1
|
Oliva V, Riegner G, Dean J, Khatib LA, Allen A, Barrows D, Chen C, Fuentes R, Jacobson A, Lopez C, Mosbey D, Reyes M, Ross J, Uvarova A, Liu T, Mobley W, Zeidan F. I feel your pain: higher empathy is associated with higher posterior default mode network activity. Pain 2025; 166:e60-e67. [PMID: 39661395 DOI: 10.1097/j.pain.0000000000003434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/31/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT Empathy is characterized as the ability to share one's experience and is associated with altruism. Previous work using blood oxygen level-dependent (BOLD) functional MRI (fMRI) has found that empathy is associated with greater activation in brain mechanisms supporting mentalizing (temporoparietal junction), salience (anterior cingulate cortex; insula), and self-reference (medial prefrontal cortex; precuneus). However, BOLD fMRI has some limitations that may not reliably capture the tonic experience of empathy. To address this, the present study used a perfusion-based arterial spin labeling fMRI approach that provides direct a quantifiable measurement of cerebral blood flow (1 mL/100 g tissue/min) and is less susceptible to low-frequency fluctuations and empathy-based "carry-over" effects that may be introduced by BOLD fMRI-based block designs. Twenty-nine healthy females (mean age = 29 years) were administered noxious heat (48°C; left forearm) during arterial spin labeling fMRI. In the next 2 fMRI scans, female volunteers viewed a stranger (laboratory technician) and their romantic partner, respectively, receive pain-evoking heat (48°C; left forearm) in real-time and positioned proximal to the scanner during fMRI acquisition. Visual analog scale (0 = "not unpleasant"; 10 = "most unpleasant sensation imaginable") empathy ratings were collected after each condition. There was significantly ( P = 0.01) higher empathy while viewing a romantic partner in pain and greater cerebral blood flow in the right temporoparietal junction, amygdala, anterior insula, orbitofrontal cortex, and precuneus when compared with the stranger. Higher empathy was associated with greater precuneus and primary visual cortical activation. The present findings indicate that brain mechanisms supporting the embodiment of another's experience is associated with higher empathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William Mobley
- Neurosciences, UC San Diego, La Jolla, CA, United States
| | | |
Collapse
|
2
|
Li Q, Shen S, Lei M. Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes. Br J Hosp Med (Lond) 2024; 85:1-21. [PMID: 39831492 DOI: 10.12968/hmed.2024.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.This study aimed to assess the number of pulsed ASL blocks that were needed to provide accurate and reliable regional estimates of cerebral blood flow (CBF) changes when participants engaged in visually guided saccade and fixation task; evaluate the localization to cortical control saccade versus fixation; investigate the relationship between the sensitivity of ASL fMRI and the number of blocks; and compare the sensitivity of blood oxygen level-dependent (BOLD) fMRI and ASL fMRI. Methods The experiment was a block-design paradigm consisting of two conditions: fixation and saccade. No response other than the eye movements of the participants was recorded during the scans. ASL and BOLD fMRI scans were conducted on all participants during the same session. The fMRI study consisted of two functional experiments: a CBF contrast was provided using the ASL sequence, and an optimized BOLD contrast was provided using the BOLD sequence. Results From group analysis in all divided blocks of ASL sessions (4, 6, 8...... 14, 16, 18......26, 28, 30), ASL yielded significant activation clusters in the visual cortex of the bilateral hemisphere from block 4. There was no false activation from block 4. No activation cluster was found by reversing analysis of block 2. Robust and consistent activation in the visual cortex was observed in each of the 14 divided blocks group analysis, and no activation was found in the eye field of the brain. The sensitivity of 4-block was found to be better than that of 8-block. More significant activation clusters of the visual cortex were found in BOLD than in ASL. No activation cluster of parietal eye field (PEF), frontal eye field (FEF) and supplementary eye field (SEF) was detected in ASL. The voxel size of the activation cluster increased with the increasing number of blocks, and the percent signal change in the activation cluster decreased with the escalating block number. The voxel size was positively correlated with the number of blocks (correlation coefficient = 0.98, p < 0.0001), and the percent signal change negatively correlated with the number of blocks (correlation coefficient = -0.90, p < 0.0001). Conclusion The 4-block pulsed functional ASL (fASL) presents accurate and reliable activation, with minimal time-on-task effect and little adverse impact of time, in participants engaging in visually guided saccade and fixation tasks. Despite having lower sensitivity than BOLD fMRI, ASL can determine accurate activation location. Although the time-on-task effects affect the observation for the sensitivity of ASL over task time, it is suggested that ASL fMRI may provide a powerful method for pinpointing the time-on-task effect over a long period of time.
Collapse
Affiliation(s)
- Qing Li
- Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China
| | - Shan Shen
- Centre for Integrative Neuroscience and Neurodynamic, University of Reading, Reading, UK
| | - Ming Lei
- Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China
| |
Collapse
|
3
|
Adams MS, Mensink RP, Plat J, Winkens B, Joris PJ. Long-term egg-protein hydrolysate consumption improves endothelial function: a randomized, double-blind, placebo-controlled trial in older adults with overweight or obesity. Eur J Nutr 2024; 64:54. [PMID: 39718599 DOI: 10.1007/s00394-024-03566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE The dietary egg-protein hydrolysate Newtricious (NWT)-03 has previously demonstrated improvements in blood pressure and metabolic profiles. However, the long-term effects on vascular function and cardiometabolic risk markers are unknown. METHODS Forty-four older (aged 60-75) adults with overweight/obesity experiencing elevated Subjective Cognitive Failures (SCF) were randomized into a 36-week, double-blind, placebo-controlled trial. Participants either consumed 5.7 g of an egg-protein hydrolysate (NWT-03) or maltodextrin placebo. Endothelial function (brachial artery flow-mediated vasodilation [FMD] and carotid artery reactivity [CAR] responses after a cold pressor test), arterial stiffness (carotid-to-femoral pulse wave velocity [PWVc-f]), retinal microvascular calibers, and cardiometabolic risk markers (insulin sensitivity using a 7-point oral glucose tolerance test, serum lipid profiles, and blood pressure) were evaluated. RESULTS FMD observed a non-significant trend towards a 0.3 percentage point (pp) increase in the intervention compared to the placebo group (95% CI: [0.0, 0.7]; p = 0.08), and a significant intervention effect was observed on CAR responses based on a 0.7 pp improvement after a cold pressor test (95% CI: [0.1, 1.3]; p = 0.03). No significant overall changes were observed for arterial stiffness as measured by PWVc-f. Retinal microvascular calibers and cardiometabolic parameters also did not change. CONCLUSION Long-term supplementation with 5.7 g of the egg-protein hydrolysate NWT-03 for 36 weeks improved vascular endothelial function in older adults with overweight/obesity experiencing elevated SCF, which may benefit cardiovascular disease risk. No overall changes in other vascular function markers, retinal microvascular calibers or cardiometabolic risk markers were observed. CLINICAL TRIAL REGISTRATION The study was registered at ClinicalTrials.gov in January 2021 as NCT04831203: https://clinicaltrials.gov/study/NCT04831203.
