1
|
Koller A, Laughlin MH, Cenko E, de Wit C, Tóth K, Bugiardini R, Trifunovits D, Vavlukis M, Manfrini O, Lelbach A, Dornyei G, Padro T, Badimon L, Tousoulis D, Gielen S, Duncker DJ. Functional and structural adaptations of the coronary macro- and microvasculature to regular aerobic exercise by activation of physiological, cellular, and molecular mechanisms: ESC Working Group on Coronary Pathophysiology and Microcirculation position paper. Cardiovasc Res 2022; 118:357-371. [PMID: 34358290 PMCID: PMC8803083 DOI: 10.1093/cvr/cvab246] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Regular aerobic exercise (RAEX) elicits several positive adaptations in all organs and tissues of the body, culminating in improved health and well-being. Indeed, in over half a century, many studies have shown the benefit of RAEX on cardiovascular outcome in terms of morbidity and mortality. RAEX elicits a wide range of functional and structural adaptations in the heart and its coronary circulation, all of which are to maintain optimal myocardial oxygen and nutritional supply during increased demand. Although there is no evidence suggesting that oxidative metabolism is limited by coronary blood flow (CBF) rate in the normal heart even during maximal exercise, increased CBF and capillary exchange capacities have been reported. Adaptations of coronary macro- and microvessels include outward remodelling of epicardial coronary arteries, increased coronary arteriolar size and density, and increased capillary surface area. In addition, there are adjustments in the neural and endothelial regulation of coronary macrovascular tone. Similarly, there are several adaptations at the level of microcirculation, including enhanced (such as nitric oxide mediated) smooth muscle-dependent pressure-induced myogenic constriction and upregulated endothelium-dependent/shear-stress-induced dilation, increasing the range of diameter change. Alterations in the signalling interaction between coronary vessels and cardiac metabolism have also been described. At the molecular and cellular level, ion channels are key players in the local coronary vascular adaptations to RAEX, with enhanced activation of influx of Ca2+ contributing to the increased myogenic tone (via voltage-gated Ca2+ channels) as well as the enhanced endothelium-dependent dilation (via TRPV4 channels). Finally, RAEX elicits a number of beneficial effects on several haemorheological variables that may further improve CBF and myocardial oxygen delivery and nutrient exchange in the microcirculation by stabilizing and extending the range and further optimizing the regulation of myocardial blood flow during exercise. These adaptations also act to prevent and/or delay the development of coronary and cardiac diseases.
Collapse
Affiliation(s)
- Akos Koller
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Research Center for Sports Physiology, University of Physical Education, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cor de Wit
- Institut für Physiologie, Universitat zu Lübeck, Lübeck, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Danijela Trifunovits
- Cardiology Department, Clinical Centre of Serbia and Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Marija Vavlukis
- University Clinic for Cardiology, Medical Faculty, Ss’ Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Adam Lelbach
- Departmental Group of Geriatrics, Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Dr. Rose Private Hospital, Budapest, Hungary
| | - Gabriella Dornyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Stephan Gielen
- Department of Cardiology, Angiology, and Intensive Care Medicine, Klinikum Lippe, Detmold, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece.
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
3
|
Heidbuchel H, Arbelo E, D'Ascenzi F, Borjesson M, Boveda S, Castelletti S, Miljoen H, Mont L, Niebauer J, Papadakis M, Pelliccia A, Saenen J, Sanz de la Garza M, Schwartz PJ, Sharma S, Zeppenfeld K, Corrado D. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace 2021; 23:147-148. [PMID: 32596731 DOI: 10.1093/europace/euaa106] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper belongs to a series of recommendation documents for participation in leisure-time physical activity and competitive sports by the European Association of Preventive Cardiology (EAPC). Together with an accompanying paper on supraventricular arrhythmias, this second text deals specifically with those participants in whom some form of ventricular rhythm disorder is documented, who are diagnosed with an inherited arrhythmogenic condition, and/or who have an implanted pacemaker or cardioverter defibrillator. A companion text on recommendations in athletes with supraventricular arrhythmias is published in the European Journal of Preventive Cardiology. Since both texts focus on arrhythmias, they are the result of a collaboration between EAPC and the European Heart Rhythm Association (EHRA). The documents provide a framework for evaluating eligibility to perform sports, based on three elements, i.e. the prognostic risk of the arrhythmias when performing sports, the symptomatic impact of arrhythmias while performing sports, and the potential progression of underlying structural problems as the result of sports.
Collapse
Affiliation(s)
- Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mats Borjesson
- Centre for Health and Performance (CHP), Department of Food, Nutrition and Sport Sciences, Gothenburg University, Sweden.,Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Serge Boveda
- Cardiology Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Hielko Miljoen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Josef Niebauer
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Antonio Pelliccia
- National Institute of Sports Medicine, Italian National Olympic Committee, Via dei Campi Sportivi 46, Rome, Italy
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | | | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Domenico Corrado
- Department of Cardiology, University of Padova, Padova, Italy.,Department of Pathology, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Zhao Y, Ling S, Zhong G, Li Y, Li J, Du R, Jin X, Zhao D, Liu Z, Kan G, Chang YZ, Li Y. Casein Kinase-2 Interacting Protein-1 Regulates Physiological Cardiac Hypertrophy via Inhibition of Histone Deacetylase 4 Phosphorylation. Front Physiol 2021; 12:678863. [PMID: 34211403 PMCID: PMC8239235 DOI: 10.3389/fphys.2021.678863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
Different kinds of mechanical stimuli acting on the heart lead to different myocardial phenotypes. Physiological stress, such as exercise, leads to adaptive cardiac hypertrophy, which is characterized by a normal cardiac structure and improved cardiac function. Pathological stress, such as sustained cardiac pressure overload, causes maladaptive cardiac remodeling and, eventually, heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) is an important regulator of pathological cardiac remodeling. However, the role of CKIP-1 in physiological cardiac hypertrophy is unknown. We subjected wild-type (WT) mice to a swimming exercise program for 21 days, which caused an increase in myocardial CKIP-1 protein and mRNA expression. We then subjected CKIP-1 knockout (KO) mice and myocardial-specific CKIP-1-overexpressing mice to the 21-day swimming exercise program. Histological and echocardiography analyses revealed that CKIP-1 KO mice underwent pathological cardiac remodeling after swimming, whereas the CKIP-1-overexpressing mice had a similar cardiac phenotype to the WT controls. Histone deacetylase 4 (HDAC4) is a key molecule in the signaling cascade associated with pathological hypertrophy; the phosphorylation levels of HDAC4 were markedly higher in CKIP-1 KO mouse hearts after the swimming exercise program. The phosphorylation levels of HDAC4 did not change after swimming in the hearts of CKIP-1-overexpressing or WT mice. Our results indicate that swimming, a mechanical stress that leads to physiological hypertrophy, triggers pathological cardiac remodeling in CKIP-1 KO mice. CKIP-1 is necessary for physiological cardiac hypertrophy in vivo, and for modulating the phosphorylation level of HDAC4 after physiological stress. Genetically engineering CKIP-1 expression affected heart health in response to exercise.
