1
|
Meecham A, McCurdy S, Frias-Anaya E, Li W, Gallego-Gutierrez H, Nguyen P, Li YS, Chien S, Shyy JYJ, Ginsberg MH, Lopez-Ramirez MA. Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome. Int J Mol Sci 2025; 26:4340. [PMID: 40362576 PMCID: PMC12072803 DOI: 10.3390/ijms26094340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Endothelial cells respond to forces generated by laminar blood flow with changes in vasodilation, anticoagulant, fibrinolytic, or anti-inflammatory functions which preserve vessel patency. These responses to flow shear stress are primarily mediated by the modulation of the following transcription factors: Krüppel-like factors 2 and 4 (KLF2 and KLF4). Notably, disturbed flow patterns, which are found in vascular areas predisposed to atherosclerosis, significantly reduce the endothelial expression of KLF2 and KLF4, resulting in changes in the transcriptome that exacerbate inflammation and thrombosis. The endothelial CCM (Cerebral Cavernous Malformation) complex, comprising KRIT1 (Krev1 interaction trapped gene 1), CCM2 (Malcavernin), and CCM3 (Programmed cell death protein 10), suppresses the expression of KLF2 and KLF4. Loss of function of the CCM complex has recently been suggested to protect from coronary atherosclerosis in humans. We thus hypothesized that the silencing of KRIT1, the central scaffold of the CCM complex, can normalize the atherogenic effects of disturbed flow on the human endothelial transcriptome. Bulk RNA sequencing (RNA-seq) was conducted on human umbilical vein endothelial cells (HUVECs) after the expression of KRIT1 was silenced using specific small interfering RNA (siRNA). The endothelial cells were exposed to three different conditions for 24 h, as follows: pulsatile shear stress (laminar flow), oscillatory shear stress (disturbed flow), and static conditions (no flow). We found that silencing the KRIT1 expression in HUVECs restored the expression of the transcription factors KLF2 and KLF4 under oscillatory shear stress. This treatment resulted in a transcriptomic profile similar to that of endothelial cells under pulsatile shear stress. These findings suggest that inhibition of the CCM complex in endothelium plays a vasoprotective role by reactivating a protective gene program to help endothelial cells resist disturbed blood flow. Targeting CCM genes can activate well-known vasoprotective gene programs that enhance endothelial resilience to inflammation, hypoxia, and angiogenesis under disturbed flow conditions, providing a novel pathway for preventing atherothrombosis.
Collapse
Affiliation(s)
- Amelia Meecham
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Sara McCurdy
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Wenqing Li
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Helios Gallego-Gutierrez
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Phu Nguyen
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; (P.N.); (Y.-S.L.); (S.C.); (J.Y.-J.S.)
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; (P.N.); (Y.-S.L.); (S.C.); (J.Y.-J.S.)
| | - Shu Chien
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; (P.N.); (Y.-S.L.); (S.C.); (J.Y.-J.S.)
| | - John Y.-J. Shyy
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; (P.N.); (Y.-S.L.); (S.C.); (J.Y.-J.S.)
| | - Mark H. Ginsberg
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, CA 92093, USA; (A.M.); (S.M.); (E.F.-A.); (W.L.); (H.G.-G.)
- Department of Pharmacology, University of California, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Natarajan T, Husain Z, Coppin PW, Steinman DA. Four-Dimensional Visualization of Topological Fixed Points in Pulsatile Cardiovascular Flows. J Biomech Eng 2025; 147:054501. [PMID: 40035805 DOI: 10.1115/1.4068078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Topological features of time-dependent, three-dimensional (3D) vector flow fields, such as wall shear stress (WSS) fixed points, are considered surrogates of pathological blood flow dynamics in cardiovascular diseases. Fixed-point visualizations are typically constrained to two-dimensional (2D) spaces, yet they aim to display complex spatiotemporal (four-dimensional (4D)) dynamics. There is a need for visualization strategies to reduce occlusion and reliance on animations to allow the detection of holistic flow patterns. Using intracranial aneurysms as a use case, we present the fixed-point carousel, a novel approach to visually depicting the "4D" nature of WSS fixed points via (1) topographic mapping of the 3D aneurysm sac to overcome occlusion while preserving fixed-point distances and sac morphological features; and (2) arranging these into a carousel model to present with temporal dimension holistically. Examples are presented for image-based computational fluid dynamic (CFD) models of intracranial aneurysms, illuminating the intricate and distinct fixed-point trajectories and interactions, a necessary step toward understanding the volumetric flow manifolds that drive them for this and other cardiovascular-and potentially nonbiomedical-fluid dynamics applications.
Collapse
Affiliation(s)
- Thangam Natarajan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Georgia Institute of Technology
| | - Zainab Husain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; Faculty of Design, OCAD University, Toronto, ON M5S 3G8, Canada
- University of Toronto
| | - Peter W Coppin
- Faculty of Design, OCAD University, Toronto, ON M5S 3G8, Canada
- Ontario College of Art and Design
| | - David A Steinman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
3
|
Durrington PN, Bashir B, Soran H. How Does HDL Participate in Atherogenesis? Antioxidant Activity Versus Role in Reverse Cholesterol Transport. Antioxidants (Basel) 2025; 14:430. [PMID: 40298833 PMCID: PMC12023944 DOI: 10.3390/antiox14040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Low-density lipoprotein (LDL) chemically modified by reactive oxygen species (ROS), for example, leaking from red blood cells in the vascular compartment, more readily crosses the vascular endothelium than does nonoxidatively modified LDL to enter tissue fluid. Oxidatively modified LDL (oxLDL) may also be created in the tissue fluid by ROS leaking from cells by design, for example, by inflammatory white cells, or simply leaking from other cells as a consequence of oxygen metabolism. As well as oxLDL, glycatively modified LDL (glycLDL) is formed in the circulation. High-density lipoprotein (HDL) appears capable of decreasing the burden of lipid peroxides formed on LDL exposed to ROS or to glucose and its metabolites. The mechanism for this that has received the most attention is the antioxidant activity of HDL, which is due in large part to the presence of paraoxonase 1 (PON1). PON1 is intimately associated with its apolipoprotein A1 component and with HDL's lipid domains into which lipid peroxides from LDL or cell membranes can be transferred. It is frequently overlooked that for PON1 to hydrolyze lipid substrates, it is essential that it remain by virtue of its hydrophobic amino acid sequences within a lipid micellar environment, for example, during its isolation from serum or genetically modified cells in tissue culture. Otherwise, it may retain its capacity to hydrolyze water-soluble substrates, such as phenyl acetate, whilst failing to hydrolyze more lipid-soluble molecules. OxLDL and probably glycLDL, once they have crossed the arterial endothelium by receptor-mediated transcytosis, are rapidly taken up by monocytes in a process that also involves scavenger receptors, leading to subendothelial foam cell formation. These are the precursors of atheroma, inducing more monocytes to cross the endothelium into the lesion and the proliferation and migration of myocytes present in the arterial wall into the developing lesion, where they transform into foam cells and fibroblasts. The atheroma progresses to have a central extracellular lake of cholesteryl ester following necrosis and apoptosis of foam cells with an overlying fibrous cap whilst continuing to grow concentrically around the arterial wall by a process involving oxLDL and glycLDL. Within the arterial wall, additional oxLDL is generated by ROS secreted by inflammatory cells and leakage from cells generally when couplet oxygen is reduced. PON1 is important for the mechanism by which HDL opposes atherogenesis, which may provide a better avenue of inquiry in the identification of vulnerable individuals and the provision of new therapies than have emerged from the emphasis placed on its role in RCT.