Collapse
Affiliation(s)
- Micah S Adams
- Department of Nutrition and Movement Sciences, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Adams MS, Mensink RP, Plat J, Joris PJ. Long-term effects of an egg-protein hydrolysate on cognitive performance and brain vascular function: a double-blind randomized controlled trial in adults with elevated subjective cognitive failures. Eur J Nutr 2024; 63:2095-2107. [PMID: 38703228 PMCID: PMC11377360 DOI: 10.1007/s00394-024-03394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Short-term intake of the egg-protein hydrolysate Newtricious (NWT)-03 improved executive function, but underlying mechanisms and long-term effects, including other cognitive domains, are unknown. METHODS A 36-week randomized controlled trial involving 44 overweight/obese individuals experiencing elevated Subjective Cognitive Failures (SCF; aged 60-75 years) assessed the impact of daily consumption of 5.7 g of NWT-03 or placebo powders on cognitive performance (psychomotor speed, executive function, memory) and Cerebral Blood Flow (CBF), a marker of brain vascular function. Cognitive performance was evaluated using a neurophysiological test battery (CANTAB) and CBF was measured using magnetic resonance imaging perfusion method Arterial Spin Labeling (ASL). Serum samples were collected to determine brain-derived neurotrophic factor (BDNF) concentrations. RESULTS Anthropometrics, and energy and nutrient intakes remained stable throughout the trial. NWT-03 was well tolerated, and compliance was excellent (median: 99%; range: 87-103%). No overall intervention effects were observed on cognitive performance or CBF, but post-hoc analyses revealed significant improvements on executive function in women, but not men. Specifically, a reduction of 74 ms in reaction latency on the multitasking task (95% CI: -134 to -15; p = 0.02), a reduction of 9 between errors (95%CI: -14 to -3; p < 0.001), and a reduction of 9 total errors (95%CI: -15 to -3; p < 0.001) on the spatial working memory task were found in women. No intervention effects were observed on serum BDNF concentrations (p = 0.31). CONCLUSION Long-term consumption of NWT-03 improved multitasking abilities and working memory in women with elevated SCF. Brain vascular function remained unaffected. Sex differences in executive function require additional clarification.
Collapse
Affiliation(s)
- Micah S Adams
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Thanaraju A, Marzuki AA, Chan JK, Wong KY, Phon-Amnuaisuk P, Vafa S, Chew J, Chia YC, Jenkins M. Structural and functional brain correlates of socioeconomic status across the life span: A systematic review. Neurosci Biobehav Rev 2024; 162:105716. [PMID: 38729281 DOI: 10.1016/j.neubiorev.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
It is well-established that higher socioeconomic status (SES) is associated with improved brain health. However, the effects of SES across different life stages on brain structure and function is still equivocal. In this systematic review, we aimed to synthesise findings from life course neuroimaging studies that investigated the structural and functional brain correlates of SES across the life span. The results indicated that higher SES across different life stages were independently and cumulatively related to neural outcomes typically reflective of greater brain health (e.g., increased cortical thickness, grey matter volume, fractional anisotropy, and network segregation) in adult individuals. The results also demonstrated that the corticolimbic system was most commonly impacted by socioeconomic disadvantages across the life span. This review highlights the importance of taking into account SES across the life span when studying its effects on brain health. It also provides directions for future research including the need for longitudinal and multimodal research that can inform effective policy interventions tailored to specific life stages.
Collapse
Affiliation(s)
- Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia.
| | - Aleya A Marzuki
- Department for Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Germany
| | - Jee Kei Chan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, New Zealand
| | - Paveen Phon-Amnuaisuk
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| |
Collapse
|
6
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
7
|
Oliva V, Riegner G, Dean J, Khatib LA, Allen A, Barrows D, Chen C, Fuentes R, Jacobson A, Lopez C, Mosbey D, Reyes M, Ross J, Uvarova A, Liu T, Mobley W, Zeidan F. WITHDRAWN: I feel your pain: Higher empathy is associated with higher posterior default mode network activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553004. [PMID: 37645854 PMCID: PMC10462016 DOI: 10.1101/2023.08.11.553004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The authors discovered an error in the primary analysis and have withdrawn the results from this version of the investigation.
Collapse
|
8
|
Pires Monteiro S, Pinto J, Chappell MA, Fouto A, Baptista MV, Vilela P, Figueiredo P. Brain perfusion imaging by multi-delay arterial spin labeling: Impact of modeling dispersion and interaction with denoising strategies and pathology. Magn Reson Med 2023; 90:1889-1904. [PMID: 37382246 DOI: 10.1002/mrm.29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Arterial spin labeling (ASL) acquisitions at multiple post-labeling delays may provide more accurate quantification of cerebral blood flow (CBF), by fitting appropriate kinetic models and simultaneously estimating relevant parameters such as the arterial transit time (ATT) and arterial cerebral blood volume (aCBV). We evaluate the effects of denoising strategies on model fitting and parameter estimation when accounting for the dispersion of the label bolus through the vasculature in cerebrovascular disease. METHODS We analyzed multi-delay ASL data from 17 cerebral small vessel disease patients (50 ± 9 y) and 13 healthy controls (52 ± 8 y), by fitting an extended kinetic model with or without bolus dispersion. We considered two denoising strategies: removal of structured noise sources by independent component analysis (ICA) of the control-label image timeseries; and averaging the repetitions of the control-label images prior to model fitting. RESULTS Modeling bolus dispersion improved estimation precision and impacted parameter values, but these effects strongly depended on whether repetitions were averaged before model fitting. In general, repetition averaging improved model fitting but adversely affected parameter values, particularly CBF and aCBV near arterial locations in patients. This suggests that using all repetitions allows better noise estimation at the earlier delays. In contrast, ICA denoising improved model fitting and estimation precision while leaving parameter values unaffected. CONCLUSION Our results support the use of ICA denoising to improve model fitting to multi-delay ASL and suggest that using all control-label repetitions improves the estimation of macrovascular signal contributions and hence perfusion quantification near arterial locations. This is important when modeling flow dispersion in cerebrovascular pathology.
Collapse
Affiliation(s)
- Sara Pires Monteiro
- Department of Bioengineering, Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Michael A Chappell
- School of Medicine, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Ana Fouto
- Department of Bioengineering, Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Vilela
- Imaging Department, Hospital da Luz, Lisbon, Portugal
| | - Patricia Figueiredo
- Department of Bioengineering, Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Conring F, Gangl N, Derome M, Wiest R, Federspiel A, Walther S, Stegmayer K. Associations of resting-state perfusion and auditory verbal hallucinations with and without emotional content in schizophrenia. Neuroimage Clin 2023; 40:103527. [PMID: 37871539 PMCID: PMC10598456 DOI: 10.1016/j.nicl.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Auditory Verbal Hallucinations (AVH) are highly prevalent in patients with schizophrenia. AVH with high emotional content lead to particularly poor functional outcome. Increasing evidence shows that AVH are associated with alterations in structure and function in language and memory related brain regions. However, neural correlates of AVH with emotional content remain unclear. In our study (n = 91), we related resting-state cerebral perfusion to AVH and emotional content, comparing four groups: patients with AVH with emotional content (n = 13), without emotional content (n = 14), without hallucinations (n = 20) and healthy controls (n = 44). Patients with AVH and emotional content presented with increased perfusion within the amygdala and the ventromedial and dorsomedial prefrontal cortex (vmPFC/ dmPFC) compared to patients with AVH without emotional content. In addition, patients with any AVH showed hyperperfusion within the anterior cingulate gyrus, the vmPFC/dmPFC, the right hippocampus, and the left pre- and postcentral gyrus compared to patients without AVH. Our results indicate metabolic alterations in brain areas critical for the processing of emotions as key for the pathophysiology of AVH with emotional content. Particularly, hyperperfusion of the amygdala may reflect and even trigger emotional content of AVH, while hyperperfusion of the vmPFC/dmPFC cluster may indicate insufficient top-down amygdala regulation in patients with schizophrenia.
