1
|
Płoński A, Krupa A, Pawlak D, Sokołowska K, Sieklucka B, Gabriel M, Płoński AF, Głowiński J, Pawlak K. The metabolism of big endothelin-1 axis and lipids affects carotid atherosclerotic plaque stability - the possible opposite effects of treatment with statins and aspirin. Pharmacol Rep 2025; 77:739-750. [PMID: 40063220 PMCID: PMC12066377 DOI: 10.1007/s43440-025-00714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND The understanding of endothelin's role in carotid plaque instability is limited. We have studied the big endothelin-1 (ET-1) axis and its role in carotid plaque stability in patients undergoing carotid endarterectomy (CEA). The interactions of endothelins with known CVD risk factors were also evaluated. METHODS We studied 77 patients, who were divided into subgroups based on the optimal cut-off for grey-scale median (GSM), a marker of plaque instability. GSM values < 46.87 were designated as unstable carotid plaque, while GSM ≥ 46.87 were assigned to stable plaque. Twelve people without carotid atherosclerosis served as controls. Big ET-1, ET-1 and ET-1 (1-31) were measured and the endothelin-converting enzyme-1 (ECE-1) and chymase activity were calculated. Clinical and laboratory parameters were also evaluated. RESULTS ET-1 levels and ECE-1 activity were increased in all patient groups compared to controls (all P < 0.001) - and were higher in patients with unstable plaque than in those with stable plaque (P < 0.01). ET-1 (1-31) did not differ between the groups. ET-1 levels and ECE-1 activity inversely correlated with total cholesterol, LDL-cholesterol, and GSM values, whereas GSM was positively associated with total cholesterol and LDL fractions. Detailed analysis of patients according to the pharmacotherapy used revealed that statins favored ET-1 formation independently of cholesterol-lowering properties, whereas aspirin reduced this effect. CONCLUSIONS ET-1 formation is the main pathway of big ET-1 metabolism in patients with carotid atherosclerosis, especially in those with plaque instability. Statins and aspirin appear to have opposing effects on ET-1 formation, suggesting the greater benefit related to plaque stability in patients taking both drugs concomitantly.
Collapse
Affiliation(s)
- Adam Płoński
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Białystok, Poland
| | - Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Katarzyna Sokołowska
- Department of Monitored Pharmacotherapy, Medical University of Białystok, Mickiewicza 2C, Bialystok, 15-222, Poland
| | - Beata Sieklucka
- Department of Monitored Pharmacotherapy, Medical University of Białystok, Mickiewicza 2C, Bialystok, 15-222, Poland
| | - Marcin Gabriel
- Department of Vascular and Intravascular Surgery, Angiology and Phlebology, University of Medical Science Poznań, Poznań, Poland
| | - Adam Filip Płoński
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Białystok, Poland
| | - Jerzy Głowiński
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Białystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Białystok, Mickiewicza 2C, Bialystok, 15-222, Poland.
| |
Collapse
|
2
|
Dubey N, Verma A, Goyal A, Vishwakarma V, Bhatiya J, Arya DS, Yadav HN. The role of endothelin and its receptors in cardiomyopathy: From molecular mechanisms to therapeutic insights. Pathol Res Pract 2025; 269:155932. [PMID: 40174273 DOI: 10.1016/j.prp.2025.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Cardiomyopathy is an anatomical and pathologic condition that is related to the cardiac muscle or left ventricular failure. A diverse range of illnesses known as cardiomyopathies often result in progressive heart failure with high morbidity and death rates. Primary cardiomyopathies are hereditary, mixed, or adopted. Secondary cardiomyopathies are infiltrative, harmful, or pathogenic. The activation of many paracrine, autocrine, and neuroendocrine factors is closely linked to pathological left ventricular (LV) deformation. After the myocardial injury, in the context of higher LV wall pressure and haemodynamic disturbance, these variables are raised. New therapy techniques have been focused on these novel targets after recent studies revealed that endothelin, nitric oxide or cytokines may be implicated in the remodelling process. Vasoconstrictive peptide endothelin-1 (ET-1) is mostly generated in the endothelium and works by binding to the ETA- and ETB-endothelin receptors (ET-Rs). The expression of both ET-Rs is widespread in cardiac tissues. Heart failure, pulmonary arterial hypertension, hypertension, cardiomyopathy, and coronary artery disease are just a few of the cardiovascular disorders for which the endothelin system has been shown to play a crucial role over the years. The occurrence, pathogenesis, and natural history of endothelin antagonists in cardiomyopathies are currently not well understood, and specific aspects of their treatment responses have not received comprehensive attention. Therefore, in this study, we address the variable degrees of success that have been achieved in treating cardiomyopathy using endothelin-targeting treatments, such as endothelin receptor antagonists.
Collapse
Affiliation(s)
- Nandini Dubey
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vishal Vishwakarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Jagriti Bhatiya
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
3
|
Anyfanti P, Theodorakopoulou M, Iatridi F, Sarafidis P. Endothelin receptor antagonists for diabetic kidney disease: back to the future? Expert Opin Investig Drugs 2025; 34:317-327. [PMID: 40313198 DOI: 10.1080/13543784.2025.2500294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide. Endothelin-1 (ET-1) is a potent vasoconstrictor secreted by vascular endothelial cells, actively involved in the pathophysiology of numerous cardiovascular diseases. Based on the differential downstream effects of ET-1 binding to its two distinct types of receptors (ETA/ETB) within the kidney, selective ETA receptor blockade has been long proposed as a promising treatment modality for DKD. AREAS COVERED This review aims to examine the available evidence base for the use of ERAs in the treatment of DKD, by critically reappraising available landmark trials and discussing their possible position in the context of current treatment of this disease. EXPERT OPINION Despite early enthusiasm and widespread expectations, endothelin receptor antagonists (ERAs) faded into obscurity following the release of the first randomized controlled trials (RCTs). More recent RCTs using different compounds have re-introduced ERAs as a promising treatment in the growing pharmaceutical armamentarium of DKD. While the future of DKD management will be based on a more personalized approach, new, robust evidence from appropriately designed RCTs is eagerly anticipated to clearly define the role of ERAs in DKD.
Collapse
Affiliation(s)
- Panagiota Anyfanti
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Chapman GB, Dhaun N. Endothelin Antagonism: A New Era for Resistant Hypertension? Hypertension 2025; 82:611-614. [PMID: 40106534 DOI: 10.1161/hypertensionaha.125.24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Gavin B Chapman
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom and Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (G.B.C., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom and Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (G.B.C., N.D.)
| |
Collapse
|
5
|
Jia H, Wang C, Fu Y, Wang Y, Zhang X, Tang Y, Ding J, He K, Wang J, Shen Y. Visualization of mitochondrial molecular dynamics during mitophagy process by label-free surface-enhanced Raman scattering spectroscopy. Anal Chim Acta 2025; 1345:343748. [PMID: 40015786 DOI: 10.1016/j.aca.2025.343748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitophagy is a selective way to eliminate dysfunctional mitochondria and recycle their constituents, which plays an important role in regulating and maintaining intracellular homeostasis. Real-time monitoring mitophagy process is of great importance for cellular physiological and pathological processes related to mitochondria. Howbeit, most of the current methods only focus on single-parameter detection of mitochondrial microenvironmental changes such as pH, viscosity and polarity. The mitochondrial molecular responses under mitophagy are not clear. Therefore, developing a new and simple method for molecular profiling is of great importance for accurately and comprehensively visualizing mitophagy. RESULTS In this work, Au NPs-based mitochondria-targeting nanoprobe was developed and the nanoprobe-based label-free surface enhanced Raman spectroscopy (SERS) method was proposed to track starvation induced mitophagy process at molecular level. The nanoprobe displayed good SERS performance and low cytotoxicity. Based on the developed strategy, the molecular response within mitochondria under mitophagy was validated. Meanwhile, the protein denaturation, conformational change, lipid degradation and DNA fragmentation within mitochondria under mitophagy were revealed for the first time, which provides molecular evidence for mitophagy. The changes in reactive oxygen species level and mitochondrial membrane potential further confirmed the damage of mitochondria. Moreover, the developed label-free SERS strategy was used to detect mitophagy in drug (cisplatin)-induced liver injury (DILI) cell model, and obvious mitophagy in DILI cells was observed. SIGNIFICANCE The molecular biochemical signature dynamic changes within mitochondria during mitophagy process were revealed by SERS for the first time. Moreover, compared with the current research, our study can provide new insights into mitophagy and mitophagy-involved diseases at molecular level. This study will provide new insights into the molecular mechanism of mitophagy and offer a simple and effective method for mitochondrial molecular event monitoring in mitophagy-involved cellular processes.