Collapse
Affiliation(s)
- Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
5
|
Coronary artery z score values in adolescent elite male soccer players. Cardiol Young 2021; 31:381-385. [PMID: 33228821 DOI: 10.1017/s1047951120004011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND With the increased training loads at very early ages in European elite youth soccer, there is an interest to analyse coronary artery remodelling due to high-intensity exercise. DESIGN AND METHODS Prospective echocardiographic study in 259 adolescent elite male soccer players and 48 matched controls. RESULTS The mean age was 12.7 ± 0.63 years in soccer players and 12.6 ± 0.7 years in controls (p > 0.05). Soccer players had significant greater indexed left ventricular mass (93 ± 13 g/m2 versus 79 ± 12 g/m2, p = 0.001). Both coronary arteries origin could be identified in every participant. In soccer players, the mean diameter of the left main coronary artery was 3.67 mm (SD ± 0.59) and 2.61 mm (SD ± 0.48) for right main coronary artery. Controls showed smaller mean luminal diameter (left main coronary artery, p = 0.01; right main coronary artery, p = 0.025). In soccer players, a total of 91% (n = 196) and in controls a total of 94% (n = 45) showed left main coronary artery z scores within the normal range: -2.0 to 2.0. In right main coronary artery, a pattern of z score values distribution was comparable (soccer players 94%, n = 202 vs. controls 84%, n = 40). A subgroup of soccer players had supernormal z score values (>2.0 to 2.5) for left main coronary artery (9%, n = 19, p = 0.01) and right main coronary artery (6%, n = 10, p = 0.025), respectively. CONCLUSION Elite soccer training in early adolescence may be a stimulus strong enough to develop increased coronary arteries diameters. In soccer players, a coronary artery z score >2.0-2.5 might reflect a physiologic response induced by multiannual high-intensity training.
Collapse
|
6
|
(Cardiovascular adaptations to competitive sports - athlete's heart). COR ET VASA 2020. [DOI: 10.33678/cor.2020.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
D'Ascenzi F, Zorzi A, Sciaccaluga C, Berrettini U, Mondillo S, Brignole M. Syncope in the Young Adult and in the Athlete: Causes and Clinical Work-up to Exclude a Life-Threatening Cardiac Disease. J Cardiovasc Transl Res 2020; 13:322-330. [PMID: 32198700 DOI: 10.1007/s12265-020-09989-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Syncope is defined as a transient loss of consciousness due to cerebral hypoperfusion, characterized by a rapid onset, short duration, and spontaneous complete recovery. It is usually a benign event, but sometimes it may represent the initial presentation of several cardiac disorders associated with sudden cardiac death during physical activity. A careful evaluation is essential particularly in young adults and in competitive athletes in order to exclude the presence of an underlying life-threatening cardiovascular disease. The present review analyzes the main non-cardiac and cardiac causes of syncope and the contribution of the available tools for differential diagnosis. Clinical work-up of the athlete with syncope occurring in extreme environments and management in terms of sports eligibility and disqualification are also discussed.
Collapse
Affiliation(s)
- Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy.
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Carlotta Sciaccaluga
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy
| | | | - Sergio Mondillo
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy
| | - Michele Brignole
- Faint&Fall Programme, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
8
|
Siwinska N, Michalek M, Zak A, Slowikowska M, Noszczyk-Nowak A, Niedzwiedz A, Paslawska U. Two-dimensional echocardiographic measurements of the right coronary artery in healthy horses - a pilot study. BMC Vet Res 2019; 15:43. [PMID: 30691453 PMCID: PMC6348654 DOI: 10.1186/s12917-019-1792-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Background Precise understanding of the dimensions of the vascular lumina is essential for accurate interpretation of cardiac vessels imaging. To the authors’ best knowledge, this is the first study focusing on the ultrasound measurement of the right coronary artery (RCA) in the horse. The aim of this study was to determine both the ultrasonographic range of the normal diameter and lumen area of the RCA in horses and the influence of gender, age and level of training on the RCA dimensions. An additional aim of the study was to assess intra- and inter-observer repeatability of the collected measurements. Methods Thirty-six privately owned, healthy horses were included in the study. The internal lumen diameter and the area of the RCA were measured in the right parasternal long axis view in the 3rd intercostal space during systole and diastole. The results were compared between groups using the analysis of variance (ANOVA) and Student’s t-test. The correlation between the physiological parameters and the RCA was assessed using Pearson correlation coefficient. Student’s t-test was used to compare the results obtained by two researchers and from two scanners. Results The mean diameter of the RCA was 13.1 ± 1.5 mm in systole and 11.5 ± 1.3 mm in diastole, and the mean area was 1.3 ± 0.2 cm2 and 1.1 ± 0.2 cm2, respectively. There were no statistically significant measurement differences between geldings and mares. A positive correlation between body weight and RCA dimensions as well as height and RCA dimensions were seen. There was a negative correlation between the age and the RCA area. A statistically significant difference in the RCA area was seen between race and retired horses. Intra- and inter-observer agreement was strong with a few statistically significant differences. Conclusions The age, size, and level of training may affect the ultrasound measurement of the RCA in horses. Non-invasive transthoracic echocardiography may be used to assess the size of the right coronary vessel in various types of horses.
