1
|
Liu B, Zhang L, Guan X, Liu J, Shou W, Chen X, Li X, Cao D. Interpenetrating network hydrogel-loaded embryonic stem cell-derived endocardial cells improves cardiac function after myocardial infarction. J Transl Med 2025; 23:603. [PMID: 40448180 DOI: 10.1186/s12967-025-06603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND With an in-depth understanding of cardiac cell differentiation, cell therapy derived from stem cells has shown promising therapeutic effects in the treatment of myocardial infarction (MI). Although many types of cardiac or noncardiac cells have been found to play protective roles in MI, the specific role of endocardial cells (ECCs) in MI has not been reported. METHODS The current study was designed to determine whether human embryonic stem cell (hESC)-derived endocardial cells (hESC-ECCs) could be protective against MI. We first developed a cell delivery system by constructing a photosensitive interpenetrating network hydrogel consisting of gelatin methacryloyl (GelMA) and silk fibroin methacryloyl (SilMA). The sorted hESC-ECCs were loaded into the delivery system and then injected into the pericardium cavity of the MI rats. RESULTS These results show that the cell delivery system has good biocompatibility. Moreover, the delivered endocardial cells improved cardiac function and delayed capillary atrophy after MI. Further mechanistic analysis revealed that hESC-ECCs protect the mitochondria of cardiomyocytes from damage under oxidative stress and potentially promote the angiogenesis of cardiac endothelial cells. CONCLUSION Our results demonstrated that hESC-ECCs have the potential to serve as a cell therapy strategy for MI treatment by maintaining cardiomyocyte survival and facilitating angiogenesis.
Collapse
Affiliation(s)
- Boshi Liu
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Laiping Zhang
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao Guan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
| | - Jie Liu
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Weinian Shou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Xin Chen
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Xiaohui Li
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Dayan Cao
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|
2
|
Noorabadi P, Shahabi Rabori V, Jamali S, Jafari N, Saberiyan M. An overview on cardiac regeneration revolution: exploring the promise of stem cell therapies. Mol Biol Rep 2025; 52:511. [PMID: 40434692 DOI: 10.1007/s11033-025-10580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of global mortality, with myocardial infarction (MI) and subsequent heart failure (HF) posing significant clinical challenges. Despite advancements in pharmacological and surgical interventions, the limited regenerative capacity of the adult human heart necessitates innovative therapeutic strategies. Stem cell-based therapies have emerged as a promising approach to cardiac regeneration, aiming to restore damaged myocardial tissue through cell replacement and paracrine-mediated repair mechanisms. This review provides a comprehensive overview of the current landscape of stem cell therapies for cardiac regeneration, focusing on the molecular mechanisms, cell types, delivery techniques, and recent clinical advancements. We highlight the roles of key signaling pathways, including NOTCH, PI3K/Akt, Wnt/β-catenin, Hippo/YAP, and MAPK, in regulating cardiomyocyte proliferation, angiogenesis, fibrosis, and inflammation. Additionally, we discuss the therapeutic potential of various stem cell types, such as mesenchymal stem cells (MSCs), cardiac progenitor cells (CPCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs), in promoting cardiac repair. Despite promising preclinical results, challenges such as low cell retention, immune rejection, and inconsistent clinical outcomes persist. Recent advancements in genetic engineering, and innovative delivery methods, including transendocardial and intracoronary injections, offer new avenues for enhancing therapeutic efficacy. This review underscores the need for further research to optimize stem cell-based therapies, improve clinical trial design, and translate these innovative approaches into effective treatments for heart disease. By addressing these challenges, stem cell therapy holds the potential to revolutionize cardiac regeneration and improve outcomes for patients with ischemic heart disease and heart failure.
Collapse
Affiliation(s)
- Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Venus Shahabi Rabori
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Jamali
- Department of Medical Genetics, School of Medical Sciences, Faculty of Medicine, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran
| | - Negar Jafari
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, School of Medical Sciences, Faculty of Medicine, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Saltzman RG, Sundin A, Caceres LV, Tovar JA, Garzon AM, Cabreja MA, Shayestehyekta H, Soto J, Jayaweera D, Khan A, Schulman IH, Mitrani RD, Hare JM. Long term event-free survival following cell-based therapy in patients with cardiomyopathy: the HYPERION observational cohort. Stem Cells Transl Med 2025; 14:szaf010. [PMID: 40418635 DOI: 10.1093/stcltm/szaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/19/2025] [Indexed: 05/28/2025] Open
Abstract
INTRODUCTION There is limited long-term clinical outcome data supporting the use of cell-based therapy to treat heart failure. The HYPERION study (NCT03071835) followed long-term outcomes of patients with ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NIDCM) who received mesenchymal stromal cells (MSC). We hypothesized that improved cardiac parameters predict longer event-free survival. METHODS We performed a Kaplan-Meier analysis to examine event-free survival as the primary outcome. Time-to-event information was captured from all eligible participants. Endpoint events were defined as death (all-cause), Left Ventricular Assist Device (LVAD) placement, or Heart Transplant. Subjects were categorized based on increase in Left Ventricular Ejection Fraction (LVEF) or decrease in Left Ventricular End Diastolic Volume (LVEDV) for comparisons within disease etiologies. RESULTS There were 134 men and 21 women, with mean age 60.0 ± 11.0 years. There were 121 (78%) with ICM and 34 (22%) with NIDCM. By the end of long-term follow-up (~13 years), 38 (24.5%) subjects had deceased, 5 (3.2%) received LVAD, and 8 (5.2%) underwent heart transplantation. Post-therapy increase of ≥5% LVEF was associated with longer event-free survival in NIDCM (HR:0.31; 95%CI, 0.11,0.86; P = .025), but not ICM (HR:1.14; 95%CI, 0.47,2.72; P = .776). Conversely, reduction in left ventricular end-diastolic volume (LVEDV) was associated with longer event-free survival in ICM (HR:0.16; 95%CI, 0.05, 0.55; P = .008) but not NIDCM (HR:0.35; 95%CI, 0.1,1.2; P = .098). ICM improvers had LVEDV of 225.7 ± 95.9 mL at baseline and 209.0 ± 100.6 mL by year 5 (P = .046). NIDCM improvers had LVEF of 27.2 ± 8.9% at baseline and 36.1 ± 11.6% by year 5 (P = .018). CONCLUSION In this long-term observational cohort analysis, improvement of LVEF and/or reduction in LVEDV was associated with survival benefits among subjects with NIDCM and ICM, respectively. In both etiologies the respective improvements are sustained for up to 5 years, providing evidence that cell-based therapy may be a promising and durable treatment option for patients with heart failure.
Collapse
Affiliation(s)
- Russell G Saltzman
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Andrew Sundin
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Loma Linda University Medical Center, Loma Linda, CA 92354, United States
| | - Lina V Caceres
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Jairo A Tovar
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Ana Maria Garzon
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Maria A Cabreja
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Hossein Shayestehyekta
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Jeanette Soto
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Dushyantha Jayaweera
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Aisha Khan
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Ivonne H Schulman
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20817, United States
| | - Raul D Mitrani
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Joshua M Hare
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
4
|
Muslem S, AlTurani M, Maqsood MB, Qaseer MA. Cardiac Repair and Clinical Outcomes of Stem Cell Therapy in Heart Failure: A Systematic Review and Meta-Analysis. Diseases 2025; 13:136. [PMID: 40422568 DOI: 10.3390/diseases13050136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND While heart failure with reduced ejection fraction (HFrEF) remains a major global health burden, mesenchymal stem cell (MSC) therapy has emerged as a promising intervention designed to improve cardiac function and reduce morbidity among patients unresponsive to conventional treatments. MSC therapy has shown promise by targeting left ventricular pressure and improving wall thickness, contributing to reductions in HF-related morbidity and mortality rates. This systematic review and meta-analysis bridges a gap in current research through a focused examination of the most recent clinical trials to cohesively assess MSC therapy in HFrEF patients. METHODS We conducted a systematic review and meta-analysis of clinical trials published from 2018 onwards, which were obtained from multiple databases such as PUBMED, Scopus, EBSCO Medline, EBSCO CINAHL Science Direct, and the Cochrane Library. This review investigates the efficacy and safety outcomes of MSC therapy in patients above 18 years of age with a known diagnosis of heart failure with a reduced ejection fraction (HFrEF). The primary outcome was the change in the left ventricular ejection fraction (LVEF). Secondary outcomes encompassed several efficacy outcomes, such as Global Circumferential strain (GCS), the 6-Minute Walk Test (6MWT), Quality of Life (QoL), and major adverse cardiac events (MACE). A PRISMA flow diagram was constructed to illustrate the identification, screening, eligibility, and inclusion of studies at each stage of the review process. RESULTS A total of 330 studies were initially identified, but only 12 met the inclusion criteria. MSC therapy resulted in a small, non-significant improvement in LVEF (Hedges' g = 0.096, p = 0.18) with low heterogeneity (I² = 0.5%). Only QoL showed significant improvement (Hedges' g = -0.518, p = 0.01). No significant changes in other efficacy outcomes were observed. The therapy was not associated with an increased risk of MACE. CONCLUSION While MSC therapy was safe and improved QoL for HFrEF patients, it did not significantly improve LVEF or other efficacy outcomes. Further large-scale, standardized trials are required to better understand the potential role of MSCs in heart failure (HF) therapy.