Collapse
Affiliation(s)
- Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Melodie Derome
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Xu Y, Tan G, Chen D, Liu J, Zhou Z, Liu L. Arterial spin labeling perfusion MRI applications in drug-resistant epilepsy and epileptic emergency. ACTA EPILEPTOLOGICA 2023; 5:23. [PMID: 40217550 PMCID: PMC11960231 DOI: 10.1186/s42494-023-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/03/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy affects all age groups and is one of the most common and disabling neurological disorders worldwide. Drug-resistant epilepsy (DRE), status epilepticus (SE), and sudden unexpected death in epilepsy (SUDEP), which are associated with considerable healthcare costs and mortality, have always been difficult to address and become the focus of clinical research. The rapid identification of seizure onset and accurate localization of epileptic foci are crucial for the treatment and prognosis of people with DRE, SE, or near-SUDEP. However, most of the conventional neuroimaging techniques for assessing cerebral blood flow of people with epilepsy are restricted by time consumption, limited resolution, and ionizing radiation. Arterial spin labeling (ASL) is a newly powerful non-contrast magnetic resonance imaging technique that enables the quantitative evaluation of brain perfusion, characterized by its unique advantages of reproducibility and easy accessibility. Recent studies have demonstrated the potential advantages of ASL for the diagnosis and evaluation of epilepsy. Therefore, in this review, we discussed the complementary value of ASL in evaluating and characterizing the basic substrates underlying refractory epilepsy and epileptic emergencies.
Collapse
Affiliation(s)
- Yingchun Xu
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Ge Tan
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Deng Chen
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Jiao Liu
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Zixian Zhou
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Ling Liu
- Department Neurology, Sichuan University, West China Hospital, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
11
|
Gangl N, Conring F, Federspiel A, Wiest R, Walther S, Stegmayer K. Resting-state perfusion in motor and fronto-limbic areas is linked to diminished expression of emotion and speech in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:51. [PMID: 37573445 PMCID: PMC10423240 DOI: 10.1038/s41537-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Negative symptoms (NS) are a core component of schizophrenia affecting community functioning and quality of life. We tested neural correlates of NS considering NS factors and consensus subdomains. We assessed NS using the Clinical Assessment Interview for Negative Symptoms and the Scale for Assessment of Negative Symptoms. Arterial spin labeling was applied to measure resting-state cerebral blood flow (rCBF) in 47 schizophrenia patients and 44 healthy controls. Multiple regression analyses calculated the relationship between rCBF and NS severity. We found an association between diminished expression (DE) and brain perfusion within the cerebellar anterior lobe and vermis, and the pre-, and supplementary motor area. Blunted affect was linked to fusiform gyrus and alogia to fronto-striatal rCBF. In contrast, motivation and pleasure was not associated with rCBF. These results highlight the key role of motor areas for DE. Considering NS factors and consensus subdomains may help identifying specific pathophysiological pathways of NS.
Collapse
Affiliation(s)
- Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
12
|
Nayak R, Lee J, Sotoudehnia S, Chang SY, Fatemi M, Alizad A. Mapping Pharmacologically Evoked Neurovascular Activation and Its Suppression in a Rat Model of Tremor Using Functional Ultrasound: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:6902. [PMID: 37571686 PMCID: PMC10422538 DOI: 10.3390/s23156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Functional ultrasound (fUS), an emerging hemodynamic-based functional neuroimaging technique, is especially suited to probe brain activity and primarily used in animal models. Increasing use of pharmacological models for essential tremor extends new research to the utilization of fUS imaging in such models. Harmaline-induced tremor is an easily provoked model for the development of new therapies for essential tremor (ET). Furthermore, harmaline-induced tremor can be suppressed by the same classic medications used for essential tremor, which leads to the utilization of this model for preclinical testing. However, changes in local cerebral activities under the effect of tremorgenic doses of harmaline have not been completely investigated. In this study, we explored the feasibility of fUS imaging for visualization of cerebral activation and deactivation associated with harmaline-induced tremor and tremor-suppressing effects of propranolol. The spatial resolution of fUS using a high frame rate imaging enabled us to visualize time-locked and site-specific changes in cerebral blood flow associated with harmaline-evoked tremor. Intraperitoneal administration of harmaline generated significant neural activity changes in the primary motor cortex and ventrolateral thalamus (VL Thal) regions during tremor and then gradually returned to baseline level as tremor subsided with time. To the best of our knowledge, this is the first functional ultrasound study to show the neurovascular activation of harmaline-induced tremor and the therapeutic suppression in a rat model. Thus, fUS can be considered a noninvasive imaging method for studying neuronal activities involved in the ET model and its treatment.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Setayesh Sotoudehnia
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| |
Collapse
|
13
|
Dipasquale O, Cohen A, Martins D, Zelaya F, Turkheimer F, Veronese M, Mehta MA, Williams SCR, Yang B, Banerjee S, Wang Y. Molecular-enriched functional connectivity in the human brain using multiband multi-echo simultaneous ASL/BOLD fMRI. Sci Rep 2023; 13:11751. [PMID: 37474568 PMCID: PMC10359289 DOI: 10.1038/s41598-023-38573-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Receptor-enriched analysis of functional connectivity by targets (REACT) is a strategy to enrich functional MRI (fMRI) data with molecular information on the neurotransmitter distribution density in the human brain, providing a biological basis to the functional connectivity (FC) analysis. Although this approach has been used in BOLD fMRI studies only so far, extending its use to ASL imaging would provide many advantages, including the more direct link of ASL with neuronal activity compared to BOLD and its suitability for pharmacological MRI studies assessing drug effects on baseline brain function. Here, we applied REACT to simultaneous ASL/BOLD resting-state fMRI data of 29 healthy subjects and estimated the ASL and BOLD FC maps related to six molecular systems. We then compared the ASL and BOLD FC maps in terms of spatial similarity, and evaluated and compared the test-retest reproducibility of each modality. We found robust spatial patterns of molecular-enriched FC for both modalities, moderate similarity between BOLD and ASL FC maps and comparable reproducibility for all but one molecular-enriched functional networks. Our findings showed that ASL is as informative as BOLD in detecting functional circuits associated with specific molecular pathways, and that the two modalities may provide complementary information related to these circuits.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - Alexander Cohen
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
14
|
Figuracion KCF, Thompson H, Mac Donald CL. Integrating Neuroimaging Measures in Nursing Research. Biol Res Nurs 2023; 25:341-352. [PMID: 36398659 PMCID: PMC10404904 DOI: 10.1177/10998004221140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Medical and scientific advancement worldwide has led to a longer lifespan. With the population aging comes the risk of developing cognitive decline. The incorporation of neuroimaging measures in evaluating cognitive changes is limited in nursing research. The aim of this review is to introduce nurse scientists to neuroimaging measures employed to assess the association between brain and cognitive changes. METHODS Relevant literature was identified by searching CINAHL, Web of Science, and PubMed databases using the following keywords: "neuroimaging measures," "aging," "cognition," "qualitative scoring," "cognitive ability," "molecular," "structural," and "functional." RESULTS Neuroimaging measures can be categorized into structural, functional, and molecular imaging approaches. The structural imaging technique visualizes the anatomical regions of the brain. Visual examination and volumetric segmentation of select structural sequences extract information such as white matter hyperintensities and cerebral atrophy. Functional imaging techniques evaluate brain regions and underlying processes using blood-oxygen-dependent signals. Molecular imaging technique is the real-time visualization of biological processes at the cellular and molecular levels in a given region. Examples of biological measures associated with neurodegeneration include decreased glutamine level, elevated total choline, and elevated Myo-inositol. DISCUSSION Nursing is at the forefront of addressing upstream factors impacting health outcomes across a lifespan of a population at increased risk of progressive cognitive decline. Nurse researchers can become more facile in using these measures both in qualitative and quantitative methodology by leveraging previously gathered neuroimaging clinical data for research purposes to better characterize the associations between symptom progression, disease risk, and health outcomes.
