFs were associated with decreased expression of fibrotic genes, reduced collagen deposition, improved cardiac function, and enhanced 28-day survival in PAD4-/- mice. Strikingly, whereas pharmacological PAD inhibition in the acute phase after MI exacerbated cardiac damage, treatment starting on day 7 ameliorated cardiac remodeling and improved long-term survival in mice. Collectively, we here identified PAD4 as a critical regulator of inflammatory genes in Mo/Mφ and of profibrotic pathways in CFs. Thus, therapeutic approaches directed against PAD4 are promising interventions to alleviate adverse cardiac remodeling and subsequent HF development.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clara Großmann
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabian Piontek
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne Germany
| | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Rothschild
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Li G, He W, Wang DW. Immune cell dynamics in heart failure: implicated mechanisms and therapeutic targets. ESC Heart Fail 2025; 12:1739-1758. [PMID: 39905753 PMCID: PMC12055366 DOI: 10.1002/ehf2.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
The relationship between heart failure (HF) and immune activation has garnered significant interest. Studies highlight the critical role of inflammation in HF, affecting cardiac structure and function. Despite promising anti-inflammatory therapies, clinical trials have faced challenges, indicating an incomplete understanding of immune mechanisms in HF. Immune cells, which are key cytokine sources, are pivotal in HF progression. In this review, the authors provide a comprehensive overview of the complex role of different types of immune cells and their cell subtypes in HF. In addition, the authors summarize the available targets and animal experimental evidence for targeting immune cells for the treatment of HF. Future research directions will focus on the roles of immune cells and their interrelationships at different stages of HF, aiming to develop more targeted therapeutic strategies that can achieve more precise interventions in the pathological process of HF.
Collapse
Affiliation(s)
- Gen Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| | - Wu He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| |
Collapse
|
4
|
Zhao L, Du GL, Ruze A, Qi HZ, Zhang CS, Li QL, Deng AX, Zhao BH, Hu S, Gai MT, Gao XM. Novel function of macrophage migration inhibitory factor in regulating post-infarct inflammation and the therapeutic significance. J Adv Res 2025:S2090-1232(25)00348-0. [PMID: 40383291 DOI: 10.1016/j.jare.2025.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
INTRODUCTION Recent studies indicate that macrophage migration inhibitory factor (MIF) has a dual role in myocardial infarction (MI), with different cellular sources of MIF influencing inflammation and healing differentially. OBJECTIVES To investigate the role and underlying mechanism of MIF in MI and interventional efficacy targeting MIF. METHODS Wild-type (WT), global MIF gene knockout (KO) and chimeric mice were subjected to coronary artery occlusion. The inflammatory responses and healing processes following MI were studied in both in vivo and in vitro settings. Furthermore, the therapeutic potential of pharmacological MIF inhibition to improve the prognosis of MI was explored. RESULTS Globally, MIF enhanced systemic and local inflammatory responses, as well as splenic monocyte mobilization, in mice with MI. MIF promoted monocyte migration through CCR2 and CXCR4 in peripheral blood mononuclear cells (PBMCs) and the infarcted myocardium. Additionally, MIF augmented angiotensin Ⅱ type 1 receptor (AT-1R) expression and interacted with AT-1R to promote the splenic monocyte mobilization following acute MI. MIF derived from bone marrow cells (KOWT mice) had stronger systemic and local inflammatory responses and augmented mobilization of splenic monocytes. In contrast, deficiency of MIF in leukocytes (WTKO mice) increased Ly-6Clow monocyte accumulation, M2 macrophage infiltration, and degree of myocardial fibrosis in infarcted myocardium. In vitro, MIF derived from ischemic heart enhanced M2 but impaired M1 macrophage marker expression in PBMCs. Anti-MIF treatment effectively attenuated splenic monocyte mobilization and both systemic and regional inflammatory responses post-MI without affecting the healing process, thereby improving the long-term prognosis. CONCLUSION Deletion of global and inflammatory-cell-derived MIF diminished inflammation following MI by inhibiting monocyte mobilization and downregulating pro-inflammatory mediators, while cardiac-derived MIF exerted anti-inflammatory influence and facilitated healing. Furthermore, MIF antibody therapy protected the heart from severe ischemic injury and improved long-term prognosis.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Guo-Li Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Hong-Zhi Qi
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Su Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
5
|
Xu S, Li H, Han J, Xu Y, Li N, Che W, Liu F, Yue W. Klf9 promotes the repair of myocardial infarction by regulating macrophage recruitment and polarization. JCI Insight 2025; 10:e187072. [PMID: 40198141 DOI: 10.1172/jci.insight.187072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent wound healing and remodeling. However, understanding about the process is still limited. Macrophages are critically involved in inflammation resolution after MI. Krüppel-like factor 9 (Klf9) is a C2H2 zinc finger-containing transcription factor that has been implicated in glucocorticoid regulation of macrophages. However, the contribution of Klf9 to macrophage phenotype and function in the context of MI remains unclear. Our study revealed that KLF9 deficiency resulted in higher mortality and cardiac rupture rate, as well as a considerable exacerbation in cardiac function. Single-cell RNA sequencing and flow cytometry analyses revealed that, compared with WT mice, Klf9-/- mice displayed excessive neutrophil infiltration, insufficient macrophage infiltration, and a reduced proportion of monocyte-derived CD206+ macrophages after MI. Moreover, the expression of IFN-γ/STAT1 pathway genes in Klf9-/- cardiac macrophages was dysregulated, characterized by insufficient expression at 1 day post-MI and excessive expression at day 3 post-MI. Mechanistically, Klf9 directly binds to the promoters of Stat1 gene, regulating its transcription. Overall, these findings indicate that Klf9 beneficially influences wound healing after MI by modulating macrophage recruitment and differentiation by regulating the IFN-γ/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Han
