1
|
Qian Y, Jia Y. Identification of Key Efferocytosis-Related Genes and Mechanisms in Diabetic Retinopathy. Mol Biotechnol 2025; 67:2785-2797. [PMID: 39085562 DOI: 10.1007/s12033-024-01239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to explore the key efferocytosis-related genes in diabetic retinopathy (DR) and their regulatory mechanisms. Public DR-related gene expression datasets, GSE160306 (training) and GSE60436 (validation), were downloaded. Differentially expressed efferocytosis-related genes (DEERGs) were analyzed using differential expression analysis and weighted gene co-expression network analysis. Functional enrichment analysis was conducted. Moreover, efferocytosis-related signature genes were identified using machine learning analysis, and their expression levels and diagnostic value were analyzed. Furthermore, nomograms were constructed; immune cell infiltration was analyzed; and gene set enrichment analysis, transcriptional regulation analysis, and small-molecule drug (SMD) prediction of efferocytosis-related signature genes were performed. In total, 36 DEERGs were identified in DR, and were markedly enriched in multiple functions, such as visual system development. Through further machine learning analysis, two efferocytosis-related signature genes, Ferritin Light Chain (FTL) and Fc Gamma Binding Protein (FCGBP), were identified, and were found to be upregulated in DR samples and showed high diagnostic performance for DR. A nomogram constructed using FTL and FCGBP accurately predicted the risk of DR. Moreover, the level of infiltration of immature B cells was positively correlated with FTL and FCGBP expression levels. Multiple transcription factors (TFs), such as CCCTC-Binding Factor (CTCF) and KLF Transcription Factor 9 (KLF9), were found to interact with both FTL and FCGBP. In addition, FTL can be targeted by miRNAs, such as miR-22-3p, and FCGBP can be targeted by miR-7973. In addition, both FTL and FCGBP can be targeted by SMDs, such as bisphenol A. Key efferocytosis-related genes, such as FTL and FCGBP, may promote DR development. Detecting or targeting FTL and FCGBP may aid in the prevention, diagnosis, and treatment of DR.
Collapse
Affiliation(s)
- Yu Qian
- Department of Ophthalmology, The First People's Hospital of Zhaoqing, 9 Donggang East Road, Zhaoqing, 526060, Guangdong, China.
| | - Yanwen Jia
- Department of Ophthalmology, Changzhou Second People's Hospital Affiliated Nanjing Medical University, Changzhou, 213004, Jiangsu, China
| |
Collapse
|
2
|
Wang YF, Zhu XT, Hu ZP. Decreased plasma lipoxin A4, resolvin D1, protectin D1 are correlated with the complexity and prognosis of coronary heart disease: A retrospective cohort study. Prostaglandins Other Lipid Mediat 2025; 178:106990. [PMID: 40164347 DOI: 10.1016/j.prostaglandins.2025.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to assess the predictive capacity of specialized pro-resolving mediators (SPMs) regarding the complexity and prognosis of coronary heart disease (CHD). Total of 602 CHD patients were included in this study and categorized into low-risk, medium-risk, and high-risk groups based on the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score. Follow-up was conducted for two years, during which patients were dichotomized into poor and good prognosis groups. Additionally, twenty healthy controls were incorporated. Plasma concentrations of lipoxin A4 (LXA4), resolvin D1 (RvD1), protectin D1 (PD1), C-reactive protein (CRP), interleukin-6 (IL-6), and IL-10 were quantified. Plasma LXA4, RvD1, PD1, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 exhibited a gradual decrease across control, low-risk, medium-risk, and high-risk groups and exhibited a negative correlation with the SYNTAX score. Spearman's correlation analysis revealed negative correlations between plasma LXA4, RvD1, PD1, and both CRP and IL-6, and positive correlations with IL-10. Multiple linear regression models demonstrated negative associations between plasma LXA4, RvD1, PD1, and SYNTAX score. Moreover, both univariate and multivariate binary logistic regression analyses identified plasma LXA4, RvD1, and PD1 as protective factors against medium/high-risk SYNTAX score categorization. In the poor prognosis group, plasma PD1 was reduced at short-term follow-up, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were reduced at long-term follow-up. Plasma LXA4, RvD1, and PD1 demonstrated negative correlations with CHD complexity and potentially served as protective factors against CHD. Plasma PD1 provided predictive value for short-term prognosis, while the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were indicative for long-term prognosis.
Collapse
Affiliation(s)
- Yun-Fei Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xue-Tao Zhu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ze-Ping Hu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
3
|
Chen H, Zhang Y, Aikebaier M, Du Y, Liu Y, Zha Q, Zheng L, Shan S, Wang Y, Chen J, Li Y, Yang K, Yang Y, Cui W. Decursin-Loaded Nanovesicles Target Macrophages Driven by the Pathological Process of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417489. [PMID: 40285666 PMCID: PMC12165033 DOI: 10.1002/advs.202417489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Atherosclerosis (AS) is a major pathological factor contributing to the mortality associated with ischemic heart disease and is driven primarily by macrophage-mediated lipid accumulation and inflammatory processes. Conventional cardiovascular pharmacotherapies address these pathological mechanisms but often show limited efficacy, highlighting the need for innovative agents capable of effectively reducing lipid accumulation and inflammation with minimal toxicity. In this study, decursin, a monomer derived from traditional Chinese medicine, is shown to inhibit both lipid accumulation and inflammatory responses in macrophages through direct interaction with protein kinase Cδ (PKCδ), resulting in low cytotoxicity in vitro and negligible toxicity in vivo. To address the short half-life of decursin, a targeted cascade drug delivery system (ALD@EM), which is specifically designed to target AS pathophysiology, is developed. This system employs ICAM-1 and VCAM-1 antibodies for plaque localization and incorporates low-density lipoproteins (LDLs) to facilitate chemotaxis to lesion sites, with an inner layer of apoptotic endothelial cell membranes to increase macrophage internalization and drug release. As a result, ALD@EM nanovesicles significantly increased the accumulation and therapeutic efficacy of decursin within plaques, substantially reducing lipid deposition and plaque inflammation, thereby offering a novel strategy for targeted AS treatment.
Collapse
Affiliation(s)
- Hui Chen
- Department of EndocrinologyThe Affiliated Hospital of Yunnan UniversityKunmingYunnan650021China
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yifeng Zhang
- Department of Cardiovascular MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Mirenuer Aikebaier
- Department of Cardiovascular MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yan Liu
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Qing Zha
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Lan Zheng
- Department of Traditional Chinese MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Shuyao Shan
- Department of Cardiovascular MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanping Wang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Jiawei Chen
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yiping Li
- Department of EndocrinologyThe Affiliated Hospital of Yunnan UniversityKunmingYunnan650021China
| | - Ke Yang
- Department of Cardiovascular MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ying Yang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan UniversityKunmingYunnan650021China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
4
|
Ghorbanzadeh S, Khojini JY, Abouali R, Alimardan S, Zahedi M, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Clearing the Path: Exploring Apoptotic Cell Clearance in Inflammatory and Autoimmune Disorders for Therapeutic Advancements. Mol Biotechnol 2025; 67:2223-2238. [PMID: 38935260 DOI: 10.1007/s12033-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory and autoimmune disorders, characterized by dysregulated immune responses leading to tissue damage and chronic inflammation, present significant health challenges. This review uniquely focuses on efferocytosis-the phagocyte-mediated clearance of apoptotic cells-and its pivotal role in these disorders. We delve into the intricate mechanisms of efferocytosis' four stages and their implications in disease pathogenesis, distinguishing our study from previous literature. Our findings highlight impaired efferocytosis in conditions like atherosclerosis and asthma, proposing its targeting as a novel therapeutic strategy. We discuss the therapeutic potential of efferocytosis in modulating immune responses and resolving inflammation, offering a new perspective in treating inflammatory disorders.
Collapse
Affiliation(s)
- Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran
| | - Reza Abouali
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran.