Collapse
Affiliation(s)
- Paul N. Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
| | - Bilal Bashir
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
4
|
Meecham A, McCurdy S, Frias-Anaya E, Li W, Gallego-Gutierrez H, Ngyuen P, Li JYS, Chien S, Shyy JYJ, Ginsberg MH, Lopez-Ramirez MA. Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642862. [PMID: 40161739 PMCID: PMC11952409 DOI: 10.1101/2025.03.12.642862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Endothelial cells respond to forces generated by laminar blood flow with changes in vasodilation, anticoagulant, fibrinolytic, or anti-inflammatory functions which preserve vessel patency. These responses to flow sheer stress are primarily mediated by the modulation of transcription factors Krüppel-like factors 2 and 4 (KLF2 and KLF4). Notably, disturbed flow patterns, which are found in vascular areas predisposed to atherosclerosis, significantly reduce the endothelial expression of KLF2 and KLF4, resulting in changes in the transcriptome that exacerbate inflammation and thrombosis. The endothelial CCM complex, comprising KRIT1, CCM2, and CCM3, suppresses the expression of KLF2 and KLF4. Loss of function of the CCM complex has recently been suggested to protect from coronary atherosclerosis in humans. We thus hypothesized that silencing of KRIT1, the central scaffold of the CCM complex, can normalize the atherogenic effects of disturbed flow on the human endothelial transcriptome. Methods Bulk RNA sequencing (RNA-seq) was conducted on human umbilical vein endothelial cells (HUVECs) after the expression of KRIT1 was silenced using specific siRNAs. The endothelial cells were exposed to three different conditions for 24 hours: pulsatile shear stress (laminar flow), oscillatory shear stress (disturbed flow), and static conditions (no flow). Results We found that silencing KRIT1 expression in HUVECs restored the expression of the transcription factors KLF2 and KLF4 under oscillatory shear stress. This treatment resulted in a transcriptomic profile similar to that of endothelial cells under pulsatile shear stress. These findings suggest that inhibition of the CCM complex in endothelium plays a vasoprotective role by reactivating a protective gene program to help endothelial cells resist disturbed blood flow. Conclusions Targeting CCM genes can activate well-known vasoprotective gene programs that enhance endothelial resilience to inflammation, hypoxia, and angiogenesis under disturbed flow conditions, providing a novel pathway for preventing atherosclerosis.
Collapse
Affiliation(s)
- Amelia Meecham
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sara McCurdy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Wenqing Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | - Phu Ngyuen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - John Y.-J. Shyy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Miguel A. Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
5
|
An N, Zhang X, Lin H, Xu Q, Dai Q, Kong Y, Han S, Li X, Yang X, Xing Y, Shang H. The role and mechanism of TXNDC5 in cardio-oncology: Killing two birds with one stone? Curr Probl Cardiol 2025; 50:102951. [PMID: 39643150 DOI: 10.1016/j.cpcardiol.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Cardio-oncology has emerged as a new translational and clinical field owing to the growing repertory of cancer therapy. To date, there is a lack of effective pharmacological therapy to target cardiotoxicity. Cardio-oncology, which began by investigating the negative effects of cancer medicines on cardiovascular system, has since grown to include research into the similarities between cardiovascular disease (CVD) and cancer. Thioredoxin domain-containing protein 5 (TXNDC5) belongs to the protein disulfide isomerase (PDI) family. Many diseases, including CVD and cancer, improperly express TXNDC5. This review provides a comprehensive analysis of the expression patterns of TXNDC5 in diseases. It outlines the processes via which TXNDC5 contributes to the advancement of malignant diseases such as CVD and cancer. Additionally, it summarizes prospective therapeutic approaches that can be used to target TXNDC5 for the treatment of these diseases. This will offer novel perspectives for enhancing anticancer therapy and advancing cardio-oncology research and drug development.
Collapse
Affiliation(s)
- Na An
- DongZhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qianqian Xu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianqian Dai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - YiFan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Li
- DongZhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
6
|
Lin Y, Feng Y, Wu S, Kang H, Han X, Wang B. Development and validation of a nomogram for arthritis: a cross-sectional study based on the NHANES. Sci Rep 2025; 15:7248. [PMID: 40021914 PMCID: PMC11871000 DOI: 10.1038/s41598-025-92014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Previous epidemiological studies have associated various body-related indicators with arthritis; however, the results have been inconclusive. Therefore, this research aimed to develop and validate a nomogram model for predicting the risk of arthritis using easily available indicators and to assess the model's predictive performance. Cross-sectional data were collected from 3660 participants in the 2021-2023 National Health and Nutrition Examination Survey. The research conducted variable selection and model development using the Least Absolute Shrinkage and Selection Operator regression model and multivariate logistic regression analysis, and the performance of the nomogram was validated. The nomogram model incorporated nine independent predictors: age, sex, family poverty-income ratio, race, diabetes status, vitamin D level, systemic immunity-inflammation index, and waist-to-height ratio. After validation, it has been proven that the nomogram model has good performance. The nomogram model developed in this study effectively predicts the risk probability of arthritis in the general population of the United States. All variables included in this nomogram can be easily obtained from the population.
Collapse
Affiliation(s)
- Yue Lin
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China
| | - Yaxin Feng
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China
| | - Shanke Wu
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China
| | - Hai Kang
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China
| | - Xi Han
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China
| | - Baoguo Wang
- Guangdong Pharmaceutical University, Hai Zhu District, Guangzhou, Guang Dong, China.
| |
Collapse
|
7
|
Kumar J, Uppulapu SK, Kumari S, Sharma K, Paradee W, Yadav RP, Kumar V, Kumar S. p66Shc Mediates SUMO2-induced Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.24.577109. [PMID: 38328241 PMCID: PMC10849724 DOI: 10.1101/2024.01.24.577109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Background Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin-like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood. Methods We used cell-based assays and mass spectrometry to show that p66Shc is a direct target of SUMO2 and SUMO2 regulates p66Shc function via lysine-81 modification. To determine the effects of SUMO2-p66ShcK81 on vascular function, we generated p66ShcK81R knockin mice and crossbred to LDLr -/- mice to induce hyperlipidemia. Next, to determine p66ShcK81-SUMO2ylation-induced changes in endothelial cell signaling, we performed mass spectrometry followed by Ingenuity Pathway Analysis. Results Our data reveal that p66Shc mediates the effects of SUMO2 on endothelial cells. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria, a step critical for oxidative function of p66Shc. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. P66ShcK81R knockin mice were resistant to endothelial dysfunction induced by SUMO2ylation and hyperlipidemia. Ingenuity Pathway Analysis revealed multiple signaling pathways regulated by p66ShcK81-SUMO2ylation in endothelial cells, highlighting Rho-GTPase as a major pathway affected by SUMO2-p66ShcK81. Conclusions Collectively, our work reveals SUMO2-p66Shc signaling as a fundamental regulator of vascular endothelial function. We discovered that p66ShcK81 is an upstream modification regulating p66Shc signaling and mediates hyperlipidemia-induced endothelial dysfunction and oxidative stress.
