1
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
2
|
Yoshinaga D, Craven I, Feng R, Prondzynski M, Shani K, Tharani Y, Mayourian J, Joseph M, Walker D, Bortolin RH, Carreon CK, Boss B, Upton S, Parker KK, Pu WT, Bezzerides VJ. Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy. Nat Commun 2025; 16:3604. [PMID: 40234403 PMCID: PMC12000442 DOI: 10.1038/s41467-025-58539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
N-terminal acetyltransferases including NAA10 catalyze N-terminal acetylation, an evolutionarily conserved co- and post-translational modification. However, little is known about the role of N-terminal acetylation in cardiac homeostasis. To gain insight into cardiac-dependent NAA10 function, we studied a previously unidentified NAA10 variant p.(Arg4Ser) segregating with QT-prolongation, cardiomyopathy, and developmental delay in a large kindred. Here, we show that the NAA10R4S variant reduced enzymatic activity, decreased NAA10-NAA15 complex formation, and destabilized the enzymatic complex N-terminal acetyltransferase A. In NAA10R4S/Y-induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs), dysregulation of the late sodium and slow delayed rectifier potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation. Engineered heart tissues generated from NAA10R4S/Y-iPSC-CMs had significantly decreased contractile force and sarcomeric disorganization, consistent with the pedigree's cardiomyopathic phenotype. Proteomic studies revealed dysregulation of metabolic pathways and cardiac structural proteins. We identified small molecule and genetic therapies that normalized the phenotype of NAA10R4S/Y-iPSC-CMs. Our study defines the roles of N-terminal acetylation in cardiac regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction.
Collapse
Affiliation(s)
- Daisuke Yoshinaga
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabel Craven
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Feng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Shani
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, MA, USA
| | - Yashasvi Tharani
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Milosh Joseph
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Walker
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raul H Bortolin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bridget Boss
- Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Manchester, NH, USA
| | - Sheila Upton
- Department of Medical Genetics, Dartmouth Hitchcock Medical Center, Manchester, NH, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Manchester, NH, USA.
| |
Collapse
|
3
|
Kim H, Choi S, Heo H, Cho SH, Lee Y, Kim D, Jung KO, Rhee S. Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research. Int J Stem Cells 2025; 18:37-48. [PMID: 39129179 PMCID: PMC11867907 DOI: 10.15283/ijsc23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- K-BioX, Palo Alto, CA, USA
| | - Sohee Choi
- K-BioX, Palo Alto, CA, USA
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - HyoJung Heo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- K-BioX, Palo Alto, CA, USA
| | - Su Han Cho
- K-BioX, Palo Alto, CA, USA
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Yuna Lee
- K-BioX, Palo Alto, CA, USA
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
| | - Dohyup Kim
- K-BioX, Palo Alto, CA, USA
- Asthma Research Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kyung Oh Jung
- K-BioX, Palo Alto, CA, USA
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Siyeon Rhee
- K-BioX, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Paredes-Espinosa MB, Paluh JL. Synthetic embryology of the human heart. Front Cell Dev Biol 2025; 12:1478549. [PMID: 39935786 PMCID: PMC11810959 DOI: 10.3389/fcell.2024.1478549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The evolution of stem cell-based heart models from cells and tissues to organoids and assembloids and recently synthetic embryology gastruloids, is poised to revolutionize our understanding of cardiac development, congenital to adult diseases, and patient customized therapies. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have already been integrated into transplantable patches and are in preclinical efforts to reverse fibrotic scarring from myocardial infarctions. To inform on the complexity of heart diseases, multi-tissue morphogenic heart models are needed that replicate fundamental components of heart function to heart organogenesis in vitro and which require a deep understanding of heart development. Organoid and assembloid models capture selected multicellular cardiac processes, such as chamber formation and priming events for vascularization. Gastruloid heart models offer deeper insights as synthetic embryology to mimic multi-staged developmental events of in vivo heart organogenesis including established heart fields, crescent formation and heart tube development along with vascular systemic foundation and even further steps. The human Elongating Multi-Lineage Organized Cardiac (EMLOC) gastruloid model captures these stages and additional events including chamber genesis, patterned vascularization, and extrinsic central and intrinsic cardiac nervous system (CNS-ICNS) integration guided by spatiotemporal and morphogenic processes with neural crest cells. Gastruloid synthetic embryology heart models offer new insights into previously hidden processes of development and provide powerful platforms for addressing heart disease that extends beyond cardiomyocytes, such as arrhythmogenic diseases, congenital defects, and systemic injury interactions, as in spinal cord injuries. The holistic view that is emerging will reveal heart development and disease in unprecedented detail to drive transformative state-of-the-art innovative applications for heart health.