Collapse
Affiliation(s)
- Hailan Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Chi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalin Wang
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoyu Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuezhou Tang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jiahao Ding
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun He
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
6
|
Netala VR, Hou T, Wang Y, Zhang Z, Teertam SK. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int J Mol Sci 2025; 26:3218. [PMID: 40244022 PMCID: PMC11989402 DOI: 10.3390/ijms26073218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The present study provides a detailed review of cardiovascular biomarkers critical for the diagnosis, prognosis, and pathophysiology of cardiovascular diseases, the leading cause of global morbidity and mortality. These biomarkers aid in detecting disease onset, progression, and therapeutic responses, providing insights into molecular mechanisms. Enzyme markers like AST, CK-MB, LDH, CA-III, and HBDH are pivotal for detecting myocardial injury during acute events. Protein markers such as CRP, H-FABP, and MPO shed light on inflammation and oxidative stress. Cardiac Troponins, the gold standard for myocardial infarction diagnosis, exhibit high specificity and sensitivity, while IMA and GPBB indicate ischemia and early myocardial damage. Peptide markers, including BNP and NT-proBNP, are crucial for heart failure diagnosis and management, reflecting ventricular stress and remodeling. Novel peptides like MR-proANP and MR-proADM aid in assessing disease severity. Lipid markers such as lipoprotein-associated phospholipase A2 and oxylipins provide insights into lipid metabolism and atherosclerosis. Inflammatory and stress-related biomarkers, including TNFα, IL-6, GDF-15, and Pentraxin 3, illuminate chronic inflammation in CVDs. Hormonal markers like copeptin and endothelin-1 highlight neurohormonal activation, while emerging markers such as ST2, galectin-3, PAPP-A, and TMAO elucidate fibrosis, remodeling, and metabolic dysregulation. The inclusion of microRNAs and long non-coding RNAs represents a breakthrough in biomarker research, offering sensitive tools for early detection, risk stratification, and therapeutic targeting. This review emphasizes the diagnostic and prognostic utility of these biomarkers, advancing cardiovascular care through personalized medicine.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Yanbo Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Herbers O, Höltke C, Usai MV, Hochhalter J, Mallik M, Wildgruber M, Helfen A, Stölting M. Influence of Atherosclerosis-Associated Risk Factors on Expression of Endothelin Receptors in Advanced Atherosclerosis. Int J Mol Sci 2025; 26:2310. [PMID: 40076930 PMCID: PMC11899768 DOI: 10.3390/ijms26052310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Endothelin-1 (ET-1) levels are altered in atherosclerosis, while the roles of the endothelin receptors ETAR and ETBR during the pathogenesis of atherosclerosis remain unclear. Therefore, the focus of this study was to clarify how endothelin receptors are expressed in advanced human atherosclerotic plaques and how this is related to atherosclerotic risk factors. Ex vivo expression analysis was performed by quantitative real-time PCR (qRT-PCR) of 98 atherosclerotic plaques and controls that were obtained from adult patients undergoing vascular surgery. Correlation analyses of atherosclerosis-promoting factors were accomplished using a linear regression model. We found an overall reduced expression of ET receptors and smooth muscle actin (SMA), a marker of healthy vascular smooth muscle cells, in atherosclerotic plaques, whereas the levels of ET-1 and matrix metalloproteinase 2 (MMP-2), a marker of atherosclerosis progression, remained unchanged. Reduced expression was predominantly correlated with hypertension, which affects both receptors as well as SMA. Age, body mass index (BMI) and gender also correlated with either ETAR, ETBR or SMA expression in advanced plaques. In contrast, no effect of diabetes mellitus or smoking was found, indicating an ancillary effect of those risk factors. The results of our study indicate that endothelin receptor expression during the pathogenesis of atherosclerosis is predominantly correlated with hypertension.
Collapse
Affiliation(s)
- Oliver Herbers
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| | - Carsten Höltke
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| | - Marco Virgilio Usai
- Department of Vascular Surgery, St. Franziskus Hospital, 48145 Münster, Germany;
| | - Jana Hochhalter
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| | - Moushami Mallik
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Munich, LMU Munich, 80336 Munich, Germany;
| | - Anne Helfen
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| | - Miriam Stölting
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany; (O.H.); (C.H.); (M.M.); (A.H.)
| |
Collapse
|
8
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Zhang Y, Tian X, Chen L, Zhao S, Tang X, Liu X, Zhou D, Tang C, Geng B, Du J, Jin H, Huang Y. Endogenous hydrogen sulfide persulfidates endothelin type A receptor to inhibit pulmonary arterial smooth muscle cell proliferation. Redox Biol 2025; 80:103493. [PMID: 39823888 PMCID: PMC11787542 DOI: 10.1016/j.redox.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (H2S) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous H2S/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation. METHODS AND RESULTS Both live cell imaging and ligand-receptor assays revealed that H2S donor, NaHS, inhibited the binding of ET-1/ETAR in human PASMCs (HPASMCs) and HEK-293A cells, along with an inhibition of ET-1-activated HPASMC proliferation. While, an upregulated Ki-67 expression by the pulmonary arteries, a marked pulmonary artery structural remodeling, and an increased pulmonary artery pressure were observed in CSE knockout (CSE-KO) mice with a deficient H2S/CSE pathway compared with those in the wild type (WT) mice. Meanwhile, NaHS rescued the enhanced binding of ET-1 with ETAR and cell proliferation in the CSE-knockdowned HPASMCs. Moreover, the ETAR antagonist BQ123 blocked the enhanced proliferation of CSE-knockdowned HPASMCs. Mechanistically, ETAR persulfidation was reduced in the lung tissues of CSE-KO mice compared to that in WT mice, which could be reversed by NaHS treatment. Similarly, NaHS persulfidated ETAR in HPASMCs and HEK-293A cells. Whereas a thiol reductant dithiothreitol (DTT) reversed the H2S-induced ETAR persulfidation and further blocked the H2S-inhibited binding of ET-1/ETAR and HPASMC proliferation. Furthermore, the mutation of ETAR at cysteine (Cys) 69 abolished the persulfidation of ETAR by H2S, and subsequently blocked the H2S-suppressed ET-1/ETAR binding and HPASMC proliferation. CONCLUSION Endogenous H2S persulfidated ETAR at Cys69 to inhibit the binding of ET-1 to ETAR, subsequently suppressed PASMC proliferation, and antagonized pulmonary vascular structural remodeling.
Collapse
MESH Headings
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Cell Proliferation/drug effects
- Animals
- Humans
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin A/genetics
- Cystathionine gamma-Lyase/genetics
- Cystathionine gamma-Lyase/metabolism
- Endothelin-1/metabolism
- HEK293 Cells
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Signal Transduction
- Male
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China; National Center for Nanoscience and Technology, Beijing, 100871, PR China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China; National Center for Nanoscience and Technology, Beijing, 100871, PR China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd, Beijing, 100191, PR China
| | - Xin Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Dan Zhou
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, PR China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, PR China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, PR China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China.
| |
Collapse
|
10
|
Gong H, Liu J, Chen N, Zhao H, He B, Zhang H, Wang W, Tian Y. EDN1 and NTF3 in keloid pathogenesis: computational and experimental evidence as novel diagnostic biomarkers for fibrosis and inflammation. Front Genet 2025; 16:1516451. [PMID: 40051702 PMCID: PMC11882859 DOI: 10.3389/fgene.2025.1516451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the roles of oxidative stress-related differentially expressed genes (OSRDEGs) in keloid formation and explore their potential value in diagnosis and treatment. Methods Gene expression data from the GEO database, including GSE145725 and GSE44270 as training sets and GSE7890 as a validation set, were utilized. OSRDEGs were identified, followed by Weighted Gene Co-expression Network Analysis (WGCNA), GO/KEGG enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Key genes were further screened through protein-protein interaction (PPI) network analysis and receiver operating characteristic (ROC) curve analysis. miRNA targets, transcription factors (TF), and potential drug targets of these genes were predicted. Immune cell infiltration analysis was performed to assess the association between OSRDEGs and immune cells, which was validated using GSE7890. Finally, the expression of key genes was experimentally validated using quantitative PCR (qPCR), immunohistochemistry (IHC), and hematoxylin-eosin (HE) staining. Results A total of 13 OSRDEGs were identified. WGCNA and functional enrichment analyses revealed that these genes were primarily involved in fibrosis and inflammatory processes in keloids, such as the MAPK signaling pathway, lymphocyte and monocyte proliferation, and inflammatory pathways involving IL-18 and IL-23. PPI network analysis, ROC analysis, and immune infiltration results identified Endothelin-1 (EDN1) and Neurotrophin-3(NTF3) as key genes with high sensitivity and specificity. These genes were positively and negatively correlated with activated mast cells, respectively, suggesting their dual regulatory roles in fibrosis and inflammation. External dataset validation, qPCR, correlation analysis, HE staining, and IHC results demonstrated that EDN1 and NTF3 were highly expressed in keloid tissues and were associated with excessive collagen deposition and immune cell infiltration. Conclusion EDN1 and NTF3, as OSRDEGs, play critical roles in the pathogenesis and progression of keloids. They may contribute to fibrosis and inflammation through the regulation of oxidative stress, the MAPK signaling pathway, and mast cell activation. These findings highlight EDN1 and NTF3 as potential diagnostic biomarkers and therapeutic targets, providing novel insights into the pathogenesis and treatment strategies for keloids.