Collapse
Affiliation(s)
- Salman Muslem
- Salmaniya Medical Complex, Manama P.O. Box 11190, Bahrain
| | - Mariam AlTurani
- Royal College of Surgeons, Ireland-Medical University of Bahrain, Manama P.O. Box 15503, Bahrain
| | | | - Maryam Al Qaseer
- Department of Cardiology, King Fahad Specialist Hospital, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| |
Collapse
|
5
|
Li YL, Chen EG, Ren BB. Umbilical cord-derived mesenchymal stromal cells: Promising therapy for heart failure. World J Cardiol 2025; 17:101153. [PMID: 39866217 PMCID: PMC11755126 DOI: 10.4330/wjc.v17.i1.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 01/21/2025] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by the reduced capacity of the heart to adequately fill or eject blood. Currently, HF remains a leading cause of morbidity and mortality worldwide, imposing a substantial burden on global healthcare systems. Recent advancements have highlighted the therapeutic potential of mesenchymal stromal cells (MSCs) in managing HF. Notably, umbilical cord-derived MSCs (UC-MSCs) have demonstrated superior clinical potential compared to traditional bone marrow-derived MSCs; this is evident in their non-invasive collection process, higher proliferation efficacy, and lower immunogenicity and tumorigenicity, as substantiated by preclinical studies. Although the feasibility and safety of UC-MSCs have been tested in animal models, the application of UC-MSCs in HF treatment remains challenged by issues such as inaccurate targeted migration and low survival rates of UC-MSCs. Therefore, further research and clinical trials are imperative to advance the clinical application of UC-MSCs.
Collapse
Affiliation(s)
- Ya-Lun Li
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Medical College, Zhejiang University, Hangzhou 310063, Zhejiang Province, China
| | - En-Guo Chen
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bing-Bing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
| |
Collapse
|
6
|
Tang XL, Wysoczynski M, Gumpert AM, Solanki M, Li Y, Wu WJ, Zheng S, Ruble H, Li H, Stowers H, Zheng S, Ou Q, Tanveer N, Slezak J, Kalra DK, Bolli R. Intravenous infusions of mesenchymal stromal cells have cumulative beneficial effects in a porcine model of chronic ischaemic cardiomyopathy. Cardiovasc Res 2024; 120:1939-1952. [PMID: 39163570 PMCID: PMC11630033 DOI: 10.1093/cvr/cvae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
AIMS The development of cell therapy as a widely available clinical option for ischaemic cardiomyopathy is hindered by the invasive nature of current cell delivery methods. Furthermore, the rapid disappearance of cells after transplantation provides a cogent rationale for using repeated cell doses, which, however, has not been done thus far in clinical trials because it is not feasible with invasive approaches. The goal of this translational study was to test the therapeutic utility of the intravenous route for cell delivery. METHODS AND RESULTS Pigs with chronic ischaemic cardiomyopathy induced by myocardial infarction received one or three intravenous doses of allogeneic bone marrow mesenchymal stromal cells (MSCs) or placebo 35 days apart. Rigour guidelines, including blinding and randomization, were strictly followed. A comprehensive assessment of left ventricular (LV) function was conducted with three independent methods (echocardiography, magnetic resonance imaging, and haemodynamic studies). The results demonstrate that three doses of MSCs improved both load-dependent and independent indices of LV function and reduced myocardial hypertrophy and fibrosis; in contrast, one dose failed to produce most of these benefits. CONCLUSIONS To our knowledge, this is the first study to show that intravenous infusion of a cell product improves LV function and structure in a large animal model of chronic ischaemic cardiomyopathy and that repeated infusions are necessary to produce robust effects. This study, conducted in a clinically relevant model, supports a new therapeutic strategy based on repeated intravenous infusions of allogeneic MSCs and provides a foundation for a first-in-human trial testing this strategy in patients with chronic ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Mitesh Solanki
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shirong Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Halina Ruble
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shengnan Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Bratislava, Slovakia
| | - Dinesh K Kalra
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| |
Collapse
|
7
|
Yang J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024; 13:2002. [PMID: 39682750 PMCID: PMC11640292 DOI: 10.3390/cells13232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
8
|
Yue T, Zhang W, Pei H, Danzeng D, He J, Yang J, Luo Y, Zhang Z, Xiong S, Yang X, Ji Q, Yang Z, Hou J. Monascus pigment-protected bone marrow-derived stem cells for heart failure treatment. Bioact Mater 2024; 42:270-283. [PMID: 39285916 PMCID: PMC11403898 DOI: 10.1016/j.bioactmat.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in heart failure (HF) treatment. However, their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species (ROS) microenvironment. In this study, monascus pigment (MP) nanoparticle (PPM) was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs (BMSCs). Meanwhile, in order to load PPM and reduce the mechanical damage of BMSCs, injectable hydrogels based on Schiff base cross-linking were prepared. The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities, significantly enhancing BMSCs survival and activity in HF microenvironment. This hydrogel demonstrates superior biocompatibility, injectability, and tissue adhesion. With the synergistic effects of injectable, adhesive hydrogel and the microenvironment-modulating properties of MP, cardiac function was effectively improved in the pericardial sac of rats. Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Dunzhu Danzeng
- School of Medicine, Tibet University, Lhasa, Tibet, 850000, China
| | - Jian He
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Jiali Yang
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Yong Luo
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Xiangbo Yang
- Ya'an Xunkang Pharmaceutical Co., LTD, Ya'an, Sichuan, 625015, China
| | - Qisen Ji
- Ya'an Xunkang Pharmaceutical Co., LTD, Ya'an, Sichuan, 625015, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| |
Collapse
|
9
|
Otani K, Zeniya T, Kawashima H, Moriguchi T, Nakano A, Han C, Murata S, Nishimura K, Koshino K, Yamahara K, Inubushi M, Iida H. Spatial and temporal tracking of multi-layered cells sheet using reporter gene imaging with human sodium iodide symporter: a preclinical study using a rat model of myocardial infarction. Eur J Nucl Med Mol Imaging 2024; 52:74-87. [PMID: 39207487 PMCID: PMC11599416 DOI: 10.1007/s00259-024-06889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to evaluate a novel technique for cell tracking by visualising the activity of the human sodium/iodide symporter (hNIS) after transplantation of hNIS-expressing multilayered cell sheets in a rat model of chronic myocardial infarction. METHODS Triple-layered cell sheets were generated from mouse embryonic fibroblasts (MEFs) derived from mice overexpressing hNIS (hNIS-Tg). Myocardial infarction was induced by permanent ligation of the left anterior descending coronary artery in F344 athymic rats, and a triple-layered MEFs sheets were transplanted to the infarcted area two weeks after surgery. To validate the temporal tracking and kinetic analysis of the transplanted MEFs sheets, sequential cardiac single-photon emission computed tomography (SPECT) examinations with a 99mTcO4- injection were performed. The cell sheets generated using MEFs of wild-type mice (WT) served as controls. RESULTS A significantly higher amount of 99mTcO4- was taken into the hNIS-Tg MEFs than into WT MEFs (146.1 ± 30.9-fold). The obvious accumulation of 99mTcO4- was observed in agreement with the region where hNIS-Tg MEFs were transplanted, and these radioactivities peaked 40-60 min after 99mTcO4- administration. The volume of distribution of the hNIS-Tg MEF sheets declined gradually after transplantation, implying cellular malfunction and a loss in the number of transplanted cells. CONCLUSION The reporter gene imaging with hNIS enables the serial tracking and quantitative kinetic analysis of cell sheets transplanted to infarcted hearts.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Tsutomu Zeniya
- Graduate School of Science and Technology, Hirosaki University, Aomori, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuaki Moriguchi
- Tandem Accelerator Complex (UTTAC), University of Tsukuba, Ibaraki, Japan
| | - Atsushi Nakano
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Shunsuke Murata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kazuhiro Koshino
- Department of Systems and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, Hyogo, Japan
| | - Masayuki Inubushi
- Division of Nuclear Medicine, Department of Radiology, Kawasaki Medical School, Okayama, Japan
| | - Hidehiro Iida
- Turku PET Centre, Turku University Hospital, Turku, Finland.