Collapse
Affiliation(s)
| | - Janet L. Paluh
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science and Engineering, University at Albany, Albany, NY, United States
| |
Collapse
|
5
|
Marimon X, Esquinas F, Ferrer M, Cerrolaza M, Portela A, Benítez R. A Novel non-invasive optical framework for simultaneous analysis of contractility and calcium in single-cell cardiomyocytes. J Mech Behav Biomed Mater 2025; 161:106812. [PMID: 39566161 DOI: 10.1016/j.jmbbm.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The use of a video method based on the Digital Image Correlation (DIC) algorithm from experimental mechanics to estimate the displacements, strain field, and sarcolemma length in a beating single-cell cardiomyocyte is proposed in this work. The obtained deformation is then correlated with the calcium signal, from calcium imaging where fluorescent dyes sensitive to calcium Ca2+ are used. Our proposed video-based method for simultaneous contraction and intracellular calcium analysis results in a low-cost, non-invasive, and label-free method. This technique has shown great advantages in long-term observations because this type of intervention-free measurement neutralizes the possible alteration in the beating cardiomyocyte introduced by other techniques for measuring cell contractility (e.g., Traction Force Microscopy, Atomic Force Microscopy, Microfabrication or Optical tweezers). Three tests were performed with synthetically augmented data from cardiomyocyte images to validate the robustness of the algorithm. First, a simulated rigid translation of a referenced image is applied, then a rotation, and finally a controlled longitudinal deformation of the referenced image, thus simulating a native realistic deformation. Finally, the proposed framework is evaluated with real experimental data. To validate contraction induced by intracellular calcium concentration, this signal is correlated with a new deformation measure proposed in this article, which is independent of cell orientation in the imaging setup. Finally, based on the displacements obtained by the DIC algorithm, the change in sarcolemma length in a contracting cardiomyocyte is calculated and its temporal correlation with the calcium signal is obtained.
Collapse
Affiliation(s)
- Xavier Marimon
- Automatic Control Department, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Spain; Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
| | - Ferran Esquinas
- Automatic Control Department, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), Barcelona, Spain
| | - Miquel Ferrer
- Department of Strength of Materials and Structural Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), Barcelona, Spain
| | - Miguel Cerrolaza
- School of Engineering, Science and Technology, Valencian International University (VIU), Valencia, Spain
| | - Alejandro Portela
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Raúl Benítez
- Automatic Control Department, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Spain
| |
Collapse
|
6
|
Mazarura GR, Hébert TE. Modeling the contribution of cardiac fibroblasts in dilated cardiomyopathy using induced pluripotent stem cells. Mol Pharmacol 2025; 107:100002. [PMID: 39919160 DOI: 10.1124/molpharm.124.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Fibrosis is implicated in nearly all forms of cardiomyopathy and significantly influences disease severity and outcomes. The primary cell responsible for fibrosis is the cardiac fibroblast, which remains understudied relative to cardiomyocytes in the context of cardiomyopathy. The development of induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) allows for the modeling of patient-specific disease characteristics and provides a scalable source of fibroblasts. iPSC-CFs are invaluable for understanding molecular pathways that affect disease progression and outcomes. This review explores various aspects of cardiomyopathy, with a focus on dilated cardiomyopathy, that can be modeled using iPSC-CFs and their application in drug discovery, given the current lack of approved therapies for cardiac fibrosis. We examine how iPSC-CFs can be utilized to study heart development, fibroblast heterogeneity, and activation, with the ultimate goal of developing better therapies for patients with cardiomyopathies. SIGNIFICANCE STATEMENT: We explore how induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) are used to study the fibrotic component of dilated cardiomyopathy. Most research has focused on cardiomyocytes, but iPSC-CFs serve as a valuable tool to elucidate molecular pathways leading to fibrosis and paracrine interactions with cardiomyocytes. Gaining insights into these events could aid in the development of new therapies and enable the use of patient-derived iPSC-CFs for precision medicine, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
8
|
Wu SD, Weller H, Vossmeyer T, Hsu SH. Motion Sensing by a Highly Sensitive Nanogold Strain Sensor in a Biomimetic 3D Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56599-56610. [PMID: 39253872 PMCID: PMC11503636 DOI: 10.1021/acsami.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Recent advancements in flexible electronics have highlighted their potential in biomedical applications, primarily due to their human-friendly nature. This study introduces a new flexible electronic system designed for motion sensing in a biomimetic three-dimensional (3D) environment. The system features a self-healing gel matrix (chitosan-based hydrogel) that effectively mimics the dynamics of the extracellular matrix (ECM), and is integrated with a highly sensitive thin-film resistive strain sensor, which is fabricated by incorporating a cross-linked gold nanoparticle (GNP) thin film as the active conductive layer onto a biocompatible microphase-separated polyurethane (PU) substrate through a clean, rapid, and high-precision contact printing method. The GNP-PU strain sensor demonstrates high sensitivity (a gauge factor of ∼50), good stability, and waterproofing properties. The feasibility of detecting small motion was evaluated by sensing the beating of human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte spheroids embedded in the gel matrix. The integration of these components exemplifies a proof-of-concept for using flexible electronics comprising self-healing hydrogel and thin-film nanogold in cardiac sensing and offers promising insights into the development of next-generation biomimetic flexible electronic devices.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- Fraunhofer
Center for Applied Nanotechnology CAN, Grindelallee 117, Hamburg 20146, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Shan-hui Hsu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Cellular and System Medicine, National
Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
9
|
Caneus J, Autar K, Akanda N, Grillo M, Long CJ, Jackson M, Lindquist S, Guo X, Morgan D, Hickman JJ. Validation of a functional human AD model with four AD therapeutics utilizing patterned ipsc-derived cortical neurons integrated with microelectrode arrays. Sci Rep 2024; 14:24875. [PMID: 39438515 PMCID: PMC11496884 DOI: 10.1038/s41598-024-73869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. Long-term potentiation (LTP), which is a correlate of learning and memory, was induced in mature human iPSC-derived cortical neurons cultured on microelectrode arrays utilizing circuit patterns connecting two adjacent electrodes. We demonstrated an LTP system that modeled the MCI and pre-MCI stages of Alzheimer's and validated this functional system utilizing four AD therapeutics, which was also verified utilizing patch-clamp electrophysiology. LTP was induced by tetanic electrical stimulation, and LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aβ42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aβ42-induced LTP impairment. The results illustrate the utility of the system as a validated platform to model MCI AD pathology, and potentially for the pre-MCI phase before significant neuronal death. This system also has the potential to become an ideal platform for high-content therapeutic screening for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Julbert Caneus