Collapse
Affiliation(s)
- Hui Gong
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Nanji Chen
- Center of Medical Cosmetology, The People’s Hospital of Wusheng, Chongqing, China
| | - Hengguang Zhao
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin He
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongpei Zhang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenping Wang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Tian
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Chen YF, Qi RQ, Zhao L, Liang LR, Song JW, Zhou XY, Chen YH, Wang SY, Wang Q, Liu Y, Dong Y, Liu XY, Li J, Zhong JC. Aprocitentan mitigates doxorubicin-induced cardiotoxicity by inhibiting cuproptosis, oxidative stress, and mitochondrial impairments via the activation of sirtuin 7. Int Immunopharmacol 2025; 148:114141. [PMID: 39930646 DOI: 10.1016/j.intimp.2025.114141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 05/08/2025]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug for cancer while leads to several cardiac disorders including cardiomyopathy and heart failure. Aprocitentan is a novel dual endothelin-1 receptor antagonist and functions as an effective antihypertensive drug for resistant hypertension. However, the exact roles of aprocitentan in DOX-induced cardiotoxicity remains largely unclear.In this work, we explored potential participants of aprocitentan in DOX-induced cardiotoxicity. Mice were treated with DOX to induce cardiotoxicity, and then received either aprocitentan or tetrathiomolybdate interventions respectively. Compared with controls, DOX-treated mice exhibited cardiac impairments and dysfunction. Notably, aprocitentan or tetrathiomolybdate intervention remarkably mitigated DOX-mediated cardiac cardiotoxicity, as evidenced by alleviated myocardial fibrosis and improved cardiac function. Furthermore, aprocitentan or tetrathiomolybdate administration significantly mitigated myocardial cuproptosis, oxidative stress, cardiac aging and inflammation in DOX-treated mice with decreased levels of DLAT accumulation, as well as downregulated expressions of HSP70, P16 and P21, respectively. In cultured primary rat cardiomyocytes, treatment with aprocitentan alleviated DOX-induced augmentation of cuproptosis and oxidative stress with reduced DLAT accumulation. Moreover, aprocitentan administration strikingly reversed DOX-induced and elesclomol-aggravated cellular senescence and mitochondrial injury in cardiomyocytes. More importantly, knock-down of sirtuin 7 (SIRT7) by SIRT7 siRNA blocked the beneficial effects of aprocitentan on DOX-associated cuproptosis, oxidative stress, mitochondrial injury, and senescence in cardiomyocytes. In summary, aprocitentan exerts as a novel therapeutic agent for alleviation of DOX-induced cardiotoxicity through the inhibition of cuproptosis, oxidative stress, cardiac aging and mitochondrial injuries via the activation of SIRT7, offering new possibilities for prevention and treatment of DOX-induced cardiac disorders.
Collapse
Affiliation(s)
- Yu-Fei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Rui-Qiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Lin Zhao
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Li-Rong Liang
- Medical Research Center, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020 China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Xin-Yu Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Si-Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Qi Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China.
| |
Collapse
|
12
|
Sayer M, Webb DJ, Dhaun N. Novel pharmacological approaches to lowering blood pressure and managing hypertension. Nat Rev Cardiol 2025:10.1038/s41569-025-01131-4. [PMID: 39920248 DOI: 10.1038/s41569-025-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Hypertension is the leading cause of death globally, primarily due to its strong association with cardiovascular disease. The global prevalence of hypertension has surged over the past three decades, driven by rising rates of diabetes mellitus and obesity. Despite current antihypertensive therapies, only a small proportion of patients with hypertension achieve adequate blood pressure control, necessitating novel therapeutic strategies. In this Review we explore the challenges and emerging opportunities in hypertension management. Aprocitentan, a dual endothelin receptor antagonist, is the first agent from a novel class of antihypertensive drug to be licensed since 2007 and exemplifies innovative treatments on the horizon. Here we also address the complex factors contributing to poor hypertension control, including genetic influences, lifestyle factors, therapeutic inertia and poor patient adherence. We discuss the limitations of existing therapies and highlight promising new pharmacological approaches to hypertension management. Integrating these novel treatments alongside current pharmaceuticals combined with improved diagnostic and management strategies could substantially reduce the global burden of hypertension and associated cardiovascular disease.
Collapse
Affiliation(s)
- Matthew Sayer
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David J Webb
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Bhadange R, Gaikwad AB. Repurposing the familiar: Future treatment options against chronic kidney disease. J Pharm Pharmacol 2025:rgaf002. [PMID: 39832316 DOI: 10.1093/jpp/rgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects. Therefore, identifying new therapeutic targets or improving existing treatments for CKD is crucial. Drug repurposing is a promising strategy in the drug discovery process that involves screening existing approved drugs for new therapeutic applications. KEY FINDINGS This review discusses the pharmacological mechanisms and clinical evidence that support the efficacy of these repurposed drugs. Various drugs classes such as inodilators, endothelin-1 type A (ET-1A) receptor antagonists, bisphosphonates, mineralocorticoid receptor (MR) antagonists, DNA demethylating agents, nuclear factor erythroid 2-related factor 2 (NRF2) activators, P2X7 inhibitors, autophagy modulators, hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) are discussed that could remarkably contribute against CKD. SUMMARY The review critically examines the potential for repurposing well-established drugs to slow the progression of CKD and enhance patient outcomes. This review emphasizes the importance of a multidisciplinary approach in advancing the field of drug repurposing, ultimately paving the way for innovative and effective therapies for patients suffering from CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| |
Collapse
|
14
|
Mutchler AL, Zhong J, Yang HC, Zhao S, Crescenzi R, Taylor S, Rao RL, Shelton EL, Kirabo A, Kon V. ET-3/ETBR Mediates Na +-Activated Immune Signaling and Kidney Lymphatic Dynamics. Circ Res 2025; 136:194-208. [PMID: 39676651 PMCID: PMC11800760 DOI: 10.1161/circresaha.124.324890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Lymphatic collecting vessels in the kidney are critical in clearing interstitial fluid, macromolecules, and infiltrating immune cells. Dysfunction of the lymphatic vessels can disrupt this process and exacerbate injury-associated inflammation in many disease conditions. We previously found that sodium accumulates within the kidney interstitium during proteinuric kidney injury and elevated sodium environments stimulate isolevuglandin production in antigen-presenting cells, stimulating T cells, and modulating inflammatory responses. In the present study, we investigated whether proteinuric injury increases production of isolevuglandin-adduct formation in antigen-presenting cells, their effects on lymphatic endothelial cells (LECs), and the role of the ET-3 (endothelin-3)/ETBR (endothelin type B receptor) on lymphatic vessel function. METHODS We used a mouse model of nephrotoxin-induced proteinuric injury to show that proteinuric injury expanded the kidney lymphatic network and to immunophenotype the infiltrating immune cells. To determine mechanisms, we analyzed the interaction of migratory immune cells and LECs using an in vitro transwell migration assay, bulk RNA sequencing, and flow cytometric analysis. To determine the effect of ET-3/ETBR axis on lymphatic vessel contractility, we analyzed microdissected lymphangions utilizing a vessel perfusion chamber. RESULTS We found that animals with proteinuric injury have increased kidney lymphangiogenesis, isolevuglandin-producing dendritic cells, and IFN (interferon)-γ-producing CD4+T cells. The sodium avid environment present in kidney injury enhances the interaction between LECs and migratory antigen-presenting cells and LEC production of isolevuglandin-adducts. Elevated sodium environment-induced isolevuglandin-adduct formation facilitates the ET-3/ETBR communication between LECs and dendritic cells. In addition, the ET-3/ETBR axis modulates lymphatic collecting vessel pumping dynamics. CONCLUSIONS These findings reveal a novel mechanism linking the isolevuglandin-mediated ET-3/ETBR axis with LECs and infiltrating dendritic cells. ET-3/ETBR signaling in lymphatic vessel dynamics is a novel pathogenic component and a possible therapeutic target in kidney disease.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachelle Crescenzi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shannon Taylor
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Roy L. Rao
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Guan WX, Lan Z, Wang QC, Wa HR, Muren H, Bai LL, Men SR, Liu GQ, Gao JX, Bai CX. Effects of Prolonged Cold Stress on Vascular Function in Guinea Pigs With Atherosclerosis. J Cardiovasc Pharmacol 2025; 85:63-74. [PMID: 39591604 DOI: 10.1097/fjc.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
RESEARCH OBJECTIVE This study explored the effects of long-term cold stress (CS) on aortic vascular function in guinea pigs. RESEARCH METHODS Hartley guinea pigs (n = 32) were divided into the following groups: atherosclerosis (AS), CS, and menthol-stimulated (M), and control (C). On days 1, 15, 30, 45, and 60, guinea pigs in the AS, CS, and M groups were intraperitoneally injected with bovine serum albumin. The C group was provided with maintenance feed and room temperature water. The AS group was provided with a high-fat diet and room temperature water. The CS group was maintained in a refrigerator at 4°C, while providing a high-fat diet and iced water. The M group was administered menthol solution, and provided with a high-fat diet and room temperature water. The modeling period lasted for 120 days. On day 121, abdominal aortic sera and aortic samples were obtained after intraperitoneal injection of sodium pentobarbital. Blood rheology tests were conducted to assess blood adhesion, biochemical tests to assess lipid levels, and enzyme-linked immunosorbent assays to detect serum nuclear factor-κB, tumor necrosis factor-α, and interleukin-1β, and endothelial nitric oxide synthase, nitric oxide, and endothelin-1 (ET-1) in aortic tissue. Hematoxylin and eosin and oil red O staining were used to examine pathologic changes in the aorta, Western blotting to detect transient receptor potential melastatin 8 and protein kinase G protein expression, quantitative polymerase chain reaction was used to measure VCAM-1 mRNA expression level. RESEARCH FINDINGS Prolonged exposure to CS exacerbated lipid-metabolism disorders in guinea pigs fed a high-fat diet, increased aortic vascular cell adhesion, and exacerbated vascular inflammation, leading to endothelial injury, ultimately worsening pathologic changes associated with aortic atherosclerosis.