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenhui Yue
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Eichhorn L, Kleiner JL, Bartsch B, Nazir MLF, Zhang Y, Coburn M, Frede S, Weisheit CK. CCR2 dependent recruited pro-inflammatory monocytes contribute to the development of left ventricular hypertrophy in mice upon transverse aortic constriction. PLoS One 2025; 20:e0318407. [PMID: 40257974 PMCID: PMC12011267 DOI: 10.1371/journal.pone.0318407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 04/23/2025] Open
Abstract
C-C chemokine receptor type 2 positive monocytes are recruited from the circulation to infiltrate inflamed tissue. Left ventricular (LV) hypertrophy caused by pressure overload presents with a chronic myocardial inflammation in our mouse model of transverse aortic constriction (TAC). Recent analyses demonstrated that deficiency of fractalkine receptor CX3CR1 leads to a pro-inflammatory phenotype characterized by increased numbers of Ly6Chigh macrophages in the myocardium due to chemokine receptor CCR2 dependent monocyte recruitment from the circulation. Here, we analyzed the role of CCR2 in the development of left ventricular hypertrophy using Ccr2-/- mice. We were able to show that a lack of CCR2 dependent recruited Ly6Chigh monocytes in the myocardium reveled cardioprotective effects resulting in less hypertrophy and reduced brain natriuretic peptide (BNP) expression, as biomarker of heart failure, in the myocardium. CCR2-deficiency caused an increase in neutrophil and a reduced macrophage accumulation in the myocardium in response to pressure overload. The cytokine pattern measured in the LV tissue indicates a significantly reduced release of IL1-β whereas TNF-α concentrations are increased following TAC. IL-6 secretion is not altered by the lack of CCR2 and the pro-remodeling cytokine IL-10 is not increased either. This study highlights the importance of CCR2 in the pathogenesis of LV hypertrophy and the relevance of CCR2 dependent recruited monocytes for the orchestration of the cardiac immune response.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/immunology
- Monocytes/metabolism
- Monocytes/pathology
- Monocytes/immunology
- Mice
- Mice, Knockout
- Male
- Macrophages/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Aorta/pathology
- Natriuretic Peptide, Brain/metabolism
- Mice, Inbred C57BL
- Disease Models, Animal
- Inflammation/pathology
- Cytokines/metabolism
Collapse
Affiliation(s)
- Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
- Department of Anesthesiology, Helios Klinikum Bonn/Rhein-Sieg, Bonn, Germany
| | - Jan Lukas Kleiner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Benedikt Bartsch
- Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Mariam Louis Fathy Nazir
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Yunyang Zhang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christina Katharina Weisheit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
8
|
Sharma S, Pierce J, Neverson JC, Khan R, Lee CF, Uppuluri S, Parry C, Amelotte E, Butler CA, Sellke FW, Harrington EO, Choudhary G, Morrison AR, Mantsounga CS. Macrophage Proangiogenic VEGF-A Is Required for Inflammatory Arteriogenesis During Vascular Injury. Biomedicines 2025; 13:828. [PMID: 40299401 PMCID: PMC12024885 DOI: 10.3390/biomedicines13040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Peripheral artery disease is associated with significant morbidity and mortality. Mechanical revascularization strategies are a mainstay of treatment but are often limited by the anatomic complexity of atherosclerotic lesions. Therapeutic angiogenesis has fallen short of being impactful due to fundamental gaps in our understanding of postdevelopmental angiogenesis. Methods: Using a preclinical model of peripheral artery disease involving acute vascular injury by femoral artery ligation along with cellular and molecular studies of VEGF-A expression, we sought to further understand the early role of macrophages in inflammatory angiogenesis and arteriogenesis. Results: Macrophage depletion studies revealed that the optimal levels of tissue VEGF-A expression, endothelial cell recruitment, and blood flow recovery were dependent on early macrophage recruitment. Proangiogenic VEGF-A expression was highest in macrophages polarized towards an inflammatory phenotype. Myeloid VEGF-A-deletion, while having no impact on the potent inflammatory cytokine, IL-1β, led to reductions in ischemic tissue VEGF-A, endothelial cell recruitment, and blood flow recovery due to impaired angiogenesis and arteriogenesis. Transplant of inflammatory polarized macrophages rescued the myeloid VEGF-A-deletion phenotype, leading to full blood flow recovery. Conclusions: Macrophages are a necessary and sufficient source of tissue VEGF-A during inflammatory-driven angiogenesis and arteriogenesis in response to vascular injury. Although further study is needed, cell-based therapeutic angiogenesis strategies involving the polarization of macrophages toward an inflammatory state, in order to produce high levels of proangiogenic VEGF-A, may be quite effective for improving revascularization in the context of PAD.