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| | - Kaveena Autar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Marcella Grillo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | | | - Max Jackson
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| | | | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Dave Morgan
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| |
Collapse
|
10
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
12
|
Tatekoshi Y, Chen C, Shapiro JS, Chang HC, Blancard M, Lyra-Leite DM, Burridge PW, Feinstein M, D'Aquila R, Hsue P, Ardehali H. Human induced pluripotent stem cell-derived cardiomyocytes to study inflammation-induced aberrant calcium transient. eLife 2024; 13:RP95867. [PMID: 39331464 PMCID: PMC11434618 DOI: 10.7554/elife.95867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Chunlei Chen
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Matthew Feinstein
- Department of Medicine, Northwestern University, Chicago, United States
| | - Richard D'Aquila
- Department of Medicine, Northwestern University, Chicago, United States
| | - Priscilla Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
- Department of Pharmacology, Northwestern University, Chicago, United States
- Department of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
13
|
Capponi S, Wang S. AI in cellular engineering and reprogramming. Biophys J 2024; 123:2658-2670. [PMID: 38576162 PMCID: PMC11393708 DOI: 10.1016/j.bpj.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
During the last decade, artificial intelligence (AI) has increasingly been applied in biophysics and related fields, including cellular engineering and reprogramming, offering novel approaches to understand, manipulate, and control cellular function. The potential of AI lies in its ability to analyze complex datasets and generate predictive models. AI algorithms can process large amounts of data from single-cell genomics and multiomic technologies, allowing researchers to gain mechanistic insights into the control of cell identity and function. By integrating and interpreting these complex datasets, AI can help identify key molecular events and regulatory pathways involved in cellular reprogramming. This knowledge can inform the design of precision engineering strategies, such as the development of new transcription factor and signaling molecule cocktails, to manipulate cell identity and drive authentic cell fate across lineage boundaries. Furthermore, when used in combination with computational methods, AI can accelerate and improve the analysis and understanding of the intricate relationships between genes, proteins, and cellular processes. In this review article, we explore the current state of AI applications in biophysics with a specific focus on cellular engineering and reprogramming. Then, we showcase a couple of recent applications where we combined machine learning with experimental and computational techniques. Finally, we briefly discuss the challenges and prospects of AI in cellular engineering and reprogramming, emphasizing the potential of these technologies to revolutionize our ability to engineer cells for a variety of applications, from disease modeling and drug discovery to regenerative medicine and biomanufacturing.
Collapse
Affiliation(s)
- Sara Capponi
- IBM Almaden Research Center, San Jose, California; Center for Cellular Construction, San Francisco, California.
| | - Shangying Wang
- Bay Area Institute of Science, Altos Labs, Redwood City, California.
| |
Collapse
|
14
|
Creso JG, Gokhan I, Rynkiewicz MJ, Lehman W, Moore JR, Campbell SG. In silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R. Front Physiol 2024; 15:1452509. [PMID: 39282088 PMCID: PMC11392859 DOI: 10.3389/fphys.2024.1452509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is an inherited disorder often leading to severe heart failure. Linkage studies in affected families have revealed hundreds of different mutations that can cause DCM, with most occurring in genes associated with the cardiac sarcomere. We have developed an investigational pipeline for discovering mechanistic genotype-phenotype relationships in DCM and here apply it to the DCM-linked tropomyosin mutation TPM1 M8R. Atomistic simulations predict that M8R increases flexibility of the tropomyosin chain and enhances affinity for the blocked or inactive state of tropomyosin on actin. Applying these molecular effects to a Markov model of the cardiac thin filament reproduced the shifts in Ca2+sensitivity, maximum force, and a qualitative drop in cooperativity that were observed in an in vitro system containing TPM1 M8R. The model was then used to simulate the impact of M8R expression on twitch contractions of intact cardiac muscle, predicting that M8R would reduce peak force and duration of contraction in a dose-dependent manner. To evaluate this prediction, TPM1 M8R was expressed via adenovirus in human engineered heart tissues and isometric twitch force was observed. The mutant tissues manifested depressed contractility and twitch duration that agreed in detail with model predictions. Additional exploratory simulations suggest that M8R-mediated alterations in tropomyosin-actin interactions contribute more potently than tropomyosin chain stiffness to cardiac twitch dysfunction, and presumably to the ultimate manifestation of DCM. This study is an example of the growing potential for successful in silico prediction of mutation pathogenicity for inherited cardiac muscle disorders.
Collapse
Affiliation(s)
- Jenette G. Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Ilhan Gokhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA, United States
| | - Stuart G. Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Wu XY, Lee YK, Lau YM, Au KW, Tse YL, Ng KM, Wong CK, Tse HF. The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models. Pharmaceuticals (Basel) 2024; 17:1030. [PMID: 39204134 PMCID: PMC11357512 DOI: 10.3390/ph17081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
16
|
Inouye K, Yeganyan S, Kay K, Thankam FG. Programmed spontaneously beating cardiomyocytes in regenerative cardiology. Cytotherapy 2024; 26:790-796. [PMID: 38520412 DOI: 10.1016/j.jcyt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Stem cells have gained attention as a promising therapeutic approach for damaged myocardium, and there have been efforts to develop a protocol for regenerating cardiomyocytes (CMs). Certain cells have showed a greater aptitude for yielding beating CMs, such as induced pluripotent stem cells, embryonic stem cells, adipose-derived stromal vascular fraction cells and extended pluripotent stem cells. The approach for generating CMs from stem cells differs across studies, although there is evidence that Wnt signaling, chemical additives, electrical stimulation, co-culture, biomaterials and transcription factors triggers CM differentiation. Upregulation of Gata4, Mef2c and Tbx5 transcription factors has been correlated with successfully induced CMs, although Mef2c may potentially play a more prominent role in the generation of the beating phenotype, specifically. Regenerative research provides a possible candidate for cardiac repair; however, it is important to identify factors that influence their differentiation. Altogether, the spontaneously beating CMs would be monumental for regenerative research for cardiac repair.