Collapse
Affiliation(s)
| | - Zhuo Lan
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Qing-Chun Wang
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hao Ri Wa
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Huhe Muren
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Li-Li Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Si Ri Men
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Guo-Qing Liu
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Jing-Xian Gao
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Chang-Xi Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| |
Collapse
|
16
|
Yao J, Zhang Y, Wang Z, Chen Y, Shi X. Maintenance of Cardiac Microenvironmental Homeostasis: A Joint Battle of Multiple Cells. J Cell Physiol 2025; 240:e31496. [PMID: 39632594 DOI: 10.1002/jcp.31496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process. In this paper, we introduce the dynamic activity, cell surface markers as well as biological function of the various cells in the heart. Besides, we discuss the multiple signaling pathways involved in the cardiac injury including Hippo/YAP, TGF-β/Smads, PI3K/Akt, and MAPK signaling. The complexity of different cell types poses a great challenge to the disease treatment. By characterizing the roles of various cell types in cardiovascular diseases, we sought to discuss the potential strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Youtao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Naseralallah L, Koraysh S. Aprocitentan: a new emerging prospect in the pharmacotherapy of hypertension. Blood Press 2024; 33:2424824. [PMID: 39520722 DOI: 10.1080/08037051.2024.2424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Resistant hypertension (RH) is linked to higher risks of cardiovascular events and there remains an unmet therapeutic need driven by pathophysiologic pathways unaddressed by guideline-recommended therapy. Whilst spironolactone is considered the preferred fourth-line therapy, its broad application is limited by its safety profile. Aprocitentan is a novel dual endothelin (ET) A and B receptors antagonist that has been recently approved by the FDA. OBJECTIVE This review aims to summarise the available evidence on the discovery, pharmacokinetic, pharmacodynamic, efficacy, and safety of aprocitentan in the pharmacotherapy of RH. METHODS We searched PubMed, Embase, and International Pharmaceutical Abstracts to identify relevant papers on aprocitentan use. Clinical trial registries were also searched. RESULTS Aprocitentan targets the ET pathway which remains unopposed by contemporary alternative therapies for RH. It differs from other ET receptor antagonists in its pharmacological profile, as it is eliminated independently of CYP450 or BCRP, making it less likely to cause drug-drug interactions. Current evidence demonstrates that compared to placebo, aprocitentan significantly reduces blood pressure (BP) as measured via unattended automated office BP and 24-hour ambulatory BP. The most frequently reported adverse effects were fluid retention/edema and anaemia. CONCLUSION Aprocitentan is a novel therapy for the management of RH that significantly reduces BP when compared to placebo. It delivers exciting prospects for future therapeutic options in the setting of RH and expands insights into its pathophysiology. However there is lack of data in relation to broader cardiovascular and renal protection, as well as its long-term safety profile.
Collapse
Affiliation(s)
| | - Somaya Koraysh
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
18
|
Li H, Cao X, Wu H, Dong D. The Relationship Between BigET-1 and Cardiac Remodeling in Patients with Hypertrophic Obstructive Cardiomyopathy. Mol Biotechnol 2024:10.1007/s12033-024-01308-1. [PMID: 39557775 DOI: 10.1007/s12033-024-01308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
To explore the relationship between BigET-1 and cardiac remodeling in hypertrophic obstructive cardiomyopathy (HOCM). A retrospective analysis was conducted on the data of 150 HOCM patients in a hospital from September 2021 to August 2023. According to the 2015 American Ultrasound Society's recommended standards for quantifying adult UGG cardiac lumen, left atrial enlargement is defined as having a left atrial diameter greater than 40 mm in males and greater than 38 mm in females. 150 HOCM patients were divided into a left atrial normal group (n = 97) and a left atrial enlargement group (n = 53). Comprehensive patient data were collected, including BigET-1in plasma, N-Terminalpro-B-TypeNatriureticPeptide (NT-pro-BNP), and High-sensitive C-reactive protein (Hs-CRP), as well as cardiac magnetic resonance imaging (CMR) imaging data. The relationship between BigET-1 levels and cardiac remodeling was analyzed. The two groups had no statistical difference in gender, age, heart rate, dyspnea, angina pectoris, etc. (P > 0.05). The χ2-test showed that patients in the left atrial enlargement group had an increased proportion of atrial fibrillation compared to those in the left atrial normal group (P < 0.05). Non parametric tests showed that the Big ET-1 and NT-pro-BNP in the left atrial enlargement group were significantly higher than those in the left atrial normal group (P < 0.05). The t-test results showed that there were statistical differences in Hs-CRP, left atrial anteroposterior diameter, interventricular septum thickness, and LVEDV between the left atrial enlargement group and the left atrial normal group (P < 0.05). Pearson correlation analysis showed that Big ET-1 was positively correlated withNT-pro-BNP, Hs-CRP, left atrial anteroposterior diameter, and interventricular septum thickness (P < 0.05). The multiple linear regression analysis showed that Big ET-1 was positively correlated with NT-pro-BNP and LADap (P < 0.05). In HOCM patients with atrial enlargement, the Big ET-1 is significantly elevated. Cardiac remodeling is more pronounced, indicating that Big ET-1 plays a role in cardiac remodeling in HOCM patients.
Collapse
Affiliation(s)
- Hua Li
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xiao Cao
- Department of Rehabilitation, Rehabilitation Hospital Affiliated to National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Hao Wu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Dandan Dong
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| |
Collapse
|
19
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
20
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
21
|
Yang C, Zhu CG, Guo YL, Wu NQ, Dong Q, Xu RX, Wu YJ, Qian J, Li JJ. Prognostic Value of Plasma Endothelin-1 in Predicting Worse Outcomes in Patients with Prediabetes and Diabetes and Stable Coronary Artery Diseases. Diabetes Metab J 2024; 48:993-1002. [PMID: 39165112 PMCID: PMC11449811 DOI: 10.4093/dmj.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/24/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGRUOUND Endothelin-1 (ET-1) is an endogenous vasoconstrictor implicated in coronary artery disease (CAD) and diabetes. This study aimed to determine the prognostic value of ET-1 in the patients with stable CAD under different glucose metabolism states. METHODS In this prospective, large-cohort study, we consecutively enrolled 7,947 participants with angiography-diagnosed stable CAD from April 2011 to April 2017. Patients were categorized by baseline glycemic status into three groups (normoglycemia, prediabetes, and diabetes) and further divided into nine groups by circulating ET-1 levels. Patients were followed for the occurrence of cardiovascular events (CVEs), including nonfatal myocardial infarction, stroke, and cardiovascular mortality. RESULTS Of the 7,947 subjects, 3,352, 1,653, and 2,942 had normoglycemia, prediabetes, and diabetes, respectively. Over a median follow-up of 37.5 months, 381 (5.1%) CVEs occurred. The risk for CVEs was significantly higher in patients with elevated ET-1 levels after adjustment for potential confounders. When patients were categorized by both status of glucose metabolism and plasma ET-1 levels, the high ET-1 levels were associated with higher risk of CVEs in prediabetes (adjusted hazard ratio [HR], 2.089; 95% confidence interval [CI], 1.151 to 3.793) and diabetes (adjusted HR, 2.729; 95% CI, 1.623 to 4.588; both P<0.05). CONCLUSION The present study indicated that baseline plasma ET-1 levels were associated with the prognosis in prediabetic and diabetic patients with stable CAD, suggesting that ET-1 may be a valuable predictor in CAD patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Cheng Yang
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Dong
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Jian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qian
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Wang CH, Tsuji T, Wu LH, Yang CY, Huang TL, Sato M, Shamsi F, Tseng YH. Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue. Nat Commun 2024; 15:7215. [PMID: 39174539 PMCID: PMC11341701 DOI: 10.1038/s41467-024-51579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Thermogenic adipose tissue, consisting of brown and beige fat, regulates nutrient utilization and energy metabolism. Human brown fat is relatively scarce and decreases with obesity and aging. Hence, inducing thermogenic differentiation of white fat offers an attractive way to enhance whole-body metabolic capacity. Here, we show the role of endothelin 3 (EDN3) and endothelin receptor type B (EDNRB) in promoting the browning of white adipose tissue (WAT). EDNRB overexpression stimulates thermogenic differentiation of human white preadipocytes through cAMP-EPAC1-ERK activation. In mice, cold induces the expression of EDN3 and EDNRB in WAT. Deletion of EDNRB in adipose progenitor cells impairs cold-induced beige adipocyte formation in WAT, leading to excessive weight gain, glucose intolerance, and insulin resistance upon high-fat feeding. Injection of EDN3 into WAT promotes browning and improved whole-body glucose metabolism. The findings shed light on the mechanism of WAT browning and offer potential therapeutics for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Hong Wu
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Mari Sato
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Hou J, Liu S, Zhang X, Tu G, Wu L, Zhang Y, Yang H, Li X, Liu J, Jiang L, Tan Q, Bai F, Liu Z, Miao C, Hua T, Luo Z. Structural basis of antagonist selectivity in endothelin receptors. Cell Discov 2024; 10:79. [PMID: 39075075 PMCID: PMC11286772 DOI: 10.1038/s41421-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
Collapse
Affiliation(s)
- Junyi Hou
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yijie Zhang
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China.