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Anghelache M, Voicu G, Anton R, Safciuc F, Boteanu D, Deleanu M, Turtoi M, Simionescu M, Manduteanu I, Calin M. Inflammation resolution-based treatment of atherosclerosis using biomimetic nanocarriers loaded with specialized pro-resolving lipid mediators. Mater Today Bio 2025; 32:101733. [PMID: 40255582 PMCID: PMC12008601 DOI: 10.1016/j.mtbio.2025.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Recent studies have shown that chronic inflammation in atherosclerotic (ATH) lesions is due to an inability to resolve the inflammatory response. We evaluated the therapeutic potential of specialized pro-resolving mediators (SPMs) incorporated into biomimetic lipid nanoemulsions covered with macrophage membranes (Bio-LN/SPMs) to enhance their stability, targeting, and bioactivity in resolving atherosclerotic plaque inflammation. We utilized both in vitro and in vivo experimental models to test this hypothesis. In vitro, we found that Bio-LN/SPMs significantly reduced the inflammatory markers VCAM-1, MCP-1 in TNF-α-activated endothelial and smooth muscle cells, and iNOS, and NLRP3 in LPS-activated macrophages. In contrast, free SPMs exhibited a more modest effect. In vivo, the i.v. administration of Bio-LN/SPMs in ApoE-deficient mice with progressive atherosclerotic lesions developed after administration for 4 and 8 weeks of a high-fat diet, reduced plasma triglycerides, improved renal function, and decreased plasma proteins associated with complement activation and inflammation (i.e. C4d, C5b-9, IL-6, and MCP-1) to a greater extent than other treatment groups. Bio-LN/SPMs also affected circulated monocyte subpopulations by increasing the percentage of anti-inflammatory Ly6Clow monocytes and reducing that of pro-inflammatory Ly6Chigh monocytes. Additionally, they promoted the transition of macrophages in atherosclerotic plaques to a reparative M2 phenotype. They decreased the production of TNF-α, IL-1β, and IL-6 cytokines, along with lipid deposits in the aorta of ApoE-deficient mice. These findings demonstrate the improved therapeutic efficacy of Bio-LN/SPMs compared to unincorporated SPMs and standard nanoemulsions (LN/SPMs), emphasizing their potential as a novel approach for treating atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ruxandra Anton
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Delia Boteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| |
Collapse
|
6
|
Wang Y, Dou W, Qian X, Chen H, Zhang Y, Yang L, Wu Y, Xu X. Advancements in the study of short-chain fatty acids and their therapeutic effects on atherosclerosis. Life Sci 2025; 369:123528. [PMID: 40049368 DOI: 10.1016/j.lfs.2025.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis (AS) remains a leading cause of cardiovascular disease and mortality globally. This chronic condition is characterized by inflammation, lipid accumulation, and the deposition of cellular components within arterial walls. Emerging evidence has highlighted the multifaceted therapeutic potential of short-chain fatty acids (SCFAs) in mitigating AS progression. SCFAs have demonstrated anti-inflammatory properties and the ability to regulate immune responses, metabolic pathways, vascular integrity, and intestinal barrier function in animal models of AS. Consequently, SCFAs have garnered significant attention as a promising approach for the prevention and treatment of AS. However, further clinical trials and studies are necessary to fully elucidate the underlying mechanisms and effects of SCFAs. Additionally, different types of SCFAs may exert distinct impacts, necessitating more in-depth investigation into their specific roles and mechanisms. This review provides an overview of the diverse cellular mechanisms contributing to AS formation, as well as a discussion of the significance of SCFAs in AS pathogenesis and their multifaceted therapeutic potential. Nonetheless, additional research is warranted to comprehensively understand and harness the potential of various SCFAs in the context of AS.
Collapse
Affiliation(s)
- Yongsen Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China; Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China; Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Wei Dou
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xin Qian
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Hao Chen
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Yi Zhang
- Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Liu Yang
- Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xiongfei Xu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
7
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Joy S, Prasannan A, Venkatachalam K, Binesh A. Molecular Mechanism of Notch Signaling and Macrophages in Deep Vein Thrombosis: A Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01761-y. [PMID: 40279070 DOI: 10.1007/s12013-025-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Deep vein thrombosis is an acute medical condition, and the molecular basis of this etiology will be crucial in the discovery of more advanced therapies. This review has focused at the Notch signaling pathway, which plays a significant role in different physiological activities such as homeostasis, development, and disease. Also, reveal macrophage function in inflammation and thrombosis in depth, with a focus on their polarization and interaction with the endothelium during thrombosis. In this context, some essential cellular and molecular mechanisms relevant to thrombus pathogenesis, DVT aetiology and risk factors, as well as elements and composition of the Notch pathway, are covered in the end, with a focus on elements that distinguish canonical from non-canonical signaling pathways and their biological relevance to macrophages. Notch signaling has been shown to influence macrophage activation and polarization, influencing their function in thrombosis breakdown and resolution. This interplay between Notch signaling and macrophages may reveal possible treatment targets for DVT. Discuss the physiological role of Notch signaling in vascular biology, as well as how it contributes to thrombosis. The difficulties in implementing these discoveries in clinical practice are discussed, along with the status of ongoing clinical trials and experimental investigations focussing on macrophage-directed treatments and Notch inhibitors. These molecular insights synthesis provides a basis for the creation of novel strategies for the efficient management of DVT.
Collapse
Affiliation(s)
- Sisira Joy
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Pilot T, Solier S, Jalil A, Magnani C, Vanden Berghe T, Vandenabeele P, Masson D, Solary E, Thomas C. Macrophage caspase-8 inhibition accelerates necrotic core expansion in atheroma plaque in mice. Front Immunol 2025; 16:1513637. [PMID: 40264785 PMCID: PMC12011591 DOI: 10.3389/fimmu.2025.1513637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background and aims Cell death plays a central role in atheroma plaque progression and aggravation. This study investigates the role of caspase-8 in regulating macrophage cell death modalities, specifically apoptosis and necroptosis, within atheroma plaques. Methods Bone marrow from caspase-8-deficient (Casp8komac ) and cohoused wildtype littermates were transplanted in atherosclerosis-prone Ldlr-/- recipient mice fed with a proatherogenic diet. Aortic plaque development, necrotic core formation, and cell death were analyzed through histological and biochemical assays. In vitro investigation of macrophages exposed to atherogenic stimuli assessed the effects of caspase-8 inhibition on apoptotic and necroptotic pathways. Results Despite lower plasma cholesterol levels and reduced number of inflammatory monocytes, caspase-8-deficient mice exhibited more pronounced atherosclerotic lesions with enlarged necrotic cores and an increased number of dead cells. In vitro, in macrophages exposed to oxidized LDL or oxysterols, the inhibition of caspase-8 revealed a shift from apoptosis to necroptosis as confirmed by increased phosphorylation of MLKL along with decreased cleavage of caspase-3 and -7. Discussion and perspectives The study highlights the role of caspase-8 in atherosclerosis in tuning the balance between apoptosis and necroptosis. Caspase-8 inhibition leads to a switch towards necroptosis and accumulation of dead cell corpses that contributes to enhanced plaque severity. These findings suggest that reducing caspase-8-regulated necroptosis and necrosis in macrophages could represent a therapeutic strategy to stabilize plaques and reduce cardiovascular risk.