Collapse
Affiliation(s)
- Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Stephanie Yeganyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Kaelen Kay
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
17
|
Bezzerides V, Yoshinaga D, Feng R, Prondzynski M, Shani K, Tharani Y, Mayourian J, Joseph M, Walker D, Bortolin R, Carreon C, Boss B, Upton S, Parker K, Pu W. Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-3398860. [PMID: 39070617 PMCID: PMC11275982 DOI: 10.21203/rs.3.rs-3398860/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
N-terminal-acetyltransferases including NAA10 catalyze N-terminal acetylation (Nt-acetylation), an evolutionarily conserved co-translational modification. Little is known about the role of Nt-acetylation in cardiac homeostasis. To gain insights, we studied a novel NAA10 variant (p.R4S) segregating with QT-prolongation, cardiomyopathy and developmental delay in a large kindred. Here we show that the NAA10-R4S mutation reduced enzymatic activity, decreased expression levels of NAA10/NAA15 proteins, and destabilized the enzymatic complex NatA. In NAA10R4S/Y-iPSC-CMs, dysregulation of the late sodium and slow rectifying potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation. Engineered heart tissues generated from NAA10R4S/Y-iPSC-CMs had significantly decreased contractile force and sarcomeric disorganization, consistent with the pedigree's cardiomyopathic phenotype. We identified small molecule and genetic therapies that normalized the phenotype of NAA10R4S/Y-iPSC-CMs. Our study defines novel roles of Nt-acetylation in cardiac regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Shani
- Harvard School of Engineering and Applied Sciences
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wali R, Xu H, Cheruiyot C, Saleem HN, Janshoff A, Habeck M, Ebert A. Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy. Biol Chem 2024; 405:427-439. [PMID: 38651266 DOI: 10.1515/hsz-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.
Collapse
Affiliation(s)
- Ruheen Wali
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hang Xu
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Cleophas Cheruiyot
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hafiza Nosheen Saleem
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Göttingen University, Tammannstraße 6, D-37077 Göttingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital , Kollegiengasse 10, D-07743 Jena, Germany
| | - Antje Ebert
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
19
|
Guo J, Jiang H, Schuftan D, Moreno JD, Ramahdita G, Aryan L, Bhagavan D, Silva J, Huebsch N. Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy. iScience 2024; 27:109954. [PMID: 38827401 PMCID: PMC11141149 DOI: 10.1016/j.isci.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Hypertension is a major cause of morbidity and mortality in patients with hypertrophic cardiomyopathy (HCM), suggesting a potential role for mechanics in HCM pathogenesis. Here, we developed an in vitro physiological model to investigate how mechanics acts together with HCM-linked myosin binding protein C (MYBPC3) mutations to trigger disease. Micro-heart muscles (μHM) were engineered from induced pluripotent stem cell (iPSC)-derived cardiomyocytes bearing MYBPC3+/- mutations and challenged to contract against substrates of different elasticity. μHMs that worked against substrates with stiffness at or exceeding the stiffness of healthy adult heart muscle exhibited several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in MYBPC3+/- μHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca2+ intake through membrane-embedded channels underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease with iPSC technology.
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Jonathan D. Moreno
- Division of Cardiology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Lavanya Aryan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Druv Bhagavan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Jonathan Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
20
|
Chirikian O, Faynus MA, Merk M, Singh Z, Muray C, Pham J, Chialastri A, Vander Roest A, Goldstein A, Pyle T, Lane KV, Roberts B, Smith JE, Gunawardane RN, Sniadecki NJ, Mack DL, Davis J, Bernstein D, Streichan SJ, Clegg DO, Dey SS, Wilson MZ, Pruitt BL. YAP dysregulation triggers hypertrophy by CCN2 secretion and TGFβ uptake in human pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597045. [PMID: 38895282 PMCID: PMC11185505 DOI: 10.1101/2024.06.03.597045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFβ. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.