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China.
| |
Collapse
|
24
|
Xu L, Wang Y, Wang Y, Wang L, Du P, Cheng J, Zhang C, Jiao T, Xing L, Tapu MSR, Jia H, Li J. Early Use of PCSK9 Inhibitors in the Prognosis of Patients with Acute Coronary Syndrome by Protecting Vascular Endothelial Function. Pharmacology 2024; 110:1-14. [PMID: 38964284 DOI: 10.1159/000540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has a protective effect on acute coronary syndrome (ACS). However, most studies have shown that this protective effect is based on a decrease in low-density lipoprotein cholesterol, while other mechanisms remain limited. This study aimed to determine whether PCSK9i can improve the prognosis of ACS patients by protecting endothelial function. METHODS A total of 113 ACS patients were enrolled and randomly assigned to PCSK9i group (PCSK9i combined with statins) and control group (statins only). Blood lipids and endothelial function indicators were measured and analyzed 6 weeks before and after treatment. The effect of PCSK9i on the expression and secretion of endothelial function indicators in vascular endothelial cells were studied by cell experiments. RESULTS After 6 weeks of treatment, endothelial function indicators such as nitric oxide (NO), thrombomodulin, intercellular cell adhesion molecule-1, endothelin-1, and flow-mediated vasodilation were significantly improved in PCSK9i group compared with control group. Only the changes of NO and von Willebrand factor were associated with blood lipid levels, whereas the changes of other endothelial function indicators were not significantly associated with blood lipid levels. PCSK9i reduced the incidence of major adverse cardiovascular events in patients with ACS compared to those in the control group. In cell experiments, PCSK9i treatment significantly ameliorated LPS induced endothelial injury in HUVECs. CONCLUSION PCSK9i can protect vascular endothelial function partly independently of its lipid-lowering effect and ameliorate the prognosis of patients with ACS within 6 weeks. This mechanism may involve heat shock transcription factor 1/heat shock proteins -related signaling pathways. Early use of PCSK9i in patients with ACS should be strongly considered in clinical practice.
Collapse
Affiliation(s)
- Linghao Xu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqiong Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijian Xing
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Md Sakibur Rahman Tapu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haonan Jia
- Laboratory of Molecular Neural Biology, School of Life Sciences and Institute of Systems Biology, Shanghai University, Shanghai, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Qu Y, Zhang D, Hu Y, Wang J, Tan H, Qin F, Liu Y. Long-term prognostic value of big endothelin-1 and its combination with late gadolinium enhancement in patients with idiopathic restrictive cardiomyopathy. Clin Chim Acta 2024; 561:119755. [PMID: 38821338 DOI: 10.1016/j.cca.2024.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/28/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND AND AIMS Idiopathic restrictive cardiomyopathy (RCM) has a low incidence. This study aimed to determine the prognostic value of big endothelin-1 (ET-1) in idiopathic RCM. MATERIALS AND METHODS We prospectively enrolled patients with idiopathic RCM from 2009 to 2017 and followed them up. The primary outcome was a composite of all-cause mortality and cardiac transplantation, and the secondary outcome was a composite of cardiac death and cardiac transplantation. RESULTS Ninety-one patients were divided into the high big ET-1 (>0.85 pmol/L, n = 56) and low big ET-1 (≤0.85 pmol/L, n = 35) groups, and 87 of them completed the follow-up. Big ET-1 concentrations (hazard ratio: 1.756, 95 % confidence interval [CI]: 1.117-2.760) and late gadolinium enhancement (LGE) (hazard ratio: 3.851, 95 % CI: 1.238-11.981) were independent risk factors for the primary outcome. Big ET-1 concentrations (C-statistic estimation: 0.764, 95 % CI: 0.657-0.871) and the combination of LGE and big ET-1 concentrations (C-statistic estimation: 0.870, 95 % CI: 0.769-0.970) could accurately predict the 5-year transplant-free survival rate, and 0.85 pmol/L was a suitable cutoff for big ET-1. CONCLUSION Big ET-1 and its combination with LGE may be useful to predict an adverse prognosis in patients with idiopathic RCM.
Collapse
Affiliation(s)
- Yi Qu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China
| | - Di Zhang
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China
| | - Yuxiao Hu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China
| | - Jiayi Wang
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China
| | - Huiqiong Tan
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China
| | - Fuzhong Qin
- The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, Shanxi Province, China
| | - Yaxin Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, China.
| |
Collapse
|
26
|
Heidari Nejad S, Azzam O, Schlaich MP. Recent developments in the management of resistant hypertension: focus on endothelin receptor antagonists. Future Cardiol 2024; 20:435-445. [PMID: 38953510 PMCID: PMC11486316 DOI: 10.1080/14796678.2024.2367390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Resistant hypertension is characterized by the inability of guideline-recommended triple combination therapy to control blood pressure (BP) to target. It is associated with a significantly increased risk of adverse outcomes. Despite abundant preclinical evidence supporting the critical role of the endothelin pathway in resistant hypertension (RH), clinical implementation of endothelin antagonists for the treatment of hypertension was hindered by various factors. Recently, the novel dual endothelin-receptor antagonist aprocitentan was tested in individuals with resistant hypertension in the PRECISION trial and provided compelling evidence supporting both short and longer-term safety and clinically meaningful and sustained BP lowering efficacy. These findings resulted in the recent regulatory approval of aprocitentan by the FDA. Aprocitentan may be a particularly useful antihypertensive option for individuals with advanced age, chronic kidney disease, and albuminuria.
Collapse
Affiliation(s)
- Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Azzam
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
27
|
Gallo G, Savoia C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int J Mol Sci 2024; 25:6661. [PMID: 38928371 PMCID: PMC11203528 DOI: 10.3390/ijms25126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension represents one of the primary and most common risk factors leading to the development of heart failure (HF) across the entire spectrum of left ventricular ejection fraction. A large body of evidence has demonstrated that adequate blood pressure (BP) control can reduce cardiovascular events, including the development of HF. Although the pathophysiological and epidemiological role of hypertension in the development of HF is well and largely known, some critical issues still deserve to be clarified, including BP targets, particularly in HF patients. Indeed, the management of hypertension in HF relies on the extrapolation of findings from high-risk hypertensive patients in the general population and not from specifically designed studies in HF populations. In patients with hypertension and HF with reduced ejection fraction (HFrEF), it is recommended to combine drugs with documented outcome benefits and BP-lowering effects. In patients with HF with preserved EF (HFpEF), a therapeutic strategy with all major antihypertensive drug classes is recommended. Besides commonly used antihypertensive drugs, different evidence suggests that other drugs recommended in HF for the beneficial effect on cardiovascular outcomes exert advantageous blood pressure-lowering actions. In this regard, type 2 sodium glucose transporter inhibitors (SGLT2i) have been shown to induce BP-lowering actions that favorably affect cardiac afterload, ventricular arterial coupling, cardiac efficiency, and cardiac reverse remodeling. More recently, it has been demonstrated that finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces new-onset HF and improves other HF outcomes in patients with chronic kidney disease and type 2 diabetes, irrespective of a history of HF. Other proposed agents, such as endothelin receptor antagonists, have provided contrasting results in the management of hypertension and HF. A novel, promising strategy could be represented by small interfering RNA, whose actions are under investigation in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
28
|
Schinzari F, Tesauro M, Cardillo C. Is endothelin targeting finally ready for prime time? Clin Sci (Lond) 2024; 138:635-644. [PMID: 38785409 DOI: 10.1042/cs20240607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, Università Tor Vergata, Roma, Italy
| | - Carmine Cardillo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
29
|
Yuan Y, Dong M, Wen S, Yuan X, Zhou L. Retinal microcirculation: A window into systemic circulation and metabolic disease. Exp Eye Res 2024; 242:109885. [PMID: 38574944 DOI: 10.1016/j.exer.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, China.
| |
Collapse
|
30
|
Flack JM, Buhnerkempe MG, Moore KT. Resistant Hypertension: Disease Burden and Emerging Treatment Options. Curr Hypertens Rep 2024; 26:183-199. [PMID: 38363454 PMCID: PMC11533979 DOI: 10.1007/s11906-023-01282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW To define resistant hypertension (RHT), review its pathophysiology and disease burden, identify barriers to effective hypertension management, and to highlight emerging treatment options. RECENT FINDINGS RHT is defined as uncontrolled blood pressure (BP) ≥ 130/80 mm Hg despite concurrent prescription of ≥ 3 or ≥ 4 antihypertensive drugs in different classes or controlled BP despite prescription of ≥ to 4 drugs, at maximally tolerated doses, including a diuretic. BP is regulated by a complex interplay between the renin-angiotensin-aldosterone system, the sympathetic nervous system, the endothelin system, natriuretic peptides, the arterial vasculature, and the immune system; disruption of any of these can increase BP. RHT is disproportionately manifest in African Americans, older patients, and those with diabetes and/or chronic kidney disease (CKD). Amongst drug-treated hypertensives, only one-quarter have been treated intensively enough (prescribed > 2 drugs) to be considered for this diagnosis. New treatment strategies aimed at novel therapeutic targets include inhibition of sodium-glucose cotransporter 2, aminopeptidase A, aldosterone synthesis, phosphodiesterase 5, xanthine oxidase, and dopamine beta-hydroxylase, as well as soluble guanylate cyclase stimulation, nonsteroidal mineralocorticoid receptor antagonism, and dual endothelin receptor antagonism. The burden of RHT remains high. Better use of currently approved therapies and integrating emerging therapies are welcome additions to the therapeutic armamentarium for addressing needs in high-risk aTRH patients.