Collapse
Affiliation(s)
- Karl Cristie F. Figuracion
- Department of School of Nursing, University of Washington, Seattle, WA, USA
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Hilaire Thompson
- Biobehavioral Nursing & Health Informatics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
15
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
16
|
Oliver D, Davies C, Zelaya F, Selvaggi P, De Micheli A, Catalan A, Baldwin H, Arribas M, Modinos G, Crossley NA, Allen P, Egerton A, Jauhar S, Howes OD, McGuire P, Fusar-Poli P. Parsing neurobiological heterogeneity of the clinical high-risk state for psychosis: A pseudo-continuous arterial spin labelling study. Front Psychiatry 2023; 14:1092213. [PMID: 36970257 PMCID: PMC10031088 DOI: 10.3389/fpsyt.2023.1092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction The impact of the clinical high-risk for psychosis (CHR-P) construct is dependent on accurately predicting outcomes. Individuals with brief limited intermittent psychotic symptoms (BLIPS) have higher risk of developing a first episode of psychosis (FEP) compared to individuals with attenuated psychotic symptoms (APS). Supplementing subgroup stratification with information from candidate biomarkers based on neurobiological parameters, such as resting-state, regional cerebral blood flow (rCBF), may help refine risk estimates. Based on previous evidence, we hypothesized that individuals with BLIPS would exhibit increased rCBF compared to APS in key regions linked to dopaminergic pathways. Methods Data from four studies were combined using ComBat (to account for between-study differences) to analyse rCBF in 150 age- and sex-matched subjects (n = 30 healthy controls [HCs], n = 80 APS, n = 20 BLIPS and n = 20 FEP). Global gray matter (GM) rCBF was examined in addition to region-of-interest (ROI) analyses in bilateral/left/right frontal cortex, hippocampus and striatum. Group differences were assessed using general linear models: (i) alone; (ii) with global GM rCBF as a covariate; (iii) with global GM rCBF and smoking status as covariates. Significance was set at p < 0.05. Results Whole-brain voxel-wise analyses and Bayesian ROI analyses were also conducted. No significant group differences were found in global [F(3,143) = 1,41, p = 0.24], bilateral frontal cortex [F(3,143) = 1.01, p = 0.39], hippocampus [F(3,143) = 0.63, p = 0.60] or striatum [F(3,143) = 0.52, p = 0.57] rCBF. Similar null findings were observed in lateralized ROIs (p > 0.05). All results were robust to addition of covariates (p > 0.05). No significant clusters were identified in whole-brain voxel-wise analyses (p > 0.05FWE). Weak-to-moderate evidence was found for an absence of rCBF differences between APS and BLIPS in Bayesian ROI analyses. Conclusion On this evidence, APS and BLIPS are unlikely to be neurobiologically distinct. Due to this and the weak-to-moderate evidence for the null hypothesis, future research should investigate larger samples of APS and BLIPS through collaboration across large-scale international consortia.
Collapse
Affiliation(s)
- Dominic Oliver
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Andrea De Micheli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Ana Catalan
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Mental Health Department, Basurto University Hospital, Facultad de Medicina y Odontología, Campus de Leioa, Biocruces Bizkaia Health Research Institute, UPV/EHU, University of the Basque Country, Barakaldo, Spain
| | - Helen Baldwin
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Mental Health Policy Research Unit, Division of Psychiatry, University College London, London, United Kingdom
| | - Maite Arribas
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicolas A. Crossley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Oxford, United Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, National Institute for Health Research, London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, National Institute for Health Research, London, United Kingdom
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Peng Z, Zhang HT, Wang G, Zhang J, Qian S, Zhao Y, Zhang R, Wang W. Cerebral neurovascular alterations in stable chronic obstructive pulmonary disease: a preliminary fMRI study. PeerJ 2022; 10:e14249. [PMID: 36405017 PMCID: PMC9671032 DOI: 10.7717/peerj.14249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Cognitive impairment (CI) is very common in patients with chronic obstructive pulmonary disease (COPD). Cerebral structural and functional abnormalities have been reported in cognitively impaired patients with COPD, and the neurovascular coupling changes are rarely investigated. To address this issue, arterial spin labeling (ASL) and resting-state blood oxygenation level dependent (BOLD) fMRI techniques were used to determine whether any neurovascular changes in COPD patients. Methods Forty-five stable COPD patients and forty gender- and age-matched healthy controls were recruited. Furthermore, resting-state BOLD fMRI and ASL were acquired to calculate degree centrality (DC) and cerebral blood flow (CBF) respectively. The CBF-DC coupling and CBF/DC ratio were compared between the two groups. Results COPD patients showed abnormal CBF, DC and CBF/DC ratio in several regions. Moreover, lower CBF/DC ratio in the left lingual gyrus negatively correlated with naming scores, lower CBF/DC ratio in medial frontal cortex/temporal gyrus positively correlated with the Montreal Cognitive Assessment (MoCA), visuospatial/executive and delayed recall scores. Conclusion These findings may provide new potential insights into neuropathogenesis of cognition decline in stable COPD patients.
Collapse
Affiliation(s)
- Zhaohui Peng
- Department of Nuclear Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Medical Imaging, Changzheng Hospital, Shanghai, China
| | - Hong Tao Zhang
- Institute of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang, Henan, China
| | - Juntao Zhang
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Yajun Zhao
- Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| | - Ruijie Zhang
- Department of Radiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
| | - Wei Wang
- Department of Medical Imaging, Changzheng Hospital, Shanghai, China,Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| |
Collapse
|
18
|
Fan D, He C, Liu X, Zang F, Zhu Y, Zhang H, Zhang H, Zhang Z, Xie C. Altered resting-state cerebral blood flow and functional connectivity mediate suicidal ideation in major depressive disorder. J Cereb Blood Flow Metab 2022; 42:1603-1615. [PMID: 35350926 PMCID: PMC9441724 DOI: 10.1177/0271678x221090998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationships among cerebral blood flow (CBF), functional connectivity (FC) and suicidal ideation (SI) in major depressive disorder (MDD) patients have remained elusive. In this study, we characterized the changes in CBF and FC among 175 individuals including 47 MDD without SI (MDDNSI), 59 MDD with SI (MDDSI), and 69 healthy control (HC) who underwent arterial spin labeling and resting-state functional MRI scans. Then the voxel-wise CBF, seed-based FC and partial correlation analyses were measured. Mediation analysis was carried out to reveal the effects of FC on the association between CBF and behavioral performances in both subgroups. Results showed that CBF was higher in MDDSI patients in the bilateral precuneus compared to HC and MDDNSI participants. MDDSI patients exhibited enhanced FC in the prefrontal-limbic system and decreased FC in the sensorimotor cortex (SMC) relative to MDDNSI patients. CBF and FC were significantly correlated with clinical variables. More importantly, exploratory mediation analyses identified that abnormal FC can mediate the association between regional CBF and behavioral performances. These results highlight the potential role of precuneus gyrus, prefrontal-limbic system as well as SMC in the process of suicide and provide new insights into the neural mechanism underlying suicide in MDD patients.