Collapse
Affiliation(s)
- Natalia Siwinska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland.
| | - Marcin Michalek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Agnieszka Zak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Malwina Slowikowska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Urszula Paslawska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wroclaw, Poland
| |
Collapse
|
9
|
Ho JS, Cannaday JJ, FitzGerald SJ, Leonard D, Finley CE, Wade WA, Reinhardt DB, Ellis JR, Barlow CE, Haskell WL, Defina LF, Gibbons LW, Cooper KH. Relation of Coronary Artery Diameters With Cardiorespiratory Fitness. Am J Cardiol 2018; 121:1065-1071. [PMID: 29502792 DOI: 10.1016/j.amjcard.2018.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Cardiorespiratory fitness is associated with reduced cardiovascular morbidity and mortality when adjusted for traditional risk factors. Mechanisms by which fitness reduces risk have been studied but remain incompletely understood. We hypothesize that higher fitness is associated with larger coronary artery diameters independent of its effect on traditional risk factors. Two independent measurements of the proximal diameters of the left main, left anterior descending, left circumflex, and right coronary arteries were obtained from gated multidetector computed tomography scans in 500 men from the Cooper Center Longitudinal Study (CCLS). Men with coronary artery calcium scores ≥10 were excluded. Fitness was measured with a maximal exercise treadmill test and reported by quintiles and as a function of METs. We then evaluated the relation between coronary artery diameters and fitness using mixed effect regression models. Higher fitness was associated with larger coronary artery diameters after adjustment for body surface area, smoking status, low-density lipoprotein and high-density lipoprotein cholesterol, resting systolic blood pressure, and serum glucose. When examined continuously, each MET increase in fitness was associated with a mean 0.03 ± 0.01 mm larger diameter of the left main, a 0.04 ± 0.01 mm larger diameter of the left anterior descending, a 0.05 ± 0.01 mm larger diameter of the left circumflex, and a 0.07 ± 0.01 mm larger diameter of the right coronary artery (p = 0.002). This correlation between fitness and coronary artery diameters was most prominent for fitness levels above 10 METs. In conclusion, higher fitness is associated with larger coronary artery diameters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - William L Haskell
- Stanford Prevention Research Center, Stanford University, Stanford, California
| | | | | | | |
Collapse
|
10
|
Guzzoni V, Cunha TS, das Neves VJ, Briet L, Costa R, Moura MJCS, Oliveira V, Franco MDCP, Novaes PD, Marcondes FK. Nandrolone combined with strenuous resistance training reduces vascular nitric oxide bioavailability and impairs endothelium-dependent vasodilation. Steroids 2018; 131:7-13. [PMID: 29317256 DOI: 10.1016/j.steroids.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023]
Abstract
Anabolic Androgenic Steroids (AASs) misuse has increased among adolescents and recreational athletes due to their potential effects on muscle hypertrophy. On the other hand, AAS might induce alterations on cardiovascular system, although some controversies regarding AAS on vascular properties remain unknown. To address this question, we aimed to investigate the effects of high doses of nandrolone combined with strenuous resistance training (RT) on function and structure of thoracic aorta. Rats were randomized into four groups: non-trained vehicle (NTV), trained vehicle (TV), non-trained nandrolone (NTN), and trained nandrolone (TN), and submitted to 6 weeks of treatment with nandrolone (5 mg/kg, twice a week) and/or resistance training. In vitro response of thoracic aorta to acetylcholine (ACh) was analyzed. Vascular nitric oxide (NO) and reactive oxygen species (ROS) synthesis were evaluated using 4,5-diaminofluorescein diacetate (DAF-2) and hydroethidine fluorescent techniques, respectively. Thoracic aorta was processed for microscopy analyses and tunica media thickness was measured. ACh-mediated relaxation response was impaired in endothelium intact aortic rings isolated from trained rats (TV and TN) as compared with their matched non-trained groups. TN rats showed reduced ACh-mediated vasodilatation than NTN rats. NO production and bioavailability decreased in thoracic aorta of nandrolone-treated rats in relation to their matched non-trained group (NTN vs. NTV; TN vs. TV). ROS production and tunica media thickness were increased in TN rats when compared with TV rats. These findings indicate that high doses of nandrolone combined with strenuous RT affect NO bioavailability and might induce endothelial dysfunction and arterial morphological alterations.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José dos Campos, Brazil
| | - Vander José das Neves
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Larissa Briet
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Rafaela Costa
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | | | - Vanessa Oliveira
- Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Pedro Duarte Novaes
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil.
| |
Collapse
|
11
|
Stacy MR, Caracciolo CM, Qiu M, Pal P, Varga T, Constable RT, Sinusas AJ. Comparison of regional skeletal muscle tissue oxygenation in college athletes and sedentary control subjects using quantitative BOLD MR imaging. Physiol Rep 2017; 4:4/16/e12903. [PMID: 27535483 PMCID: PMC5002911 DOI: 10.14814/phy2.12903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Blood oxygen level‐dependent (BOLD) magnetic resonance (MR) imaging permits noninvasive assessment of tissue oxygenation. We hypothesized that BOLD imaging would allow for regional evaluation of differences in skeletal muscle oxygenation between athletes and sedentary control subjects, and dynamic BOLD responses to ischemia (i.e., proximal cuff occlusion) and reactive hyperemia (i.e., rapid cuff deflation) would relate to lower extremity function, as assessed by jumping ability. College football athletes (linemen, defensive backs/wide receivers) were compared to sedentary healthy controls. BOLD signal of the gastrocnemius, soleus, anterior tibialis, and peroneus longus was assessed for peak hyperemic value (PHV), time to peak (TTP), minimum ischemic value (MIV), and time to recovery (TTR). Significantly higher PHVs were identified in athletes versus controls for the gastrocnemius (linemen, 15.8 ± 9.1%; defensive backs/wide receivers, 17.9 ± 5.1%; controls, 7.4 ± 3.5%), soleus (linemen, 25.9 ± 11.5%; backs/receivers, 22.0 ± 9.4%; controls, 12.9 ± 5.8%), and anterior tibialis (linemen, 12.8 ± 5.3%; backs/receivers, 12.6 ± 3.9%; controls, 7.7 ± 4.0%), whereas no differences in PHV were found for the peroneus longus (linemen, 14.1 ± 6.9%; backs/receivers, 11.7 ± 4.6%; controls, 9.0 ± 4.9%). In all subject groups, the gastrocnemius and soleus muscles exhibited the lowest MIVs during cuff occlusion. No differences in TTR were found between muscles for any subject group. PHV of the gastrocnemius muscle was significantly and positively related to maximal vertical (r = 0.56, P = 0.002) and broad jump (r = 0.47, P = 0.01). These results suggest that BOLD MR imaging is a useful noninvasive tool for evaluating differences in tissue oxygenation of specific muscles between active and sedentary individuals, and peak BOLD responses may relate to functional capacity.