Collapse
Affiliation(s)
- John M Flack
- Department of Medicine, Division of General Internal Medicine, Hypertension Section, Southern Illinois University, Southern Illinois University School of Medicine, 801 North Rutledge Street, Carbondale, IL, 62702, USA.
| | - Michael G Buhnerkempe
- Department of Medicine and the Center for Clinical Research, Southern Illinois University, Carbondale, IL, USA
| | | |
Collapse
|
31
|
Schiffrin EL, Pollock DM. Endothelin System in Hypertension and Chronic Kidney Disease. Hypertension 2024; 81:691-701. [PMID: 38059359 PMCID: PMC10954415 DOI: 10.1161/hypertensionaha.123.21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Ernesto L. Schiffrin
- Lady Davis Institute for Medical Research, and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
32
|
Ivković V, Bruchfeld A. Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease. Clin Kidney J 2024; 17:sfae072. [PMID: 38660120 PMCID: PMC11040512 DOI: 10.1093/ckj/sfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is one of the major causes of morbidity and mortality, affecting >800 million persons globally. While we still lack efficient, targeted therapies addressing the major underlying pathophysiologic processes in CKD, findings of several recent trials have brought about a shifting landscape of promising therapies. The endothelin system has been implicated in the pathophysiology of CKD and endothelin receptor antagonists are one class of drugs for which we have increasing evidence of efficacy in these patients. In this review we summarize the most recent findings on the safety and efficacy of endothelin receptor antagonists in diabetic and non-diabetic CKD, future directions of research and upcoming treatments.
Collapse
Affiliation(s)
- Vanja Ivković
- University Hospital Center Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, Zagreb, Croatia
- University of Rijeka, Faculty of Health Studies, Rijeka, Croatia
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Liu Y, Wang W, Qian H, Gui Y, Wang Y, Song R, Chen Q, Rowinsky E, Wang S, Liang X, Gu K, Zhou B, Zhang W, Zhang L, Yu C, Jia J. Safety, pharmacokinetics, and pharmacodynamics in healthy Chinese volunteers treated with SC0062, a highly selective endothelin-A receptor antagonist. Clin Transl Sci 2024; 17:e13750. [PMID: 38451110 PMCID: PMC10919156 DOI: 10.1111/cts.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
This study evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and food effects (FE) of SC0062, a highly active endothelin-A (ETA ) receptor antagonist, in healthy subjects. The primary objectives of this first-in-human phase I study, comprised of single-ascending-dose, multiple-ascending-dose, and FE parts, were to characterize the safety and tolerability of SC0062, and FE. The secondary objectives were to determine the PK behavior of SC0062 and its major active metabolite M18, whereas exploratory objectives focused on PD effects, principally effects on endothelin-1 (ET-1) and total bile acids (TBA). Single doses of 10 to 100 mg and multiple daily doses of 20 and 50 mg for 6 days were well tolerated. SC0062 was rapidly absorbed and plasma exposure of SC0062 and M18 increased disproportionately with dose, achieving steady state by day 3, with accumulation ratios of 1.22 and 1.89 on day 6 for SC0062 and M18, respectively. The geometric mean (geometric standard deviation) terminal elimination half-life (t1/2 ) values of SC0062 and M18 were 7.25 (1.70) h and 13.73 (1.32) h, respectively. Plasma ET-1 concentrations were dose-proportional, whereas plasma TBA concentrations behaved erratically. Following a single 50 mg dose of SC0062 after a high-fat meal, Cmax values for SC0062 and M18 increased by 41% and 32%, respectively, and median Tmax values for SC0062 were 3 h longer than fasting values; exposure was unaffected. These favorable safety, PK, and PD results provide a foundation for further studies of SC0062 in pulmonary arterial hypertension, chronic kidney disease, and other relevant indications.
Collapse
Affiliation(s)
- Yun Liu
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Wei Wang
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Hongjie Qian
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Yuzhou Gui
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Yating Wang
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Rong Song
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Qian Chen
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | | | - Sheng Wang
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | | | - Kaicun Gu
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | - Bo Zhou
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | | | | | - Chen Yu
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Jingying Jia
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| |
Collapse
|
34
|
Binda M, Moccaldi B, Civieri G, Cuberli A, Doria A, Tona F, Zanatta E. Autoantibodies Targeting G-Protein-Coupled Receptors: Pathogenetic, Clinical and Therapeutic Implications in Systemic Sclerosis. Int J Mol Sci 2024; 25:2299. [PMID: 38396976 PMCID: PMC10889602 DOI: 10.3390/ijms25042299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery of functional antibodies targeting G-protein-coupled receptors (GPCRs), whose presence has been demonstrated in different autoimmune conditions, has shed some light on SSc pathogenesis. These antibodies bind to GPCRs expressed on immune and non-immune cells as their endogenous ligands, exerting either a stimulatory or inhibitory effect on corresponding intracellular pathways. Growing evidence suggests that, in SSc, the presence of anti-GPCRs antibodies correlates with specific clinical manifestations. Autoantibodies targeting endothelin receptor type A (ETAR) and angiotensin type 1 receptor (AT1R) are associated with severe vasculopathic SSc-related manifestations, while anti-C-X-C motif chemokine receptors (CXCR) antibodies seem to be predictive of interstitial lung involvement; anti-muscarinic-3 acetylcholine receptor (M3R) antibodies have been found in patients with severe gastrointestinal involvement and anti-protease-activated receptor 1 (PAR1) antibodies have been detected in patients experiencing scleroderma renal crisis. This review aims to clarify the potential pathogenetic significance of GPCR-targeting autoantibodies in SSc, focusing on their associations with the different clinical manifestations of scleroderma. An extensive examination of functional autoimmunity targeting GPCRs might provide valuable insights into the underlying pathogenetic mechanisms of SSc, thus enabling the development of novel therapeutic strategies tailored to target GPCR-mediated pathways.
Collapse
Affiliation(s)
- Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Anna Cuberli
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| |
Collapse
|
35
|
Feger M, Meier L, Strotmann J, Hoene M, Vogt J, Wisser A, Hirschle S, Kheim MJ, Hocher B, Weigert C, Föller M. Endothelin receptor B-deficient mice are protected from high-fat diet-induced metabolic syndrome. Mol Metab 2024; 80:101868. [PMID: 38159882 PMCID: PMC10825011 DOI: 10.1016/j.molmet.2023.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Endothelin receptor B (ETB) together with ETA mediates cellular effects of endothelin 1 (ET-1), an autocrine and endocrine peptide produced by the endothelium and other cells. It regulates vascular tone and controls kidney function. Metabolic syndrome is due to high caloric intake and is characterized by insulin resistance, dyslipidemia, and white adipose tissue (WAT) accumulation. ETA/ETB antagonism has been demonstrated to favorably influence insulin resistance. Our study explored the role of ETB in metabolic syndrome. METHODS Wild type (etb+/+) and rescued ETB-deficient (etb-/-) mice were fed a high-fat diet, and energy, glucose, and insulin metabolism were analyzed, and hormones and lipids measured in serum and tissues. Cell culture experiments were performed in HepG2 cells. RESULTS Compared to etb+/+ mice, etb-/- mice exhibited better glucose tolerance and insulin sensitivity, less WAT accumulation, lower serum triglycerides, and higher energy expenditure. Protection from metabolic syndrome was paralleled by higher hepatic production of fibroblast growth factor 21 (FGF21) and higher serum levels of free thyroxine (fT4), stimulators of energy expenditure. CONCLUSIONS ETB deficiency confers protection from metabolic syndrome by counteracting glucose intolerance, dyslipidemia, and WAT accumulation due to enhanced energy expenditure, effects at least in part dependent on enhanced production of thyroid hormone/FGF21. ETB antagonism may therefore be a novel therapeutic approach in metabolic syndrome.