Collapse
|
8
|
Jia BZ, Tang X, Rossmann MP, Zon LI, Engert F, Cohen AE. Swimming motions evoke Ca 2+ events in vascular endothelial cells of larval zebrafish via mechanical activation of Piezo1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636757. [PMID: 39975374 PMCID: PMC11839014 DOI: 10.1101/2025.02.05.636757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Calcium signaling in blood vessels regulates their growth1,2, immune response3, and vascular tone4. Vascular endothelial cells are known to be mechanosensitive5-7, and it has been assumed that this mechanosensation mediates calcium responses to pulsatile blood flow8-10. Here we show that in larval zebrafish, the dominant trigger for vascular endothelial Ca2+ events comes from body motion, not heartbeat-driven blood flow. Through a series of pharmacological and mechanical perturbations, we showed that body motion is necessary and sufficient to induce endothelial Ca2+ events, while neither neural activity nor blood circulation is either necessary or sufficient. Knockout and temporally restricted knockdown of piezo1 eliminated the motion-induced Ca2+ events. Our results demonstrate that swimming-induced tissue motion is an important driver of endothelial Ca2+ dynamics in larval zebrafish.
Collapse
Affiliation(s)
- Bill Z. Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xin Tang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:10.1109/RBME.2024.3514378. [PMID: 40030454 PMCID: PMC12146432 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
10
|
Sahni J, McCue IS, Johnson AR, Schake MA, Sotelo LD, Turner JA, Pedrigi RM. Ultrasound Induces Similar Temporal Endothelial Expression Patterns of eNOS and KLF2 as Normal Flow. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1893-1902. [PMID: 39306482 PMCID: PMC11490374 DOI: 10.1016/j.ultrasmedbio.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE To determine the sensitivity of vascular endothelial cells to long durations of low-intensity pulsed ultrasound (LIPUS) compared to normal flow and identify the duration that maximizes expression of two mechanosensitive genes related to healthy endothelial function, endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 2 (KLF2). METHODS Custom ultrasound exposure tanks were developed and the acoustic field was characterized. Human umbilical vein endothelial cells were seeded into culture plates and exposed to LIPUS at a frequency of 1 MHz and acoustic pressure of 217 kPa for 20 min, 1 h, 6 h, 9 h, or 24 h. As a comparator, other cells were exposed to normal flow. RT-qPCR was used to assess mRNA expression of eNOS and KLF2. RESULTS Maximum eNOS and KLF2 expression occurred at 6 h and was localized to the beam path. Both genes exhibited qualitatively similar patterns of expression under LIPUS compared to normal flow. LIPUS induced a more rapid beneficial response compared to normal flow, but flow induced higher expression of both genes. eNOS expression after 6 h of LIPUS was dependent on RNA yield and culture duration prior to experiments. CONCLUSION Endothelial cells exposed to longer durations of LIPUS than typically employed exhibited greater expression of beneficial genes. The temporal gene expression patterns resulting from LIPUS and normal flow suggest activation of similar signaling pathways. However, LIPUS also caused increased RNA yield that may be linked to proliferation, which would suggest more of a wound healing than atheroprotective phenotype.
Collapse
Affiliation(s)
- Jaideep Sahni
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ian S McCue
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam R Johnson
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Morgan A Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Luz D Sotelo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joseph A Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ryan M Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Blazeski A, Floryan MA, Zhang Y, Fajardo Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. Biomaterials 2024; 311:122686. [PMID: 38971122 DOI: 10.1016/j.biomaterials.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell function and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The flow-dependent expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) that incorporate a KLF2-based endothelial cell flow sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that application of flow to MVNs for 48 h resulted in increased expression of the KLF2 reporter, larger vessel diameters, and decreased vascular branching and resistance. Notably, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. MVNs with KLF2-based flow sensors represent a novel, powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuzhi Zhang
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Oscar R Fajardo Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Zuin M, Chiastra C, Morbiducci U, Gallo D, Bilato C, Rigatelli G. Carina: A major determinant in the pathophysiology and treatment of coronary bifurcation lesions. Catheter Cardiovasc Interv 2024; 104:1353-1361. [PMID: 39354881 DOI: 10.1002/ccd.31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Over the last decade, several in vivo and computational investigations have significantly advanced our understanding of the pathophysiology of coronary bifurcations, contributing to the enhancement of their percutaneous revascularization. The carina of the coronary bifurcations plays a substantial role in generating their main hemodynamic features, including distinctive flow patterns with secondary flows and specific shear stress patterns. These factors play a pivotal role in determining the susceptibility, development, and progression of atherosclerosis. The underlying pathophysiological mechanisms of atherosclerosis in coronary bifurcations are complex and multifactorial. Understanding these mechanisms is fundamental to comprehending lesions at the bifurcation level and informing future treatment strategies. This review aims to present the currently available data regarding the pathophysiological and prognostic role of the carina in coronary bifurcations, offering an interpretation of these findings from the perspective of interventional cardiologists, providing valuable insights for their clinical practice.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Bilato
- Division of Cardiology, West Vicenza Hospital, Arzignano, Italy
| | - Gianluca Rigatelli
- Interventional Cardiology Unit, Department of Cardiology, Madre Teresa Hospital, Padova, Italy
| |
Collapse
|
13
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Chen C, Zhong J, Hu W, Tan J, Xiong D. TIPIC syndrome in a patient following sorafenib treatment for acute myeloid leukemia: a rare case report. Front Oncol 2024; 14:1484256. [PMID: 39544304 PMCID: PMC11560885 DOI: 10.3389/fonc.2024.1484256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Transient Perivascular Inflammation of the\ Carotid Artery (TIPIC) syndrome is uncommon, and cases of TIPIC induced by the targeted drug, sorafenib, are extremely rare. This case report describes a patient with acute myeloid leukemia carrying an FMS-like tyrosine kinase 3 mutation, who developed TIPIC syndrome, which may have been induced by sorafenib treatment. A 65-year-old woman diagnosed with acute myeloid leukemia experienced severe neck pain and sclerotic blisters on her palms and soles during sorafenib treatment. Carotid ultrasound revealed thickening of the right common carotid artery (RCCA) wall, and magnetic resonance imaging revealed perivascular tissue edema in the distal RCCA. Following clinical and imaging assessments, the patient was diagnosed with TIPIC syndrome. Treatment involved a one-week course of oral steroid therapy with dexamethasone and non-steroidal anti-inflammatory drugs, which led to complete clinical recovery. TIPIC syndrome involves transient nonspecific perivascular inflammation of the carotid adventitia; however, the precise underlying cause remains unclear. In this study, we report a rare case and explore the potential pathophysiological mechanisms through a review of the existing literature.