Collapse
|
21
|
Zhang Q, Hao L, Wang F, Yu Q, Wu S, Han C. Troponin T1 in tumorigenesis and immune modulation: Insights into multiple cancers and kidney renal clear cell carcinoma. J Cell Mol Med 2024; 28:e18410. [PMID: 38853457 PMCID: PMC11163025 DOI: 10.1111/jcmm.18410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Troponin T1 (TNNT1) plays a crucial role in muscle contraction but its role in cancer, particularly in kidney renal clear cell carcinoma (KIRC), is not well-understood. This study explores the expression, clinical significance and biological functions of TNNT1 in various cancers, with an emphasis on its involvement in KIRC. We analysed TNNT1 expression in cancers using databases like TCGA and GTEx, assessing its prognostic value, mutation patterns, methylation status and functional implications. The study also examined TNNT1's effect on the tumour microenvironment and drug sensitivity in KIRC, complemented by in vitro TNNT1 knockdown experiments in KIRC cells. TNNT1 is overexpressed in several cancers and linked to adverse outcomes, showing frequent upregulation mutations and abnormal methylation. Functionally, TNNT1 connects to muscle and cancer pathways, affects immune infiltration and drug responses, and its overexpression in KIRC is associated with advanced disease and reduced survival. Knocking down TNNT1 curbed KIRC cell growth. TNNT1's aberrant expression plays a significant role in tumorigenesis and immune modulation, highlighting its value as a prognostic biomarker and a potential therapeutic target in KIRC and other cancers. Further studies are essential to understand TNNT1's oncogenic mechanisms in KIRC.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Urology, Xuzhou Central HospitalAffiliated Central Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of UrologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsuChina
- School of Life SciencesJiangsu Normal UniversityXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central HospitalAffiliated Central Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Fengye Wang
- Department of UrologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsuChina
| | - Quansheng Yu
- Department of UrologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsuChina
| | - Shaoyuan Wu
- School of Life SciencesJiangsu Normal UniversityXuzhouJiangsuChina
| | - Conghui Han
- Department of Urology, Xuzhou Central HospitalAffiliated Central Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- School of Life SciencesJiangsu Normal UniversityXuzhouJiangsuChina
| |
Collapse
|
22
|
Elsaygh J, Zaher A, Parikh MA, Frishman WH, Peterson SJ. Nanotechnology: The Future for Diagnostic and Therapeutic Intervention in Cardiovascular Diseases is Here. Cardiol Rev 2024:00045415-990000000-00281. [PMID: 38814069 DOI: 10.1097/crd.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With advances in technology and medicine over the last 3 decades, cardiovascular medicine has evolved tremendously. Nanotechnology provides a promising future in personalized precision medicine. In this review, we delve into the current and prospective applications of nanotechnology and nanoparticles in cardiology. Nanotechnology has allowed for point-of-care testing such as high-sensitivity troponins, as well as more precise cardiac imaging. This review is focused on 3 diseases within cardiology: coronary artery disease, heart failure, and valvular heart disease. The use of nanoparticles in coronary stents has shown success in preventing in-stent thrombosis, as well as using nanosized drug delivery medications to prevent neointimal proliferation in a way that spares systemic toxicity. In addition, by using nanoparticles as drug delivery systems, nanotechnology can be utilized in the delivery of goal-directed medical therapy in heart failure patients. It has also been shown to improve cell therapy in this patient population by helping in cell retention of grafts. Finally, the use of nanoparticles in the manufacturing of bioprosthetic valves provides a promising future for the longevity and success of cardiac valve repair and replacement.
Collapse
Affiliation(s)
- Jude Elsaygh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Anas Zaher
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
23
|
Wu X, Chen Y, Kreutz A, Silver B, Tokar EJ. Pluripotent stem cells for target organ developmental toxicity testing. Toxicol Sci 2024; 199:163-171. [PMID: 38547390 PMCID: PMC11131012 DOI: 10.1093/toxsci/kfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yichang Chen
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Inotiv, Research Triangle Park, North Carolina 27560, USA
| | - Brian Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
24
|
Saleem HN, Ignatyeva N, Stuut C, Jakobs S, Habeck M, Ebert A. 3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models. Cells 2024; 13:923. [PMID: 38891055 PMCID: PMC11171759 DOI: 10.3390/cells13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.
Collapse
Affiliation(s)
- Hafiza Nosheen Saleem
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Christiaan Stuut
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Goettingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
25
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Greenberg L, Tom Stump W, Lin Z, Bredemeyer AL, Blackwell T, Han X, Greenberg AE, Garcia BA, Lavine KJ, Greenberg MJ. Harnessing molecular mechanism for precision medicine in dilated cardiomyopathy caused by a mutation in troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588306. [PMID: 38645235 PMCID: PMC11030379 DOI: 10.1101/2024.04.05.588306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea L. Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
28
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Khanna A, Oropeza BP, Huang NF. Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy. J Biomed Mater Res A 2024; 112:512-523. [PMID: 37668192 PMCID: PMC11089005 DOI: 10.1002/jbm.a.37602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
30
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Kerr CM, Silver SE, Choi YS, Floy ME, Bradshaw AD, Cho SW, Palecek SP, Mei Y. Decellularized heart extracellular matrix alleviates activation of hiPSC-derived cardiac fibroblasts. Bioact Mater 2024; 31:463-474. [PMID: 37701451 PMCID: PMC10493503 DOI: 10.1016/j.bioactmat.2023.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) play a critical role in modeling human cardiovascular diseases in vitro. However, current culture substrates used for hiPSC-CF differentiation and expansion, such as Matrigel and tissue culture plastic (TCPs), are tissue mismatched and may provide pathogenic cues. Here, we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic (M-TCP-iCFs) exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential. To alleviate pathogenic activation of hiPSC-CFs, we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix (HEM) to provide a biomimetic substrate for improving hiPSC-CF phenotypes. We show that hiPSC-CFs differentiated and expanded on HEM (HEM-iCFs) exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype. HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs. Further, HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model, resulting in improved cardiomyocyte sarcomere development. In conclusion, HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, SC, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Katili PA, Karima AP, Azwani W, Antarianto RD, Djer MM. Application of Human Induced Pluripotent Stem Cells for Tissue Engineered Cardiomyocyte Modelling. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:431-446. [DOI: 10.1007/s40883-023-00294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/06/2025]
Abstract
Abstract
Purpose
Cardiac
tissue engineering opens up opportunities for regenerative therapy in heart diseases. Current technologies improve engineered cardiac tissue characteristics by combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with non-cardiomyocytes, selective biomaterials, and additional growth factors. Animal models are still required to determine cardiac patches’ overall in vivo effect before initiating human trials. Here, we review the current in vivo studies of cardiac patches using hiPSC-CMs.