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Leonie Meier
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Jörg Strotmann
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Vogt
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Alexandra Wisser
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Susanna Hirschle
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Marie-Jo Kheim
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Berthold Hocher
- University of Heidelberg, Department of Nephrology, Mannheim, Germany; Institute of Medical Diagnostics, IMD, Berlin, Germany; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), 85784 Neuherberg, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany.
| |
Collapse
|
36
|
Zheng L, Shi W, Liu B, Duan B, Sorgen P. Evaluation of Tyrosine Kinase Inhibitors Loaded Injectable Hydrogels for Improving Connexin43 Gap Junction Intercellular Communication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1985-1998. [PMID: 38175743 PMCID: PMC11061860 DOI: 10.1021/acsami.3c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Liu Q, Luo Q, Zhong B, Tang K, Chen X, Yang S, Li X. Salidroside attenuates myocardial remodeling in DOCA-salt-induced mice by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Eur J Pharmacol 2024; 962:176236. [PMID: 38048979 DOI: 10.1016/j.ejphar.2023.176236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Myocardial remodeling, which occurs in the final stage of cardiovascular diseases such as hypertension, can ultimately result in heart failure. However, the pathogenesis of myocardial remodeling remains incompletely understood, and there is currently a lack of safe and effective treatment options. Salidroside, which is extracted from the plant Rhodiola rosea, shows remarkable antioxidant and anti-inflammatory characteristics. The purpose of this investigation was to examine the cardioprotective effect of salidroside on myocardial remodeling, and clarify the associated mechanism. Salidroside effectively attenuated cardiac dysfunction, myocardial hypertrophy, myocardial fibrosis, and cardiac inflammation, as well as renal injury and renal fibrosis in an animal model of deoxycortone acetate (DOCA)-salt-induced myocardial remodeling. The cardioprotective effect of salidroside was mediated by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Salidroside was shown to inhibit the expression of endothelin1 in the hearts of mice treated with DOCA-salt. Additionally, it could prevent cardiomyocyte hypertrophy induced by endothelin-1 stimulation. Furthermore, Salidroside could effectively inhibit the excessive activation of the PI3K/AKT/NFκB pathway, which was caused by DOCA-salt treatment in mouse hearts and endothelin 1 stimulation in cardiomyocytes. Our study suggests that salidroside can be used as a therapeutic agent for the treatment of myocardial remodeling.
Collapse
Affiliation(s)
- Qiao Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China; Department of Pharmaceutical, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Qingman Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Bin Zhong
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Kecheng Tang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xueling Chen
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Shengqian Yang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
38
|
Boutin G, Yuzugulen J, Pranjol MZI. Endothelin-based markers for endothelial dysfunction in chemotherapy-induced cardiotoxicity. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100053. [PMID: 39802623 PMCID: PMC11708141 DOI: 10.1016/j.jmccpl.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 01/16/2025]
Abstract
Current cardiac biomarkers, troponins and brain natriuretic peptide, are primarily used to assist in the diagnosis or exclusion of myocardial damage and congestive heart failure, respectively. The use of these biomarkers in chemotherapy-induced cardiotoxicity has been evaluated by various studies. However, neither biomarker provides early predictive value, leaving many cancer survivors with irreversible cardiac injury. Assessing endothelial dysfunction could be an effective measure of chemotherapy-induced cardiotoxicity at the vascular level. Risk profiling and detection of vascular toxicities may offer predictive biomarkers to prevent chronic manifestation of irreversible cardiotoxicities. Emerging interest has developed in finding biomarkers that could ideally provide earlier prognostic value. Thus, the aim of this review is to give an overview of current blood-based cardiac biomarkers and discuss the potential of endothelin-1 (ET-1) and more stable peptide fragments of ET-1 synthesis as biomarkers of endothelial dysfunction. For instance, endothelin-like domain peptide (ELDP) and C-terminal pro-endothelin-1 (CT-proET-1) demonstrated high-sensitivity and longer clearance rate than ET-1. Thus, investigating their biomarker role in chemotherapy-induced cardiotoxicity is important and could provide additional insights for identifying patients at risk. Also, additional research is required to fully understand ELDP-mediated vasoconstriction. This review will discuss the future development of ET-1, ELDP and CT-proET-1 as prospective predictive biomarkers.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | |
Collapse
|
39
|
Dhaun N, Chapman GB. Endothelin antagonism: stepping into the spotlight. Lancet 2023; 402:1945-1947. [PMID: 37931628 DOI: 10.1016/s0140-6736(23)02419-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Affiliation(s)
- Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | - Gavin Brian Chapman
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Abraham GR, Williams TL, Maguire JJ, Greasley PJ, Ambery P, Davenport AP. Current and future strategies for targeting the endothelin pathway in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:972-990. [PMID: 39196099 DOI: 10.1038/s44161-023-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 08/29/2024]
Abstract
The first endothelin (ET)-1 receptor antagonist was approved for clinical use over 20 years ago, but to date this class of compounds has been limited to treating pulmonary arterial hypertension, a rare disease. Translational research over the last 5 years has reignited interest in the ET system as a therapeutic target across the spectrum of cardiovascular diseases including resistant hypertension, microvascular angina and post-coronavirus disease 2019 conditions. Notable developments include approval of a new ETA receptor antagonist and, intriguingly, combining the actions of ETA and an angiotensin II type 1 receptor antagonist within the same novel small molecule. Combinations of ET receptor blockers with other drugs, including phosphodiesterase-5 inhibitors and sodium-glucose co-transporter-2 antagonists, may drive synergistic benefits with the prospect of alleviating side effects. These new therapeutic strategies have the potential to dramatically widen the scope of indications targeting the ET-1 pathway.
Collapse
Affiliation(s)
- George R Abraham
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas L Williams
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Philip Ambery
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
42
|
Zhou Z, Chen J, Cui Y, Zhao R, Wang H, Yu R, Jin T, Guo J, Cong Y. Antihypertensive activity of different components of Veratrum alkaloids through metabonomic data analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155033. [PMID: 37647672 DOI: 10.1016/j.phymed.2023.155033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Hypertension is a serious global public health issue. Blood pressure (BP) is still not effectively controlled in about 20 - 30% of hypertensive patients. Therefore, it is imperative to develop new treatments for hypertension. Veratrum alkaloids were once used for the clinical treatment of hypertension, the mechanism of which is still unclear. It was gradually phased out due to adverse reactions. PURPOSE This study aimed to investigate the short-term and long-term hypotensive profiles of different components of Veratrum alkaloids in spontaneously hypertensive rats (SHRs) to unveil their mechanisms of action. RESULTS Total Veratrum alkaloid (V), component A (A), and veratramine (M) quickly decreased BP within 30 min of treatment, reduced renal and cardiovascular damage, and improved relevant biochemical indicators (nitric oxide [NO], endothelin-1 [ET-1], angiotensin II [Ang II)], noradrenaline [NE], etc) in SHRs to delay stroke occurrence. Thereinto, A exhibited excellent protective effects in cardiovascular disease. The metabolomic profiles of SHRs treated with V, A, and M were significantly different from those of SHRs treated with vehicle. Thirteen metabolites were identified as potential pharmacodynamic biomarkers. Through Kyoto Encyclopedia of Genes and Genomes analysis, V, A, and M-induced hypotension was mainly related to alterations in nicotinate and nicotinamide metabolism, GABAergic synapses, linoleic acid metabolism, ketone body synthesis and degradation, arginine and proline metabolism, and urea cycle, of which nicotinate and nicotinamide metabolism was the key metabolic pathway to relieve hypertension. CONCLUSION This work shows that A is an effective and promising antihypertensive agent for hypertension treatment to reduce BP and hypertensive target organ damage, which is mainly mediated through modulating nicotinate and nicotinamide metabolism, RAS, and NO-ET homeostasis.
Collapse
Affiliation(s)
- Zhaoli Zhou
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Juan Chen
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China; The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing 100141, China
| | - Yuzi Cui
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Rihong Zhao
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Wang
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Rui Yu
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tiantian Jin
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinggong Guo
- Center for Multi-Omics Research, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yue Cong
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
43
|
Heidari Nejad S, Azzam O, Schlaich MP. Dual Endothelin Antagonism with Aprocitentan as a Novel Therapeutic Approach for Resistant Hypertension. Curr Hypertens Rep 2023; 25:343-352. [PMID: 37566184 PMCID: PMC10505105 DOI: 10.1007/s11906-023-01259-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE OF REVIEW: Resistant hypertension (RH) defined as uncontrolled blood pressure despite the use of a combination of a renin-angiotensin system blocker, a calcium channel blocker, and a diuretic at maximally tolerated doses is associated with a substantially increased risk of cardiovascular and renal events. Despite targeting relevant pathophysiological pathways contributing to elevated blood pressure, approximately 10-15% of hypertensive patients remain above recommended blood pressure targets. Further optimization of blood pressure control is particularly challenging in patient populations who frequently present with RH such as elderly and patients with chronic kidney disease, due to the unfavorable safety profile of the recommended fourth-line therapy with mineralocorticoid receptor antagonists. This review explores the potential role of endothelin antagonists as an alternative fourth-line therapy. RECENT FINDINGS: Despite the well-described role of the endothelin pathway in the pathogenesis of hypertension, it is currently not targeted therapeutically. Recently however, main outcome data from the PRECISION study, a randomized placebo-controlled phase 3 trial, in patients with RH on guideline-recommended standardized single-pill background therapy convincingly demonstrated the safety and blood pressure-lowering efficacy of the dual endothelin antagonist Aprocitentan. Findings from the phase 3 PRECISION study could signify a turning point in the utilization of endothelin receptor antagonists as a standard treatment for patients with RH.