Collapse
Affiliation(s)
| | | | | | | | - Dan Xiong
- Departments of Hematology, Shunde Hospital, Southern Medical University (The First
People’s Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
15
|
Sasidharan S, Knepper L, Ankrom E, Cucé G, Kong L, Ratajczak A, Im W, Thévenin D, Honerkamp-Smith A. Microfluidic measurement of the size and shape of lipid-anchored proteins. Biophys J 2024; 123:3478-3489. [PMID: 39228123 PMCID: PMC11480770 DOI: 10.1016/j.bpj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.
Collapse
Affiliation(s)
| | - Leah Knepper
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Gabriel Cucé
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Lingyang Kong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Amanda Ratajczak
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
16
|
Bao Y, Zhang H, Wang D, Yan P, Shao S, Zhang Z, Liu B, Li N. The Pathological Factors Involved in Current In Vitro Atherosclerotic Models. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:530-544. [PMID: 38258801 DOI: 10.1089/ten.teb.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cardiovascular disease stemmed from atherosclerosis (AS) is well recognized to be the predominant cause of global death. To comprehensively clarify the pathogenesis of AS, exploit effective drugs, as well as develop therapeutic solutions, various atherosclerotic models were constructed in vitro and widely utilized by the scientific community. Compared with animal models, the in vitro atherosclerotic models play a prominent role not only in the targeted research of single pathological factor related to AS in the human derived system, but also in the combined study on multipathological factors leading to AS, thereby contributing tremendously to the in-depth elucidation of atherosclerotic pathological process. In the current review, a variety of pathological factors incorporated into the existing atherosclerotic models in vitro are broadly elaborated, including the pathological mechanism, in vitro simulation approaches, and the desired improvement perspectives for reproducing each pathological factor. In addition, this review also summarizes the advantages and disadvantages of current atherosclerotic models as well as their potential functionality. Finally, the promising aspects for future atherosclerotic models in vitro with potential advances are also discussed.
Collapse
Affiliation(s)
- Yuxin Bao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Danbo Wang
- Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Peishi Yan
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang, China
- School of Basic Medical Sciences, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang, China
- School of Basic Medical Sciences, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, China
| |
Collapse
|
17
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
18
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
19
|
Xiao Z, Postma RJ, van Zonneveld AJ, van den Berg BM, Sol WM, White NA, van de Stadt HJ, Mirza A, Wen J, Bijkerk R, Rotmans JI. A bypass flow model to study endothelial cell mechanotransduction across diverse flow environments. Mater Today Bio 2024; 27:101121. [PMID: 38988818 PMCID: PMC11234155 DOI: 10.1016/j.mtbio.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Disturbed flow is one of the pathological initiators of endothelial dysfunction in intimal hyperplasia (IH) which is commonly seen in vascular bypass grafts, and arteriovenous fistulas. Various in vitro disease models have been designed to simulate the hemodynamic conditions found in the vasculature. Nonetheless, prior investigations have encountered challenges in establishing a robust disturbed flow model, primarily attributed to the complex bifurcated geometries and distinctive flow dynamics. In the present study, we aim to address this gap by introducing an in vitro bypass flow model capable of inducing disturbed flow and other hemodynamics patterns through a pulsatile flow in the same model. To assess the model's validity, we employed computational fluid dynamics (CFD) to simulate hemodynamics and compared the morphology and functions of human umbilical venous endothelial cells (HUVECs) under disturbed flow conditions to those in physiological flow or stagnant conditions. CFD analysis revealed the generation of disturbed flow within the model, pinpointing the specific location in the channel where the effects of disturbed flow were observed. High-content screening, a single-cell morphological profile assessment, demonstrated that HUVECs in the disturbed flow area exhibited random orientation, and morphological features were significantly distinct compared to cells in the physiological flow or stagnant condition after a two days of flow exposure. Furthermore, HUVECs exposed to disturbed flow underwent extensive remodeling of the adherens junctions and expressed higher levels of endothelial cell activation markers compared to other hemodynamic conditions. In conclusion, our in vitro bypass flow model provides a robust platform for investigating the associations between disturbed flow pattern and vascular diseases.
Collapse
Affiliation(s)
- Zhuotao Xiao
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Rudmer J. Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Bernard M. van den Berg
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Wendy M.P.J. Sol
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Nicholas A. White
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, Delft, 2628, CN, Netherlands
| | - Huybert J.F. van de Stadt
- Department of Medical Technology, Design & Prototyping, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33199, United States
| | - Jun Wen
- Department of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| |
Collapse
|
20
|
Bywaters BC, Trache A, Rivera GM. Modulation of arterial intima stiffness by disturbed blood flow. Exp Biol Med (Maywood) 2024; 249:10090. [PMID: 39143955 PMCID: PMC11323813 DOI: 10.3389/ebm.2024.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The intima, comprising the endothelium and the subendothelial matrix, plays a crucial role in atherosclerosis pathogenesis. The mechanical stress arising from disturbed blood flow (d-flow) and the stiffening of the arterial wall contributes to endothelial dysfunction. However, the specific impacts of these physical forces on the mechanical environment of the intima remain undetermined. Here, we investigated whether inhibiting collagen crosslinking could ameliorate the detrimental effects of persistent d-flow on the mechanical properties of the intima. Partial ligation of the left carotid artery (LCA) was performed in C57BL/6J mice, inducing d-flow. The right carotid artery (RCA) served as an internal control. Carotids were collected 2 days and 2 weeks after surgery to study acute and chronic effects of d-flow on the mechanical phenotype of the intima. The chronic effects of d-flow were decoupled from the ensuing arterial wall stiffening by administration of β-aminopropionitrile (BAPN), an inhibitor of collagen crosslinking by lysyl oxidase (LOX) enzymes. Atomic force microscopy (AFM) was used to determine stiffness of the endothelium and the denuded subendothelial matrix in en face carotid preparations. The stiffness of human aortic endothelial cells (HAEC) cultured on soft and stiff hydrogels was also determined. Acute exposure to d-flow caused a slight decrease in endothelial stiffness in male mice but had no effect on the stiffness of the subendothelial matrix in either sex. Regardless of sex, the intact endothelium was softer than the subendothelial matrix. In contrast, exposure to chronic d-flow led to a substantial increase in the endothelial and subendothelial stiffness in both sexes. The effects of chronic d-flow were largely prevented by concurrent BAPN administration. In addition, HAEC displayed reduced stiffness when cultured on soft vs. stiff hydrogels. We conclude that chronic d-flow results in marked stiffening of the arterial intima, which can be effectively prevented by inhibition of collagen crosslinking.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Selvarajan I, Kiema M, Huang RT, Li J, Zhu J, Pölönen P, Örd T, Õunap K, Godiwala M, Golebiewski AK, Ravindran A, Mäklin K, Toropainen A, Stolze LK, Arce M, Magnusson PU, White S, Romanoski CE, Heinäniemi M, Laakkonen JP, Fang Y, Kaikkonen MU. Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro. Arterioscler Thromb Vasc Biol 2024; 44:1330-1345. [PMID: 38602103 PMCID: PMC11111333 DOI: 10.1161/atvbaha.123.318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Collapse
Affiliation(s)
- Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miika Kiema
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ru-Ting Huang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jin Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayu Zhu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mehvash Godiwala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna Kathryn Golebiewski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Aarthi Ravindran
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kiira Mäklin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stephen White
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
24
|
Prochilo G, Pfeffer A, Du S, Kaneko N, Liebeskind DS, Hinman JD. Recent Translational Research Models of Intracranial Atherosclerotic Disease. Stroke 2024; 55:1707-1719. [PMID: 38738375 DOI: 10.1161/strokeaha.124.044520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Intracranial atherosclerotic disease (ICAD) is a leading cause of ischemic stroke worldwide. However, research on the pathophysiology of ICAD is scarce due to the relative inaccessibility of histology samples and the lack of comprehensive experimental models. As a result, much of the current understanding of ICAD relies on research on extracranial atherosclerosis. This approach is problematic as intracranial and extracranial arteries are anatomically, structurally, physiologically, and metabolically distinct, indicating that intracranial and extracranial atherosclerosis likely develop through different biologic pathways. The current standard of care for ICAD treatment relies predominantly on therapeutics developed to treat extracranial atherosclerosis and is insufficient given the alarmingly high risk of stroke. To provide a definitive treatment for the disease, a deeper understanding of the pathophysiology underlying ICAD is specifically required. True mechanistic understanding of disease pathogenesis is only possible using robust experimental models. In this review, we aim to identify the advantages and limitations of the existing in vivo and in vitro models of ICAD and basic atherosclerotic processes, which may be used to inform better models of ICAD in the future and drive new therapeutic strategies to reduce stroke risk.