- Turku PET Centre, University of Turku and Turku University Hospital, Building 14, Kiinamyllynkatu 4-8, Turku, 20520, Finland.
| |
Collapse
|
10
|
Perin EC, Borow KM, Henry TD, Jenkins M, Rutman O, Hayes J, James CW, Rose E, Skali H, Itescu S, Greenberg B. Mesenchymal precursor cells reduce mortality and major morbidity in ischaemic heart failure with inflammation: DREAM-HF. Eur J Heart Fail 2024. [PMID: 39593178 DOI: 10.1002/ejhf.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
AIMS Progressive heart failure with reduced ejection fraction (HFrEF) is adversely affected by alterations in the myocardial balance between bone marrow-derived pro-inflammatory cardiac macrophages and embryo-derived reparative cardiac resident macrophages. Mesenchymal precursor cells (MPCs) may restore this balance and improve clinical outcomes when inflammation is present. The purpose was to (i) identify risk factors for cardiovascular death (CVD) in control patients with HFrEF in the DREAM-HF trial, and (ii) determine if MPCs improve major clinical outcomes (CVD, myocardial infarction [MI], stroke) in high-risk patients with ischaemic HFrEF and inflammation. METHODS AND RESULTS Cause-specific regression analyses were used to identify CVD risk factors in DREAM-HF control patients. Aalen-Johansen cumulative incidence curves were used to examine CVD, 2-point major adverse cardiovascular events (MACE) (MI or stroke), and 3-point MACE (CVD or MI or stroke) by treatment group in ischaemic vs non-ischaemic HFrEF and in patients with or without baseline inflammation. In control DREAM-HF patients, factors portending the greatest risk for CVD were inflammation (baseline plasma high-sensitivity C-reactive protein ≥2 mg/L; p = 0.003) and ischaemic HFrEF aetiology (p = 0.097), with increased CVD risk of 61% and 38%, respectively. Over 30-month mean follow-up, MPCs reduced 2-point and 3-point MACE by 88% (p = 0.005) and 52% (p = 0.018), respectively, in patients with ischaemic HFrEF and inflammation compared to controls. CONCLUSION Ischaemic aetiology and inflammation were identified as major risk factors for MACE in control DREAM-HF patients. A single intramyocardial MPC administration produced the most significant, sustained reduction in 2-point and 3-point MACE in patients with ischaemic HFrEF and inflammation.
Collapse
Affiliation(s)
- Emerson C Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, TX, USA
| | | | - Timothy D Henry
- Department of Cardiology, The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | | | | | | | | | | | - Hicham Skali
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Barry Greenberg
- Division of Cardiology, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Yu K, Wang Y, Yu C, Han L, Li K, Miao K, Ni L, Wen Z, Chen C, Rao X, Wang DW, Zhou L, Zhao C. Regulatory effect of rapamycin on recruitment and function of myeloid-derived suppressor cells in heart failure. Int Immunopharmacol 2024; 141:112965. [PMID: 39186836 DOI: 10.1016/j.intimp.2024.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Immune response and inflammation play important roles in the physiological and pathophysiological processes of heart failure (HF). In our previous study, myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells with anti-inflammatory and immunosuppressive functions, were shown to exert cardioprotective effects in HF. The pharmacological targeting of MDSCs using rapamycin may emerge as a promising strategy for the prevention and treatment of HF. However, the specific mechanisms underlying rapamycin-induced MDSC accumulation remain unclear. Our study aimed to clarify the effects of rapamycin on the recruitment and function of MDSCs in HF, exploring new therapeutic options for the prevention and treatment of HF. METHODS We used transverse aortic constriction surgery and isoproterenol injection to establish HF models. Flow cytometry, reverse transcription polymerase chain reaction, transcriptomics and western blot were used to explore the regulation of rapamycin on recruitment and function of MDSCs in HF. Furthermore, rapamycin and granulocyte-macrophage colony-stimulating factor (GM-CSF) were combined to induce exogenous MDSCs from bone marrow cells. RESULTS Rapamycin promotes the recruitment of MDSCs by inhibiting their maturation and differentiation via suppression of the Wnt signaling in HF mice and enhanced the immunosuppressive function of MDSCs via the NF-κB signaling. Furthermore, exogenous MDSCs induced by rapamycin and GM-CSF can significantly alleviate transverse aortic constriction-induced cardiac dysfunction. CONCLUSIONS The pharmacological targeting of MDSCs using rapamycin is a promising strategy for the prevention and treatment of HF.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Li
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Miao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ni
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Tao S, Yu L, Li J, Wu J, Yang D, Xue T, Zhang L, Xie Z, Huang X. Stem cell therapy for non-ischemic dilated cardiomyopathy: a systematic review and meta-analysis. Syst Rev 2024; 13:276. [PMID: 39516841 PMCID: PMC11546504 DOI: 10.1186/s13643-024-02701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Stem cell therapy is the transplantation of human cells to aid the healing of damaged or wounded tissues and cells. Only a few small-scale trials have been conducted to investigate stem cell therapy for non-ischemic dilated cardiomyopathy (DCM). We aimed to perform a systematic review and meta-analysis to assess the efficacy and safety of stem cell therapy for DCM. METHODS A comprehensive search of the databases of PubMed, Embase, Web of Science Core Collection, Cochrane Library, and ProQuest was conducted from their inception to June 30, 2024, to access randomized controlled trials (RCTs) that were centered on stem cell therapy for DCM. The primary outcome was left ventricular ejection fraction (LVEF), and the secondary outcomes included left ventricular end-diastolic dimension (LVEDD), left ventricular end-diastolic volume (LVEDV), 6-min walk test (6MWT), NYHA functional classification, quality of life (QoL) such as Minnesota Living with Heart Failure Questionnaire (MLHFQ) and Kansas City Cardiomyopathy Questionnaire (KCCQ), N-terminal pro-brain natriuretic peptide (NT-proBNP), and VO2 peak. Moreover, major adverse cardiovascular events (MACEs) were also recorded. The Cochrane risk-of-bias assessment tool was used to evaluate the quality of the included RCTs, and the certainty of the evidence was assessed using the GRADE method. Sensitivity analysis was taken into consideration to determine the stability of the results. This review was registered with PROSPERO (CRD42024568912). RESULTS Eleven RCTs involving 637 participants were included in the quantitative analysis. The results indicated that there was a significant increase in mean LVEF (MD = 4.84, 95% CI 3.25-6.42, P < 0.00001) and considerable decrease in LVEDV (MD = - 29.51, 95% CI - 58.07 to - 0.95, P = 0.04) and NT-proBNP (MD = - 737.55, 95% CI - 904.28 to - 570.82, P < 0.00001) in DCM patients treated with stem cell therapy compared with controls. Stem cell therapy was also related to the improvement in functional capacity, as evaluated by 6MWT (MD = 44.32, 95% CI 34.70 - 53.94, P < 0.00001) and NYHA functional classification (MD = - 0.63, 95% CI - 0.96 to - 0.30, P = 0.0002). It also had positive effects on improving QoL, including significantly decreasing MLHFQ score (MD = - 16.60, 95% CI - 26.57 to - 6.63, P = 0.001) and increasing the KCCQ score (MD = 14.76, 95% CI 7.76 - 21.76, P < 0.0001). No significant differences were observed in LVEDD, VO2 peak, and MACEs between the two groups. The GRADE analysis revealed that the evidence was graded from low to moderate. Sensitivity analysis of the results suggested that the results were stable. CONCLUSION The systematic review and meta-analysis indicates that stem cell therapy may be an effective and safe approach to improve cardiac function and quality of life in DCM patients. Nevertheless, given the limitations of existing studies, larger well-designed RCTs are required to confirm and support our findings.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China.