Collapse
Affiliation(s)
- Sheila Sharma
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jade C. Neverson
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Rachel Khan
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Cadence F. Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Saketh Uppuluri
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Crystal Parry
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Elizabeth Amelotte
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Celia A. Butler
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W. Sellke
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Cardiovascular Research Center, Brown University Health, Rhode Island Hospital, Providence, RI 02903, USA
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Cardiovascular Research Center, Brown University Health, Rhode Island Hospital, Providence, RI 02903, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Chris S. Mantsounga
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Ocean State Research Institute, Inc., Providence, RI 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
9
|
Yang Y, Li J, Tang J, Wang B, Wang J, Xu X, Lei W, Cheng Y, Liu L. CCL2-CCR2 axis in cardiovascular disease: research advances and challenges. Sci Bull (Beijing) 2025; 70:820-824. [PMID: 39827029 DOI: 10.1016/j.scib.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
- Yang Yang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Bo Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China
| | - Jing Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Liwen Liu
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
11
|
Song J, Du J, Zhao Q, Gao Y, Tan X, Cong B. KLK8 modulates macrophage function following myocardial infarction by promoting the paracrine of epidermal growth factor from cardiac fibroblasts. Life Sci 2025; 364:123445. [PMID: 39914589 DOI: 10.1016/j.lfs.2025.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
AIMS Tissue kallikrein-related peptidase 8 (KLK8) plays a significant role in the regulation of cardiac remodeling following myocardial infarction (MI). However, the impact of KLK8 on macrophage (MΦ) function in the context of MI remains to be elucidated. MATERIALS AND METHODS MI was induced through the ligation of the left anterior descending coronary artery for a duration of 1 h, followed by reperfusion. The morphological and molecular alterations in the heart were assessed at 24 h and 14 days post-ischemic injury. Adult rat cardiac fibroblasts and bone marrow-derived macrophages were employed to explore the underlying molecular mechanisms in vitro. KEY FINDINGS In the acute phase of MI (24 h post-MI), KLK8 was observed to diminish the inflammatory response and mitigate tissue damage within the ischemic ventricle. Conversely, during the reparative phase of MI (14 days post-MI), KLK8 was found to enhance the accumulation of the M2 MΦs, elevate pro-fibrotic factors, and intensify cardiac fibrosis. The in vitro analysis revealed that KLK8 did not exert a direct effect on MΦs; rather, it facilitated the paracrine secretion of epidermal growth factor (EGF) from the cardiac fibroblasts. This EGF may play a role in inhibiting the pro-inflammatory activation of the MΦs and promoting their polarization towards the M2 phenotype under conditions of inflammatory stress. SIGNIFICANCE In summary, KLK8 modulates MΦ function through the paracrine of EGF derived from cardiac fibroblasts, which may have implications for cardiac injury and remodeling following MI.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China; Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiankui Du
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qian Zhao
- College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuan Gao
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China
| | - Xing Tan
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Binhai Cong
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
12
|
Du C, Zhao D, Shi X, Gu L, Wang S, Bao Y, Wang ZM, Wang L. Causal relationship between Hashimoto's thyroiditis and non-ischemic cardiomyopathy and the mediating role of inflammatory cytokines: Evidence from genetic association analysis. Int J Cardiol 2025; 422:132934. [PMID: 39732150 DOI: 10.1016/j.ijcard.2024.132934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Previous studies report that Hashimoto's thyroiditis (HT) may be associated with non-ischemic cardiomyopathy (NICM); However, the causal relationship remains to be elucidated. Here, we aimed to investigate the causal relationship between HT and NICM through Mendelian randomization (MR) and explore the potential mediating role of inflammatory cytokines within this association. METHODS The bidirectional two-sample MR, multivariable MR and mediation MR analyses were conducted based on genome-wide association study summary datasets, and MR results were further supported by multiple sensitivity analysis methods. RESULTS We presented genetic evidence that HT could unidirectionally increase the risk of NICM (odds ratios [OR]: 1.09, 95 % confidence intervals [CI]: 1.03-1.15, P = 0.001). After adjusting for multiple potential cardiovascular risk factors such as body mass index, hypertension, blood glucose levels, several dyslipidemias, alcohol consumption, heart valve problem, thyroid function, heart rate and arrhythmia, the causal effect of HT on NICM remained statistically significant. Further mediation MR analysis results showed that monokine induced by gamma interferon (MIG) could act as a mediator (OR = 1.026, 95 % CI = 1.006-1.052), accounting for about 28.8 % of the increased risk of NICM in patients with HT. CONCLUSIONS Our study proposes a causal relationship between HT and NICM, as well as the mediating role of MIG in this process, highlighting the importance of evaluating myocardial damage in patients with HT and providing new insights into the targeted treatment for high-risk patients.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Di Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xinying Shi