Collapse
Affiliation(s)
- Grace Prochilo
- Departments of Neurology (G.P., A.P., S.D., D.S.L., J.D.H.), David Geffen School of Medicine, University of California, Los Angeles
| | - Alissa Pfeffer
- Departments of Neurology (G.P., A.P., S.D., D.S.L., J.D.H.), David Geffen School of Medicine, University of California, Los Angeles
| | - Stephanie Du
- Departments of Neurology (G.P., A.P., S.D., D.S.L., J.D.H.), David Geffen School of Medicine, University of California, Los Angeles
| | - Naoki Kaneko
- Radiology (N.K.), David Geffen School of Medicine, University of California, Los Angeles
| | - David S Liebeskind
- Departments of Neurology (G.P., A.P., S.D., D.S.L., J.D.H.), David Geffen School of Medicine, University of California, Los Angeles
| | - Jason D Hinman
- Departments of Neurology (G.P., A.P., S.D., D.S.L., J.D.H.), David Geffen School of Medicine, University of California, Los Angeles
- Department of Neurology, Department of Veterans Affairs Medical Center, Los Angeles, CA (J.D.H.)
| |
Collapse
|
25
|
Li J, Zhu J, Gray O, Sobreira DR, Wu D, Huang RT, Miao B, Sakabe NJ, Krause MD, Kaikkonen MU, Romanoski CE, Nobrega MA, Fang Y. Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells. J Cell Biol 2024; 223:e202211125. [PMID: 38231044 PMCID: PMC10794123 DOI: 10.1083/jcb.202211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Olivia Gray
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Débora R. Sobreira
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Bernadette Miao
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Matthew D. Krause
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Minna U. Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Madonna R. Endothelial heterogeneity and their relevance in cardiac development and coronary artery disease. Vascul Pharmacol 2023; 153:107242. [PMID: 37940065 DOI: 10.1016/j.vph.2023.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Micro- and macrovascular endothelial cells (ECs) are characterized by structural and functional heterogeneity, which is also reflected in their secretory activity. The root of this heterogeneity and related regulatory mechanisms are still poorly understood. During embryogenesis, microvascular ECs participate in organogenesis prior to the development of the fetal circulation, suggesting that ECs are capable of releasing paracrine trophogens, termed angiocrine factors (AFs). These are angiocrine growth factors, adhesion molecules, and chemokines, which are intended to promote morphogenesis and repair of the adjacent parenchyma/stroma where the vessels are located. There is a tissue and organ-specificity of AFs that traces the heterogeneity of ECs. This AF heterogeneity also traces how ECs respond to pathological conditions or exposure to cardiovascular risk factors. The study of the mechanisms that regulate endothelial and paracrine heterogeneity and that contribute to endotheliopathy represents a broad and as yet understudied area of research. A better understanding of the cellular and molecular mechanisms that regulate this heterogeneity, leading to endotheliopathy is an exciting challenge. In this brief review we will discuss experimental advances in the heterogeneity of ECs and their AF, with a focus on their involvement in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Via Paradisa, 56124 Pisa, Italy.
| |
Collapse
|
28
|
Blazeski A, Floryan MA, Fajardo-Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565021. [PMID: 37961543 PMCID: PMC10635035 DOI: 10.1101/2023.10.31.565021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell phenotype and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems, but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) with a KLF2-based endothelial cell sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that culture of MVNs exposed to flow for 48 hours that resulted in increased expression of the KLF2-GFP-reporter display larger vessel diameters and decreased vascular branching and resistance. Additionally, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. The MVNs with KLF2-based flow sensors represent a powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A. Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oscar R. Fajardo-Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
29
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
30
|
Wild NC, Bulusu KV, Plesniak MW. Vortical Structures Promote Atheroprotective Wall Shear Stress Distributions in a Carotid Artery Bifurcation Model. Bioengineering (Basel) 2023; 10:1036. [PMID: 37760138 PMCID: PMC10525770 DOI: 10.3390/bioengineering10091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Carotid artery diseases, such as atherosclerosis, are a major cause of death in the United States. Wall shear stresses are known to prompt plaque formation, but there is limited understanding of the complex flow structures underlying these stresses and how they differ in a pre-disposed high-risk patient cohort. A 'healthy' and a novel 'pre-disposed' carotid artery bifurcation model was determined based on patient-averaged clinical data, where the 'pre-disposed' model represents a pathological anatomy. Computational fluid dynamic simulations were performed using a physiological flow based on healthy human subjects. A main hairpin vortical structure in the internal carotid artery sinus was observed, which locally increased instantaneous wall shear stress. In the pre-disposed geometry, this vortical structure starts at an earlier instance in the cardiac flow cycle and persists over a much shorter period, where the second half of the cardiac cycle is dominated by perturbed secondary flow structures and vortices. This coincides with weaker favorable axial pressure gradient peaks over the sinus for the 'pre-disposed' geometry. The findings reveal a strong correlation between vortical structures and wall shear stress and imply that an intact internal carotid artery sinus hairpin vortical structure has a physiologically beneficial role by increasing local wall shear stresses. The deterioration of this beneficial vortical structure is expected to play a significant role in atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Nora C. Wild
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
| | - Kartik V. Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
| | - Michael W. Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
- Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA
| |
Collapse
|
31
|
Dąbrowska E, Narkiewicz K. Hypertension and Dyslipidemia: the Two Partners in Endothelium-Related Crime. Curr Atheroscler Rep 2023; 25:605-612. [PMID: 37594602 PMCID: PMC10471742 DOI: 10.1007/s11883-023-01132-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this article is to characterize the endothelium's role in the development of hypertension and dyslipidemia and to point out promising therapeutic directions. RECENT FINDINGS Dyslipidemia may facilitate the development of hypertension, whereas the collaboration of these two silent killers potentiates the risk of atherosclerosis. The common pathophysiological denominator for hypertension and dyslipidemia is endothelial cell dysfunction, which manifests as dysregulation of homeostasis, redox balance, vascular tone, inflammation, and thrombosis. Treatment focused on mediators acting in these processes might be groundbreaking. Metabolomic research on hypertension and dyslipidemia has revealed new therapeutic targets. State-of-the-art solutions integrating interview, clinical examination, innovative imaging, and omics profiles along with artificial intelligence have been already shown to improve patients' risk stratification and treatment. Pathomechanisms underlying hypertension and dyslipidemia take place in the endothelium. Novel approaches involving endothelial biomarkers and bioinformatics advances could open new perspectives in patient management.