Methods
We performed a literature search for studies on cardiac patch in vivo application and compared outcomes based on cell engraftment, functional changes, and safety profiles.
Results
Present studies confirm the beneficial results of combining hiPSC-CMs with other cardiac cell lineages and biomaterials. They improved the functional capacity of the heart, showed a reduction in infarct size, and initiated an adaptive inflammatory process through neovascularisation.
Conclusion
The cardiac patch is currently the most effective delivery system, proving safety and improvements in animal models, which are suggested to be the role of the paracrine mechanism. Further studies should focus on honing in vitro patch characteristics to achieve ideal results.
Lay Summary
Cardiac tissue engineering answers the demand for regenerative therapy in heart diseases. Combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with biomaterials and growth factors in cardiac patches improves the heart’s structural and functional characteristics. This delivery system is safe and efficient for delivering many cells and minimising cellular loss in vivo. Rat and porcine models of ischemic and non-ischemic heart diseases demonstrated the benefits of this therapy, which include cell engraftment, reduced infarct size, and increased left ventricular (LV) systolic function, with no reported critical adverse events. These reports sufficiently provide evidence of feasible improvements to proceed towards further trials.
Collapse
|
34
|
Gorashi R, Rivera‐Bolanos N, Dang C, Chai C, Kovacs B, Alharbi S, Ahmed SS, Goyal Y, Ameer G, Jiang B. Modeling diabetic endothelial dysfunction with patient-specific induced pluripotent stem cells. Bioeng Transl Med 2023; 8:e10592. [PMID: 38023728 PMCID: PMC10658533 DOI: 10.1002/btm2.10592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is a known risk factor for various cardiovascular complications, mediated by endothelial dysfunction. Despite the high prevalence of this metabolic disorder, there is a lack of in vitro models that recapitulate the complexity of genetic and environmental factors associated with diabetic endothelial dysfunction. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to develop in vitro models of diabetic endothelial dysfunction. We found that the diabetic phenotype was recapitulated in diabetic patient-derived iPSC-ECs, even in the absence of a diabetogenic environment. Subsequent exposure to culture conditions that mimic the diabetic clinical chemistry induced a diabetic phenotype in healthy iPSC-ECs but did not affect the already dysfunctional diabetic iPSC-ECs. RNA-seq analysis revealed extensive transcriptome-wide differences between cells derived from healthy individuals and diabetic patients. The in vitro disease models were used as a screening platform which identified angiotensin receptor blockers (ARBs) that improved endothelial function in vitro for each patient. In summary, we present in vitro models of diabetic endothelial dysfunction using iPSC technology, taking into account the complexity of genetic and environmental factors in the metabolic disorder. Our study provides novel insights into the pathophysiology of diabetic endothelial dysfunction and highlights the potential of iPSC-based models for drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Rayyan Gorashi
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Nancy Rivera‐Bolanos
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Caitlyn Dang
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Cedric Chai
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Center for Reproductive ScienceNorthwestern UniversityChicagoIllinoisUSA
| | - Beatrix Kovacs
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Sara Alharbi
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Syeda Subia Ahmed
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yogesh Goyal
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Center for Reproductive ScienceNorthwestern UniversityChicagoIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Guillermo Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Bin Jiang
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
35
|
Hawey C, Bourque K, Alim K, Derish I, Rody E, Khan K, Gendron N, Cecere R, Giannetti N, Hébert TE. Measuring Single-Cell Calcium Dynamics Using a Myofilament-Localized Optical Biosensor in hiPSC-CMs Derived from DCM Patients. Cells 2023; 12:2526. [PMID: 37947605 PMCID: PMC10647603 DOI: 10.3390/cells12212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Synchronized contractions of cardiomyocytes within the heart are tightly coupled to electrical stimulation known as excitation-contraction coupling. Calcium plays a key role in this process and dysregulated calcium handling can significantly impair cardiac function and lead to the development of cardiomyopathies and heart failure. Here, we describe a method and analytical technique to study myofilament-localized calcium signaling using the intensity-based fluorescent biosensor, RGECO-TnT. Dilated cardiomyopathy is a heart muscle disease that negatively impacts the heart's contractile function following dilatation of the left ventricle. We demonstrate how this biosensor can be used to characterize 2D hiPSC-CMs monolayers generated from a healthy control subject compared to two patients diagnosed with dilated cardiomyopathy. Lastly, we provide a step-by-step guide for single-cell data analysis and describe a custom Transient Analysis application, specifically designed to quantify features of calcium transients. All in all, we explain how this analytical approach can be applied to phenotype hiPSC-CM behaviours and stratify patient responses to identify perturbations in calcium signaling.
Collapse
Affiliation(s)
- Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; (C.H.); (K.B.); (K.A.)
| | - Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; (C.H.); (K.B.); (K.A.)
| | - Karima Alim
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; (C.H.); (K.B.); (K.A.)
| | - Ida Derish
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Elise Rody
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Kashif Khan
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Natalie Gendron
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Renzo Cecere
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Nadia Giannetti
- Research Institute, McGull University Hospital Centre, 1001 Decarie Blvd, Montréal, QC H4A 3J1, Canada; (I.D.); (E.R.); (K.K.); (N.G.); (R.C.); (N.G.)