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Lingfeng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Sibo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yulin Bao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ze-Mu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
13
|
Tan Y, Li M, Ma X, Shi D, Liu W. Angiogenesis after acute myocardial infarction: a bibliometric -based literature review. Front Cardiovasc Med 2025; 12:1426583. [PMID: 40017521 PMCID: PMC11865093 DOI: 10.3389/fcvm.2025.1426583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Objective The prevalence of acute myocardial infarction, a severe ischemic cardiac disease, is on the rise annually. The establishment of coronary collateral circulation in the border zone of the infarct can effectively relieve myocardial ischemia and impede cell death, while angiogenesis can promote the formation of collateral circulation in the ischemic tissues. Over the past two decades, studies related to angiogenesis in acute myocardial infarction have increased rapidly. However, there is a lack of bibliometric studies in this particular field. Methods For this study, we employed bibliometric analysis to outline focal points and patterns in scientific and clinical research. The collection of literature was gathered using the Web of Science Core Collection database. Bibliometric and visual analysis were conducted. Knowledge maps were generated using CiteSpace and VOSviewer software. Results and conclusions With the deepening of the research, therapeutic angiogenesis will become a treatment direction for acute myocardial infarction in the future.
Collapse
Affiliation(s)
- Yu Tan
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Huang S, Wu Y, Chen M, Shen J, Zhu J, Yu H. GDF11 improves cardiac repair after myocardial infarction by reducing Macrophage infiltration and attenuating their inflammatory Properties. Int Immunopharmacol 2025; 147:113994. [PMID: 39765001 DOI: 10.1016/j.intimp.2024.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Affiliation(s)
- Shushi Huang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China
| | - Yuling Wu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China
| | - Mingyao Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China
| | - Jiahua Shen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China
| | - Jinyun Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China.
| | - Hong Yu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Wang Y, Ge J, Dou M, Cheng X, Chen X, Ma L, Xie J. Inhibition of CCR2 attenuates NLRP3-dependent pyroptosis after myocardial ischaemia-reperfusion in rats via the NF-kB pathway. Int Immunopharmacol 2025; 145:113803. [PMID: 39672029 DOI: 10.1016/j.intimp.2024.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Myocardial infarction (MI) is a leading cause of mortality worldwide, contributing significantly to long-term cardiac dysfunction and heart failure. Effective therapeutic strategies are urgently needed to mitigate the extensive damage caused by MI and subsequent ischemia-reperfusion (I/R) injury. This study investigates the role of the Chemokine receptor 2 (CCR2) in regulating NLRP3-dependent cardiomyocyte pyroptosis following myocardial ischemia-reperfusion (MIR), elucidating its molecular mechanisms. A myocardial ischemia-reperfusion model was established using 124 Sprague-Dawley rats by ligating the left coronary artery, inducing 30 min of ischemia. Following ischemia, RS504393, a selective CCR2 antagonist, was administered intraperitoneally one hour after reperfusion. To further explore the underlying mechanisms, the NF-κB pathway agonist Phorbol 12-myristate 13-acetate (PMA) was administered 1 h post-MIR. The results showed a marked increase in CCR2 expression in the heart, peaking on the first day of reperfusion. Treatment with RS504393 significantly improved short-term cardiac function and reduced myocardial infarction size, decreased myocardial pyroptosis and suppressed the expression of NLRP3, GSDMD, Caspase-1, IL-1β, and IL-18 through inhibition of the NF-κB signaling pathway. This effect was reversed with the administration of PMA. In summary, the inhibition of CCR2 shows potential in mitigating myocardial injury following MIR by modulating the NF-κB signaling pathway. These findings highlight CCR2 as a promising therapeutic target for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China; Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Jinlong Ge
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230001, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xueying Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230001, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xinran Chen
- Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Lan Ma
- Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Jun Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China.