| | - Ji Wu
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Lanxin Zhang
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Zicong Xie
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanchun Huang
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Cao S, Wang S, Luo H, Guo J, Xuan L, Sun L. The effect of macrophage-cardiomyocyte interactions on cardiovascular diseases and development of potential drugs. Mol Biol Rep 2024; 51:1056. [PMID: 39417949 DOI: 10.1007/s11033-024-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
The interaction between macrophages and cardiomyocytes plays an important role not only in maintaining cardiac homeostasis, but also in the development of many cardiovascular diseases (CVDs), such as myocardial infarction (MI) and heart failure (HF). In addition to supporting cardiomyocytes, macrophages and cardiomyocytes have a close and complex relationship. By studying their cross-talk, we can better understand novel mechanisms and target pathogenic mechanisms, and improve the treatment of CVDs. We review macrophage-cardiomyocyte communication through connexin 43 (Cx43)-containing gap junctions (GJs) directly, secreted protein factors indirectly, and discuss the implications of these interactions in cardiac homeostasis and the development of various CVDs, including MI, HF, arrhythmia, cardiac fibrosis and myocarditis. In this section, we review various drugs that work by modulating cytokines or other proteins to reduce inflammation in CVDs. The clinical findings from targeting inflammation in CVDs are also discussed. Additionally, we examine the challenges and opportunities for improving our understanding of macrophage-cardiomyocyte coupling as it relates to pathophysiological disease processes, extending our research scope, and helping identify new molecular targets and improve the effectiveness of existing therapies.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| | - Lihua Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| |
Collapse
|
14
|
Gong X, Jiao Y, Hu H, Zhang R, Jia W, Zhao J, Liu Z, Xin Y, Han W. A prospective randomized controlled study of multi-intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure and reduced ejection fraction (PRIME-HFrEF) trial: Rationale and design. Contemp Clin Trials Commun 2024; 41:101350. [PMID: 39246626 PMCID: PMC11377133 DOI: 10.1016/j.conctc.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Background and objective The use of mesenchymal stem cells for heart failure treatment has gained increasing interest. However, most studies have relied on a single injection approach, with no research yet confirming the effects of multiple administrations. The present trial aims to investigate the safety and efficacy of multi-intravenous infusion of umbilical cord-mesenchymal stem cells (UC-MSCs) in patients with heart failure and reduced ejection fraction (HFrEF). Methods The PRIME-HFrEF trial is a single-center, prospective, randomized, triple-blinded, placebo-controlled trial of multi-intravenous infusion of UC-MSCs in HFrEF patients. A total of 40 patients meeting the inclusion criteria for HFrEF were enrolled and randomized 1:1 to the MSC group or the placebo group. Patients enrolled will receive intravenous injections of either UC-MSCs or placebo every 6 weeks for three times. Both groups will be followed up for 12 months. The primary safety endpoint is the incidence of serious adverse events. The primary efficacy endpoint is a change in left ventricular ejection fraction (LVEF) measured by left ventricular opacification (LVO) with contrast echocardiography and magnetic resonance imaging (MRI) at 12 months. The secondary endpoints include a composite of the incidence of death and re-hospitalization caused by heart failure at the 12th month, serum NT-proBNP, growth stimulation expressed gene 2 (ST2), and a change of right ventricular structure and function. Conclusions The PRIME-HFrEF study is designed to shed new light on multiple UC-MSC administration regimens for heart failure treatment.
Collapse
Affiliation(s)
- Xin Gong
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuheng Jiao
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hao Hu
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Rongzhen Zhang
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei Han
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
15
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
16
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
17
|
Bettini A, Patrick PS, Day RM, Stuckey DJ. CT-Visible Microspheres Enable Whole-Body In Vivo Tracking of Injectable Tissue Engineering Scaffolds. Adv Healthc Mater 2024; 13:e2303588. [PMID: 38678393 PMCID: PMC11468734 DOI: 10.1002/adhm.202303588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Indexed: 04/30/2024]
Abstract
Targeted delivery and retention are essential requirements for implantable tissue-engineered products. Non-invasive imaging methods that can confirm location, retention, and biodistribution of transplanted cells attached to implanted tissue engineering scaffolds will be invaluable for the optimization and enhancement of regenerative therapies. To address this need, an injectable tissue engineering scaffold consisting of highly porous microspheres compatible with transplantation of cells is modified to contain the computed tomography (CT) contrast agent barium sulphate (BaSO4). The trackable microspheres show high x-ray absorption, with contrast permitting whole-body tracking. The microspheres are cellularized with GFP+ Luciferase+ mesenchymal stem cells and show in vitro biocompatibility. In vivo, cellularized BaSO4-loaded microspheres are delivered into the hindlimb of mice where they remain viable for 14 days. Co-registration of 3D-bioluminescent imaging and µCT reconstructions enable the assessment of scaffold material and cell co-localization. The trackable microspheres are also compatible with minimally-invasive delivery by ultrasound-guided transthoracic intramyocardial injections in rats. These findings suggest that BaSO4-loaded microspheres can be used as a novel tool for optimizing delivery techniques and tracking persistence and distribution of implanted scaffold materials. Additionally, the microspheres can be cellularized and have the potential to be developed into an injectable tissue-engineered combination product for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Peter Stephen Patrick
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| |
Collapse
|
18
|
Seth J, Sharma S, Leong CJ, Vaibhav V, Nelson P, Shokravi A, Luo Y, Shirvani D, Laksman Z. The Use of Hematopoietic Stem Cells for Heart Failure: A Systematic Review. Int J Mol Sci 2024; 25:6634. [PMID: 38928341 PMCID: PMC11204149 DOI: 10.3390/ijms25126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this review is to summarize the current understanding of the therapeutic effect of stem cell-based therapies, including hematopoietic stem cells, for the treatment of ischemic heart damage. Following PRISMA guidelines, we conducted electronic searches in MEDLINE, and EMBASE. We screened 592 studies, and included RCTs, observational studies, and cohort studies that examined the effect of hematopoietic stem cell therapy in adult patients with heart failure. Studies that involved pediatric patients, mesenchymal stem cell therapy, and non-heart failure (HF) studies were excluded from our review. Out of the 592 studies, 7 studies met our inclusion criteria. Overall, administration of hematopoietic stem cells (via intracoronary or myocardial infarct) led to positive cardiac outcomes such as improvements in pathological left-ventricular remodeling, perfusion following acute myocardial infarction, and NYHA symptom class. Additionally, combined death, rehospitalization for heart failure, and infarction were significantly lower in patients treated with bone marrow-derived hematopoietic stem cells. Our review demonstrates that hematopoietic stem cell administration can lead to positive cardiac outcomes for HF patients. Future studies should aim to increase female representation and non-ischemic HF patients.