Collapse
Affiliation(s)
- Thomas Pilot
- Université de Bourgogne, Center for Translational and Molecular Medicine (CTM) Unité Mixte de Recherche (UMR) 1231, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1231, Dijon, France
- LabEx LipSTIC, Dijon, France
| | | | - Antoine Jalil
- Université de Bourgogne, Center for Translational and Molecular Medicine (CTM) Unité Mixte de Recherche (UMR) 1231, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1231, Dijon, France
- LabEx LipSTIC, Dijon, France
| | - Charlène Magnani
- Université de Bourgogne, Center for Translational and Molecular Medicine (CTM) Unité Mixte de Recherche (UMR) 1231, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1231, Dijon, France
- LabEx LipSTIC, Dijon, France
| | - Tom Vanden Berghe
- Inflammation Research Center (IRC), Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, University of Ghent, Ghent, Belgium
- Department of Biomedical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center (IRC), Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, University of Ghent, Ghent, Belgium
| | - David Masson
- Université de Bourgogne, Center for Translational and Molecular Medicine (CTM) Unité Mixte de Recherche (UMR) 1231, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1231, Dijon, France
- LabEx LipSTIC, Dijon, France
- Centre Hospitalier Régional Universitaire (CHRU) Dijon Bourgogne, Laboratory of Clinical Chemistry, Dijon, France
| | - Eric Solary
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Charles Thomas
- Université de Bourgogne, Center for Translational and Molecular Medicine (CTM) Unité Mixte de Recherche (UMR) 1231, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1231, Dijon, France
- LabEx LipSTIC, Dijon, France
| |
Collapse
|
10
|
Kanuri B, Maremanda KP, Chattopadhyay D, Essop MF, Lee MKS, Murphy AJ, Nagareddy PR. Redefining Macrophage Heterogeneity in Atherosclerosis: A Focus on Possible Therapeutic Implications. Compr Physiol 2025; 15:e70008. [PMID: 40108774 DOI: 10.1002/cph4.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Atherosclerosis is a lipid disorder where modified lipids (especially oxidized LDL) induce macrophage foam cell formation in the aorta. Its pathogenesis involves a continuum of persistent inflammation accompanied by dysregulated anti-inflammatory responses. Changes in the immune cell status due to differences in the lesional microenvironment are crucial in terms of plaque development, its progression, and plaque rupture. Ly6Chi monocytes generated through both medullary and extramedullary cascades act as one of the major sources of plaque macrophages and thereby foam cells. Both monocytes and monocyte-derived macrophages also participate in pathological events in atherosclerosis-associated multiple organ systems through inter-organ communications. For years, macrophage phenotypes M1 and M2 have been shown to perpetuate inflammatory and resolution responses; nevertheless, such a dualistic classification is too simplistic and contains severe drawbacks. As the lesion microenvironment is enriched with multiple mediators that possess the ability to activate macrophages to diverse phenotypes, it is obvious that such cells should demonstrate substantial heterogeneity. Considerable research in this regard has indicated the presence of additional macrophage phenotypes that are exclusive to atherosclerotic plaques, namely Mox, M4, Mhem, and M(Hb) type. Furthermore, although the concept of macrophage clusters has come to the fore in recent years with the evolution of high-dimensional techniques, classifications based on such 'OMICS' approaches require extensive functional validation as well as metabolic phenotyping. Bearing this in mind, the current review provides an overview of the status of different macrophage populations and their role during atherosclerosis and also outlines possible therapeutic implications.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Krishna P Maremanda
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Dipanjan Chattopadhyay
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Man Kit Sam Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Molnar D, Björnson E, Hjelmgren O, Adiels M, Bäckhed F, Bergström G. Coronary artery calcifications are not associated with epicardial adipose tissue volume and attenuation on computed tomography in 1,945 individuals with various degrees of glucose disorders. IJC HEART & VASCULATURE 2025; 56:101613. [PMID: 39906627 PMCID: PMC11791301 DOI: 10.1016/j.ijcha.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/06/2025]
Abstract
Background The quantification of coronary artery calcifications (CAC) is a mainstay in radiological assessment of coronary atherosclerosis and cardiovascular risk, but reflect advanced, possibly late-stage changes in the arteries. Increased volume and changes in attenuation of the epicardial adipose tissue (EAT) on computed tomography (CT) have been linked to adverse cardiovascular events, and these changes in the EAT might reflect earlier stages of the processes leading to clinically manifest atherosclerosis. The relationship between EAT and CAC is subject to a knowledge gap, especially in individuals with no previously known coronary artery disease. Methods Fully automated EAT analysis with an artificial intelligence-based model was performed in a population sample enriched for pre-diabetics, comprising a total of 1,945 individuals aged 50-64 years, where non-contrast CT images, anthropometric and laboratory data was available on established cardiovascular risk factors. Uni- and multivariable linear regression, gradient-boosting and correlation analyses were performed to determine the explanatory value of EAT volume and attenuation data with regards to CAC data. Results Neither EAT volume nor EAT attenuation was associated with the presence or severity of CAC, when adjusting for established cardiovascular risk factors, and had only weak explanatory value in gradient-boosting and correlation analyses. Age was the strongest predictor of CAC in both sexes. Conclusion No independent association was found between CAC and total EAT volume or attenuation. Importantly, these findings do not rule out early stage or local effects on coronary atherosclerosis from the EAT immediately surrounding the coronary arteries.
Collapse
Affiliation(s)
- David Molnar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Hjelmgren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Pediatric Heart Centre, Queen Silvia Childreńs Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
12
|
Liang X, Tian S, Zhang H, Sun S, Zhang P, Li J, Li Y, Zhang Y, Liu Z. Efferocytosis: A new star of atherosclerotic plaques reversal. Int Immunopharmacol 2025; 146:113904. [PMID: 39724733 DOI: 10.1016/j.intimp.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Efferocytosis is considered the key to eliminate apoptotic cells (ACs) under physiological and pathological conditions in vivo, mainly through different types of macrophages to achieve this process. Especially, tissue-resident macrophages (TRMs) are very significant for inflammation regression and maintenance of homeostasis in vivo. Abnormal efferocytosis will lead to the accumulation of ACs and the release of a variety of pro-inflammatory factors, which mediates the occurrence of many inflammatory diseases, including atherosclerosis (AS). AS is a chronic inflammatory vascular disease with the participation of the immune system. Defective efferocytosis will accelerate the progress of AS to a certain extent. Therefore, it is of great significance to understand the mechanism of efferocytosis and realize the prevention and treatment of AS through efferocytosis. In this review, we will briefly describe the specific process of efferocytosis, deeply discuss the possible molecular mechanism of impaired efferocytosis promoting the development of AS, and summarize the ways to prevent and treat AS through efferocytosis intervention therapy.
Collapse
Affiliation(s)
- Xiangyu Liang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shuoqi Tian
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Han Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shusen Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Peixiang Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Jiameng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Yong Li
- Beijing Yongkang Nian Health Technology Co., Ltd., Beijing, China.