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Prasanta Pal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Tyler Varga
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
D'Ascenzi F, Zorzi A, Alvino F, Bonifazi M, Corrado D, Mondillo S. The prevalence and clinical significance of premature ventricular beats in the athlete. Scand J Med Sci Sports 2016; 27:140-151. [DOI: 10.1111/sms.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- F. D'Ascenzi
- Department of Medical Biotechnologies; Division of Cardiology; University of Siena; Siena Italy
| | - A. Zorzi
- Department of Cardiac, Thoracic, and Vascular Sciences; University of Padova; Padova Italy
| | - F. Alvino
- Department of Medical Biotechnologies; Division of Cardiology; University of Siena; Siena Italy
| | - M. Bonifazi
- Department of Medicine, Surgery, and NeuroScience; University of Siena; Siena Italy
| | - D. Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences; University of Padova; Padova Italy
| | - S. Mondillo
- Department of Medical Biotechnologies; Division of Cardiology; University of Siena; Siena Italy
| |
Collapse
|
13
|
Lux M, Andrée B, Horvath T, Nosko A, Manikowski D, Hilfiker-Kleiner D, Haverich A, Hilfiker A. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater 2016; 30:177-187. [PMID: 26546973 DOI: 10.1016/j.actbio.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022]
Abstract
The ultimate goal of tissue engineering is the generation of implants similar to native tissue. Thus, it is essential to utilize physiological stimuli to improve the quality of engineered constructs. Numerous publications reported that mechanical stimulation of small-sized, non-perfusable, tissue engineered cardiac constructs leads to a maturation of immature cardiomyocytes like neonatal rat cardiomyocytes or induced pluripotent stem cells/embryonic stem cells derived self-contracting cells. The aim of this study was to investigate the impact of mechanical stimulation and perfusion on the maturation process of large-scale (2.5×4.5cm), implantable cardiac patches based on decellularized porcine small intestinal submucosa (SIS) or Biological Vascularized Matrix (BioVaM) and a 3-dimensional construct containing neonatal rat heart cells. Application of cyclic mechanical stretch improved contractile function, cardiomyocyte alignment along the stretch axis and gene expression of cardiomyocyte markers. The development of a complex network formed by endothelial cells within the cardiac construct was enhanced by cyclic stretch. Finally, the utilization of BioVaM enabled the perfusion of the matrix during stimulation, augmenting the beneficial influence of cyclic stretch. Thus, this study demonstrates the maturation of cardiac constructs with clinically relevant dimensions by the application of cyclic mechanical stretch and perfusion of the starter matrix. STATEMENT OF SIGNIFICANCE Considering the poor endogenous regeneration of the heart, engineering of bioartificial cardiac tissue for the replacement of infarcted myocardium is an exciting strategy. Most techniques for the generation of cardiac tissue result in relative small-sized constructs insufficient for clinical applications. Another issue is to achieve cardiomyocytes and tissue maturation in culture. Here we report, for the first time, the effect of mechanical stimulation and simultaneous perfusion on the maturation of cardiac constructs of clinical relevant dimensions, which are based on a perfusable starter matrix derived from porcine small intestine. In response to these stimuli superior organization of cardiomyocytes and vascular networks was observed in contrast to untreated controls. The study provides substantial progress towards the generation of implantable cardiac patches.
Collapse
|
14
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Johnson MC, Johnikin MJ, Euteneuer JC, DeBaun MR, Hildebolt C. Coronary artery dilation and left ventricular hypertrophy do not predict morbidity in children with sickle cell disease. Pediatr Blood Cancer 2015; 62:115-9. [PMID: 25264310 DOI: 10.1002/pbc.25239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/06/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Little is known about the clinical significance of coronary artery dilation (CAD) and left ventricular hypertrophy (LVH) in patients with sickle cell disease (SCD). PROCEDURE In a retrospective cohort, we studied the prevalence of CAD and LVH in 101 children with SCD in comparison to 93 healthy African-American patients without SCD. Hospital days, number of admissions, and intensive care unit admission after the echocardiogram were assessed as measures of morbidity. RESULTS Multivariable analysis of echocardiographic measures of LVH and CAD did not predict subsequent intensive care unit admission, hospital days/year or number of hospital admissions/year during a median follow-up time of 6.1 years. LVH as measured by left ventricular mass index was present in 46% of children with SCD and was inversely related to age (P = 0.0004). Height-indexed dimensions in children with SCD demonstrated that the prevalence of dilation was 49% for the left main coronary artery (LMCA), 29% for the left anterior descending (LAD), and 6% for the right coronary artery (RCA). LMCA dilation was related to relative wall thickness (P = 0.006), inversely to age (P < 0.0006) and weakly to disease severity as determined by hemoglobin (P = 0.03). CAD and LVH were not related to a clinical history of vaso-occlusive pain episode, acute chest syndrome, or cerebrovascular accident. CONCLUSION LVH and CAD are common findings in children with SCD; however, they are not associated with need for subsequent hospital or intensive care unit admission.