Collapse
Affiliation(s)
- Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yao Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Haisan Zhang
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxing Zhang
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
20
|
Holmqvist SL, Thomas KR, Brenner EK, Edmonds EC, Calcetas A, Edwards L, Bordyug M, Bangen KJ. Longitudinal Intraindividual Cognitive Variability Is Associated With Reduction in Regional Cerebral Blood Flow Among Alzheimer's Disease Biomarker-Positive Older Adults. Front Aging Neurosci 2022; 14:859873. [PMID: 35875798 PMCID: PMC9300445 DOI: 10.3389/fnagi.2022.859873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/06/2022] [Indexed: 02/03/2023] Open
Abstract
Intraindividual variability (IIV) across neuropsychological measures within a single testing session is a promising marker predictive of cognitive decline and development of Alzheimer's disease (AD). We have previously shown that greater IIV is cross-sectionally associated with reduced cerebral blood flow (CBF), but not with cortical thickness or brain volume, in older adults without dementia who were amyloid beta (Aβ) positive. However, there is little known about the association between change in IIV and CBF over time. Therefore, we examined 12-month longitudinal change in IIV and interactions of IIV and AD biomarker status on changes in regional CBF. Fifty-three non-demented Alzheimer's Disease Neuroimaging Initiative (ADNI) participants underwent lumbar puncture to obtain cerebrospinal fluid (CSF) at baseline and neuropsychological testing and magnetic resonance imaging (MRI) exams at baseline and 12-month follow-up evaluation. IIV was calculated as the intraindividual standard deviation across 6 demographically-corrected neuropsychological measures. Pulsed arterial spin labeling (ASL) MRI was acquired to quantify CBF and FreeSurfer-derived a priori CBF regions of interest (ROIs) were examined. AD biomarker positivity was determined using a published CSF p-tau/Aβ ratio cut-score. Change scores were calculated for IIV, CBF, and mean neuropsychological performance from baseline to 12 months. Hierarchical linear regression models showed that after adjusting for age and gender, there was a significant interaction between IIV change and biomarker-positivity (p-tau/Aβ+) for change in entorhinal and hippocampal CBF but not for the other ROIs. Specifically, increases in IIV were associated with reductions in entorhinal and hippocampal CBF among individuals who were biomarker-positive (n = 21). In contrast, there were no significant associations between change in IIV and CBF among those who were biomarker-negative (n = 32). Findings remained similar when analyses were performed adjusting for change in mean level of neuropsychological performance. Changes in IIV may be sensitive to changes in regional hypoperfusion in AD-vulnerable regions among AD biomarker-positive individuals, above and beyond demographics and mean neuropsychological performance. These findings provide further evidence supporting IIV as a potential marker of cerebrovascular brain changes in individuals at risk for dementia.
Collapse
Affiliation(s)
- Sophia L. Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Emily C. Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Katherine J. Bangen,
| |
Collapse
|
21
|
Nakamura Y, Uematsu A, Okanoya K, Koike S. The effect of acquisition duration on cerebral blood flow-based resting-state functional connectivity. Hum Brain Mapp 2022; 43:3184-3194. [PMID: 35338768 PMCID: PMC9189081 DOI: 10.1002/hbm.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Resting-state functional connectivity (rs-FC) is widely used to examine the functional architecture of the brain, and the blood-oxygenation-level-dependent (BOLD) signal is often utilized for determining rs-FC. However, the BOLD signal is susceptible to various factors that have less influence on the cerebral blood flow (CBF). Therefore, CBF could comprise an alternative for determining rs-FC. Since acquisition duration is one of the essential parameters for obtaining reliable rs-FC, we investigated the effect of acquisition duration on CBF-based rs-FC to examine the reliability of CBF-based rs-FC. Nineteen participants underwent CBF scanning for a total duration of 50 min. Variance of CBF-based rs-FC within the whole brain and 13 large-scale brain networks at various acquisition durations was compared to that with a 50-min duration using the Levene's test. Variance of CBF-based rs-FC at any durations did not differ from that at a 50-min duration (p > .05). Regarding variance of rs-FC within each large-scale brain network, the acquisition duration required to obtain reliable estimates of CBF-based rs-FC was shorter than 10 min and varied across large-scale brain networks. Altogether, an acquisition duration of at least 10 min is required to obtain reliable CBF-based rs-FC. These results indicate that CBF-based resting-state functional magnetic resonance imaging (rs-fMRI) with more than 10 min of total acquisition duration could be an alternative method to BOLD-based rs-fMRI to obtain reliable rs-FC.
Collapse
Affiliation(s)
- Yuko Nakamura
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
| | - Akiko Uematsu
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazuo Okanoya
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinsuke Koike
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| |
Collapse
|
22
|
Dmytriw AA, Bickford S, Pezeshkpour P, Ha W, Amirabadi A, Dibas M, Kitamura LA, Vidarsson L, Pulcine E, Muthusami P. Rotational Vertebrobasilar Insufficiency: Is There a Physiological Spectrum? Phase-Contrast Magnetic Resonance Imaging Quantification in Healthy Volunteers. Pediatr Neurol 2022; 128:58-64. [PMID: 35101804 DOI: 10.1016/j.pediatrneurol.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Some cases of cerebral ischemia have been attributed to dynamic flow limitation in neck vessels. It however remains unknown whether this represents the extreme end of a physiological response. METHODS Eighteen healthy volunteers were recruited to this prospective study. Cervical blood flow (ml/min/m2) was assessed using phase-contrast MRI, and cerebral perfusion ratios were assessed using arterial spin labeling perfusion at neutral position, predefined head rotations, as well as flexion and extension. Inter-reader agreements were assessed using intraclass correlation coefficient. RESULTS The mean age was 38.6 ± 10.8 (range = 22-56) years, for five male participants and 13 females. The means for height and weight were 168 cm and 73.2 kg, respectively. There were no significant differences in individual arterial blood flow with change in head position (P > 0.05). Similarly, the repeated-measures analysis of variance test demonstrated no significant difference in perfusion ratios in relation to head position movement (P > 0.05). Inter-reader agreement was excellent (intraclass correlation coefficient = 0.97). CONCLUSIONS There is neither significant change in either individual cervical arterial blood flow nor cerebral perfusion within the normal physiological/anatomical range of motion in healthy individuals. It is therefore reasonable to conclude that any such hemodynamic change identified in a patient with ischemic stroke be considered causative.
Collapse
Affiliation(s)
- Adam A Dmytriw
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada.
| | - Suzanne Bickford
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Parneyan Pezeshkpour
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Winston Ha
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Afsaneh Amirabadi
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Dibas
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lee Ann Kitamura
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Logi Vidarsson
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Pulcine
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Prakash Muthusami
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Cardinale V, Demirakca T, Gradinger T, Sack M, Ruf M, Kleindienst N, Schmitz M, Schmahl C, Baumgärtner U, Ende G. Cerebral processing of sharp mechanical pain measured with arterial spin labeling. Brain Behav 2022; 12:e2442. [PMID: 34878219 PMCID: PMC8785639 DOI: 10.1002/brb3.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Arterial spin labeling (ASL) is a functional neuroimaging technique that has been frequently used to investigate acute pain states. A major advantage of ASL as opposed to blood-oxygen-level-dependent functional neuroimaging is its applicability for low-frequency designs. As such, ASL represents an interesting option for studies in which repeating an experimental event would reduce its ecological validity. Whereas most ASL pain studies so far have used thermal stimuli, to our knowledge, no ASL study so far has investigated pain responses to sharp mechanical pain. METHODS As a proof of concept, we investigated whether ASL has the sensitivity to detect brain activation within core areas of the nociceptive network in healthy controls following a single stimulation block based on 96 s of mechanical painful stimulation using a blunt blade. RESULTS We found significant increases in perfusion across many regions of the nociceptive network such as primary and secondary somatosensory cortices, premotor cortex, posterior insula, inferior parietal cortex, parietal operculum, temporal gyrus, temporo-occipital lobe, putamen, and the cerebellum. Contrary to our hypothesis, we did not find any significant increase within ACC, thalamus, or PFC. Moreover, we were able to detect a significant positive correlation between pain intensity ratings and pain-induced perfusion increase in the posterior insula. CONCLUSION We demonstrate that ASL is suited to investigate acute pain in a single event paradigm, although to detect activation within some regions of the nociceptive network, the sensitivity of our paradigm seemed to be limited. Regarding the posterior insula, our paradigm was sensitive enough to detect a correlation between pain intensity ratings and pain-induced perfusion increase. Previous experimental pain studies have proposed that intensity coding in this region may be restricted to thermal stimulation. Our result demonstrates that the posterior insula encodes intensity information for mechanical stimuli as well.