| |
Collapse
|
16
|
Heusch G, Kleinbongard P. The spleen in ischaemic heart disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01114-x. [PMID: 39743566 DOI: 10.1038/s41569-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium. Prolonged inflammation contributes to ischaemic heart failure. The spleen is also a target of neuromodulation through vagal, sympathetic and sensory nerve activation. Efferent vagal activation and subsequent activation of the noradrenergic splenic nerve activate β2-adrenergic receptors on splenic T cells, which release acetylcholine that ultimately results in attenuation of cytokine secretion from splenic macrophages. Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells, a process that depends on placental growth factor. Activation of the vagosplenic axis protects acutely from ischaemia-reperfusion injury during auricular tragus vagal stimulation and remote ischaemic conditioning. Splenectomy abrogates all these deleterious and beneficial actions on the cardiovascular system. The aggregate effect of splenectomy in humans is a long-term increase in mortality from ischaemic heart disease. The spleen has been appreciated as an important immune organ for inflammatory processes in atherosclerosis, myocardial infarction and heart failure, whereas its complex interaction with circulating blood factors and with the autonomic and somatic nervous systems, as well as its role in cardioprotection, have emerged only in the past decade. In this Review, we describe this newly identified cardioprotective function of the spleen and highlight the potential for translating the findings to patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Zhang XZ, Li QL, Tang TT, Cheng X. Emerging Role of Macrophage-Fibroblast Interactions in Cardiac Homeostasis and Remodeling. JACC Basic Transl Sci 2025; 10:113-127. [PMID: 39958468 PMCID: PMC11830265 DOI: 10.1016/j.jacbts.2024.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 02/18/2025]
Abstract
As major noncardiomyocyte components in cardiac tissues, macrophages and fibroblasts play crucial roles in maintaining cardiac homeostasis, orchestrating reparative responses after cardiac injuries, facilitating adaptive cardiac remodeling, and contributing to adverse cardiac remodeling, owing to their inherent heterogeneity and plasticity. Recent advances in research methods have yielded novel insights into the intricate interactions between macrophages and fibroblasts in the cardiac context. This review aims to comprehensively examine the molecular mechanisms governing macrophage-fibroblast interactions in cardiac homeostasis and remodeling, emphasize recent advancements in the field, and offer an evaluation from a translational standpoint.
Collapse
Affiliation(s)
- Xu-Zhe Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Lin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Li Y. Novel Therapeutic Strategies Targeting Fibroblasts to Improve Heart Disease. J Cell Physiol 2025; 240:e31504. [PMID: 39690827 DOI: 10.1002/jcp.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Cardiac fibrosis represents the terminal pathological manifestation of various heart diseases, with the formation of fibroblasts playing a pivotal role in this process. Consequently, targeting the formation and function of fibroblasts holds significant potential for improving outcomes in heart disease. Recent research reveals the considerable potential of fibroblasts in ameliorating cardiac conditions, demonstrating different functional characteristics at various time points and spatial locations. Therefore, precise modulation of fibroblast activity may offer an effective approach for treating cardiac fibrosis and achieving targeted therapeutic outcomes. In this review, we focus on the fate and inhibition of fibroblasts, analyze their dynamic changes in cardiac diseases, and propose a framework for identifying markers of fibroblast activation mechanisms and selecting optimal time windows for therapeutic intervention. By synthesizing research findings in these areas, we aim to provide new strategies and directions for the precise treatment of fibroblasts in cardiac diseases.
Collapse
Affiliation(s)
- Yujuan Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Gholamalizadeh H, Ensan B, Karav S, Jamialahmadi T, Sahebkar A. Regulatory effects of statins on CCL2/CCR2 axis in cardiovascular diseases: new insight into pleiotropic effects of statins. J Inflamm (Lond) 2024; 21:51. [PMID: 39696507 DOI: 10.1186/s12950-024-00420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND HMG-CoA reductase inhibitors are well-known medications in the treatment of cardiovascular disorders due to their pleiotropic and lipid-lowering properties. Herein, we reviewed the effects of statins on the CCL2/CCR2 axis. METHOD Scopus and Pubmed databases were systematically searched using the following keywords:" Hydroxymethylglutaryl CoA Reductase Inhibitors"," HMG-CoA Reductase Inhibitors"," Statins", "CCL2, Chemokine", "Monocyte Chemoattractant Protein-1" and "Chemokine (C-C Motif) Ligand 2". Evidence investigating the role of statin on MCP-1 in CVD was identified and bibliographies were completely evaluated to gather further related studies. RESULTS The anti-inflammatory effects of statins on the CCL2/CCR2 pathway have been widely investigated. Despite inconclusive results, a great body of research supports the regulatory roles of statins on this pathway due to their pleiotropic effects. By disrupting the CCL2/CCR2 axis, statins attenuate the infiltration of monocytes and macrophages into the zone of inflammation and hence down-regulate the inflammatory cascades in various CVDs including atherosclerosis, cardiac remodeling, and stroke, among others. CONCLUSION CCL2 plays a major role in the pathogenesis of cardiovascular disorders. Down-regulation of CCL2 is proposed as one of the pleiotropic properties of statins. However, more investigations are required to elucidate which statin in what dose exerts a more potent effect on CCL2/CCR2 pathway.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Ensan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Wang H, Yang J, Cai Y, Zhao Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024; 15:906-929. [PMID: 38530808 PMCID: PMC11637486 DOI: 10.1093/procel/pwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-β was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-β displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-β-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yihong Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