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| |
Collapse
|
13
|
Wang Z, Li X, Moura AK, Hu JZ, Wang YT, Zhang Y. Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target. Cells 2025; 14:183. [PMID: 39936975 PMCID: PMC11816498 DOI: 10.3390/cells14030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy-lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| |
Collapse
|
14
|
Zhang J, Wang Z, Liao Y, Tong J, Gao R, Zeng Z, Bai Y, Wei Y, Guo X. Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis. Acta Biomater 2025; 192:377-393. [PMID: 39608658 DOI: 10.1016/j.actbio.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Plaque rupture in atherosclerosis (AS) is a major cause of acute cardiovascular events. Macrophage-induced inflammatory responses and accumulation of excess reactive oxygen species (ROS) primarily induce unstable plaques. Therefore, targeting ROS clearance and functional modulation of macrophages are clinically crucial for improving plaque stability and inhibiting AS progression. Here, we constructed a bionic nano-delivery platform, PBP@siR@PM, using platelet membranes (PM) coated with black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. Meanwhile, PM-coated BPNSs (PBP@siR@PM) were used to deliver small interfering RNA silencing Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) into macrophages. Furthermore, macrophage efferocytosis was restored by inhibiting CaMKIIγ and increasing the expression of MerTK, a cytosolic receptor, thus promoting the clearance of apoptotic cells from plaques. This study demonstrated that intraplaque macrophage-targeted therapy using the bionic nano-delivery platform PBP@siR@PM effectively removed excess ROS from macrophages, promoted efferocytosis, cleared apoptotic cells in plaques, improved plaque stability, and largely inhibited AS progression in ApoE-/- mice after high fat diet. In summary, this study proposes a therapeutic strategy for AS and highlights the outstanding therapeutic potential of biomimetic nanomaterials in this type of chronic inflammatory disease. STATEMENT OF SIGNIFICANCE: Rupture of atherosclerotic unstable plaques is a major cause of acute cardiovascular events. Macrophage-induced chronic inflammation and oxidative stress due to overloaded ROS are major contributors to plaque rupture. In this study, we focused on the improvement of macrophage efferocytosis within the plaque for the effective treatment of atherosclerosis. A bionic nano-delivery platform was constructed using platelet membranes (PM) coated black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. In conclusion, intraplaque macrophage-targeted therapy based on the bionic nano-delivery platform PBP@siR@PM effectively scavenges overloaded ROS in macrophages, promotes efferocytosis, removes apoptotic cells from plaques, and improves plaque stability, which significantly inhibits the progression of atherosclerosis in ApoE-/- mice after a high-fat diet.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglin Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029 Beijing, China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Fang F, Wang E, Fang M, Yue H, Yang H, Liu X. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Theranostics 2025; 15:1570-1588. [PMID: 39816684 PMCID: PMC11729549 DOI: 10.7150/thno.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies. This review provides an overview of the pathological characteristics of vulnerable plaques, emphasizes macrophages' critical role, and discusses advanced strategies for their diagnosis and treatment. It aims to present a comprehensive macrophage-centered perspective for addressing vulnerable plaques in atherosclerosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengjia Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hanqiao Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Mao J, Wu C, Zheng L, Li Y, Yang R, Yuan P, Jiang J, Li C, Zhou X. Advances in stimulus-responsive nanomedicine for treatment and diagnosis of atherosclerosis. Colloids Surf B Biointerfaces 2025; 245:114298. [PMID: 39378703 DOI: 10.1016/j.colsurfb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Atherosclerosis (AS), an inflammatory cardiovascular disease driven by lipid deposition, presents global prevalence with high mortality. Effective anti-inflammatory or lipid removal is a promising strategy. However, current conventional drug delivery methods may face challenges in targeting disease sites and are deficient in the treatment of AS because of the nonspecific tissue distribution and uncontrollable release of the drug. In contrast, stimulus-responsive nanodrug delivery systems (NDDSs) can respond to stimulation and achieve controlled drug release rates at specific disease sites owing to the abnormal pathological microenvironment in plaques with low pH, excessive reactive oxygen species (ROS) and enzymes, and high shear stress. As a consequence, the efficacy of treatment is improved, and adverse reactions are reduced. On the other hand, NDDSs can combine exogenous stimulus responses (photothermal, ultrasound, etc.) to precisely control their function in time and space. This review for the first time focuses on the application of stimulus-responsive NDDSs in the treatment and diagnosis of AS in the last five years. In addition, its pivotal challenges and prospects are emphasized, aiming to facilitate its application for AS.
Collapse
Affiliation(s)
- Jingying Mao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lixin Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaoyao Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ronghao Yang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
17
|
Wang M, Zhou S, Hu Y, Tong W, Zhou H, Ma M, Cai X, Zhang Z, Zhang L, Chen Y. Macrophages overexpressing interleukin-10 target and prevent atherosclerosis: Regression of plaque formation and reduction in necrotic core. Bioeng Transl Med 2025; 10:e10717. [PMID: 39801756 PMCID: PMC11711221 DOI: 10.1002/btm2.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 01/16/2025] Open
Abstract
Atherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte-derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)-10 is widely acknowledged for its anti-inflammatory effects, systemic administration of IL-10 has limitations due to its short half-life and significant systemic side effects. In this study, we aimed to investigate the effectiveness of an approach designed to overexpress IL-10 in macrophages and subsequently introduce these genetically modified cells into ApoE-/- mice to promote atherosclerosis regression. We engineered RAW264.7 cells to overexpress IL-10 (referred to as IL-10M) using lentivirus vectors. The IL-10M exhibited robust IL-10 secretion, maintained phagocytic function, improved mitochondrial membrane potentials, reduced superoxide production and showed a tendency toward the M2 phenotype when exposed to inflammatory stimuli. IL-10M can selectively target plaques in ApoE-/- mice and has the potential to reduce plaque area and necrotic core at both early and late stages of plaque progression. Moreover, there was a significant reduction in MMP9, a biomarker associated with plaque rupture, in IL-10M-treated plaques from both the early and late intervention groups. Additionally, the administration of IL-10M showed no obvious side effects. This study serves as proof that cell therapy based on anti-inflammatory macrophages might be a promising strategy for the intervention of atherosclerosis.
Collapse
Affiliation(s)
- Mingyi Wang
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Shanshan Zhou
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| | - Yingyun Hu
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- The Medical School of Nankai UniversityTianjinChina
| | - Wei Tong
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| | - Hao Zhou
- Department of CardiologyNo. 966 Hospital of Joint Logisties ForceDandongChina
| | - Mingrui Ma
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Xingxuan Cai
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- The Second Medical School of Southern Medical UniversityGuangzhouChina
| | - Zhengbin Zhang
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Luo Zhang
- Medical School of Chinese PLABeijingChina
- Research Center of BioengineeringThe Medical Innovation Research Division of PLA General HospitalBeijingChina
| | - Yundai Chen
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
18
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A, Hashempur MH. Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov 2024; 10:493. [PMID: 39695119 DOI: 10.1038/s41420-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells, is a critical process that maintains tissue homeostasis and immune regulation. Defective efferocytosis is linked to the development of chronic inflammatory conditions, including atherosclerosis, neurological disorders, and autoimmune diseases. Moreover, the interplay between autophagy and efferocytosis is crucial for inflammation control, as autophagy enhances the ability of phagocytic cells. Efficient efferocytosis, in turn, regulates autophagic pathways, fostering a balanced cellular environment. Dysregulation of this balance can contribute to the pathogenesis of various disorders. Phytochemicals, bioactive compounds found in plants, have emerged as promising therapeutic agents owing to their diverse pharmacological properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. This review aims to highlight the pivotal role of phytochemicals in enhancing efferocytosis and autophagy and explore their potential in the prevention and treatment of related disorders. This study examines how phytochemicals influence key aspects of efferocytosis, including phagocytic cell activation, macrophage polarization, and autophagy induction. The therapeutic potential of phytochemicals in atherosclerosis and neurological diseases is highlighted, emphasizing their ability to enhance efferocytosis and autophagy and reduce inflammation. This review also discusses innovative approaches, such as nanoformulations and combination therapies to improve the targeting and bioavailability of phytochemicals. Ultimately, this study inspires further research and clinical applications in phytochemical-mediated efferocytosis enhancement for managing chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
20
|
Lin A, Miano JM, Fisher EA, Misra A. Chronic inflammation and vascular cell plasticity in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1408-1423. [PMID: 39653823 DOI: 10.1038/s44161-024-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ashish Misra
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Kim H, Shin HY, Park M, Ahn K, Kim SJ, An SH. Exosome-Like Vesicles from Lithospermum erythrorhizon Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation. J Microbiol Biotechnol 2024; 35:e2410022. [PMID: 39848679 PMCID: PMC11813354 DOI: 10.4014/jmb.2410.10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
Lithospermum erythrorhizon (LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing. In vitro studies using normal human dermal fibroblasts (NHDFs) demonstrated that LELVs significantly improved cell viability, proliferation, and wound closure, while also enhancing collagen type I synthesis, indicating anti-inflammatory and regenerative properties. For in vivo analysis, LELVs were applied to lipopolysaccharide (LPS)-induced wounds in mice, where wound healing progression was monitored over 14 days. LELV-treated wounds exhibited accelerated re-epithelialization, reduced inflammation, and improved tissue remodeling, with histological analysis revealing enhanced collagen deposition and reduced inflammatory cell infiltration. These results highlight the ability of LELVs to modulate the inflammatory response and promote wound healing. With their natural origin, low immunogenicity, and ease of production, LELVs represent a promising alternative to synthetic treatments for inflammation-associated skin injuries and hold significant potential for clinical applications in wound care.
Collapse
Affiliation(s)
- Hyeonoh Kim
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Hyun-young Shin
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Mira Park
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Keunsun Ahn
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Seung-Jin Kim
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
22
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Prabhu GS, Concessao PL. Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review. Arch Physiol Biochem 2024:1-9. [PMID: 39540905 DOI: 10.1080/13813455.2024.2426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
CONTENT The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct. OBJECTIVE This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline. METHODS The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review. RESULTS AND DISCUSSION The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration. CONCLUSION Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.