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; (C.H.); (K.B.); (K.A.)
| |
Collapse
|
36
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
37
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
38
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Pugsley MK, Koshman YE, Foley CM, Winters BR, Authier S, Curtis MJ. Safety pharmacology 2023 and implementation of the ICH E14/S7B Q&A guidance document. J Pharmacol Toxicol Methods 2023; 123:107300. [PMID: 37524151 DOI: 10.1016/j.vascn.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.
Collapse
Affiliation(s)
- Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA.
| | | | | | - Brett R Winters
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA
| | - Simon Authier
- Charles River Laboratories, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
40
|
Kuehn BM. Introducing AHA's New President: Joseph C. Wu, MD, PhD, FAHA. J Am Heart Assoc 2023; 12:e031618. [PMID: 37489710 PMCID: PMC10492971 DOI: 10.1161/jaha.123.031618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
|
41
|
Escribá R, Larrañaga-Moreira JM, Richaud-Patin Y, Pourchet L, Lazis I, Jiménez-Delgado S, Morillas-García A, Ortiz-Genga M, Ochoa JP, Carreras D, Pérez GJ, de la Pompa JL, Brugada R, Monserrat L, Barriales-Villa R, Raya A. iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:108-119. [PMID: 37317833 DOI: 10.1161/circresaha.122.321951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Yvonne Richaud-Patin
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Léa Pourchet
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Ioannis Lazis
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Senda Jiménez-Delgado
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Alba Morillas-García
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Martín Ortiz-Genga
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Juan Pablo Ochoa
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
| | - Guillermo Javier Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.d.l.P.)
| | - Ramón Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Lorenzo Monserrat
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - Angel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| |
Collapse
|
42
|
Dai Y, Ignatyeva N, Xu H, Wali R, Toischer K, Brandenburg S, Lenz C, Pronto J, Fakuade FE, Sossalla S, Zeisberg EM, Janshoff A, Kutschka I, Voigt N, Urlaub H, Rasmussen TB, Mogensen J, Lehnart SE, Hasenfuss G, Ebert A. An Alternative Mechanism of Subcellular Iron Uptake Deficiency in Cardiomyocytes. Circ Res 2023; 133:e19-e46. [PMID: 37313752 DOI: 10.1161/circresaha.122.321157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Hang Xu
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Ruheen Wali
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Karl Toischer
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Sören Brandenburg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Christof Lenz
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | - Julius Pronto
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
| | - Funsho E Fakuade
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Samuel Sossalla
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
- Department for Internal Medicine II, University Medical Center Regensburg (S.S.)
| | - Elisabeth M Zeisberg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Andreas Janshoff
- Institute for Physical Chemistry (A.J.), University of Goettingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Göttingen (I.K.)
| | - Niels Voigt
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | | | - Jens Mogensen
- Department of Cardiology, Aalborg University Hospital, Denmark (J.M.)
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| |
Collapse
|
43
|
Korover N, Etzion S, Cherniak A, Rabinski T, Levitas A, Etzion Y, Ofir R, Parvari R, Cohen S. Functional defects in hiPSCs-derived cardiomyocytes from patients with a PLEKHM2-mutation associated with dilated cardiomyopathy and left ventricular non-compaction. Biol Res 2023; 56:34. [PMID: 37349842 PMCID: PMC10288792 DOI: 10.1186/s40659-023-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary myocardial disease, leading to heart failure and excessive risk of sudden cardiac death with rather poorly understood pathophysiology. In 2015, Parvari's group identified a recessive mutation in the autophagy regulator, PLEKHM2 gene, in a family with severe recessive DCM and left ventricular non-compaction (LVNC). Fibroblasts isolated from these patients exhibited abnormal subcellular distribution of endosomes, Golgi apparatus, lysosomes and had impaired autophagy flux. To better understand the effect of mutated PLEKHM2 on cardiac tissue, we generated and characterized induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs) from two patients and a healthy control from the same family. The patient iPSC-CMs showed low expression levels of genes encoding for contractile functional proteins (α and β-myosin heavy chains and 2v and 2a-myosin light chains), structural proteins integral to heart contraction (Troponin C, T and I) and proteins participating in Ca2+ pumping action (SERCA2 and Calsequestrin 2) compared to their levels in control iPSC-derived CMs. Furthermore, the sarcomeres of the patient iPSC-CMs were less oriented and aligned compared to control cells and generated slowly beating foci with lower intracellular calcium amplitude and abnormal calcium transient kinetics, measured by IonOptix system and MuscleMotion software. Autophagy in patient's iPSC-CMs was impaired as determined from a decrease in the accumulation of autophagosomes in response to chloroquine and rapamycin treatment, compared to control iPSC-CMs. Impairment in autophagy together with the deficiency in the expression of NKX2.5, MHC, MLC, Troponins and CASQ2 genes, which are related to contraction-relaxation coupling and intracellular Ca2+ signaling, may contribute to the defective function of the patient CMs and possibly affect cell maturation and cardiac failure with time.
Collapse
Affiliation(s)
- Nataly Korover
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| | - Sharon Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Alexander Cherniak
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Tatiana Rabinski
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Yoram Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rivka Ofir
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Dead Sea & Arava Science Center, 8691000, Masada, Israel
| | - Ruti Parvari
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| |
Collapse
|
44
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
45
|
Malihi G, Nikoui V, Elson EL. A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Arch Physiol Biochem 2023; 129:131-142. [PMID: 32783745 DOI: 10.1080/13813455.2020.1802600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.