Collapse
Affiliation(s)
- Mark C Johnson
- Division of Pediatric Cardiology, Department of Pediatrics, Washington University School of Medicine/St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
16
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pavlik G, Major Z, Csajági E, Jeserich M, Kneffel Z. The athlete’s heart Part II Influencing factors on the athlete’s heart: Types of sports and age (Review). ACTA ACUST UNITED AC 2013; 100:1-27. [DOI: 10.1556/aphysiol.100.2013.1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
19
|
Green DJ, Spence A, Rowley N, Thijssen DHJ, Naylor LH. Vascular adaptation in athletes: is there an ‘athlete's artery’? Exp Physiol 2012; 97:295-304. [DOI: 10.1113/expphysiol.2011.058826] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 2012; 302:H10-23. [PMID: 21984538 PMCID: PMC3334245 DOI: 10.1152/ajpheart.00574.2011] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/29/2011] [Indexed: 12/26/2022]
Abstract
Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | |
Collapse
|
21
|
Nicholson GT, Hsu DT, Colan SD, Manwani D, Burton WB, Fountain D, Lopez L. Coronary artery dilation in sickle cell disease. J Pediatr 2011; 159:789-794.e1-2. [PMID: 21722914 DOI: 10.1016/j.jpeds.2011.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/24/2011] [Accepted: 05/12/2011] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate the prevalence of coronary artery dilation in children with sickle cell disease (SCD). STUDY DESIGN This is a retrospective analysis performed in patients, between 10 and 19 years old, with SCD who underwent a routine transthoracic echocardiographic evaluation over a 20-month period. The left main, left anterior descending, and proximal right coronary artery diameters, as well as clinical and laboratory variables and other echocardiographic results were collected. Echocardiographic measurements were converted to z scores by using information from a large control population of normal children. Coronary artery ectasia (CAE) was defined as a coronary artery diameter z score ≥ 2. The patients with CAE were compared with those without CAE by using univariate and multivariate analyses. RESULTS Seventeen of 96 patients with SCD (17.7%) had CAE. There were no differences in sex, age, height, weight, body surface area, or genotype between those with and those without CAE. Patients with CAE had larger left ventricular end-diastolic dimension, shortening fraction, septal thickness, posterior wall thickness, mass, mass-to-volume ratio, and white blood cell count. Multivariate analysis revealed that the mass-to-volume ratio and elevated white blood cell count were associated with CAE. CONCLUSION CAE is common in SCD and is associated with left ventricular hypertrophy and inflammation.
Collapse
Affiliation(s)
- George T Nicholson
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Laughlin MH, Korthuis RJ, Duncker DJ, Bache RJ. Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Thijssen DHJ, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MTE, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 2010; 108:845-75. [PMID: 19943061 PMCID: PMC2829129 DOI: 10.1007/s00421-009-1260-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2009] [Indexed: 12/12/2022]
Abstract
The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct "vascular deconditioning and conditioning" effects which likely modify cardiovascular risk.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andrew J. Maiorana
- Advanced Heart Failure and Cardiac Transplant Service, Royal Perth Hospital, Perth, Australia
- School of Physiotherapy, Curtin University of Technology, Perth, Australia
| | - Gerry O’Driscoll
- Advanced Heart Failure and Cardiac Transplant Service, Royal Perth Hospital, Perth, Australia
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Nigel T. Cable
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
| | - Maria T. E. Hopman
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Daniel J. Green
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Australia
| |
Collapse
|
24
|
Endothelial function and endothelial progenitors: possible mediators of the benefits from physical exercise? ACTA ACUST UNITED AC 2009; 16:401-3. [PMID: 19491685 DOI: 10.1097/hjr.0b013e32832d3c76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
|
27
|
Naylor LH, O'Driscoll G, Fitzsimons M, Arnolda LF, Green DJ. Effects of training resumption on conduit arterial diameter in elite rowers. Med Sci Sports Exerc 2006; 38:86-92. [PMID: 16394958 DOI: 10.1249/01.mss.0000181220.03855.1c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Exercise training is a known stimulus for arteriogenesis, but it is unclear whether elite athletes, who exhibit increased conduit vessel diameter at rest, experience further structural vascular adaptations as a result of intense exercise training. METHODS Cross-sectional comparisons were performed between elite rowers (N = 17), following a respite from training, and eight untrained age- and gender-matched controls to assess the effects of long-term exercise on vessel structure. To determine the impact of the resumption of intensive exercise training on conduit artery structure, measures were repeated following 3 and 6 months of training in the athletes; the controls remained inactive. Conduit vessel structure was assessed, using high-resolution B-mode ultrasound, as brachial artery diameter at rest (BADr) and in response to 5-min (BAD5) and 10-min (BAD10) periods of forearm cuff ischemia. Shear rate profiles were also analyzed following cuff deflation at all time points. RESULTS At entry, all measures of BAD were greater (all P < 0.05) in the athletes relative to controls (athletes vs controls; BADr 4.47 +/- 0.10 vs 3.84 +/- 0.22 mm; BAD5 4.70 +/- 0.10 vs 4.05 +/- 0.36 mm, and BAD10 4.93 +/- 0.10 vs 4.07 +/- 0.25 mm). Resumption of exercise training caused a further increase in brachial artery diameters in the athletes at 3 months (BADr, 4.71 +/- 0.10 mm, P < 0.01; BAD5 4.94 +/- 0.10 mm, P < 0.05; BAD10 5.12 +/- 0.10 mm, P < 0.001), which were maintained, but not further increased, after 6 months of training. CONCLUSIONS Athletes exhibit enhanced conduit artery diameters at rest and in response to vasodilator stimuli. Despite this long-term training effect on arterial structure, resumption of training further enhances diameter, an effect that occurs within 3 months.
Collapse
Affiliation(s)
- Louise H Naylor
- School of Human Movement and Exercise Science, University of Western Australia, Nedlands, Australia
| | | | | | | | | |
Collapse
|
28
|
Hägg U, Johansson ME, Grönros J, Naylor AS, Jonsdottir IH, Bergström G, Svensson PA, Gan LM. Gene expression profile and aortic vessel distensibility in voluntarily exercised spontaneously hypertensive rats: potential role of heat shock proteins. Physiol Genomics 2005; 22:319-26. [PMID: 15914578 DOI: 10.1152/physiolgenomics.00073.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical exercise is considered to be beneficial for cardiovascular health. Nevertheless, the underlying specific molecular mechanisms still remain unexplored. In this study, we aimed to investigate the effects of voluntary exercise on vascular mechanical properties and gene regulation patterns in spontaneously hypertensive rats. By using ultrasound biomicroscopy in an ex vivo perfusion chamber, we studied the distensibility of the thoracic aorta. Furthermore, exercise-induced gene regulation was studied in aortae, using microarray analysis and validated with real-time PCR. We found that distensibility was significantly improved in aortas from exercising compared with control rats (P < 0.0001). Exercising rats demonstrated a striking pattern of coordinated downregulation of genes belonging to the heat shock protein family. In conclusion, voluntary exercise leads to improved vessel wall distensibility and reduced gene expression of heat shock protein 60 and 70, which may indicate decreased oxidative stress in the aortic vascular wall.