Collapse
Affiliation(s)
- Jayant Seth
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Sohat Sharma
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Cameron J. Leong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Venkat Vaibhav
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (V.V.); (P.N.)
| | - Pierce Nelson
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (V.V.); (P.N.)
| | - Arveen Shokravi
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Yuchen Luo
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Daniel Shirvani
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Zachary Laksman
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
19
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
20
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
21
|
Shiraishi M, Sasaki D, Hibino M, Takeda A, Harashima H, Yamada Y. Human cardiosphere-derived cells with activated mitochondria for better myocardial regenerative therapy. J Control Release 2024; 367:486-499. [PMID: 38295995 DOI: 10.1016/j.jconrel.2024.01.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Cell transplantation is a promising therapeutic strategy for myocardial regeneration therapy. To improve therapeutic effects, we developed a culture medium additive that enhances the mitochondrial function of cardiomyocytes for transplantation. A mitochondrial targeting drug delivery system (MITO-Porter system) was used to deliver mitochondrial activation molecules to mouse-derived cardiac progenitor cells. In this study, we investigated whether the mitochondrial function of human-derived myocardial precursor cells could be enhanced using MITO-Porter. Human cardiosphere-derived cells (CDCs) were isolated from myocardium which was excised during surgery for congenital heart disease. MITO-Porter was added to the cell culture medium to generate mitochondrial activated CDCs (human MITO cells). The human MITO cells were transplanted into myocardial ischemia-reperfusion model rat, and the effect was investigated. The transplanted human MITO cells improved the cardiac function and suppressed myocardial fibrosis compared to conventional cell transplantation methods. These effects were observed not only with myocardial administration but also by intravenous administration of human MITO cells. This study is the first study that assessed whether the mitochondrial delivery of functional compounds improved the outcome of human-derived myocardial cell transplantation therapy.
Collapse
Affiliation(s)
- Masahiro Shiraishi
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Mitsue Hibino
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| |
Collapse
|
22
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Schweins M, Gäbel R, Raitza M, Vasudevan P, Lemcke H, Joksch M, Schildt A, Kurth J, Lindner T, Meinel FG, Öner A, Ince H, Vollmar B, Krause BJ, David R, Lang CI. Multi-modal assessment of a cardiac stem cell therapy reveals distinct modulation of regional scar properties. J Transl Med 2024; 22:187. [PMID: 38378655 PMCID: PMC10880233 DOI: 10.1186/s12967-024-04986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.
Collapse
Affiliation(s)
- Moritz Schweins
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Matti Raitza
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Markus Joksch
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Cajetan Immanuel Lang
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany.
| |
Collapse
|
24
|
Yamada S, Bartunek J, Povsic TJ, Cotter G, Davison BA, Edwards C, Behfar A, Metra M, Filippatos GS, Vanderheyden M, Wijns W, Terzic A. Cell Therapy Improves Quality-of-Life in Heart Failure: Outcomes From a Phase III Clinical Trial. Stem Cells Transl Med 2024; 13:116-124. [PMID: 38006196 PMCID: PMC10872684 DOI: 10.1093/stcltm/szad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with heart failure experience limitations in daily activity and poor quality-of-life. Prospective surveillance of health-related quality-of-life supplemented traditional death and hospitalization outcomes in the multinational, randomized, double-blinded CHART-1 clinical trial that assessed cardiopoiesis-guided cell therapy in ischemic heart failure patients with reduced left ventricular ejection fraction. The Minnesota Living with Heart Failure Questionnaire (MLHFQ), a Food and Drug Administration qualified instrument for evaluating therapeutic effectiveness, was applied through the 1-year follow-up. Cell treated (n = 109) and sham procedure (n = 140) cohorts reported improved MLHFQ scores comparable between the 2 study arms (mean treatment difference with baseline adjustment -3.2 points, P = .107). Superiority of cell treatment over sham in betterment of the MLHFQ score was demonstrated in patients with pre-existing advanced left ventricular enlargement (baseline-adjusted mean treatment difference -6.4 points, P = .009). In this highly responsive subpopulation, benefit on the MLHFQ score paralleled reduction in death and hospitalization post-cell therapy (adjusted Mann-Whitney odds 1.43, 95% CI, 1.01-2.01; P = .039). The potential of cell therapy in addressing the quality-of-life dimension of heart failure requires further evaluation for disease relief.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas J Povsic
- Program for Advanced Coronary Disease, Duke Clinical Research Institute and Duke University Medical Center, Durham, NC, USA
| | - Gad Cotter
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | - Beth A Davison
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | | | - Atta Behfar
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy
| | - Gerasimos S Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | - William Wijns
- The Lambe Institute for Translational Medicine, the Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Mulari S, Kesävuori R, Stewart JA, Karjalainen P, Holmström M, Lehtinen M, Peltonen J, Laine M, Sinisalo J, Juvonen T, Kupari M, Harjula A, Pätilä T, Kivistö S, Kankuri E, Vento A. Follow-up of intramyocardial bone marrow mononuclear cell transplantation beyond 10 years. Sci Rep 2024; 14:3747. [PMID: 38355940 PMCID: PMC10866866 DOI: 10.1038/s41598-024-53776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Bone marrow mononuclear cells (BMMCs) have been evaluated for their ability to improve cardiac repair and benefit patients with severe ischemic heart disease and heart failure. In our single-center trial in 2006-2011 we demonstrated the safety and efficacy of BMMCs injected intramyocardially in conjunction with coronary artery bypass surgery. The effect persisted in the follow-up study 5 years later. In this study, we investigated the efficacy of BMMC therapy beyond 10 years. A total of 18 patients (46%) died during over 10-years follow-up and 21 were contacted for participation. Late gadolinium enhancement cardiac magnetic resonance imaging (CMRI) and clinical evaluation were performed on 14 patients, seven from each group. CMRIs from the study baseline, 1-year and 5-years follow-ups were re-analyzed to enable comparison. The CMRI demonstrated a 2.1-fold larger reduction in the mass of late gadolinium enhancement values between the preoperative and the over 10-years follow-up, suggesting less scar or fibrosis after BMMC treatment (- 15.1%; 95% CI - 23 to - 6.7% vs. - 7.3%; 95% CI - 16 to 4.5%, p = 0.039), compared to placebo. No differences in mortality or morbidity were observed. Intramyocardially injected BMMCs may exert long-term benefits in patients with ischemic heart failure. This deserves further evaluation in patients who have received BMMCs in international clinical studies over two decades.
Collapse
Affiliation(s)
- Severi Mulari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland
| | - Risto Kesävuori
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juhani A Stewart
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Holmström
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Lehtinen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Peltonen
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Kupari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kivistö
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland.