Collapse
Affiliation(s)
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
46
|
Ernst P, Bidwell PA, Dora M, Thomas DD, Kamdar F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front Cell Dev Biol 2023; 10:986107. [PMID: 36742199 PMCID: PMC9889838 DOI: 10.3389/fcell.2022.986107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are based on ground-breaking technology that has significantly impacted cardiovascular research. They provide a renewable source of human cardiomyocytes for a variety of applications including in vitro disease modeling and drug toxicity testing. Cardiac calcium regulation plays a critical role in the cardiomyocyte and is often dysregulated in cardiovascular disease. Due to the limited availability of human cardiac tissue, calcium handling and its regulation have most commonly been studied in the context of animal models. hiPSC-CMs can provide unique insights into human physiology and pathophysiology, although a remaining limitation is the relative immaturity of these cells compared to adult cardiomyocytes Therefore, this field is rapidly developing techniques to improve the maturity of hiPSC-CMs, further establishing their place in cardiovascular research. This review briefly covers the basics of cardiomyocyte calcium cycling and hiPSC technology, and will provide a detailed description of our current understanding of calcium in hiPSC-CMs.
Collapse
Affiliation(s)
- Patrick Ernst
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Philip A. Bidwell
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Michaela Dora
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
Fu X, Mishra R, Chen L, Arfat MY, Sharma S, Kingsbury T, Gunasekaran M, Saha P, Hong C, Yang P, Li D, Kaushal S. Exosomes mediated fibrogenesis in dilated cardiomyopathy through a MicroRNA pathway. iScience 2023; 26:105963. [PMID: 36818289 PMCID: PMC9932122 DOI: 10.1016/j.isci.2023.105963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-β signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Rachana Mishra
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ling Chen
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Mir Yasir Arfat
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Tami Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muthukumar Gunasekaran
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Charles Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deqiang Li
- Department of Surgery, Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA,Corresponding author
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA,Corresponding author
| |
Collapse
|
48
|
Chen YT, Masbuchin AN, Fang YH, Hsu LW, Wu SN, Yen CJ, Liu YW, Hsiao YW, Wang JM, Rohman MS, Liu PY. Pentraxin 3 regulates tyrosine kinase inhibitor-associated cardiomyocyte contraction and mitochondrial dysfunction via ERK/JNK signalling pathways. Biomed Pharmacother 2023; 157:113962. [PMID: 36370523 DOI: 10.1016/j.biopha.2022.113962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) patients suffer varying degrees of heart dysfunction after tyrosine kinase inhibitor (TKI) treatment. Interestingly, HCC patients often have higher levels of pentraxin 3 (PTX3), and PTX3 inhibition was found to improve left ventricular dysfunction in animal models. OBJECTIVES We sought to assess the therapeutic potential of PTX3 inhibition on TKI-associated cardiotoxicity. METHODS We used a human embryonic stem cell line, RUES2, to generate cardiomyocyte cultures (RUES2-CM) for functional testing. We also assessed heart function and PTX3 expression levels in 16 HCC patients who received TKI treatment, 3 HCC patients who did not receive TKIs, and 7 healthy volunteers. RESULTS Significantly higher PTX3 expression was noted in HCC patients with TKI treatment versus those without, and 38% of male and 33% of female patients had QTc prolongation after TKI treatment. Treatment of cardiomyocyte cultures with sorafenib also increased PTX3 expression and induced cytoskeletal remodelling, contraction reduction, sodium current inhibition, and mitochondrial respiratory dysfunction. PTX3 colocalised with CD44 in cardiomyocytes, and cardiomyocyte contraction, mitochondrial respiratory function, and regular cytoskeletal and apoptotic protein expression were restored with PTX3 inhibition. CD44 knockdown confirmed PTX3/CD44 signalling. These results suggest a possible mechanism in which sorafenib treatment increases PTX3 expression, thereby resulting in reduced extracellular signal-regulated kinase (ERK) 1/2 expression that affects cardiomyocyte contraction, while also activating c-Jun N-terminal kinase (JNK) downstream pathways to disrupt mitochondrial respiration and trigger apoptosis. CONCLUSIONS TKI-induced cardiotoxicity may be partly mediated by the upregulation of PTX3, and thus PTX3 inhibition has potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Ling-Wei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | - Chia-Jui Yen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC.
| | - Yen-Wen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC.
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Center of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| |
Collapse
|
49
|
Liang S, Su Y, Yao R. 3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling. Handb Exp Pharmacol 2023; 281:29-56. [PMID: 36882603 DOI: 10.1007/164_2023_646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs), carrying the genetic information of the disease and capable of differentiating into multilineages in vitro, are valuable for disease modeling. 3D bioprinting enables the assembly of the cell-laden hydrogel into hierarchically three-dimensional architectures that recapitulate the natural tissues and organs. Investigation of iPSC-derived physiological and pathological models constructed by 3D bioprinting is a fast-growing field still in its infancy. Distinctly from cell lines and adult stem cells, iPSCs and iPSC-derived cells are more susceptible to external stimuli which can disturb the differentiation, maturation, and organization of iPSCs and their progeny. Here we discuss the fitness of iPSCs and 3D bioprinting from the perspective of bioinks and printing technologies. We provide a timely review of the progress of 3D bioprinting iPSC-derived physiological and pathological models by exemplifying the relatively prosperous cardiac and neurological fields. We also discuss scientific rigors and highlight the remaining issues to offer a guiding framework for bioprinting-assisted personalized medicine.
Collapse
Affiliation(s)
- Shaojun Liang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China
| | - Yijun Su
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China
| | - Rui Yao
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China.
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China.
| |
Collapse
|
50
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|