Collapse
Affiliation(s)
- Gayathri S Prabhu
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Lavina Concessao
- Division of Physiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
24
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Cai GF, Chen SW, Huang JK, Lin SR, Huang GH, Lin CH. Decoding marker genes and immune landscape of unstable carotid plaques from cellular senescence. Sci Rep 2024; 14:26196. [PMID: 39478143 PMCID: PMC11525637 DOI: 10.1038/s41598-024-78251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024] Open
Abstract
Recently, cellular senescence-induced unstable carotid plaques have gained increasing attention. In this study, we utilized bioinformatics and machine learning methods to investigate the correlation between cellular senescence and the pathological mechanisms of unstable carotid plaques. Our aim was to elucidate the causes of unstable carotid plaque progression and identify new therapeutic strategies. First, differential expression analysis was performed on the test set GSE43292 to identify differentially expressed genes (DEGs) between the unstable plaque group and the control group. These DEGs were intersected with cellular senescence-associated genes to obtain 40 cellular senescence-associated DEGs. Subsequently, key genes were then identified through weighted gene co-expression network analysis, random forest, Recursive Feature Elimination for Support Vector Machines algorithm and cytoHubba plugin. The intersection yielded 3 CSA-signature genes, which were validated in the external validation set GSE163154. Additionally, we assessed the relationship between these CSA-signature genes and the immune landscape of the unstable plaque group. This study suggests that cellular senescence may play an important role in the progression mechanism of unstable plaques and is closely related to the influence of the immune microenvironment. Our research lays the foundation for studying the progression mechanism of unstable carotid plaques and provides some reference for targeted therapy.
Collapse
Affiliation(s)
- Gang-Feng Cai
- Department of Neurosurgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Shao-Wei Chen
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Jin-Kai Huang
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Shi-Rong Lin
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Guo-He Huang
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Cai-Hou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
26
|
Xi Y, Xu Y, Shu Z. Impact of hypertension on coronary artery plaques and FFR-CT in type 2 diabetes mellitus patients: evaluation utilizing artificial intelligence processed coronary computed tomography angiography. Front Artif Intell 2024; 7:1446640. [PMID: 39507325 PMCID: PMC11537896 DOI: 10.3389/frai.2024.1446640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study utilized artificial intelligence (AI) to quantify coronary computed tomography angiography (CCTA) images, aiming to compare plaque characteristics and CT-derived fractional flow reserve (FFR-CT) in type 2 diabetes mellitus (T2DM) patients with or without hypertension (HTN). Methods A retrospective analysis was conducted on 1,151 patients with suspected coronary artery disease who underwent CCTA at a single center. Patients were grouped into T2DM (n = 133), HTN (n = 442), T2DM (HTN+) (n = 256), and control (n = 320). AI assessed various CCTA parameters, including plaque components, high-risk plaques (HRPs), FFR-CT, severity of coronary stenosis using Coronary Artery Disease Reporting and Data System 2.0 (CAD-RADS 2.0), segment involvement score (SIS), and segment stenosis score (SSS). Statistical analysis compared these parameters among groups. Results The T2DM (HTN+) group had the highest plaque volume and length, SIS, SSS, and CAD-RADS 2.0 classification. In the T2DM group, 54.0% of the plaque volume was noncalcified and 46.0% was calcified, while in the HTN group, these values were 24.0 and 76.0%, respectively. The T2DM (HTN+) group had more calcified plaques (35.7% noncalcified, 64.3% calcified) than the T2DM group. The average necrotic core volume was 4.25 mm3 in the T2DM group and 5.23 mm3 in the T2DM (HTN+) group, with no significant difference (p > 0.05). HRPs were more prevalent in both T2DM and T2DM (HTN+) compared to HTN and control groups (p < 0.05). The T2DM (HTN+) group had a higher likelihood (26.1%) of FFR-CT ≤0.75 compared to the T2DM group (13.8%). FFR-CT ≤0.75 correlated with CAD-RADS 2.0 (OR = 7.986, 95% CI = 5.466-11.667, cutoff = 3, p < 0.001) and noncalcified plaque volume (OR = 1.006, 95% CI = 1.003-1.009, cutoff = 29.65 mm3, p < 0.001). HRPs were associated with HbA1c levels (OR = 1.631, 95% CI = 1.387-1.918). Conclusion AI analysis of CCTA identifies patterns in quantitative plaque characteristics and FFR-CT values. Comorbid HTN exacerbates partially calcified plaques, leading to more severe coronary artery stenosis in patients with T2DM. T2DM is associated with partially noncalcified plaques, whereas HTN is linked to partially calcified plaques.
Collapse
Affiliation(s)
| | | | - Zheng Shu
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
He G, Ni Y, Hua R, Wan H, Tan Y, Chen Q, Xu S, Yang Y, Zhang L, Shu W, Huang KB, Mo Y, Liang H, Chen M. Latexin deficiency limits foam cell formation and ameliorates atherosclerosis by promoting macrophage phenotype differentiation. Cell Death Dis 2024; 15:754. [PMID: 39424784 PMCID: PMC11492231 DOI: 10.1038/s41419-024-07141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Latexin (LXN) is abundant in macrophages and plays critical roles in inflammation. Much is known about macrophages in atherosclerosis, the role of macrophage LXN in atherosclerosis has remained elusive. Here, the expression of LXN in human and mouse atherosclerotic lesions was examined by immunofluorescence and immunohistochemistry. LXN knockout and LXN/ApoE double-knockout mice were generated to evaluate the functions of LXN in atherosclerosis. Bone marrow transplantation (BMT) experimentation was carried out to determine whether macrophage LXN regulates atherosclerosis. We found that LXN is enriched in human and murine atherosclerotic lesions, mainly localized to macrophages. LXN deletion ameliorated atherosclerosis in ApoE-/- mice. BMT demonstrate that deletion of LXN in bone marrow protects ApoE-/- mice against atherosclerosis. Mechanistically, we found that LXN targets and inhibits JAK1 in macrophages. LXN deficiency stimulates the JAK1/STAT3/ABC transporter pathway, thereby enhancing the anti-inflammatory and anti-oxidant phenotype, cholesterol efflux, subsequently minimizing foam cell formation and atherosclerosis. Gene therapy by treatment of atherosclerotic mice with adeno-associated virus harbouring LXN-depleting shRNA attenuated the disease phenotype. In summary, our study provides new clues for the role of LXN in the pathological regulation of atherosclerosis, and determines that LXN is a target for preventing atherosclerosis, which may be a potential new anti-atherosclerosis therapeutic target.
Collapse
Affiliation(s)
- Guozhang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yuanting Ni
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Rong Hua
- Department of Scientific Research, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huaibin Wan
- Heyuan Research Center for Cardiovascular Diseases, Department of Cardiology, the Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Qiwei Chen
- Department of Scientific Research, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shaohua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Lijun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yi Mo
- Biobank department, The reproductive hospital of Guangxi Zhuang autonomous region, Nanning, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| |
Collapse
|
28
|
He Z, Chen W, Hu K, Luo Y, Zeng W, He X, Li T, Ouyang J, Li Y, Xie L, Zhang Y, Xu Q, Yang S, Guo M, Zou W, Li Y, Huang L, Chen L, Zhang X, Saiding Q, Wang R, Zhang MR, Kong N, Xie T, Song X, Tao W. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. NATURE NANOTECHNOLOGY 2024; 19:1386-1398. [PMID: 38898135 DOI: 10.1038/s41565-024-01687-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.
Collapse
Affiliation(s)
- Zhongshan He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kuan Hu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoyao Luo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Qin Xu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuping Yang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zou
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfei Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjing Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
30
|
Ni L, Yang L, Lin Y. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med 2024; 11:1413441. [PMID: 39070554 PMCID: PMC11282489 DOI: 10.3389/fcvm.2024.1413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The research progress of endoplasmic reticulum (ER) stress in atherosclerosis (AS) is of great concern. The ER, a critical cellular organelle, plays a role in important biological processes including protein synthesis, folding, and modification. Various pathological factors may cause ER stress, and sustained or excessive ER stress triggers the unfolded protein response, ultimately resulting in apoptosis and disease. Recently, researchers have discovered the importance of ER stress in the onset and advancement of AS. ER stress contributes to the occurrence of AS through different pathways such as apoptosis, inflammatory response, oxidative stress, and autophagy. Therefore, this review focuses on the mechanisms of ER stress in the development of AS and related therapeutic targets, which will contribute to a deeper understanding of the disease's pathogenesis and provide novel strategies for preventing and treating AS.