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
27
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhao Y, Fu W, Hou X, Zhang J, Biekan J, Zhang H, Wang H, Dong R. Myocardial infarct size for predicting improvements in cardiac function in patients with ischemic cardiomyopathy following coronary artery bypass grafting. Quant Imaging Med Surg 2023; 13:7814-7827. [PMID: 38106247 PMCID: PMC10722039 DOI: 10.21037/qims-23-159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 12/19/2023]
Abstract
Background This study used late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) to assess myocardial infarct size, with the data being employed to predict whether patients with ischemic cardiomyopathy (ICM) would experience improvements in left ventricular function at 6 months following coronary artery bypass grafting (CABG). Methods The data of patients with ICM with left ventricular ejection fraction (LVEF) ≤40% who underwent CABG were retrospectively analyzed. All patients underwent preoperative LGE-CMR imaging. Echocardiography results from 6 months post-CABG were used to assess improvements in LVEF, with improvement being defined as ΔLVEF ≥5%. The value of myocardial infarction segments and infarct size as predictors of improved cardiac function following CABG was analyzed. Results Of the included patients, 66.7% (52/78) exhibited improved cardiac function at 6 months post-CABG. LGE-CMR imaging data revealed that compared to improved group, the improved group had significantly more myocardial infarct segments [improved group: median 1.0, interquartile range (IQR) 0-3; nonimproved group: median 4.0, IQR 3.0-6.0; P<0.001] and significantly greater myocardial infarct size (improved group: 22.4%±8.2%; nonimproved group: 34.7%±5.9%; P<0.001). The area under the receive operating characteristic curve values for myocardial infarct size in predicting cardiac function improvement were significantly higher than those of myocardial infarct segments (0.88 vs. 0.81; P=0.041). The respective sensitivity and specificity values for using a myocardial infarct size cutoff of 26.4% in differentiating between these 2 patient groups were 92.3% and 71.2%, respectively. According to logistic regression analysis, myocardial infarct size was an independent predictor of nonimprovement in cardiac function [odds ratio (OR) =1.244; 95% confidence interval (CI): 1.114-1.389; P<0.001]. A median 1.6-year follow-up interval (range, 0.5-4.1 years) revealed that the incidences of major adverse cerebrovascular events and cardiovascular events were significantly higher in the nonimproved group (5.8% vs. 26.9%; P<0.001), with these individuals having a higher New York Heart Association grading than patients with improved cardiac function (P=0.019). Conclusions Myocardial infarct size can be measured to reliably predict improvements in cardiac function in patients with ICM following CABG. These results can guide clinicians in their efforts to identify those patients most likely to achieve positive outcomes following CABG.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Fu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Hou
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianye Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | - Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
30
|
Lancaster JJ, Grijalva A, Fink J, Ref J, Daugherty S, Whitman S, Fox K, Gorman G, Lancaster LD, Avery R, Acharya T, McArthur A, Strom J, Pierce MK, Moukabary T, Borgstrom M, Benson D, Mangiola M, Pandey AC, Zile MR, Bradshaw A, Koevary JW, Goldman S. Biologically derived epicardial patch induces macrophage mediated pathophysiologic repair in chronically infarcted swine hearts. Commun Biol 2023; 6:1203. [PMID: 38007534 PMCID: PMC10676365 DOI: 10.1038/s42003-023-05564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
There are nearly 65 million people with chronic heart failure (CHF) globally, with no treatment directed at the pathologic cause of the disease, the loss of functioning cardiomyocytes. We have an allogeneic cardiac patch comprised of cardiomyocytes and human fibroblasts on a bioresorbable matrix. This patch increases blood flow to the damaged heart and improves left ventricular (LV) function in an immune competent rat model of ischemic CHF. After 6 months of treatment in an immune competent Yucatan mini swine ischemic CHF model, this patch restores LV contractility without constrictive physiology, partially reversing maladaptive LV and right ventricular remodeling, increases exercise tolerance, without inducing any cardiac arrhythmias or a change in myocardial oxygen consumption. Digital spatial profiling in mice with patch placement 3 weeks after a myocardial infarction shows that the patch induces a CD45pos immune cell response that results in an infiltration of dendritic cells and macrophages with high expression of macrophages polarization to the anti-inflammatory reparative M2 phenotype. Leveraging the host native immune system allows for the potential use of immunomodulatory therapies for treatment of chronic inflammatory diseases not limited to ischemic CHF.
Collapse
Affiliation(s)
- J J Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A Grijalva
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Fink
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Ref
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Daugherty
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Whitman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - K Fox
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - G Gorman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - L D Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - R Avery
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Acharya
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A McArthur
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Strom
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M K Pierce
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Moukabary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Borgstrom
- Research & Discovery Tech, Research Computing Specialist, Principal, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - D Benson
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Mangiola
- Department of Pathology, NYU Grossman School of Medicine, New York City, NY, 11016, USA
| | - A C Pandey
- Section of Cardiology, Tulane University Heart and Vascular Institute, John W. Deming Department of Medicine, Section of Cardiology, Department of Medicine, Southeast Louisiana Veterans Healthcare System, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - M R Zile
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - A Bradshaw
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - J W Koevary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ, 85721, USA
| | - S Goldman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA.
| |
Collapse
|
31
|
Schubart JR, Zare A, Fernandez-de-Castro RM, Figueroa HR, Sarel I, Tuchman K, Esposito K, Henderson FC, von Schwarz E. Safety and outcomes analysis: transcatheter implantation of autologous angiogenic cell precursors for the treatment of cardiomyopathy. Stem Cell Res Ther 2023; 14:308. [PMID: 37880753 PMCID: PMC10601268 DOI: 10.1186/s13287-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Stem cell transplantation is an emerging therapy for severe cardiomyopathy, proffering stem cell recruitment, anti-apoptosis, and proangiogenic capabilities. Angiogenic cell precursors (ACP-01) are autologous, lineage-specific, cells derived from a multipotent progenitor cell population, with strong potential to effectively engraft, form blood vessels, and support tissue survival and regeneration. METHODS This IRB approved outcome analysis reports upon 74 consecutive patients who failed medical management for severe cardiomyopathy, and were selected to undergo transcatheter intramyocardial or intracoronary implantation of ACP-01. Serious adverse events (SAEs) were reported. Cell analysis was conducted for each treatment. The left ventricular ejection fraction (LVEF) was measured by multi-gated acquisition scan (MUGA) or echocardiogram at 4 months ± 1.9 months and 12 months ± 5.5 months. Patients reported quality of life statements at 6 months (± 5.6 months). RESULTS Fifty-four of 74 patients met requirements for inclusion (48 males and five females; age 68.1 ± 11.3 years). The mean treatment cell number of 57 × 106 ACP-01 included 7.7 × 106 CD34 + and 21 × 106 CD31 + cells with 97.6% viability. SAEs included one death (previously unrecognized silent MI), ventricular tachycardia (n = 2) requiring cardioversion, and respiratory infection (n = 2). LVEF in the ischemic subgroup (n = 41) improved by 4.7% ± 9.7 from pre-procedure to the first follow-up (4 months ± 1.9 months) (p < 0.004) and by 7.2% ± 10.9 at final follow-up (n = 25) at average 12 months (p < 0.004). The non-ischemic dilated cardiomyopathy subgroup (n = 8) improved by 7.5% ± 6.0 at the first follow-up (p < 0.017) and by 12.2% ± 6.4 at final follow-up (p < 0.003, n = 6). Overall improvement in LVEF from pre-procedure to post-procedure was significant (Fisher's exact test p < 0.004). LVEF improvement was most marked in the patients with the most severe cardiomyopathy (LVEF < 20%) improving from a mean 14.6% ± 3.4% pre-procedurally to 28.4% ± 8% at final follow-up. Quality of life statements reflected improvement in 33/50 (66%), no change in 14/50 (28%), and worse in 3/50 (6%). CONCLUSION Transcatheter implantation of ACP-01 for cardiomyopathy is safe and improves LVEF in the setting of ischemic and non-ischemic cardiomyopathy. The results warrant further investigation in a prospective, blinded, and controlled clinical study. TRIAL REGISTRATION IRB from Genetic Alliance #APC01-001, approval date July 25, 2022. Cardiomyopathy is common and associated with high mortality. Stem cell transplantation is an emerging therapy. Angiogenic cell precursors (ACP-01) are lineage-specific endothelial progenitors, with strong potential for migration, engraftment, angiogenesis, and support of tissue survival and regeneration. A retrospective outcomes analysis of 53 patients with ischemic and non-ischemic dilated cardiomyopathy undergoing transcatheter implantation of ACP-01 demonstrated improvements in the left ventricular ejection fraction of 7.2% ± 10.9 (p < 0.004) and 12.2% ± 6.4, respectively, at 12 months (± 5) follow-up. Quality of life statements reflected improvement in 33/50 (66%) patients.