Collapse
Affiliation(s)
- Edyta Dąbrowska
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
32
|
Luu RJ, Hoefler BC, Gard AL, Ritenour CR, Rogers MT, Kim ES, Coppeta JR, Cain BP, Isenberg BC, Azizgolshani H, Fajardo-Ramirez OR, García-Cardeña G, Lech MP, Tomlinson L, Charest JL, Williams C. Fibroblast activation in response to TGFβ1 is modulated by co-culture with endothelial cells in a vascular organ-on-chip platform. Front Mol Biosci 2023; 10:1160851. [PMID: 37577751 PMCID: PMC10421749 DOI: 10.3389/fmolb.2023.1160851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFβ1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFβ1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFβ1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.
Collapse
Affiliation(s)
- Rebeccah J. Luu
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - B. Christopher Hoefler
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ashley L. Gard
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | | | - Miles T. Rogers
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ernest S. Kim
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Jonathan R. Coppeta
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brian P. Cain
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Hesham Azizgolshani
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Oscar R. Fajardo-Ramirez
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Guillermo García-Cardeña
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Joseph L. Charest
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| |
Collapse
|
33
|
Kidder E, Pea M, Cheng S, Koppada SP, Visvanathan S, Henderson Q, Thuzar M, Yu X, Alfaidi M. The interleukin-1 receptor type-1 in disturbed flow-induced endothelial mesenchymal activation. Front Cardiovasc Med 2023; 10:1190460. [PMID: 37539090 PMCID: PMC10394702 DOI: 10.3389/fcvm.2023.1190460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Atherosclerosis is a progressive disease that develops in areas of disturbed flow (d-flow). Progressive atherosclerosis is characterized by bulky plaques rich in mesenchymal cells and high-grade inflammation that can rupture leading to sudden cardiac death or acute myocardial infarction. In response to d-flow, endothelial cells acquire a mesenchymal phenotype through endothelial-to-mesenchymal transition (EndMT). However, the signaling intermediaries that link d-flow to EndMT are incompletely understood. Methods and Results In this study we found that in human atherosclerosis, cells expressing SNAI1 (Snail 1, EndMT transcription factor) were highly expressed within the endothelial cell (EC) layer and in the pre-necrotic areas in unstable lesions, whereas stable lesions did not show any SNAI1 positive cells, suggesting a role for EndMT in lesion instability. The interleukin-1 (IL-1), which signals through the type-I IL-1 receptor (IL-1R1), has been implicated in plaque instability and linked to EndMT formation in vitro. Interestingly, we observed an association between SNAI1 and IL-1R1 within ECs in the unstable lesions. To establish the causal relationship between EndMT and IL-1R1 expression, we next examined IL-1R1 levels in our Cre-lox endothelial-specific lineage tracing mice. IL-1R1 and Snail1 were highly expressed in ECs under atheroprone compared to athero-protective areas, and oscillatory shear stress (OSS) increased IL-1R1 protein and mRNA levels in vitro. Exposure of ECs to OSS resulted in loss of their EC markers and higher induction of EndMT markers. By contrast, genetic silencing of IL-1R1 significantly reduced the expression of EndMT markers and Snail1 nuclear translocation, suggesting a direct role for IL-1R1 in d-flow-induced EndMT. In vivo, re-analysis of scRNA-seq datasets in carotid artery exposed to d-flow confirmed the IL-1R1 upregulation among EndMT population, and in our partial carotid ligation model of d-flow, endothelial cell specific IL-1R1 KO significantly reduced SNAI1 expression. Discussion Global inhibition of IL-1 signaling in atherosclerosis as a therapeutic target has recently been tested in the completed CANTOS trial, with promising results. However, the data on IL-1R1 signaling in different vascular cell-types are inconsistent. Herein, we show endothelial IL-1R1 as a novel mechanosensitive receptor that couples d-flow to IL-1 signaling in EndMT.
Collapse
Affiliation(s)
- Evan Kidder
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Meleah Pea
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Siyuan Cheng
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Satya-Priya Koppada
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Suren Visvanathan
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Quartina Henderson
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Moe Thuzar
- Department of Pathology and Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xiuping Yu
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Mabruka Alfaidi
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Science (CCDS), Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
34
|
Zhang Y, Zhang Y, Hutterer E, Hultin S, Bergman O, Kolbeinsdottir S, Jin H, Forteza MJ, Ketelhuth DFJ, Roy J, Hedin U, Enge M, Matic L, Eriksson P, Holmgren L. The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inflammation and the formation of abdominal aortic aneurysms. NATURE CARDIOVASCULAR RESEARCH 2023; 2:629-644. [PMID: 39195920 PMCID: PMC11358041 DOI: 10.1038/s44161-023-00298-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/01/2023] [Indexed: 08/29/2024]
Abstract
Endothelial cells respond to mechanical forces exerted by blood flow. Endothelial cell-cell junctions and the sites of endothelial adhesion to the matrix sense and transmit mechanical forces to the cellular cytoskeleton. Here we show that the scaffold protein AmotL2 connects junctional VE-cadherin and actin filaments to the nuclear lamina. AmotL2 is essential for the formation of radial actin filaments and the alignment of endothelial cells, and, in its absence, nuclear integrity and positioning are altered. Molecular analysis demonstrated that VE-cadherin binds to AmotL2 and actin, resulting in a cascade that transmits extracellular mechanical signals to the nuclear membrane. Furthermore, the endothelial deficit of AmotL2 in mice fed normal diet provoked a pro-inflammatory response and abdominal aortic aneurysms (AAAs). Transcriptome analysis of human AAA samples revealed a negative correlation between AmotL2 and inflammation of the aortic intima. These findings offer insight into the link between junctional mechanotransduction and vascular disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Evelyn Hutterer
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hultin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Solrun Kolbeinsdottir
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria J Forteza
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institutet of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Santana Nunez D, Malik AB, Lee Q, Ahn SJ, Coctecon-Murillo A, Lazarko D, Levitan I, Mehta D, Komarova YA. Piezo1 induces endothelial responses to shear stress via soluble adenylyl Cyclase-IP 3R2 circuit. iScience 2023; 26:106661. [PMID: 37168565 PMCID: PMC10164902 DOI: 10.1016/j.isci.2023.106661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Endothelial cells (ECs) continuously sense and adapt to changes in shear stress generated by blood flow. Here, we show that the activation of the mechanosensitive channel Piezo1 by defined shear forces induces Ca2+ entry into the endoplasmic reticulum (ER) via the ER Ca2+ ATPase pump. This entry is followed by inositol trisphosphate receptor 2 (IP3R2)-elicited ER Ca2+ release into the cytosol. The mechanism of ER Ca2+ release involves the generation of cAMP by soluble adenylyl cyclase (sAC), leading to IP3R2-evoked Ca2+ gating. Depleting sAC or IP3R2 prevents ER Ca2+ release and blocks EC alignment in the direction of flow. Overexpression of constitutively active Akt1 restores the shear-induced alignment of ECs lacking Piezo1 or IP3R2, as well as the flow-induced vasodilation in endothelial restricted Piezo1 knockout mice. These studies describe an unknown Piezo1-cAMP-IP3R2 circuit as an essential mechanism activating Akt signaling and inducing adaptive changes in ECs to laminar flow.