Collapse
Affiliation(s)
| | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
31
|
Chambers KL, Watson MG, Myerscough MR. A Lipid-Structured Model of Atherosclerosis with Macrophage Proliferation. Bull Math Biol 2024; 86:104. [PMID: 38980556 PMCID: PMC11233351 DOI: 10.1007/s11538-024-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Atherosclerotic plaques are fatty deposits that form in the walls of major arteries and are one of the major causes of heart attacks and strokes. Macrophages are the main immune cells in plaques and macrophage dynamics influence whether plaques grow or regress. Macrophage proliferation is a key process in atherosclerosis, particularly in the development of mid-stage plaques, but very few mathematical models include proliferation. In this paper we reframe the lipid-structured model of Ford et al. (J Theor Biol 479:48-63, 2019. https://doi.org/10.1016/j.jtbi.2019.07.003 ) to account for macrophage proliferation. Proliferation is modelled as a non-local decrease in the lipid structural variable. Steady state analysis indicates that proliferation assists in reducing eventual necrotic core lipid content and spreads the lipid load of the macrophage population amongst the cells. The contribution of plaque macrophages from proliferation relative to recruitment from the bloodstream is also examined. The model suggests that a more proliferative plaque differs from an equivalent (defined as having the same lipid content and cell numbers) recruitment-dominant plaque in the way lipid is distributed amongst the macrophages. The macrophage lipid distribution of an equivalent proliferation-dominant plaque is less skewed and exhibits a local maximum near the endogenous lipid content.
Collapse
Affiliation(s)
- Keith L Chambers
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
- Mathematical Institute, The University of Oxford, Oxford, Oxfordshire, OX2 6GG, UK
| | - Michael G Watson
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mary R Myerscough
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
32
|
Patterson MT, Xu Y, Hillman H, Osinski V, Schrank PR, Kennedy AE, Barrow F, Zhu A, Tollison S, Shekhar S, Stromnes IM, Tassi I, Wu D, Revelo XS, Binstadt BA, Williams JW. Trem2 Agonist Reprograms Foamy Macrophages to Promote Atherosclerotic Plaque Stability-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1646-1657. [PMID: 38695172 PMCID: PMC11208052 DOI: 10.1161/atvbaha.124.320797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic
- Receptors, Immunologic/agonists
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Disease Models, Animal
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/prevention & control
- Foam Cells/metabolism
- Foam Cells/pathology
- Foam Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, LDL/deficiency
- Cell Proliferation/drug effects
- Diet, High-Fat
- Cell Survival/drug effects
- Necrosis
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
Collapse
Affiliation(s)
- Michael T. Patterson
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Yingzheng Xu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Hannah Hillman
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Victoria Osinski
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Patricia R. Schrank
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ainsley E. Kennedy
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Fanta Barrow
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Alisha Zhu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Samuel Tollison
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Sia Shekhar
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ingunn M. Stromnes
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Microbiology and Immunology (I.M.S.), University of Minnesota, Minneapolis
| | - Ilaria Tassi
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
- Now with Deep Apple Therapeutics, South San Francisco, CA (I.T.)
| | - Dick Wu
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
| | - Xavier S. Revelo
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Bryce A. Binstadt
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Jesse W. Williams
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| |
Collapse
|
33
|
Zuo X, Ding X, Zhang Y, Kang YJ. Reversal of atherosclerosis by restoration of vascular copper homeostasis. Exp Biol Med (Maywood) 2024; 249:10185. [PMID: 38978540 PMCID: PMC11228934 DOI: 10.3389/ebm.2024.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaya Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Y James Kang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Xu D, Xie L, Cheng C, Xue F, Sun C. Triglyceride-rich lipoproteins and cardiovascular diseases. Front Endocrinol (Lausanne) 2024; 15:1409653. [PMID: 38883601 PMCID: PMC11176465 DOI: 10.3389/fendo.2024.1409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
35
|
Zhang N, Luo Y, Shao J, Sun H, Ma K, Gao X. Exosomal long non-coding RNA AU020206 alleviates macrophage pyroptosis in atherosclerosis by suppressing CEBPB-mediated NLRP3 transcription. Exp Cell Res 2024; 438:114054. [PMID: 38657723 DOI: 10.1016/j.yexcr.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Recent studies have suggested exosomes (EXO) as potential therapeutic tools for cardiovascular diseases, including atherosclerosis (AS). This study investigates the function of bone marrow stem cell (BMSC)-derived exosomes (EXO) on macrophage pyroptosis in AS and explores the associated mechanism. BMSC-EXO were isolated from healthy mice and identified. RAW264.7 cells (mouse macrophages) were exposed to oxLDL to simulate an AS condition. BMSC-EXO treatment enhanced viability and reduced lactate dehydrogenase release of macrophages. An animal model of AS was established using ApoE-/- mice. BMSC-EXO treatment suppressed plaque formation as well as macrophage and lipid infiltration in mouse aortic tissues. Moreover, BMSC-EXO decreased concentrations of pyroptosis-related markers interleukin (IL)-1β, IL-18, cleaved-caspase-1 and gasdermin D in vitro and in vivo. Long non-coding RNA AU020206 was carried by the BMSC-EXO, and it bound to CCAAT enhancer binding protein beta (CEBPB) to block CEBPB-mediated transcriptional activation of NLR family pyrin domain containing 3 (NLRP3). Functional assays revealed that silencing of AU020206 aggravated macrophage pyroptosis and exacerbated AS symptoms in mice. These exacerbations were blocked upon CEBPB silencing but then restored after NLRP3 overexpression. In conclusion, this study demonstrates that AU020206 delivered by BMSC-EXO alleviates macrophage pyroptosis in AS by blocking CEBPB-mediated transcriptional activation of NLRP3.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Jiawei Shao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China.
| |
Collapse
|
36
|
Navarro-Corcuera A, Zhu Y, Ma F, Gupta N, Asplund H, Yuan F, Friedman S, Sansbury BE, Huang X, Cai B. Therapeutic Activity of Resolvin D1 (RvD1) in Murine MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590633. [PMID: 38712196 PMCID: PMC11071427 DOI: 10.1101/2024.04.22.590633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background and Aims Recent studies have highlighted the beneficial effect of resolvin D1 (RvD1), a DHA-derived specialized pro-resolving mediator, on metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms are not well understood. Our study aims to determine the mechanism by which RvD1 protects against MASH progression. Methods RvD1 was administered to mice with experimental MASH, followed by bulk and single-cell RNA sequencing analysis. Primary cells including bone marrow-derived macrophages (BMDMs), Kupffer cells, T cells, and primary hepatocytes were isolated to elucidate the effect of RvD1 on inflammation, cell death, and fibrosis regression genes. Results Hepatic tissue levels of RvD1 were decreased in murine and human MASH, likely due to an expansion of pro-inflammatory M1-like macrophages with diminished ability to produce RvD1. Administering RvD1 reduced inflammation, cell death, and liver fibrosis. Mechanistically, RvD1 reduced inflammation by suppressing the Stat1-Cxcl10 signaling pathway in macrophages and prevented hepatocyte death by alleviating ER stress-mediated apoptosis. Moreover, RvD1 induced Mmp2 and decreased Acta2 expression in hepatic stellate cells (HSCs), and promoted Mmp9 and Mmp12 expression in macrophages, leading to fibrosis regression in MASH. Conclusions RvD1 reduces Stat1-mediated inflammation, mitigates ER stress-induced apoptosis, and promotes MMP-mediated fibrosis regression in MASH. This study highlights the therapeutic potential of RvD1 to treat MASH.