Collapse
Affiliation(s)
- Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Omar Azzam
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Department of Nephrology, Royal Perth Hospital, Perth, Australia.
- Department of Cardiology, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
44
|
Veenit V, Heerspink HJL, Ahlström C, Greasley PJ, Skritic S, van Zuydam N, Kohan DE, Hansen PBL, Menzies RI. The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan. Nephrol Dial Transplant 2023; 38:2289-2297. [PMID: 37102226 PMCID: PMC10539223 DOI: 10.1093/ndt/gfad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention. METHODS Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight. RESULTS Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P < .05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P = .44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P = .15). CONCLUSIONS Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.
Collapse
Affiliation(s)
- Vandana Veenit
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Ahlström
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skritic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden; Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalie van Zuydam
- Biostatistics Sweden, Data Science and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
45
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
46
|
Delahaye J, Stölting M, Geyer C, Vogl T, Eisenblätter M, Helfen A, Höltke C. Development, synthesis and evaluation of novel fluorescent Endothelin-B receptor probes. Eur J Med Chem 2023; 258:115568. [PMID: 37379676 DOI: 10.1016/j.ejmech.2023.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The endothelin (ET) signaling system is comprised of three endothelin peptides (ET-1, -2 and -3) and two corresponding endothelin-A and -B receptors (ETAR and ETBR), which belong to the G-protein coupled receptor (GPCR) superfamily. The endothelin axis, as this system is also referred to, contributes to the maintenance of vascular tone, functions as regulator of inflammation and proliferation and helps in balancing water homeostasis. In pathological settings, the ET axis is known to contribute to endothelial activation in cardiovascular diseases, to cell proliferation, chemoresistance and metastasis in cancer and to inflammation and fibrosis in renal disease. Antagonists of ETAR and ETBR, either subtype-specific compounds or substances with high affinity to both receptors, have been developed for more than 30 years. In the preclinical context, in vivo imaging of endothelin receptor expression has been utilized to assess ET-axis contribution to e.g. cancer or myocardial infarction. In this work, we present the development and synthesis of two novel ETBR-specific fluorescent probes, based on the available antagonists BQ788 and IRL2500 and their preliminary evaluation in a breast cancer context.
Collapse
Affiliation(s)
| | - Miriam Stölting
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Christiane Geyer
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Michel Eisenblätter
- Clinic for Radiology, University Hospital Münster, Münster, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany
| | - Anne Helfen
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Carsten Höltke
- Clinic for Radiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
47
|
Lin R, Junttila J, Piuhola J, Lepojärvi ES, Magga J, Kiviniemi AM, Perkiömäki J, Huikuri H, Ukkola O, Tulppo M, Kerkelä R. Endothelin-1 is associated with mortality that can be attenuated with high intensity statin therapy in patients with stable coronary artery disease. COMMUNICATIONS MEDICINE 2023; 3:87. [PMID: 37349571 PMCID: PMC10287654 DOI: 10.1038/s43856-023-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND All coronary artery disease (CAD) patients do not benefit equally of secondary prevention. Individualized intensity of drug therapy is currently implemented in guidelines for CAD and diabetes. Novel biomarkers are needed to identify patient subgroups potentially benefitting from individual therapy. This study aimed to investigate endothelin-1 (ET-1) as a biomarker for increased risk of adverse events and to evaluate if medication could alleviate the risks in patients with high ET-1. METHODS A prospective observational cohort study ARTEMIS included 1946 patients with angiographically documented CAD. Blood samples and baseline data were collected at enrollment and the patients were followed for 11 years. Multivariable Cox regression was used to assess the association between circulating ET-1 level and all-cause mortality, cardiovascular (CV) death, non-CV death and sudden cardiac death (SCD). RESULTS Here we show an association of circulating ET-1 level with higher risk for all-cause mortality (HR: 2.06; 95% CI 1.5-2.83), CV death, non-CV death and SCD in patients with CAD. Importantly, high intensity statin therapy reduces the risk for all-cause mortality (adjusted HR: 0.05; 95% CI 0.01-0.38) and CV death (adjusted HR: 0.06; 95% CI 0.01-0.44) in patients with high ET-1, but not in patients with low ET-1. High intensity statin therapy does not associate with reduction of risk for non-CV death or SCD. CONCLUSIONS Our data suggests a prognostic value for high circulating ET-1 in patients with stable CAD. High intensity statin therapy associates with reduction of risk for all-cause mortality and CV death in CAD patients with high ET-1.
Collapse
Affiliation(s)
- Ruizhu Lin
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - E Samuli Lepojärvi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti M Kiviniemi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Juha Perkiömäki
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Heikki Huikuri
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Olavi Ukkola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland.
- Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
48
|
Liu R, Yuan T, Wang R, Gong D, Wang S, Du G, Fang L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int J Mol Sci 2023; 24:10206. [PMID: 37373355 DOI: 10.3390/ijms241210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
49
|
Kodati B, Zhang W, He S, Pham JH, Beall KJ, Swanger ZE, Krishnamoorthy VR, Harris PE, Hall T, Tran AV, Chaphalkar RM, Chavala SH, Stankowska DL, Krishnamoorthy RR. The endothelin receptor antagonist macitentan ameliorates endothelin-mediated vasoconstriction and promotes the survival of retinal ganglion cells in rats. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1185755. [PMID: 38464735 PMCID: PMC10921982 DOI: 10.3389/fopht.2023.1185755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Glaucoma is a chronic and progressive eye disease, commonly associated with elevated intraocular pressure (IOP) and characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The pathological changes in glaucoma are triggered by multiple mechanisms and both mechanical effects and vascular factors are thought to contribute to the etiology of glaucoma. Various studies have shown that endothelin-1 (ET-1), a vasoactive peptide, acting through its G protein coupled receptors, ETA and ETB, plays a pathophysiologic role in glaucoma. However, the mechanisms by which ET-1 contribute to neurodegeneration remain to be completely understood. Our laboratory and others demonstrated that macitentan (MAC), a pan endothelin receptor antagonist, has neuroprotective effects in rodent models of IOP elevation. The current study aimed to determine if oral administration of a dual endothelin antagonist, macitentan, could promote neuroprotection in an acute model of intravitreal administration of ET-1. We demonstrate that vasoconstriction following the intravitreal administration of ET-1 was attenuated by dietary administration of the ETA/ETB dual receptor antagonist, macitentan (5 mg/kg body weight) in retired breeder Brown Norway rats. ET-1 intravitreal injection produced a 40% loss of RGCs, which was significantly lower in macitentan-treated rats. We also evaluated the expression levels of glial fibrillary acidic protein (GFAP) at 24 h and 7 days post intravitreal administration of ET-1 in Brown Norway rats as well as following ET-1 treatment in cultured human optic nerve head astrocytes. We observed that at the 24 h time point the expression levels of GFAP was upregulated (indicative of glial activation) following intravitreal ET-1 administration in both retina and optic nerve head regions. However, following macitentan administration for 7 days after intravitreal ET-1 administration, we observed an upregulation of GFAP expression, compared to untreated rats injected intravitreally with ET-1 alone. Macitentan treatment in ET-1 administered rats showed protection of RGC somas but was not able to preserve axonal integrity and functionality. The endothelin receptor antagonist, macitentan, has neuroprotective effects in the retinas of Brown Norway rats acting through different mechanisms, including enhancement of RGC survival and reduction of ET-1 mediated vasoconstriction.
Collapse
Affiliation(s)
- Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Wei Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Shaoqing He
- Department of Pathology, Children’s Health at Dallas, Dallas, TX, United States
| | - Jennifer H. Pham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kallen J. Beall
- Department of General Surgery, Honor Health, Phoenix, AZ, United States
| | - Zoe E. Swanger
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | | - Payton E. Harris
- Department of Graduate Medical Education, Medical City, Fort Worth, TX, United States
| | - Trent Hall
- Williams College, Williamstown, MA, United States
| | - Ashley V. Tran
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, United States
| | - Renuka M. Chaphalkar
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Sai H. Chavala
- Department of Surgery, Burnett School of Medicine at Texas Christian University (TCU), Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
50
|
Zhang S, Li X, Liu S, Zhang W, Li M, Qiao C. Research progress on the role of ET-1 in diabetic kidney disease. J Cell Physiol 2023; 238:1183-1192. [PMID: 37063089 DOI: 10.1002/jcp.31023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Diabetic kidney disease (DKD) is one of the common complications of diabetes mellitus, which usually progresses to end-stage renal disease and causes great damage to the health of patients. Endothelin-1 (ET-1), a molecule closely associated with the progression of DKD, has increased expression in response to high glucose stimulation and is involved in hemodynamic changes, inflammation, glomerular and tubular dysfunction in the kidney, causing an increase in proteinuria and a decrease in glomerular filtration function, ultimately leading to glomerulosclerosis and renal failure. This paper aims to review the molecular level changes, regulatory mechanisms, and mechanisms of action of ET-1 under DKD, clinical trials of ET-1 receptor antagonists in recent years and current problems, to provide basic information and new research directions and ideas for the treatment of DKD and ET-1-related research.
Collapse
Affiliation(s)
- Shenghao Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaodan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanting Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meinuo Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|