Collapse
Affiliation(s)
- Vita Cardinale
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Traute Demirakca
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gradinger
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Sack
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ruf
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nikolaus Kleindienst
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulf Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MTCN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Cognitive and Affective Neuroscience (ICAN), Medical School Hamburg, Hamburg, Germany
| | - Gabriele Ende
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
24
|
Chen YW, Wengler K, He X, Canli T. Individual Differences in Cerebral Perfusion as a Function of Age and Loneliness. Exp Aging Res 2022; 48:1-23. [PMID: 34036895 PMCID: PMC8617054 DOI: 10.1080/0361073x.2021.1929748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Loneliness is defined as the subjective feeling that one's social needs are not satisfied by both quantity and quality of one's social relationships. Loneliness has been linked to a broad range of adverse physical and mental health consequences. There is an interest in identifying the neural and molecular processes by which loneliness adversely affects health. Prior imaging studies reported divergent networks involved in cognitive, emotional, and social processes associated with loneliness. Although loneliness is common among both younger and older adults, it is experienced differently across the lifespan and has different antecedents and consequences. The current study measured regional cerebral blood flow (CBF) using pulsed arterial spin labeling imaging. Forty-five older (Mage = 63.4) and forty-four younger adults (Mage = 20.9) with comparable degrees of loneliness were included. Whole-brain voxel-wise analysis revealed a main effect of age (in superior temporal and supramarginal gyri), but no main effect of loneliness. Furthermore, the age effect was only observed among people who reported higher level of loneliness. These regions have previously been implicated in social- and attention-related functions. The moderation of loneliness on age and regional CBF suggests that younger and older individuals present differential neural manifestations in response to loneliness, even with comparable levels of loneliness.
Collapse
Affiliation(s)
- Yen-Wen Chen
- Department of Psychology, Stony Brook University, Stony Brook, NY,Corresponding author: Yen-Wen Chen, Department of Psychology, Stony Brook University, Psychology B Building, Room 325, Stony Brook, NY 11794-2500, USA.
| | - Kenneth Wengler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Xiang He
- Department of Radiology, Stony Brook University, Stony Brook, NY
| | - Turhan Canli
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry, Stony Brook University, Stony Brook, NY
| |
Collapse
|
25
|
Chen C, Mao Y, Falahpour M, MacNiven KH, Heit G, Sharma V, Alataris K, Liu TT. Effects of sub-threshold transcutaneous auricular vagus nerve stimulation on cerebral blood flow. Sci Rep 2021; 11:24018. [PMID: 34912017 PMCID: PMC8674256 DOI: 10.1038/s41598-021-03401-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has shown promise as a non-invasive alternative to vagus nerve stimulation (VNS) with implantable devices, which has been used to treat drug-resistant epilepsy and treatment-resistant depression. Prior work has used functional MRI to investigate the brain response to taVNS, and more recent work has also demonstrated potential therapeutic effects of high-frequency sub-threshold taVNS in rheumatoid arthritis. However, no studies to date have measured the effects of high-frequency sub-threshold taVNS on cerebral blood flow (CBF). The objective of this study was to determine whether high-frequency (20 kHz) sub-threshold taVNS induces significant changes in CBF, a promising metric for the assessment of the sustained effects of taVNS. Arterial spin labeling (ASL) MRI scans were performed on 20 healthy subjects in a single-blind placebo-controlled repeated measures experimental design. The ASL scans were performed before and after 15 min of either sub-threshold taVNS treatment or a sham control. taVNS induced significant changes in CBF in the superior posterior cerebellum that were largely localized to bilateral Crus I and Crus II. Post hoc analyses showed that the changes were driven by a treatment-related decrease in CBF. Fifteen minutes of high-frequency sub-threshold taVNS can induce sustained CBF decreases in the bilateral posterior cerebellum in a cohort of healthy subjects. This study lays the foundation for future studies in clinical populations, and also supports the use of ASL measures of CBF for the assessment of the sustained effects of taVNS.
Collapse
Affiliation(s)
- Conan Chen
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA.
| | - Yixiang Mao
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA
| | - Maryam Falahpour
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA
| | - Kelly H MacNiven
- Department of Psychology, Stanford University, Stanford, CA, USA
- Nēsos Corporation, Redwood City, CA, USA
| | - Gary Heit
- Nēsos Corporation, Redwood City, CA, USA
- Department of Neurosurgery, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | | | | | - Thomas T Liu
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA.
| |
Collapse
|
26
|
Furman DJ, Pappas I, White RL, Kayser AS, D'Esposito M. Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. Neuroimage 2021; 242:118472. [PMID: 34390874 DOI: 10.1016/j.neuroimage.2021.118472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.
Collapse
Affiliation(s)
- Daniella J Furman
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States.
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| |
Collapse
|
27
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
28
|
Arkoudis NA, Katsanos K, Inchingolo R, Paraskevopoulos I, Mariappan M, Spiliopoulos S. Quantifying tissue perfusion after peripheral endovascular procedures: Novel tissue perfusion endpoints to improve outcomes. World J Cardiol 2021; 13:381-398. [PMID: 34621485 PMCID: PMC8462037 DOI: 10.4330/wjc.v13.i9.381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral artery disease (PAD) is a flow-limiting condition caused by narrowing of the peripheral arteries typically due to atherosclerosis. It affects almost 200 million people globally with patients either being asymptomatic or presenting with claudication or critical or acute limb ischemia. PAD-affected patients display increased mortality rates, rendering their management critical. Endovascular interventions have proven crucial in PAD treatment and decreasing mortality and have significantly increased over the past years. However, for the functional assessment of the outcomes of revascularization procedures for the treatment of PAD, the same tests that have been used over the past decades are still being employed. Those only allow an indirect evaluation, while an objective quantification of limb perfusion is not feasible. Standard intraarterial angiography only demonstrates post-intervention vessel patency, hence is unable to accurately estimate actual limb perfusion and is incapable of quantifying treatment outcome. Therefore, there is a significant necessity for real-time objectively measurable procedural outcomes of limb perfusion that will allow vascular experts to intraoperatively quantify and assess outcomes, thus optimizing treatment, obviating misinterpretation, and providing significantly improved clinical results. The purpose of this review is to familiarize readers with the currently available perfusion-assessment methods and to evaluate possible prospects.
Collapse
Affiliation(s)
- Nikolaos-Achilleas Arkoudis
- 2 Radiology Department, Interventional Radiology Unit, Attikon University General Hospital, Athens 12461, Greece
| | - Konstantinos Katsanos
- Interventional Radiology Department, Patras University Hospital, PATRAS 26441, Greece
| | - Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" Regional General Hospital, Acquaviva delle Fonti 70021, Italy
| | - Ioannis Paraskevopoulos
- Department of Clinical Radiology, Interventional Radiology Unit, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen AB25 2ZN, United Kingdom
| | - Martin Mariappan
- Department of Clinical Radiology, Interventional Radiology Unit, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen AB15 5EY, United Kingdom
| | - Stavros Spiliopoulos
- 2Radiology Department, Interventional Radiology Unit, School of Medicine, National and Kapodistrian University of Athens, Athens 12461, Greece.