Collapse
Affiliation(s)
- Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Asplund
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Feifei Yuan
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Scott Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian E. Sansbury
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
37
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
38
|
Kang Y, Kim D, Lee S, Kim H, Kim T, Cho JA, Lee T, Choi EY. Innate Immune Training Initiates Efferocytosis to Protect against Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308978. [PMID: 38279580 PMCID: PMC11005705 DOI: 10.1002/advs.202308978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/28/2024]
Abstract
Innate immune training involves myelopoiesis, dynamic gene modulation, and functional reprogramming of myeloid cells in response to secondary heterologous challenges. The present study evaluates whether systemic innate immune training can protect tissues from local injury. Systemic pretreatment of mice with β-glucan, a trained immunity agonist, reduces the mortality rate of mice with bleomycin-induced lung injury and fibrosis, as well as decreasing collagen deposition in the lungs. β-Glucan pretreatment induces neutrophil accumulation in the lungs and enhances efferocytosis. Training of mice with β-glucan results in histone modification in both alveolar macrophages (AMs) and neighboring lung epithelial cells. Training also increases the production of RvD1 and soluble mediators by AMs and efferocytes. Efferocytosis increases trained immunity in AMs by stimulating RvD1 release, thus inducing SIRT1 expression in neighboring lung epithelial cells. Elevated epithelial SIRT1 expression is associated with decreased epithelial cell apoptosis after lung injury, attenuating tissue damage. Further, neutrophil depletion dampens the effects of β-glucan on macrophage accumulation, epigenetic modification in lung macrophages, epithelial SIRT1 expression, and injury-mediated fibrosis in the lung. These findings provide mechanistic insights into innate immune training and clues to the potential ability of centrally trained immunity to protect peripheral organs against injury-mediated disorders.
Collapse
Affiliation(s)
- Yoon‐Young Kang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Dong‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Present address:
Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität Dresden01307DresdenGermany
| | - Sang‐Yong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Hee‐Joong Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taehawn Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Jeong A. Cho
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taewon Lee
- Division of Applied Mathematical SciencesCollege of Science and TechnologyKorea UniversitySejong30019Republic of Korea
| | - Eun Young Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| |
Collapse
|
39
|
Maccari S, Profumo E, Saso L, Marano G, Buttari B. Propranolol Promotes Monocyte-to-Macrophage Differentiation and Enhances Macrophage Anti-Inflammatory and Antioxidant Activities by NRF2 Activation. Int J Mol Sci 2024; 25:3683. [PMID: 38612493 PMCID: PMC11011821 DOI: 10.3390/ijms25073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the β-adrenergic receptor (β-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor ɣ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.
Collapse
Affiliation(s)
- Sonia Maccari
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Giuseppe Marano
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| |
Collapse
|
40
|
Zhai S, Zhang X, Jiang M, Liu Y, Qu G, Cui X, Hirschbiegel CM, Liu Y, Alves C, Lee YW, Jiang G, Yan B, Rotello VM. Nanoparticles with intermediate hydrophobicity polarize macrophages to plaque-specific Mox phenotype via Nrf2 and HO-1 activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133590. [PMID: 38280324 DOI: 10.1016/j.jhazmat.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Mox macrophages were identified recently and are closely associated with atherosclerosis. Considering the potential health risks and the impact on macrophage modulation, this study investigated the Mox polarization of macrophages induced by nanoparticles (NPs) with tunable hydrophobicity. One nanoparticle (C4NP) with intermediate hydrophobicity efficiently upregulated the mRNA expression of Mox-related genes including HO-1, Srxn1, Txnrd1, Gsr, Vegf and Cox-2 through increased accumulation of Nrf2 at a nontoxic concentration in both resting and LPS-challenged macrophages. Additionally, C4NP impaired phagocytic capacity by 20% and significantly increased the secretion of cytokines, including TNFα, IL-6 and IL-10. Mechanistic studies indicated that intracellular reactive oxygen species (ROS) were elevated by 1.5-fold and 2.6-fold in resting and LPS-challenged macrophages respectively. Phosphorylated p62 was increased by 2.5-fold in resting macrophages and maintained a high level in LPS-challenged ones, both of which partially accounted for the significant accumulation of Nrf2 and HO-1. Notably, C4NP depolarized mitochondrial membrane potential by more than 50% and switched macrophages from oxidative phosphorylation-based aerobic metabolism to glycolysis for energy supply. Overall, this study reveals a novel molecular mechanism potentially involving ROS-Nrf2-p62 signaling in mediating macrophage Mox polarization, holding promise in ensuring safer and more efficient use of nanomaterials.
Collapse
Affiliation(s)
- Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yujia Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Colby Alves
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
41
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
42
|
Ma Y, Wang Q, Du S, Luo J, Sun X, Jia B, Ge J, Dong J, Jiang S, Li Z. Multipathway Regulation for Targeted Atherosclerosis Therapy Using Anti-miR-33-Loaded DNA Origami. ACS NANO 2024. [PMID: 38321605 DOI: 10.1021/acsnano.3c10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Given the multifactorial pathogenesis of atherosclerosis (AS), a chronic inflammatory disease, combination therapy arises as a compelling approach to effectively address the complex interplay of pathogenic mechanisms for a more desired treatment outcome. Here, we present cRGD/ASOtDON, a nanoformulation based on a self-assembled DNA origami nanostructure for the targeted combination therapy of AS. cRGD/ASOtDON targets αvβ3 integrin receptors overexpressed on pro-inflammatory macrophages and activated endothelial cells in atherosclerotic lesions, alleviates the oxidative stress induced by extracellular and endogenous reactive oxygen species, facilitates the polarization of pro-inflammatory macrophages toward the anti-inflammatory M2 phenotype, and inhibits foam cell formation by promoting cholesterol efflux from macrophages by downregulating miR-33. The antiatherosclerotic efficacy and safety profile of cRGD/ASOtDON, as well as its mechanism of action, were validated in an AS mouse model. cRGD/ASOtDON treatment reversed AS progression and restored normal morphology and tissue homeostasis of the diseased artery. Compared to probucol, a clinical antiatherosclerotic drug with a similar mechanism of action, cRGD/ASOtDON enabled the desired therapeutic outcome at a notably lower dosage. This study demonstrates the benefits of targeted combination therapy in AS management and the potential of self-assembled DNA nanoformulations in addressing multifactorial inflammatory conditions.
Collapse
Affiliation(s)
- Yuxuan Ma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Qi Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Shiyu Du
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jingwei Luo
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xiaolei Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jingru Ge
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Shuoxing Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
43
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
44
|
Koenis DS, de Matteis R, Rajeeve V, Cutillas P, Dalli J. Efferocyte-Derived MCTRs Metabolically Prime Macrophages for Continual Efferocytosis via Rac1-Mediated Activation of Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304690. [PMID: 38064171 PMCID: PMC10870015 DOI: 10.1002/advs.202304690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Indexed: 02/17/2024]
Abstract
Clearance of multiple rounds of apoptotic cells (ACs) through continual efferocytosis is critical in the maintenance of organ function, the resolution of acute inflammation, and tissue repair. To date, little is known about the nature of mechanisms and factors that govern this fundamental process. Herein, the authors reported that breakdown of ACs leads to upregulation of 12-lipoxygenase in macrophages. This enzyme converts docosahexaenoic acid to maresin conjugates in tissue regeneration (MCTRs). The levels of these autacoids are elevated at sites of high apoptotic burden in vivo and in efferocytosing macrophages in vitro. Abrogation of MCTR production using genetic approaches limits the ability of macrophages to perform continual efferocytosis both in vivo and in vitro, an effect that is rescued by add-back of MCTRs. Mechanistically, MCTR-mediated priming of macrophages for continual efferocytosis is dependent on alterations in Rac1 signalling and glycolytic metabolism. Inhibition of Rac1 abolishes the ability of MCTRs to increase glucose uptake and efferocytosis in vitro, whereas inhibition of glycolysis limits the MCTR-mediated increases in efferocytosis and tissue repair. Together, these findings demonstrate that upregulation of MCTRs by efferocytosing macrophages plays a central role in the regulation of continual efferocytosis via the autocrine and paracrine modulation of metabolic pathways.