23
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
24
|
Amrute JM, Luo X, Penna V, Yang S, Yamawaki T, Hayat S, Bredemeyer A, Jung IH, Kadyrov FF, Heo GS, Venkatesan R, Shi SY, Parvathaneni A, Koenig AL, Kuppe C, Baker C, Luehmann H, Jones C, Kopecky B, Zeng X, Bleckwehl T, Ma P, Lee P, Terada Y, Fu A, Furtado M, Kreisel D, Kovacs A, Stitziel NO, Jackson S, Li CM, Liu Y, Rosenthal NA, Kramann R, Ason B, Lavine KJ. Targeting immune-fibroblast cell communication in heart failure. Nature 2024; 635:423-433. [PMID: 39443792 DOI: 10.1038/s41586-024-08008-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction1,2. However, the molecular mechanisms driving immune-fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis3,4. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP+ fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand-receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2+ monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
Collapse
Affiliation(s)
- Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xin Luo
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tracy Yamawaki
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sally Yu Shi
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Cameran Jones
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Benjamin Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xue Zeng
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Tore Bleckwehl
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Pan Ma
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Paul Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yuriko Terada
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Angela Fu
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Milena Furtado
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Atilla Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Simon Jackson
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Chi-Ming Li
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Brandon Ason
- Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
25
|
Wang Q, Liu F, Li Y, Zhang H, Qi X, Wu K, Zhang Y, You S, Liu W, Hui X, Li H, Zhu L, Gao H, Cheng J. Choroid plexus CCL2‒CCR2 signaling orchestrates macrophage recruitment and cerebrospinal fluid hypersecretion in hydrocephalus. Acta Pharm Sin B 2024; 14:4544-4559. [PMID: 39525574 PMCID: PMC11544184 DOI: 10.1016/j.apsb.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 11/16/2024] Open
Abstract
The choroid plexus (ChP) serves as the principal origin of cerebrospinal fluid (CSF). CSF hypersecretion due to ChP inflammation has emerged as an important pathogenesis of hydrocephalus recently. Nevertheless, the precise mechanisms of ChP inflammation and the ensuing CSF hypersecretion in hydrocephalus remain ill-defined. In the present study, we elucidate the critical role of macrophages in the pathogenesis of ChP inflammation. Specifically, we identify the chemokine CCL2, released by ChP epithelial cells, recruits CCR2+ monocytes to the ChP thereby inciting hydrocephalus pathogenesis. The accumulated ChP macrophages increase the inflammation in ChP epithelial cells through TNF-α/TNFR1/NF-κB signaling cascade, thereby leading to CSF hypersecretion. Strikingly, augmentation of ChP‒CCL2 using an adeno-associated viral approach (AAV) exacerbates macrophage recruitment, activation, and ventriculomegaly in rat PHH models. Systemic application of Bindarit, a specific CCL2 inhibitor, significantly inhibits ChP macrophage infiltration and activation and reduces CSF secretion rate. Furthermore, the administration of CCR2 antagonist (INCB 3284) reduces ChP macrophage accumulation and ventriculomegaly. This study not only unveils the ChP CCL2‒CCR2 signaling in the pathophysiology of hydrocephalus but also unveils Bindarit as a promising therapeutic choice for the management of posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Qiguang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shenglan You
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Zhu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, Liu D, Zhan Y, Du X, Liu J, Tan J, Huang Y, Mo K, Lan X, Ouyang H, Yuan J, Chen X, Ji J. PAX6-WNK2 Axis Governs Corneal Epithelial Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39453672 PMCID: PMC11512568 DOI: 10.1167/iovs.65.12.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Limbal stem/progenitor cells (LSCs) continuously proliferate and differentiate to replenish the corneal epithelium and play a vital role in corneal function and normal vision. A previous study revealed that paired box 6 (PAX6) is a master transcription factor involved in determining the fate of corneal epithelial cells (CECs). However, the molecular events downstream of PAX6 remain largely unknown. In this study, we aimed to clarify the regulation network of PAX6 in driving CEC differentiation. Methods An air-liquid culture system was used to differentiate LSCs into mature CECs. Specific targeting PAX6 short-hairpin RNAs were used to knock down PAX6 in LSC. RNA sequencing (RNA-seq) was used to analyze shPAX6-transfected CECs and CEC differentiation-associated genes to identify the potential downstream targets of PAX6. RNA-seq analysis, quantitative real-time PCR, and immunofluorescence staining were performed to clarify the function of WNK lysine deficient protein kinase 2 (WNK2), a downstream target of PAX6, and its relationship with corneal diseases. Results WNK2 expression increased during CEC differentiation and decreased upon PAX6 depletion. The distribution of WNK2 was specifically limited to the central corneal epithelium and suprabasal layer of the limbus. Knockdown of WNK2 impaired the expression of CEC-specific markers (KRT12, ALDH3A1, and CLU), disrupted the corneal differentiation process, and activated the terms of keratinization, inflammation, and cell proliferation, consistent with PAX6-depleted CEC and published microbial keratitis. Thus, aberrant expression of WNK2 was linked to corneal ulcers. Conclusions As a downstream target of PAX6, WNK2 plays an essential role in corneal epithelial cell differentiation and maintenance of corneal homeostasis.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Zhan