| |
Collapse
|
29
|
Burley CV, Francis ST, Whittaker AC, Mullinger KJ, Lucas SJE. Measuring resting cerebral haemodynamics using MRI arterial spin labelling and transcranial Doppler ultrasound: Comparison in younger and older adults. Brain Behav 2021; 11:e02126. [PMID: 34032379 PMCID: PMC8323033 DOI: 10.1002/brb3.2126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Resting cerebral blood flow (CBF) and perfusion measures have been used to determine brain health. Studies showing variation in resting CBF with age and fitness level using different imaging approaches have produced mixed findings. We assess the degree to which resting CBF measures through transcranial Doppler (TCD) and arterial spin labeling (ASL) MRI provide complementary information in older and younger, fit and unfit cohorts. METHODS Thirty-five healthy volunteers (20 younger: 24 ± 7y; 15 older: 66 ± 7y) completed two experimental sessions (TCD/MRI). Aging and fitness effects within and between imaging modalities were assessed. RESULTS Middle cerebral artery blood velocity (MCAv, TCD) was lower and transit time (MRI) slower in older compared with younger participants (p < .05). The younger group had higher gray matter cerebral perfusion (MRI) than the older group, albeit not significantly (p = .13). Surprisingly, fitness effects in the younger group (decrease/increase in MCAv/transit time with fitness, respectively) opposed the older group (increase/decrease in MCAv/transit time). Whole cohort transit times correlated with MCAv (r=-0.63; p < .05), whereas tissue perfusion did not correlate with TCD measures. CONCLUSION TCD and MRI modalities provide complementary resting CBF measures, with similar effects across the whole cohort and between subgroups (age/fitness) if metrics are comparable (e.g., velocity [TCD] versus transit time [MRI]).
Collapse
Affiliation(s)
- Claire V Burley
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.,Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Anna C Whittaker
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.,Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK.,School of Psychology, University of Birmingham, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| |
Collapse
|
30
|
Hertel A, Wenz H, Al-Zghloul M, Hausner L, FrÖlich L, Groden C, FÖrster A. Crossed Cerebellar Diaschisis in Alzheimer's Disease Detected by Arterial Spin-labelling Perfusion MRI. In Vivo 2021; 35:1177-1183. [PMID: 33622918 DOI: 10.21873/invivo.12366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Crossed cerebellar diaschisis (CCD) is a phenomenon with depressed metabolism and hypoperfusion in the cerebellum. Using arterial spin-labelling perfusion weighted magnetic resonance imaging (ASL PWI), we investigated the frequency of CCD in patients with Alzheimer's disease (AD) and differences between patients with and without CCD. PATIENTS AND METHODS In patients with AD who underwent a standardized magnetic resonance imaging including ASL PWI cerebral blood flow was evaluated in the cerebellum, and brain segmentation/volumetry was performed using mdbrain (mediaire GmbH, Berlin, Germany) and FSL FIRST (Functional Magnetic Resonance Imaging of the Brain Software Library). RESULTS In total, 65 patients were included, and 22 (33.8%) patients were assessed as being CCD-positive. Patients with CCD had a significantly smaller whole brain volume (862.8±49.9 vs. 893.7±62.7 ml, p=0.049) as well as white matter volume (352.9±28.0 vs. 374.3±30.7, p=0.008) in comparison to patients without CCD. CONCLUSION It was possible to detect CCD by ASL PWI in approximately one-third of patients with AD and was associated with smaller whole brain and white matter volume.
Collapse
Affiliation(s)
- Alexander Hertel
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mansour Al-Zghloul
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Lutz FrÖlich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alex FÖrster
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany;
| |
Collapse
|
31
|
Bangen KJ, Thomas KR, Sanchez DL, Edmonds EC, Weigand AJ, Delano-Wood L, Bondi MW. Entorhinal Perfusion Predicts Future Memory Decline, Neurodegeneration, and White Matter Hyperintensity Progression in Older Adults. J Alzheimers Dis 2021; 81:1711-1725. [PMID: 33967041 DOI: 10.3233/jad-201474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been linked to increased risk for Alzheimer's disease (AD). However, whether altered CBF contributes to AD risk by accelerating cognitive decline remains unclear. It also remains unclear whether reductions in CBF accelerate neurodegeneration and development of small vessel cerebrovascular disease. OBJECTIVE To examine associations between CBF and trajectories of memory performance, regional brain atrophy, and global white matter hyperintensity (WMH) volume. METHOD 147 Alzheimer's Disease Neuroimaging Initiative participants free of dementia underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure CBF and serial neuropsychological and structural MRI examinations. Linear mixed effects models examined 5-year rate of change in memory and 4-year rate of change in regional brain atrophy and global WMH volumes as a function of baseline regional CBF. Entorhinal and hippocampal CBF were examined in separate models. RESULTS Adjusting for demographic characteristics, pulse pressure, apolipoprotein E ɛ4 positivity, cerebrospinal fluid p-tau/Aβ ratio, and neuronal metabolism (i.e., fluorodeoxyglucose standardized uptake value ratio), lower baseline entorhinal CBF predicted faster rates of decline in memory as well as faster entorhinal thinning and WMH progression. Hippocampal CBF did not predict cognitive or brain structure trajectories. CONCLUSION Findings highlight the importance of early cerebrovascular dysfunction in AD risk and suggest that entorhinal CBF as measured by noninvasive ASL MRI is a useful biomarker predictive of future cognitive decline and of risk of both.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
32
|
McCutcheon RA, Brown K, Nour MM, Smith SM, Veronese M, Zelaya F, Osugo M, Jauhar S, Hallett W, Mehta MM, Howes OD. Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness. SCIENCE ADVANCES 2021; 7:7/24/eabg1512. [PMID: 34108214 PMCID: PMC8189589 DOI: 10.1126/sciadv.abg1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/15/2021] [Indexed: 05/02/2023]
Abstract
Dopamine signaling is constrained to discrete tracts yet has brain-wide effects on neural activity. The nature of this relationship between local dopamine signaling and brain-wide neuronal activity is not clearly defined and has relevance for neuropsychiatric illnesses where abnormalities of cortical activity and dopamine signaling coexist. Using simultaneous PET-MRI in healthy volunteers, we find strong evidence that patterns of striatal dopamine signaling and cortical blood flow (an index of local neural activity) contain shared information. This shared information links amphetamine-induced changes in gradients of striatal dopamine receptor availability to changes in brain-wide blood flow and is informed by spatial patterns of gene expression enriched for genes implicated in schizophrenia, bipolar disorder, and autism spectrum disorder. These results advance our knowledge of the relationship between cortical function and striatal dopamine, with relevance for understanding pathophysiology and treatment of diseases in which simultaneous aberrations of these systems exist.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Kirsten Brown
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Stephen M Smith
- Oxford University Centre for Functional MRI of the Brain (FMRIB), Oxford, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - William Hallett
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, UK
| | - Mitul M Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
33
|
Thomas KR, Osuna JR, Weigand AJ, Edmonds EC, Clark AL, Holmqvist S, Cota IH, Wierenga CE, Bondi MW, Bangen KJ, for the Alzheimer’s Disease Neuroimaging Initiative. Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. J Cereb Blood Flow Metab 2021; 41:1001-1012. [PMID: 32615887 PMCID: PMC8054731 DOI: 10.1177/0271678x20935171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
Although cerebral blood flow (CBF) alterations are associated with Alzheimer's disease (AD), CBF patterns across prodromal stages of AD remain unclear. Therefore, we investigated patterns of regional CBF in 162 Alzheimer's Disease Neuroimaging Initiative participants characterized as cognitively unimpaired (CU; n = 80), objectively-defined subtle cognitive decline (Obj-SCD; n = 31), or mild cognitive impairment (MCI; n = 51). Arterial spin labeling MRI quantified regional CBF in a priori regions of interest: hippocampus, inferior temporal gyrus, inferior parietal lobe, medial orbitofrontal cortex, and rostral middle frontal gyrus. Obj-SCD participants had increased hippocampal and inferior parietal CBF relative to CU and MCI participants and increased inferior temporal CBF relative to MCI participants. CU and MCI groups did not differ in hippocampal or inferior parietal CBF, but CU participants had increased inferior temporal CBF relative to MCI participants. There were no CBF group differences in the two frontal regions. Thus, we found an inverted-U pattern of CBF signal across prodromal AD stages in regions susceptible to early AD pathology. Hippocampal and inferior parietal hyperperfusion in Obj-SCD may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain cognitive functioning relative to MCI participants, yet is also reflective of early cognitive inefficiencies that distinguish Obj-SCD from CU participants.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jessica R Osuna