Collapse
Affiliation(s)
- Ulrika Hägg
- Department of Physiology, Institute of Physiology and Pharmacology, Göteborg University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 2004; 561:1-25. [PMID: 15375191 PMCID: PMC1665322 DOI: 10.1113/jphysiol.2004.068197] [Citation(s) in RCA: 670] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial function is essential for maintenance of health of the vessel wall and for vasomotor control in both conduit and resistance vessels. These functions are due to the production of numerous autacoids, of which nitric oxide (NO) has been the most widely studied. Exercise training has been shown, in many animal and human studies, to augment endothelial, NO-dependent vasodilatation in both large and small vessels. The extent of the improvement in humans depends upon the muscle mass subjected to training; with forearm exercise, changes are restricted to the forearm vessels while lower body training can induce generalized benefit. Increased NO bioactivity with exercise training has been readily and consistently demonstrated in subjects with cardiovascular disease and risk factors, in whom antecedent endothelial dysfunction exists. These conditions may all be associated with increased oxygen free radicals which impact on NO synthase activity and with which NO reacts; repeated exercise and shear stress stimulation of NO bioactivity redresses this radical imbalance, hence leading to greater potential for autacoid bioavailability. Recent human studies also indicate that exercise training may improve endothelial function by up-regulating eNOS protein expression and phosphorylation. While improvement in NO vasodilator function has been less frequently found in healthy subjects, a higher level of training may lead to improvement. Regarding time course, studies indicate that short-term training increases NO bioactivity, which acts to homeostatically regulate the shear stress associated with exercise. Whilst the increase in NO bioactivity dissipates within weeks of training cessation, studies also indicate that if exercise is maintained, the short-term functional adaptation is succeeded by NO-dependent structural changes, leading to arterial remodelling and structural normalization of shear. Given the strong prognostic links between vascular structure, function and cardiovascular events, the implications of these findings are obvious, yet many unanswered questions remain, not only concerning the mechanisms responsible for NO bioactivity, the nature of the cellular effect and relevance of other autacoids, but also such practical questions as the optimal intensity, modality and volume of exercise training required in different populations.
Collapse
Affiliation(s)
- Daniel J Green
- School of Human Movement and Exercise Science, University of Western Australia, Mailbag Delivery M408, 35 Stirling Highway, Crawley WA 6009, Australia.
| | | | | | | |
Collapse
|
30
|
Huonker M, Schmid A, Schmidt-Trucksass A, Grathwohl D, Keul J. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol (1985) 2003; 95:685-91. [PMID: 12433857 DOI: 10.1152/japplphysiol.00710.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a cross-sectional study, central and peripheral arteries were investigated noninvasively in high-performance athletes and in untrained subjects. The diastolic inner vessel diameter (D) of the thoracic and abdominal aorta, the subclavian artery (Sub), and common femoral artery (Fem) were determined by duplex sonography in 18 able-bodied professional tennis players, 34 able-bodied elite road cyclist athletes, 26 athletes with paraplegia, 17 below-knee amputated athletes, and 30 able-bodied, untrained subjects. The vessel cross-sectional areas (CSA) were set in relation to body surface area (BSA), and the cross-section index (CS-index = CSA/BSA) was calculated. Volumetric blood flow was determined in Sub and Fem via a pulsed-wave Doppler system and was set in relation to heart rate to calculate the stroke flow. A significantly increased D of Sub was found in the racket arm of able-bodied tennis players compared with the opposite arm (19%). Fem of able-bodied road cyclist athletes and of the intact limb in below-knee amputated athletes showed similar increases. D of Fem was lower in athletes with paraplegia (37%) and in below-knee amputated athletes proximal to the lesion (21%) compared with able-bodied, untrained subjects; CS-indexes were reduced 57 and 31%, respectively. Athletes with paraplegia demonstrated a larger D (19%) and a larger CS-index in Sub (54%) than able-bodied, untrained subjects. No significant differences in D and CS-indexes of the thoracic and abdominal aorta were found between any of the groups. The changes measured in Sub and Fem were associated with corresponding alterations in blood flow and stroke flow in all groups. The study suggests that the size and blood flow volume of the proximal limb arteries are adjusted to the metabolic needs of the corresponding extremity musculature and underscore the impact of exercise training or disuse on the structure and the function of the arterial system.
Collapse
Affiliation(s)
- M Huonker
- Medical University Hospital, Freiburg, Department of Prevention, Rehabilitation and Sportsmedicine, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Hildick-Smith DJ, Shapiro LM. Echocardiographic differentiation of pathological and physiological left ventricular hypertrophy. BRITISH HEART JOURNAL 2001; 85:615-9. [PMID: 11359735 PMCID: PMC1729776 DOI: 10.1136/heart.85.6.615] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Hildick-Smith DJ, Johnson PJ, Wisbey CR, Winter EM, Shapiro LM. Coronary flow reserve is supranormal in endurance athletes: an adenosine transthoracic echocardiographic study. Heart 2000; 84:383-9. [PMID: 10995406 PMCID: PMC1729440 DOI: 10.1136/heart.84.4.383] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To compare coronary flow reserve in endurance athletes and healthy sedentary controls, using adenosine transthoracic echocardiography. METHODS 29 male endurance athletes (mean (SD) age 27.3 (6.6) years, body mass index (BMI) 22.1 (1.9) kg/m(2)) and 23 male controls (age 27.2 (6.1) years, BMI 23.9 (2.6) kg/m(2)) with no coronary risk factors underwent transthoracic echocardiographic assessment of distal left anterior descending coronary artery (LAD) diameter and flow, both at rest and during intravenous adenosine infusion (140 microg/kg/min). RESULTS Distal LAD diameter and flow were adequately assessed in 19 controls (83%) and 26 athletes (90%). Distal LAD diameter in athletes (2.04 (0.25) mm) was not significantly greater than in sedentary controls (1.97 (0.27) mm). Per cent increase in LAD diameter following 400 microg sublingual nitrate was greater in the athletes than in the controls, at 14.1 (7. 2)% v 8.8 (5.7)% (p < 0.01). Left ventricular mass index in athletes exceeded that of controls, at 130 (19) v 98 (14) g/m(2) (p < 0.01). Resting flow among the athletes (10.6 (3.1) ml/min; 4.4 (1.2) ml/min/100 g left ventricular mass) was less than in the controls (14.3 (3.6) ml/min; 8.2 (2.2) ml/min/100 g left ventricular mass) (both p < 0.01). Hyperaemic flow among the athletes (61.9 (17.8) ml/min) exceeded that of the controls (51.1 (14.6) ml/min; p = 0.02), but not when corrected for left ventricular mass (25.9 (5.6) v 28.5 (7.4) ml/min/100 g left ventricular mass; NS). Coronary flow reserve was therefore substantially greater in the athletes than in the controls, at 5.9 (1.0) v 3.7 (0.7) (p < 0.01). CONCLUSIONS Coronary flow reserve in endurance athletes is supranormal and endothelium independent vasodilatation is enhanced. Myocardial hypertrophy per se does not necessarily impair coronary flow reserve. Adenosine transthoracic echocardiography is a promising technique for the investigation of coronary flow reserve.