- Department of Experimental Research, Bioinformatics Platform, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
27
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
28
|
Liu Y, Zhou M, Xu M, Wang X, Zhang Y, Deng Y, Zhang Z, Jiang J, Zhou X, Li C. Reprogramming monocytes into M2 macrophages as living drug depots to enhance treatment of myocardial ischemia-reperfusion injury. J Control Release 2024; 374:639-652. [PMID: 39208931 DOI: 10.1016/j.jconrel.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Delivering therapeutic agents efficiently to inflamed regions remains an intractable challenge following myocardial ischemia-reperfusion injury (MI/RI) due to the transient nature of the enhanced permeability and retention effect, which disappears after 24 h. Leveraging the inflammation-homing and plasticity properties of circulating monocytes (MN) as hitchhiking carriers and further inducing their polarization into anti-inflammatory phenotype macrophages upon reaching the inflamed sites is beneficial for MI/RI therapy. Herein, DSS/PB@BSP nanoparticles capable of clearing reactive oxygen species and inhibiting inflammation were developed by employing hollow Prussian blue nanoparticles (PB) as carriers to encapsulate betamethasone sodium phosphate (BSP) and further modified with dextran sulfate sodium (DSS), a targeting ligand for the scavenger receptor on MN. This formulation was internalized into MN as living cell drug depots, reprogramming them into anti-inflammation type macrophages to inhibit inflammation. In vitro assessments revealed the successful construction of the nanoparticle. In a murine MI/RI model, circulating MN laden with these nanoparticles significantly enhanced drug delivery and accumulation at the cardiac injury site, exhibiting favorable therapeutic ability and promoting M2-biased differentiation. Our study provides an effective approach with minimally invasion and biosecurity that makes this nanoplatform as a promising candidate for immunotherapy and clinical translation in the treatment of MI/RI.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingying Zhang
- Department of Anesthesiology, The affiliated hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
29
|
Fu M, Jia S, Xu L, Li X, Lv Y, Zhong Y, Ai S. Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair. J Clin Invest 2024; 134:e175297. [PMID: 39190625 PMCID: PMC11444165 DOI: 10.1172/jci175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiac mononuclear phagocytic cells (Cardiac MPCs) participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific MPC subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac MPCs in regenerative (P1) and nonregenerative (P10) mouse hearts after injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-Seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous MPCs during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Mingzhu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengtao Jia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longhui Xu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufang Lv
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Wen J, Guan Y, Niu H, Dang Y, Guan J. Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to attenuate inflammation after myocardial infarction. Acta Biomater 2024:S1742-7061(24)00469-0. [PMID: 39182804 PMCID: PMC11846964 DOI: 10.1016/j.actbio.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
Collapse
Affiliation(s)
- Jiaxing Wen
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Ya Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Yu Dang
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Jianjun Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
32
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
33
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
34
|
Hughes DM, Won T, Talor MV, Kalinoski HM, Jurčová I, Szárszoi O, Stříž I, Čurnová L, Bracamonte-Baran W, Melenovský V, Čiháková D. The protective role of GATA6 + pericardial macrophages in pericardial inflammation. iScience 2024; 27:110244. [PMID: 39040070 PMCID: PMC11260870 DOI: 10.1016/j.isci.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.
Collapse
Affiliation(s)
- David M. Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monica V. Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M. Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ivana Jurčová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ondrej Szárszoi
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ilja Stříž
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lenka Čurnová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
36
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 PMCID: PMC11574971 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
37
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
38
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
39
|
Tan H, Li W, Pang Z, Weng X, Gao J, Chen J, Wang Q, Li Q, Yang H, Dong Z, Wang Z, Zhu G, Tan Y, Fu Y, Han C, Cai S, Qian J, Huang Z, Song Y, Ge J. Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Adv Healthc Mater 2024; 13:e2303267. [PMID: 38198534 PMCID: PMC11468776 DOI: 10.1002/adhm.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two. Herein, inspired by the application research of chimeric antigen receptor macrophages (CAR-Ms) in solid tumors, a genetically modified macrophage-based synergistic drug delivery strategy that effectively challenging the three major barriers in an integrated manner is developed. This strategy involves the overexpression of exogenous macrophages with CCR2 (C-C chemokine receptor type 2) and cleavage-resistant MerTK, as well as surface clicking with liposomal PEP-20 (a CD47 antagonist). In MI/R mice model, this synergistic strategy can effectively restore cardiac efferocytosis after intravenous injection, thereby alleviating the inflammatory response, ultimately preserving cardiac function. This therapy focuses on inhibiting the initiation and promoting active resolution of inflammation, providing new insights for immune-regulatory therapy.