Collapse
Affiliation(s)
- Dianicha Santana Nunez
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Quinn Lee
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Sang Joon Ahn
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Arnold Coctecon-Murillo
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Dana Lazarko
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Irena Levitan
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yulia A. Komarova
- Department of Pharmacology and Regenerative Medicine, the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Zalud NC, Bulusu KV, Plesniak MW. Shear stress metrics associated with pro-atherogenic high-risk anatomical features in a carotid artery bifurcation model. Clin Biomech (Bristol, Avon) 2023; 105:105956. [PMID: 37098301 DOI: 10.1016/j.clinbiomech.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Diseases associated with atherosclerotic plaques in the carotid artery are a major cause of deaths in the United States. Blood-flow-induced shear-stresses are known to trigger plaque formation. Prior literature suggests that the internal carotid artery sinus is prone to atherosclerosis, but there is limited understanding of why only certain patients are predisposed towards plaque formation. METHODS We computationally investigate the effect of vessel geometry on wall-shear-stress distribution by comparing flowfields and wall-shear-stress-metrics between a low-risk and a novel predisposed high-risk carotid artery bifurcation anatomy. Both models were developed based on clinical risk estimations and patient-averaged anatomical features. The high-risk geometry has a larger internal carotid artery branching angle and a lower internal-to-carotid-artery-diameter-ratio. A patient-averaged physiological carotid artery inflow waveform is used. FINDINGS The high-risk geometry experiences stronger flow separation in the sinus. Furthermore, it experiences a more equal flow split at the bifurcation, thereby reducing internal carotid artery flowrate and increasing atherosclerosis-prone low-velocity areas. Lowest time-averaged-wall-shear-stresses are present at the sinus outer wall, where plaques are often found, for both geometries. The high-risk geometry has significantly high, unfavorable oscillatory-shear-index values not found in the low-risk geometry. High oscillatory-shear-index areas are located at the vessels outside walls distal to the bifurcation and on the sinus wall. INTERPRETATION These results highlight the effectiveness of oscillatory-shear-index, to augment classical time-averaged-wall-shear-stress, in evaluating pro-atherogenic geometry features. Furthermore, the flow split at the bifurcation is a promising clinical indicator for atherosclerosis risk as it can be directly accessed using clinical imaging, whereas shear-stress-metrics cannot.
Collapse
Affiliation(s)
- Nora C Zalud
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, United States
| | - Kartik V Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, United States
| | - Michael W Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, United States; Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 5000, Washington, DC 20052, United States.
| |
Collapse
|
37
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
38
|
Varhue WB, Rane A, Castellanos-Sanchez R, Peirce SM, Christ G, Swami NS. Perfusable cell-laden micropatterned hydrogels for delivery of spatiotemporal vascular-like cues to tissues. ORGANS-ON-A-CHIP 2022; 4:100017. [PMID: 36865345 PMCID: PMC9977322 DOI: 10.1016/j.ooc.2022.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The integration of vasculature at physiological scales within 3D cultures of cell-laden hydrogels for the delivery of spatiotemporal mass transport, chemical and mechanical cues, is a stepping-stone towards building in vitro tissue models that recapitulate in vivo cues. To address this challenge, we present a versatile method to micropattern adjoining hydrogel shells with a perfusable channel or lumen core, for enabling facile integration with fluidic control systems, on one hand, and to cell-laden biomaterial interfaces, on the other hand. This microfluidic imprint lithography methodology utilizes the high tolerance and reversible nature of the bond alignment process to lithographically position multiple layers of imprints within a microfluidic device for sequential filling and patterning of hydrogel lumen structures with single or multiple shells. Through fluidic interfacing of the structures, the ability to deliver physiologically relevant mechanical cues for recapitulating cyclical stretch on the hydrogel shell and shear stress on endothelial cells in the lumen are validated. We envision application of this platform for recapitulation of the bio-functionality and topology of micro-vasculatures, alongside the ability to deliver transport and mechanical cues, as needed for 3D culture to construct in vitro tissue models.
Collapse
Affiliation(s)
- Walter B. Varhue
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Aditya Rane
- Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - George Christ
- Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Nathan S. Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Corresponding author. University of Virginia, 351 McCormick Rd, Charlottesville, VA, 22904, USA. (N.S. Swami)
| |
Collapse
|
39
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
40
|
Influence of Shear Stress, Inflammation and BRD4 Inhibition on Human Endothelial Cells: A Holistic Proteomic Approach. Cells 2022; 11:cells11193086. [PMID: 36231049 PMCID: PMC9563250 DOI: 10.3390/cells11193086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is an important risk factor in the development of cardiovascular diseases. In addition to increased plasma lipid concentrations, irregular/oscillatory shear stress and inflammatory processes trigger atherosclerosis. Inhibitors of the transcription modulatory bromo- and extra-terminal domain (BET) protein family (BETi) could offer a possible therapeutic approach due to their epigenetic mechanism and anti-inflammatory properties. In this study, the influence of laminar shear stress, inflammation and BETi treatment on human endothelial cells was investigated using global protein expression profiling by ion mobility separation-enhanced data independent acquisition mass spectrometry (IMS-DIA-MS). For this purpose, primary human umbilical cord derived vascular endothelial cells were treated with TNFα to mimic inflammation and exposed to laminar shear stress in the presence or absence of the BRD4 inhibitor JQ1. IMS-DIA-MS detected over 4037 proteins expressed in endothelial cells. Inflammation, shear stress and BETi led to pronounced changes in protein expression patterns with JQ1 having the greatest effect. To our knowledge, this is the first proteomics study on primary endothelial cells, which provides an extensive database for the effects of shear stress, inflammation and BETi on the endothelial proteome.