Collapse
Affiliation(s)
- Duco Steven Koenis
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Roberta de Matteis
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational BiologyBarts Cancer InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Pedro Cutillas
- Centre for Genomics and Computational BiologyBarts Cancer InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Jesmond Dalli
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonEC1M 6BQUK
| |
Collapse
|
45
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
46
|
Chai Y, Shangguan L, Yu H, Sun Y, Huang X, Zhu Y, Wang H, Liu Y. Near Infrared Light-Activatable Platelet-Mimicking NIR-II NO Nano-Prodrug for Precise Atherosclerosis Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304994. [PMID: 38037484 PMCID: PMC10797437 DOI: 10.1002/advs.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that affects arteries and is the main cause of cardiovascular disease. Atherosclerotic plaque formation is usually asymptomatic and does not manifest until the occurrence of clinical events. Therefore, early diagnosis and treatment of atherosclerotic plaques is particularly important. Here, a series of NIR-II fluorescent dyes (RBT-NH) are developed for three photoresponsive NO prodrugs (RBT-NO), which can be controllably triggered by 808 nm laser to release NO and turn on the NIR-II emission in the clinical medicine "therapeutic window". Notably, RBT3-NO is selected for its exhibited high NO releasing efficiency and superior fluorescence signal enhancement. Subsequently, a platelet-mimicking nano-prodrug system (RBT3-NO-PEG@PM) is constructed by DSPE-mPEG5k and platelet membrane (PM) for effectively targeted diagnosis and therapy of atherosclerosis in mice. The results indicate that this platelet-mimicking NO nano-prodrug system can reduce the accumulation of lipids at the sites of atherosclerotic plaques, improve the inflammatory response at the lesion sites, and promote endothelial cell migration, thereby slowing the progression of plaques.
Collapse
Affiliation(s)
- Yun Chai
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Lina Shangguan
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hui Yu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Ye Sun
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Xiaoyan Huang
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Yanyan Zhu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hai‐Yan Wang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189China
| | - Yi Liu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
47
|
Kawai K, Finn AV, Virmani R. Subclinical Atherosclerosis: Part 1: What Is it? Can it Be Defined at the Histological Level? Arterioscler Thromb Vasc Biol 2024; 44:12-23. [PMID: 38150517 DOI: 10.1161/atvbaha.123.319932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
While coronary artery disease remains a major cause of death, it is preventable. Therefore, the focus needs to shift to the early detection and prevention of atherosclerosis. Asymptomatic atherosclerosis is widely termed subclinical atherosclerosis, which is an early indicator of atherosclerotic burden, and understanding this disease is important because timely intervention could prevent future cardiovascular morbidity and mortality. We histologically recognize the earliest lesion of atherosclerosis as pathological intimal thickening, which is characterized by the presence of lipid pools. The difference between clinical atherosclerosis and subclinical atherosclerosis is whether the presence of atherosclerosis results in the clinical symptoms of ischemia, such as stroke, myocardial infarction, or chronic limb-threatening ischemia. In the absence of thrombosis, there are various types of histological plaque that encompass subclinical atherosclerosis: pathological intimal thickening, fibroatheroma, thin-cap fibroatheroma, plaque rupture, healed plaque ruptures, and fibrocalcific plaque. Plaque morphology that is most frequently responsible for acute coronary thrombosis is plaque rupture. Calcification of coronary arteries is the hallmark of atherosclerosis and is a predictor of future coronary events. Atherosclerosis occurs in other vascular beds and is most frequent in arteries of the lower extremity, followed by carotid, aorta, and coronary arteries, and the mechanisms leading to clinical symptoms are unique for each location.
Collapse
Affiliation(s)
- Kenji Kawai
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
| | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
- University of Maryland, School of Medicine, Baltimore (A.V.F.)
| | - Renu Virmani
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
| |
Collapse
|
48
|
Chen R, Li J, Sheng Z, Zhou J, Wang Y, Zhao X, Li N, Liu W, Liu C, Zhou P, Chen Y, Yan S, Song L, Yan H, Zhao H. Associations Between Resolvin D1 and Culprit Plaque Morphologies: An Optical Coherence Tomography Study in Patients with ST-Segment Elevation Myocardial Infarction. J Inflamm Res 2023; 16:6457-6467. [PMID: 38164164 PMCID: PMC10758160 DOI: 10.2147/jir.s433404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background As a specialized pro-resolving lipid mediator, resolvin D1 (RvD1) inhibits atherosclerosis progression in vivo by reducing regional oxidative stress and chronic inflammation. However, it is unclear how RvD1 is involved in human coronary artery disease. This study aims to investigate the association between plasma levels of RvD1 and culprit-plaque characteristics in patients with ST-segment elevation myocardial infarction (STEMI). Methods A total of 240 STEMI patients undergoing optical coherence tomography (OCT) examination were analyzed. RvD1 levels were measured in patient plasma samples using an enzyme-linked immunosorbent assay. Logistic regression was performed to assess the association between RvD1 levels and various culprit plaque morphologies, and the receiver operating curve was used to search for an optimal cutoff threshold to predict certain pathological features. Results The median RvD1 level was 129.7 (56.6-297.8) pg/mL. According to multivariable logistic regression, high RvD1 was associated with plaque rupture (≥111.5 pg/mL, odds ratio [OR]: 2.09, 95% confidence interval [CI]: 1.20-3.66, P = 0.010), healed plaques (≥246.4 pg/mL, OR: 2.17, 95% CI: 1.11-4.24, P = 0.023), and calcification (≥293.38 pg/mL, OR: 2.10, 95% CI: 1.21-3.66, P = 0.008) at culprit lesions. Conclusion Increased levels of RvD1 were associated with higher instability of coronary atherosclerotic plaques in STEMI patients.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhaoxue Sheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Weida Liu
- Medical Research Center, Peking Union Medical College Hospital, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Subramaniam NK, Gagnon N, Makhani K, Kukolj N, Mouradian MH, Giles BH, Srikannan H, Fruh V, Meliker J, Wellenius GA, Mann KK. In vitro and in vivo approaches to assess atherosclerosis following exposure to low-dose mixtures of arsenic and cadmium. Toxicol Appl Pharmacol 2023; 481:116763. [PMID: 37980961 PMCID: PMC11414205 DOI: 10.1016/j.taap.2023.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Worldwide, millions of people are co-exposed to arsenic and cadmium. Environmental exposure to both metals is linked with a higher risk of atherosclerosis. While studies have characterized the pro-atherosclerotic effects of arsenic and cadmium as single agents, little is known about the potential effects of metal mixtures, particularly at low doses. Here, we used a combination of in vitro and in vivo models to assess the effects of low-dose metals individually and as mixtures on early events and plaque development associated with atherosclerosis. In vitro, we investigated early pro-atherogenic changes in macrophages and endothelial cells with metal treatments. The combined cytotoxic effects of both metals at low concentrations were dose interactive, specifically, synergistic in macrophages, but antagonistic in endothelial cells. Despite this differential behavior across cell types, the mixtures did not initiate early pro-atherogenic events: neither reactive oxygen species generation in macrophages nor adhesion molecule expression on endothelial cells. In vivo, we utilized the well-characterized hyperlipidemic apolipoprotein E knock-out (ApoE-/-) mouse model. Previously, we have shown that low concentrations of arsenic (down to 10 ppb) enhance atherosclerosis in ApoE-/- mice. This model has also been used with cadmium to demonstrate pro-atherogenic effects, although at concentrations above human-relevant exposures. In both sexes, there are some small increases in atherosclerotic lesion size, but very few changes in plaque constituents in the ApoE-/- mouse model. Together, these results suggests that low-dose metal mixtures are not significantly more pro-atherogenic than either metal alone.
Collapse
Affiliation(s)
- Nivetha K Subramaniam
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Natascha Gagnon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Kiran Makhani
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Nikola Kukolj
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Michael H Mouradian
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Harinee Srikannan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Jaymie Meliker
- Program in Public Health, Department of Family, Population, & Preventive Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Gregory A Wellenius
- Center for Climate and Health, Boston University School of Public Health, Boston, MA, USA.
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Luo H, Ma W, Chen Q, Yang Z, Dai Y. Radiotherapy-activated tumor immune microenvironment: Realizing radiotherapy-immunity combination therapy strategies. NANO TODAY 2023; 53:102042. [DOI: 10.1016/j.nantod.2023.102042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|