Collapse
|
33
|
Kozàkovà M, Galetta F, Gregorini L, Bigalli G, Franzoni F, Giusti C, Palombo C. Coronary vasodilator capacity and epicardial vessel remodeling in physiological and hypertensive hypertrophy. Hypertension 2000; 36:343-9. [PMID: 10988262 DOI: 10.1161/01.hyp.36.3.343] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to compare resting coronary flow velocity, determinants of myocardial oxygen demand, and coronary vasodilator capacity in subjects with physiological, exercise-induced, and hypertensive left ventricular hypertrophy. Sixteen healthy sedentary men, 16 endurance athletes, and 16 hypertensive subjects (mean+/-SEM for left ventricular mass index: 94.9+/-5.5, 184.6+/-8.4, 154.4+/-9.5 g/m(2), respectively) were studied by transesophageal and transthoracic Doppler echocardiography. Coronary flow velocity in left anterior descending artery and cross-sectional area of left main artery were assessed at rest and during dipyridamole-induced vasodilation. Myocardial oxygen demand was estimated through rate-pressure product, left ventricular wall stress, and inotropic function. Coronary flow reserve and minimum coronary resistance were comparable to those of sedentary men in athletes (mean+/-SEM: 3. 23+/-0.16 versus 3.60+/-0.18 and 0.96+/-0.06 versus 1.04+/-0.04 mm Hg. s. cm(-1)), while in hypertensive subjects they were decreased and increased, respectively (mean+/-SEM: 2.31+/-0.08 and 1.21+/-0.10 mm Hg. s. cm(-1); P:<0.05 for both). Resting flow velocity was directly related to rate-pressure product in sedentary men and athletes and also to wall stress in athletes, while these correlations were absent in hypertensives. Dilation of left main artery after dipyridamole was significantly higher in athletes than in sedentary men and hypertensive subjects (mean+/-SEM for area change: 32.9+/-3.7% versus 12.8+/-2.5% and 6.4+/-3.3%; P:<0.05 and 0.01). These data indicate that vasodilator capacity of coronary microcirculation is not impaired in athletes with physiological hypertrophy, in contrast to hypertensive patients. The relationship between resting flow velocity and determinants of oxygen demand is preserved in physiological hypertrophy but missing in hypertensive hypertrophy. Furthermore, the vasodilator capacity of coronary macrocirculation is also enhanced in exercise-trained subjects.
Collapse
Affiliation(s)
- M Kozàkovà
- Institute of Clinical Physiology, CNR, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
de Zorzi A, Colan SD, Gauvreau K, Baker AL, Sundel RP, Newburger JW. Coronary artery dimensions may be misclassified as normal in Kawasaki disease. J Pediatr 1998; 133:254-8. [PMID: 9709715 DOI: 10.1016/s0022-3476(98)70229-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Current American Heart Association guidelines indicate that patients with Kawasaki disease and no coronary artery abnormalities on echocardiography at any stage of illness may be discharged from cardiologic follow-up 1 year after onset of illness. METHODS AND RESULTS To determine whether coronary artery dimensions in patients with Kawasaki disease whose vessels are classified as "normal" by Japanese Ministry of Health criteria have a distribution similar to expected population norms when adjusting for body surface area, we studied 125 patients during 4 intervals from onset of illness: (1) 10 days or less, (2) 2 weeks (11 to 21 days), (3) 6 weeks (22 days to 3 months), and (4) 1 year (4 months to 1.5 years). Using two-dimensional echocardiography, we measured the internal lumen diameter of the left main, proximal left anterior descending, and proximal right coronary arteries. Mean body surface area-adjusted dimensions of the proximal left anterior descending and right coronary arteries were significantly larger (P < .01) in patients with Kawasaki disease than those in subjects in all periods, except for a marginal difference at 6 weeks for the proximal right coronary artery (P = .02); for the left main coronary artery, this difference achieved statistical significance in the period of 10 days or less, with a trend at 2 weeks (P = .02). Among patients classified as having normal coronary arteries on all echocardiograms by the Japanese Ministry of Health criteria, 27% had at least 1 body surface area-adjusted coronary dimension more than 2 standard deviations above the expected mean. CONCLUSIONS Coronary artery dilation in Kawasaki disease is thus more prevalent than previously reported, highlighting the need for systematic long-term surveillance of this population.
Collapse
Affiliation(s)
- A de Zorzi
- Department of Cardiology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Palombo C, Kozàkovà M, Bigalli G, Neglia D, Distante A, Parodi O, L'Abbate A. Myocardial perfusion in hypertensive patients with normal coronary arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 432:215-33. [PMID: 9433529 DOI: 10.1007/978-1-4615-5385-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Palombo
- CNR Institute of Clinical Physiology, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Hardman AE. Exercise in the prevention of atherosclerotic, metabolic and hypertensive diseases: a review. J Sports Sci 1996; 14:201-18. [PMID: 8809713 DOI: 10.1080/02640419608727705] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence that physical inactivity and low fitness confer an increased risk of coronary heart disease (CHD) is convincing. There is a graded relationship with the amount of physical activity (or physical fitness), with some evidence that an asymptote is reached in the mid-range. Epidemiological studies have also shown that physically inactive individuals are at greater risk of developing hypertension or non-insulin-dependent diabetes or of experiencing a stroke, but less is known about the nature of these relationships. The effects of exercise on blood pressure, glucose/insulin dynamics and lipoprotein metabolism may contribute to the lower risk of these diseases in people who exercise regularly. Long-term adaptations to regular exercise may result in improved insulin sensitivity and in higher serum concentrations of high-density lipoprotein cholesterol-mediated in part by improved weight regulation. However, the residual effects of individual exercise bouts may, cumulatively, also be important; these "acute' effects may be enhanced when functional capacity is increased through training. More intensive exercise may carry greater benefits in some respects, but it also carries higher risks, for example of orthopaedic injury or triggering of heart attack. Consequently, public health policies should aim to foster a long-lasting commitment to increased levels of frequent, moderate-intensity activity in as many people as possible.