Collapse
|
41
|
Xiong H, Hua F, Dong Y, Lin Y, Ying J, Liu J, Wang X, Zhang L, Zhang J. DNA damage response and GATA4 signaling in cellular senescence and aging-related pathology. Front Aging Neurosci 2022; 14:933015. [PMID: 36177479 PMCID: PMC9513149 DOI: 10.3389/fnagi.2022.933015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is the continuous degradation of biological function and structure with time, and cellular senescence lies at its core. DNA damage response (DDR) can activate Ataxia telangiectasia-mutated serine/threonine kinase (ATM) and Rad3-related serine/threonine kinase (ATR), after which p53 activates p21, stopping the cell cycle and inducing cell senescence. GATA4 is a transcription factor that plays an important role in the development of many organs, such as the heart, testis, ovary, foregut, liver, and ventral pancreas. Studies have shown that GATA4 can also contribute to the DDR, leading to aging. Consistently, there is also evidence that the GATA4 signaling pathway is associated with aging-related diseases, including atherosclerosis and heart failure. This paper reviews the relationship between GATA4, DDR, and cellular senescence, as well as its effect on aging-related diseases.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Xifeng Wang
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- *Correspondence: Lieliang Zhang
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Atherogenic potential of microgravity hemodynamics in the carotid bifurcation: a numerical investigation. NPJ Microgravity 2022; 8:39. [PMID: 36085153 PMCID: PMC9463447 DOI: 10.1038/s41526-022-00223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Long-duration spaceflight poses multiple hazards to human health, including physiological changes associated with microgravity. The hemodynamic adaptations occurring upon entry into weightlessness have been associated with retrograde stagnant flow conditions and thromboembolic events in the venous vasculature but the impact of microgravity on cerebral arterial hemodynamics and function remains poorly understood. The objective of this study was to quantify the effects of microgravity on hemodynamics and wall shear stress (WSS) characteristics in 16 carotid bifurcation geometries reconstructed from ultrasonography images using computational fluid dynamics modeling. Microgravity resulted in a significant 21% increase in flow stasis index, a 22-23% decrease in WSS magnitude and a 16-26% increase in relative residence time in all bifurcation branches, while preserving WSS unidirectionality. In two anatomies, however, microgravity not only promoted flow stasis but also subjected the convex region of the external carotid arterial wall to a moderate increase in WSS bidirectionality, which contrasted with the population average trend. This study suggests that long-term exposure to microgravity has the potential to subject the vasculature to atheroprone hemodynamics and this effect is modulated by subject-specific anatomical features. The exploration of the biological impact of those microgravity-induced WSS aberrations is needed to better define the risk posed by long spaceflights on cardiovascular health.
Collapse
|
43
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
44
|
Abello J, Raghavan S, Yien YY, Stratman AN. Peristaltic pumps adapted for laminar flow experiments enhance in vitro modeling of vascular cell behavior. J Biol Chem 2022; 298:102404. [PMID: 35988646 PMCID: PMC9508572 DOI: 10.1016/j.jbc.2022.102404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) are the primary cellular constituent of blood vessels that are in direct contact with hemodynamic forces over their lifetime. Throughout the body, vessels experience different blood flow patterns and rates that alter vascular architecture and cellular behavior. Because of the complexities of studying blood flow in an intact organism, particularly during development, the field has increasingly relied on in vitro modeling of blood flow as a powerful technique for studying hemodynamic-dependent signaling mechanisms in ECs. While commercial flow systems that recirculate fluids exist, many commercially available pumps are peristaltic and best model pulsatile flow conditions. However, there are many important situations in which ECs experience laminar flow conditions in vivo, such as along long straight stretches of the vasculature. To understand EC function under these contexts, it is important to be able to reproducibly model laminar flow conditions in vitro. Here, we outline a method to reliably adapt commercially available peristaltic pumps to study laminar flow conditions. Our proof-of-concept study focuses on 2D models but could be further adapted to 3D environments to better model in vivo scenarios, such as organ development. Our studies make significant inroads into solving technical challenges associated with flow modeling and allow us to conduct functional studies toward understanding the mechanistic role of shear forces on vascular architecture, cellular behavior, and remodeling in diverse physiological contexts.
Collapse
Affiliation(s)
- Javier Abello
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station TX 77843
| | - Yvette Y Yien
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Amber N Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.
| |
Collapse
|
45
|
Bywaters BC, Pedraza G, Trache A, Rivera GM. Endothelial NCK2 promotes atherosclerosis progression in male but not female Nck1-null atheroprone mice. Front Cardiovasc Med 2022; 9:955027. [PMID: 36035930 PMCID: PMC9413153 DOI: 10.3389/fcvm.2022.955027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
A better understanding of endothelial dysfunction holds promise for more effective interventions for atherosclerosis prevention and treatment. Endothelial signaling by the non-catalytic region of the tyrosine kinase (NCK) family of adaptors, consisting of NCK1 and NCK2, has been implicated in cardiovascular development and postnatal angiogenesis but its role in vascular disease remains incompletely understood. Here, we report stage- and sex-dependent effects of endothelial NCK2 signaling on arterial wall inflammation and atherosclerosis development. Male and female Nck1-null atheroprone mice enabling inducible, endothelial-specific Nck2 inactivation were fed a high fat diet (HFD) for 8 or 16 weeks to model atherosclerosis initiation and progression, respectively. Analysis of aorta preparations en face during disease progression, but not initiation, showed a significant reduction in plaque burden in males, but not females, lacking endothelial NCK2 relative to controls. Markers of vascular inflammation were reduced by endothelial NCK2 deficiency in both males and females during atherosclerosis progression but not initiation. At advanced stages of disease, plaque size and severity of atherosclerotic lesions were reduced by abrogation of endothelial NCK2 signaling only in males. Collectively, our results demonstrate stage- and sex-dependent modulation of atherosclerosis development by endothelial NCK2 signaling.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- *Correspondence: Briana C. Bywaters
| | - Gladys Pedraza
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Gonzalo M. Rivera
| |
Collapse
|
46
|
Splice factor polypyrimidine tract-binding protein 1 (Ptbp1) primes endothelial inflammation in atherogenic disturbed flow conditions. Proc Natl Acad Sci U S A 2022; 119:e2122227119. [PMID: 35858420 PMCID: PMC9335344 DOI: 10.1073/pnas.2122227119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plaque forms in low and disturbed flow regions of the vasculature, where platelets adhere and endothelial cells are “primed” to respond to cytokines (e.g., tumor necrosis factor-α) with elevated levels of cell adhesion molecules via the NF-κB signaling pathway. We show that the splice factor polypyrimidine tract binding protein (Ptbp1; purple) mediates priming. Ptbp1 is induced in endothelial cells by platelet recruitment, promoting priming and subsequent myeloid cell infiltration into plaque. Mechanistically, Ptbp1 regulates splicing of genes (e.g., Ripk1) involved in the NF-κB signaling pathway and is required for efficient nuclear translocation of NF-κB in endothelial cells. This provides new insight into the molecular mechanisms underlying an endothelial priming process that reinforces vascular inflammation. NF-κB–mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.
Collapse
|
47
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
48
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
49
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
50
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|