Collapse
Affiliation(s)
- Jane R Schubart
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amirhossein Zare
- Northern Ontario School of Medicine, Ontario, CA, USA
- Hemostemix Inc, Calgary, CA, Canada
| | | | | | | | - Kelly Tuchman
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
| | - Kaitlyn Esposito
- The Bobby Jones Chiari Syringomyelia Foundation, New York, NY, USA
| | - Fraser C Henderson
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
- Department Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Hemostemix Inc, Calgary, CA, Canada.
| | - Ernst von Schwarz
- School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
32
|
Tang XL, Bolli R. Repeated Intravenous Administration of Mesenchymal Stromal Cells Produces Cumulative Beneficial Effects in Chronic Ischemic Cardiomyopathy. Tex Heart Inst J 2023; 50:e238244. [PMID: 37840224 PMCID: PMC10658144 DOI: 10.14503/thij-23-8244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
33
|
Tang XL, Nasr M, Zheng S, Zoubul T, Stephan JK, Uchida S, Singhal R, Khan A, Gumpert A, Bolli R, Wysoczynski M. Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells are Ineffective for Myocardial Repair in an Immunodeficient Rat Model of Chronic Ischemic Cardiomyopathy. Stem Cell Rev Rep 2023; 19:2429-2446. [PMID: 37500831 PMCID: PMC10579184 DOI: 10.1007/s12015-023-10590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marjan Nasr
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shirong Zheng
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Taylor Zoubul
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Jonah K Stephan
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Richa Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anna Gumpert
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA.
| |
Collapse
|
34
|
Aguilar S, García-Olloqui P, Amigo-Morán L, Torán JL, López JA, Albericio G, Abizanda G, Herrero D, Vales Á, Rodríguez-Diaz S, Higuera M, García-Martín R, Vázquez J, Mora C, González-Aseguinolaza G, Prosper F, Pelacho B, Bernad A. Cardiac Progenitor Cell Exosomal miR-935 Protects against Oxidative Stress. Cells 2023; 12:2300. [PMID: 37759522 PMCID: PMC10528297 DOI: 10.3390/cells12182300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.
Collapse
Affiliation(s)
- Susana Aguilar
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Paula García-Olloqui
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Lidia Amigo-Morán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - José Luis Torán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Guillermo Albericio
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Diego Herrero
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - África Vales
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Saray Rodríguez-Diaz
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Marina Higuera
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Rubén García-Martín
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carmen Mora
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria González-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Prosper
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Program of Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 30008 Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| |
Collapse
|
35
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Yu F, Cong S, Yap EP, Hausenloy DJ, Ramachandra CJ. Unravelling the Interplay between Cardiac Metabolism and Heart Regeneration. Int J Mol Sci 2023; 24:10300. [PMID: 37373444 PMCID: PMC10299184 DOI: 10.3390/ijms241210300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD. However, the lack of mechanistic understanding of these cellular processes has made it challenging to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive understanding of the interplay between cardiac metabolism and heart regeneration could facilitate the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in patients with IHD.
Collapse
Affiliation(s)
- Fan Yu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - En Ping Yap
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Chrishan J. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
37
|
Nash A, Lokhorst N, Veiseh O. Localized immunomodulation technologies to enable cellular and organoid transplantation. Trends Mol Med 2023:S1471-4914(23)00097-7. [PMID: 37301656 DOI: 10.1016/j.molmed.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Localized immunomodulation technologies are rapidly emerging as a new modality with the potential to revolutionize transplantation of cells and organs. In the past decade, cell-based immunomodulation therapies saw clinical success in the treatment of cancer and autoimmune diseases. In this review, we describe recent advances in engineering solutions for the development of localized immunomodulation techniques focusing on cellular and organoid transplantation. We begin by describing cell transplantation and highlighting notable clinical successes, particularly in the areas of stem cell therapy, chimeric antigen receptor (CAR)-T cell therapy, and islet transplantation. Next, we detail recent preclinical studies centered on genome editing and biomaterials to enhance localized immunomodulation. We close by discussing future opportunities to improve clinical and commercial success using these approaches to facilitate long-term immunomodulation technologies.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Nienke Lokhorst
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Salama ABM, Abouleisa RRE, Ou Q, Tang XL, Alhariry N, Hassan S, Gebreil A, Dastagir M, Abdulwali F, Bolli R, Mohamed TMA. Transient gene therapy using cell cycle factors reverses renin-angiotensin-aldosterone system activation in heart failure rat model. Mol Cell Biochem 2023; 478:1245-1250. [PMID: 36282351 PMCID: PMC10126184 DOI: 10.1007/s11010-022-04590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.
Collapse
Affiliation(s)
- Abou Bakr M Salama
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Cardiac Surgery, University of Verona, Verona, Italy
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Riham R E Abouleisa
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Qinghui Ou
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xian-Liang Tang
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Nashwah Alhariry
- Department of Pathology, Faculty of Medicine, Suez University, Ismailia, Egypt
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Sarah Hassan
- Department of Electron Microscopy, Theodor Bilharz Research Institute, Imbaba Giza, Egypt
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Ahmad Gebreil
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Muzammil Dastagir
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Fareeha Abdulwali
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Tamer M A Mohamed
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA.
- Department of Electron Microscopy, Theodor Bilharz Research Institute, Imbaba Giza, Egypt.
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
- Diabetes and Obesity Center, Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
- Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA.
| |
Collapse
|
39
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
40
|
Leancă SA, Afrăsânie I, Crișu D, Matei IT, Duca ȘT, Costache AD, Onofrei V, Tudorancea I, Mitu O, Bădescu MC, Șerban LI, Costache II. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life (Basel) 2023; 13:1000. [PMID: 37109529 PMCID: PMC10143569 DOI: 10.3390/life13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Afrăsânie
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Crișu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Viviana Onofrei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuţ Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ovidiu Mitu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Iuliana Costache
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
41
|
Lang CI, Dahmen A, Vasudevan P, Lemcke H, Gäbel R, Öner A, Ince H, David R, Wolfien M. Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy 2023; 25:640-652. [PMID: 36890093 DOI: 10.1016/j.jcyt.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.
Collapse
Affiliation(s)
| | - Anika Dahmen
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Bock-Marquette I, Maar K, Maar S, Lippai B, Faskerti G, Gallyas F, Olson EN, Srivastava D. Thymosin beta-4 denotes new directions towards developing prosperous anti-aging regenerative therapies. Int Immunopharmacol 2023; 116:109741. [PMID: 36709593 DOI: 10.1016/j.intimp.2023.109741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.
Collapse
Affiliation(s)
- Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary.
| | - Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Sanz-Ruiz R, Perin EC, Fernández-Avilés F. Cell therapy for heart failure: lessons learned from SCIENCE. Eur J Heart Fail 2023; 25:588-590. [PMID: 36823785 DOI: 10.1002/ejhf.2807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Centro de Investigación Biomédica en Red - Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Centro de Investigación Biomédica en Red - Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Schmitto JD, Kuuva A, Kronström K, Hanke JS, Kankuri E. Use of left atrial appendage as an autologous tissue source for epicardial micrograft transplantation during LVAD implantation. Front Cardiovasc Med 2023; 10:1143886. [PMID: 37187792 PMCID: PMC10176448 DOI: 10.3389/fcvm.2023.1143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
We report here the first clinical use of the left atrial appendage (LAA) for epicardial micrograft transplantation during left ventricular assist device (LVAD) implantation. Previously, a sample from the right atrial appendage (RAA) has been available for processing and administering micrograft therapy in cardiac surgery. Both LAA and RAA are rich sources of various types of myocardial cells and are capable of providing both paracrine and cellular support to the failing myocardium. The surgical approach of LAA micrografting facilitates epicardial micrograft therapy dose escalation and treatment of larger myocardial areas than done previously. Moreover, as collection of treated vs. untreated tissues from the recipient heart is possible following LVAD implantation at the time of heart transplantation, the evaluation of the therapy's mechanism of action can be further deciphered at cellular and molecular levels. This LAA modification of the epicardial micrografting technique has the overall potential to facilitate the adoption of cardiac cell therapy during heart surgery.