Collapse
Affiliation(s)
- Haipeng Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Weiyan Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityMinistry of Education826 Zhangheng Road, Pudong New AreaShanghai201210P. R. China
| | - Xueyi Weng
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jinfeng Gao
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Jing Chen
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiaozi Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Qiyu Li
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Hongbo Yang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheng Dong
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zhengmin Wang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Guangrui Zhu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yiwen Tan
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yuyuan Fu
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Chengzhi Han
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Shiteng Cai
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Juying Qian
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Zheyong Huang
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Yanan Song
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| | - Junbo Ge
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032P. R. China
- National Clinical Research Center for Interventional Medicine and Shanghai Clinical Research Center for Interventional MedicineShanghai200032P. R. China
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghai20032P. R. China
| |
Collapse
|
40
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
41
|
Zhou S, Wang L, Huang X, Wang T, Tang Y, Liu Y, Xu M. Comprehensive bioinformatics analytics and in vivo validation reveal SLC31A1 as an emerging diagnostic biomarker for acute myocardial infarction. Aging (Albany NY) 2024; 16:8361-8377. [PMID: 38713173 PMCID: PMC11132003 DOI: 10.18632/aging.205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.
Collapse
Affiliation(s)
- Shujing Zhou
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Huang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ting Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Jeong SY, Park BW, Kim J, Lee S, You H, Lee J, Lee S, Park JH, Kim J, Sim W, Ban K, Park J, Park HJ, Kim S. Hyaluronic acid stimulation of stem cells for cardiac repair: a cell-free strategy for myocardial infarct. J Nanobiotechnology 2024; 22:149. [PMID: 38570846 PMCID: PMC10993512 DOI: 10.1186/s12951-024-02410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-β1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.
Collapse
Affiliation(s)
- Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Seulki Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Joohyun Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Susie Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jinju Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Woosup Sim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea.
| |
Collapse
|
44
|
Wang W, Chen XK, Zhou L, Wang F, He YJ, Lu BJ, Hu ZG, Li ZX, Xia XW, Wang WE, Zeng CY, Li LP. Chemokine CCL2 promotes cardiac regeneration and repair in myocardial infarction mice via activation of the JNK/STAT3 axis. Acta Pharmacol Sin 2024; 45:728-737. [PMID: 38086898 PMCID: PMC10943228 DOI: 10.1038/s41401-023-01198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/12/2023] [Indexed: 03/17/2024]
Abstract
Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 μg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 μM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 μM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Xiao-Kang Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Lu Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Feng Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Yan-Ji He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Bing-Jun Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Ze-Gang Hu
- Department of Laboratory Animal Center, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Zhu-Xin Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Xue-Wei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liang-Peng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
| |
Collapse
|
45
|
Wu Y, Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J Cell Physiol 2024; 239:e31192. [PMID: 38284280 DOI: 10.1002/jcp.31192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanchun Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
46
|
Tan X, Wang J, Liu X, Xie G, Ouyang F. M2 macrophage-derived paracrine factor TNFSF13 affects the fibrogenic alterations in endothelial cells and cardiac fibroblasts by mediating the NF-κB and Akt pathway. J Biochem Mol Toxicol 2024; 38:e23707. [PMID: 38622979 DOI: 10.1002/jbt.23707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Jintang Wang
- People's Hospital of Wangcheng District Changsha, Changsha, Hunan, China
| | - Xiangyang Liu
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Genyuan Xie
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
47
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
48
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
49
|
Chen L, Pan D, Zhang Y, Zhang E, Ma L. C-C Motif Chemokine 2 Regulates Macrophage Polarization and Contributes to Myocardial Infarction Healing. J Interferon Cytokine Res 2024; 44:68-79. [PMID: 38153396 DOI: 10.1089/jir.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Macrophages are crucial immune cells that play essential roles in the healing of myocardial infarction (MI), undergoing continuous polarization throughout this process. C-C motif chemokine 2 (CCL2) is a chemokine that regulates inflammatory responses during MI. However, the extent to which CCL2 influences macrophage polarization and MI healing remains incompletely understood. In this study, we investigate the role of CCL2 in macrophage polarization and MI healing. Our findings reveal that CCL2 is differentially expressed in lipopolysaccharide (LPS)-induced M1 and interleukin (IL)-4-induced M2 RAW264.7 macrophages. Knockdown of CCL2 attenuates TNF-α secretion stimulated by LPS, while overexpression of CCL2 mitigates IL-10 production triggered by IL-4 in these macrophages. Moreover, CCL2 deficiency disrupts LPS-induced M1 polarization, whereas CCL2 overexpression reduces M2 polarization of RAW264.7 macrophages induced by IL-4. Further exploration indicates that the promotion of M1 polarization by CCL2 is significantly impaired by inhibition of the p38-mediated MAPK pathway and NF-κB pathway. In a MI mouse model, CCL2 knockdown remarkably reduces infarct size, collagen synthesis, and the expression of cardiac fibrosis and hypertrophy markers. The activity of the p38-mediated MAPK pathway and NF-κB pathway is downregulated by CCL2 knockdown as well. Additionally, the number of total macrophages and M1 macrophages in the infarct decreases, while the number of M2 macrophages increases upon CCL2 deficiency. In conclusion, these results suggest that CCL2 is a key regulator of macrophage polarization, controlling MI healing in vivo.
Collapse
Affiliation(s)
- Liangwei Chen
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dihao Pan
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Zhang
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Ma
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|