Collapse
Affiliation(s)
- A E Hardman
- Department of Physical Education, Sports Science and Recreation Management, Loughborough University, UK
| |
Collapse
|
37
|
Green DJ, O'Driscoll G, Blanksby BA, Taylor RR. Control of skeletal muscle blood flow during dynamic exercise: contribution of endothelium-derived nitric oxide. Sports Med 1996; 21:119-46. [PMID: 8775517 DOI: 10.2165/00007256-199621020-00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Traditional explanations for the hyperaemia which accompanies exercise have invoked the 'metabolic theory' of vasodilation, whereby contractile activity in the active muscle gives rise to metabolic by-products which dilate vessels bathed in interstitial fluid. Whilst metabolites with vasodilator properties have been identified, this theory does not adequately explain the magnitude of hyperaemia observed in active skeletal muscle, principally because large increases in flow are dependent on dilation of 'feed' arteries which lie outside the tissue parenchyma and are not subjected to changes in the interstitial milieu. Coordinated resistance vessel dilation during exercise is therefore dependent on a signal which 'ascends' from the microvessels to the feed arteries located upstream. Recent studies of ascending vasodilation have concentrated on the possible contribution of the endothelium, a monolayer of flattened squamous cells which lie at the interface between the circulating blood and vascular wall. These cells are uniquely positioned to respond to changes in rheological and humoral conditions within the cardiovascular system, and to transduce these changes into vasoactive signals which regulate blood flow, vascular tone and arterial pressure. Endothelial cells produce nitric oxide (NO), a rapidly diffusing labile substance which relaxes adjacent vascular smooth muscle. NO is released basally and contributes to the regulation of vascular tone by acting as a functional antagonist to sympathetic neural constriction. In addition, NO is spontaneously released in response to deformation of the endothelial cell membrane, indicating that changes in pulsatile flow and wall shear stress are likely physiological stimuli. Since the dilation of microvessels in response to exercise increases blood flow through the upstream feed arteries, which subsequently dilate, one explanation for ascending vasodilation is that NO release is stimulated by flow-induced shear stress. Evidence that NO contributes to ascending vasodilation is reviewed, along with studies which indicate that NO mediates exercise hyperaemia, that physical conditioning upregulates NO production and that NO controls blood flow by modifying other physiological mechanisms.
Collapse
Affiliation(s)
- D J Green
- Department of Human Movement Studies, University of Western Australia, Nedlands
| | | | | | | |
Collapse
|
38
|
Abstract
The heart responds positively to programs of chronic dynamic exercise. Hallmark adaptations of the heart include a training bradycardia, increases in end-diastolic dimension and maximal stroke volume, and a general improvement in ventricular performance and contractile function. Of considerable clinical significance are the general observations that chronic exercise renders the myocardium less susceptible to the deleterious effects of acute ischemic episodes and can effectively prevent and/or reverse many of the cardiac functional deficits that are known to occur in settings of chronic hypertension, advanced age, and myocardial infarction. In the text that follows, information gathered over the last 25 to 30 years has been reviewed in an attempt to identify cellular myocardial adaptations, both known and hypothetical, that are responsible for the observed effects of chronic dynamic exercise on the function and morphology of the heart in both normal and selected pathophysiologic settings. Finally, a variety of unresolved issues regarding the ability of chronic exercise to elicit adaptive cardiocyte responses has been identified. In so doing, it is hoped that creative thought and future work in the area will be stimulated.
Collapse
Affiliation(s)
- R L Moore
- Department of Kinesiology, University of Colorado, Boulder 80309-0354, USA
| | | |
Collapse
|
39
|
Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation 1993; 87:1076-82. [PMID: 8462135 DOI: 10.1161/01.cir.87.4.1076] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Increases in coronary artery size and dilating capacity have been observed in some animals after endurance training, and at autopsy, active men appear to have enlarged epicardial coronary arteries. This cross-sectional study was designed to test the hypothesis that highly trained endurance runners have larger epicardial coronary arteries and greater dilating capacity than inactive men. METHODS AND RESULTS The subjects, ages 39-66 years, included 11 male volunteers who had participated in ultradistance running during the past 2 years and 11 physically inactive men who had been referred for arteriography but had no visible coronary artery disease. The internal diameter of the proximal segments of each major epicardial coronary artery was measured before and after nitroglycerin administration using a computer-based quantitative arteriographic analysis system. Measurements also included maximal oxygen uptake, plasma lipoprotein concentrations, body composition, and cardiac mass by echocardiography. Before nitroglycerin, the sum of the cross-sectional areas for the proximal right, left anterior descending, and circumflex arteries was not different for the runners and the inactive men: 22.7 +/- 4.79 versus 21.0 +/- 7.97 mm2 (p = 0.57), respectively. However, the increase in the sum of the cross-sectional area for the proximal right, left anterior descending, and circumflex arteries in response to nitroglycerin was greater for the runners (13.20 +/- 4.76 versus 6.00 +/- 3.02 mm2; p = 0.002). Left ventricular mass index (152 +/- 21 versus 116 +/- 41 g/m2; p < 0.05) but not left ventricular mass (284 +/- 40 versus 246 +/- 91 g; p = 0.22) was significantly greater for the runners. Among the runners, dilating capacity was positively correlated with aerobic capacity and negatively related to adiposity, resting heart rate, and plasma lipoprotein concentrations. CONCLUSIONS Highly trained, middle-aged endurance runners demonstrated a significantly greater dilating capacity of their epicardial coronary arteries in response to nitroglycerin compared with inactive men. The causes of this greater dilating capacity and its clinical significance need to be determined.
Collapse
Affiliation(s)
- W L Haskell
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA 94304-1583
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Ketelhut R, Messerli FH. Hypertension: Left Ventricular Hypertrophy, Ventricular Ectopy, and Sudden Death. Prim Care 1991. [DOI: 10.1016/s0095-4543(21)00347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|