Collapse
Affiliation(s)
- Jan D. Schmitto
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Kai Kronström
- EpiHeart Oy, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jasmin S. Hanke
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Correspondence: Esko Kankuri
| |
Collapse
|
45
|
Qi T, Xu X, Guo Y, Xia Y, Peng L, Li C, Ding F, Gao C, Fan M, Yu M, Zhao H, He Y, Li W, Hai C, Gao E, Zhang X, Gao F, Fan Y, Yan W, Tao L. CSF2RB overexpression promotes the protective effects of mesenchymal stromal cells against ischemic heart injury. Theranostics 2023; 13:1759-1773. [PMID: 37064880 PMCID: PMC10091875 DOI: 10.7150/thno.81336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Public Management, Northwest University, Xi'an 710127, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Peng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| |
Collapse
|
46
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Theofilis P, Sagris M, Tsioufis K, Androulakis E, Tousoulis D. Stem Cell-based Therapies in Cardiovascular Diseases: From Pathophysiology to Clinical Outcomes. Curr Pharm Des 2023; 29:2795-2801. [PMID: 37641986 DOI: 10.2174/1381612829666230828102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Over 20 years of intensified research in the field of stem cells brought about unprecedented possibilities in treating heart diseases. The investigators were initially fascinated by the idea of regenerating the lost myocardium and replacing it with new functional cardiomyocytes, but this was extremely challenging. However, the multifactorial effects of stem cell-based therapies beyond mere cardiomyocyte generation, caused by paracrine signaling, would open up new possibilities in treating cardiovascular diseases. To date, there is a strong body of evidence that the anti-inflammatory, anti-apoptotic, and immunomodulatory effects of stem cell therapy may alleviate atherosclerosis progression. In the present review, our objective is to provide a brief overview of the stem cell-based therapeutic options. We aim to delineate the pathophysiological mechanisms of their beneficial effects in cardiovascular diseases especially in coronary artery disease and to highlight some conclusions from important clinical studies in the field of regenerative medicine in cardiovascular diseases and how we could further move onwards.
Collapse
Affiliation(s)
- Charalampos Papastamos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Simantiris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Koumallos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Czyż Ł, Tekieli Ł, Miszalski-Jamka T, Banyś RP, Szot W, Mazur W, Chmiel J, Mazurek A, Skubera M, Dąbrowski W, Jarocha D, Podolec P, Majka M, Musiałek P. Infarct size and long-term left ventricular remodelling in acute myocardial infarction patients subjected to transcoronary delivery of progenitor cells. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:465-471. [PMID: 36967855 PMCID: PMC10031670 DOI: 10.5114/aic.2023.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 02/18/2023] Open
Abstract
Introduction Infarct size (IS) is a fundamental determinant of left-ventricular (LV) remodelling (end-systolic and end-diastolic volume change, ΔESV, ΔEDV) and adverse clinical outcomes after myocardial infarction (MI). Our prior work found that myocardial uptake of transcoronary-delivered progenitor cells is governed by IS. Aim To evaluate the relationship between IS, stem cell uptake, and the magnitude of LV remodelling in patients receiving transcoronary administration of progenitor cells shortly after MI. Material and methods Thirty-one subjects (age 36-69 years) with primary percutaneous coronary intervention (pPCI)-treated anterior ST-elevation MI (peak CK-MB 584 [181-962] U/l, median [range]) and sustained left ventricle ejection fraction (LVEF) ≤ 45% were studied. On day 10 (median) 4.3 × 106 (median) autologous CD34+ cells (50% labelled with 99mTc-extametazime) were administered via the infarct-related artery (left anterior descending). ΔESV, ΔEDV, and mid circumferential myocardial strain (mCS) were evaluated at 24 months. Results Infarct mass (cMRI) was 57 [11-112] g. Cell label myocardial uptake (whole-body γ-scans) was proportional to IS (r = 0.62), with a median 2.9% uptake in IS 1st tercile (≤ 45 g), 5.2% in 2nd (46-76 g), and 6.7% in 3rd (> 76 g) (p = 0.0006). Cell uptake in proportion to IS attenuated the IS-ΔESV (p = 0.41) and IS-ΔEDV (p = 0.09) relationship. At 24 months, mCS improved in IS 2nd tercile (p = 0.028) while it showed no significant change in smaller (p = 0.87) or larger infarcts (p = 0.58). Conclusions This largest human study with labelled CD34+ cell transplantation shortly after MI suggests that cell uptake (proportional to IS) may attenuate the effect of IS on LV adverse remodelling. To boost this effect, further strategies should involve cell types and delivery techniques to maximize myocardial uptake.
Collapse
Affiliation(s)
- Łukasz Czyż
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Łukasz Tekieli
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | | | - R. Paweł Banyś
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Wojciech Szot
- Nuclear Imaging Laboratory, John Paul II Hospital, Krakow, Poland
| | - Wojciech Mazur
- Division of Cardiology, The Christ Hospital Health Network, Cincinnati, United States of America
| | - Jakub Chmiel
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Adam Mazurek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Maciej Skubera
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Władysław Dąbrowski
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Danuta Jarocha
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
50
|
Dabrowski W, Tekieli L, Mazurek A, Lanocha M, Banys RP, Zmudka K, Majka M, Wojakowski W, Tendera M, Musialek P. Transcoronary stem cell transfer and evolution of infarct-related artery atherosclerosis: evaluation with conventional and novel imaging techniques including Quantitative Virtual Histology (qVH). ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:483-495. [PMID: 36967840 PMCID: PMC10031661 DOI: 10.5114/aic.2023.125609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/21/2022] [Indexed: 03/12/2023] Open
Abstract
Introduction It has been suggested that infarct-related artery (IRA) atherosclerosis progression after stem cell transcoronary administration might represent a stem-cell mediated adverse effect. Aim To evaluate, using conventional (quantitative coronary angiography, QCA, intravascular ultrasound - IVUS) and novel (quantitative virtual histology - qVH) tools, evolution of IRA atherosclerosis following transcoronary stem cell transfer. Material and methods QCA, IVUS, VH-IVUS and qVH were performed in 22 consecutive patients (4 women) aged 59 years (data provided as median) undergoing a distal-to-stent infusion of 2.21 × 106 CD34+CXCR4+ autologous bone marrow cells via a cell delivery-dedicated perfusion catheter at anterior AMI day 7. Imaging was repeated at 12 months. This was a substudy of Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial (NCT00316381). Results 18.2% subjects showed absence of distal-to-stent angiographic/IVUS atherosclerotic lesion(s) at baseline and no new lesion(s) at 12-months. In the remaining cohort, there were 28 lesions by QCA (32 by IVUS) at baseline and no new lesion(s) at follow-up. Three fibroatheromas evolved (2 to calcified fibroatheroma and 1 to a fibrocalcific lesion); other plaques maintained their stable (low-risk) phenotypes. Diameter stenosis of QCA-identified lesions was 29.5 vs. 26.5% (p = 0.012, baseline vs. 12-months). Gray-scale IVUS showed reduction in area stenosis (33.8 vs. 31.0%, p = 0.004) and plaque burden (66.27 vs. 64.56%, p = 0.009) at 12-months. Peak fibrotic plaque content increased from 70.41% to 75.0% (p = 0.004). qVH peak confluent necrotic core area and minimal fibrous cap thickness remained stable (0.64 vs. 0.59 mm2, p = 0.290, and 0.15 vs. 0.16 mm, p = 0.646). Conclusions This study, using a range of classic and novel imaging techniques, indicates lack of any stimulatory effect of transcoronary stem cell transfer on coronary atherosclerosis. Whether, and to what extent, a moderate reduction in plaque burden and stenosis severity at 12-months results from optimized pharmacotherapy and/or stem cell transfer requires further elucidation.
Collapse
Affiliation(s)
- Wladyslaw Dabrowski
- Department of Interventional Cardiology, Jagiellonian University Institute of Cardiology, Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Lukasz Tekieli
- Department of Interventional Cardiology, Jagiellonian University Institute of Cardiology, Krakow, Poland
- John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases, Jagiellonian University, Institute of Cardiology, John Paul II Hospital, Krakow, Poland
| | - Adam Mazurek
- John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases, Jagiellonian University, Institute of Cardiology, John Paul II Hospital, Krakow, Poland
| | | | - R. Pawel Banys
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Krzysztof Zmudka
- Department of Interventional Cardiology, Jagiellonian University Institute of Cardiology, Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Marcin Majka
- Jagiellonian University Department of Transplantation, Krakow, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Michal Tendera
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Piotr Musialek
- John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases, Jagiellonian University, Institute of Cardiology, John Paul II Hospital, Krakow, Poland
| |
Collapse
|