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra L Clark
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Isabel H Cota
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
34
|
Duc NM. Three-Dimensional Pseudo-Continuous Arterial Spin Labeling Parameters Distinguish Pediatric Medulloblastoma and Pilocytic Astrocytoma. Front Pediatr 2021; 8:598190. [PMID: 33763392 PMCID: PMC7982871 DOI: 10.3389/fped.2020.598190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Arterial Spin Labeling (ASL), a perfusion assessment without using gadolinium-based contrast agents, is outstandingly advantageous for pediatric patients. The differentiation of medulloblastomas from pilocytic astrocytomas in children plays a significant role in determining treatment strategies and prognosis. This study aimed to assess the use of ASL parameters during the differentiation between pediatric medulloblastoma and pilocytic astrocytoma. Methods: The institutional review board of Children's Hospital 2 approved this prospective study. The brain magnetic resonance imaging (MRI) protocol, including axial three-dimensional (3D) pseudo-continuous ASL, was evaluated in 33 patients, who were divided into a medulloblastoma group (n = 25) and a pilocytic astrocytoma group (n = 8). The quantified region of interest (ROI) values for the tumors and the tumor to parenchyma ratios were collected and compared between the two groups. Receiver operating characteristic (ROC) curve analysis and the Youden index were utilized to identify the best cut-off, sensitivity, specificity, and area under the curve (AUC) values for significant ASL parameters. Results: The cerebral blood flow (CBF) and the ratio between the CBF of the tumor relative to that of the parenchyma (rCBF) values for medulloblastomas were significantly higher than those for pilocytic astrocytomas (p < 0.05). A cut-off value of 0.51 for rCBF was able to discriminate between medulloblastoma and pilocytic astrocytoma, generating a sensitivity of 88%, a specificity of 75%, and an AUC of 83.5%. Conclusion: The rCBF measurement, obtained during MRI with 3D pseudo-continuous ASL, plays a supplemental role in the differentiation of medulloblastoma from pilocytic astrocytoma.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Doctoral Program, Department of Radiology, Hanoi Medical University, Ha Noi, Vietnam
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Department of Radiology, Children's Hospital 02, Ho Chi Minh City, Vietnam
| |
Collapse
|
35
|
Nayak R, Lee J, Chantigian S, Fatemi M, Chang SY, Alizad A. Imaging the response to deep brain stimulation in rodent using functional ultrasound. Phys Med Biol 2021; 66:05LT01. [PMID: 33482648 PMCID: PMC7920924 DOI: 10.1088/1361-6560/abdee5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we explored the feasibility of using functional ultrasound (fUS) imaging to visualize cerebral activation associated with thalamic deep brain stimulation (DBS), in rodents. The ventrolateral (VL) thalamus was stimulated using electrical pulses of low and high frequencies of 10 and 100 Hz, respectively, and multiple voltages (1-7 V) and pulse widths (50-1500 μs). The fUS imaging demonstrated DBS-evoked activation of cerebral cortex based on changes of cerebral blood volume, specifically at the primary motor cortex (PMC). Low frequency stimulation (LFS) demonstrated significantly higher PMC activation compared to higher frequency stimulation (HFS), at intensities (5-7 V). Whereas, at lower intensities (1-3 V), only HFS demonstrated visible PMC activation. Further, LFS-evoked cerebral activation was was primarily located at the PMC. Our data presents the functionality and feasibility of fUS imaging as an investigational tool to identify brain areas associated with DBS. This preliminary study is an important stepping stone towards conducting real-time functional ultrasound imaging of DBS in awake and behaving animal models, which is of significant interest to the community for studying motor-related disorders.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Jeyeon Lee
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Siobhan Chantigian
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| |
Collapse
|
36
|
Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders. J Magn Reson Imaging 2020; 55:698-719. [PMID: 33314349 DOI: 10.1002/jmri.27438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast magnetic resonance imaging (MRI) technique that enables quantitative evaluation of brain perfusion. To optimize the clinical and research utilization of ASL, radiologists and physicists must understand the technical considerations and age-related variations in normal and disease states. We discuss advanced applications of ASL across the lifespan, with example cases from children and adults covering a wide variety of pathologies. Through literature review and illustrated clinical cases, we highlight the subtleties as well as pitfalls of ASL interpretation. First, we review basic physical principles, techniques, and artifacts. This is followed by a discussion of normal perfusion variants based on age and physiology. The three major categories of perfusion abnormalities-hypoperfusion, hyperperfusion, and mixed patterns-are covered with an emphasis on clinical interpretation and relationship to the disease process. Major etiologies of hypoperfusion include large artery, small artery, and venous disease; other vascular conditions; global hypoxic-ischemic injury; and neurodegeneration. Hyperperfusion is characteristic of vascular malformations and tumors. Mixed perfusion patterns can be seen with epilepsy, migraine, trauma, infection/inflammation, and toxic-metabolic encephalopathy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sven Bambach
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - P Pearse Morris
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
37
|
Wang J, Sun P, Liang P. Neuropsychopharmacological effects of midazolam on the human brain. Brain Inform 2020; 7:15. [PMID: 33170396 PMCID: PMC7655878 DOI: 10.1186/s40708-020-00116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
As a commonly used anesthetic agent, midazolam has the properties of water-soluble, rapid onset, and short duration of action. With the rapid development in the field of neuroimaging, numerous studies have investigated how midazolam acts on the human brain to induce the alteration of consciousness. However, the neural bases of midazolam-induced sedation or anesthesia remain beginning to be understood in detail. In this review, we summarize findings from neuroimaging studies that have used midazolam to study altered consciousness at different levels and content. We also compare the results to those of neuroimaging studies using diverse anesthetic agents and describe the common neural correlates of anesthetic-induced alteration of consciousness.
Collapse
Affiliation(s)
- Junkai Wang
- School of Psychology, Capital Normal University, Haidian District, Beijing, 100048, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China.,Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China.
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Haidian District, Beijing, 100048, China. .,Beijing Key Laboratory of Learning and Cognition, Beijing, China.
| |
Collapse
|
38
|
Kim JH, Taylor AJ, Wang DJJ, Zou X, Ress D. Dynamics of the cerebral blood flow response to brief neural activity in human visual cortex. J Cereb Blood Flow Metab 2020; 40:1823-1837. [PMID: 31429358 PMCID: PMC7446561 DOI: 10.1177/0271678x19869034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
Abstract
The blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal depends on an interplay of cerebral blood flow (CBF), oxygen metabolism, and cerebral blood volume. Despite wide usage of BOLD fMRI, it is not clear how these physiological components create the BOLD signal. Here, baseline CBF and its dynamics evoked by a brief stimulus (2 s) in human visual cortex were measured at 3T. We found a stereotypical CBF response: immediate increase, rising to a peak a few second after the stimulus, followed by a significant undershoot. The BOLD hemodynamic response function (HRF) was also measured in the same session. Strong correlations between HRF and CBF peak responses indicate that the flow responses evoked by neural activation in nearby gray matter drive the early HRF. Remarkably, peak CBF and HRF were also strongly modulated by baseline perfusion. The CBF undershoot was reliable and significantly correlated with the HRF undershoot. However, late-time dynamics of the HRF and CBF suggest that oxygen metabolism can also contribute to the HRF undershoot. Combined measurement of the CBF and HRF for brief neural activation is a useful tool to understand the temporal dynamics of neurovascular and neurometabolic coupling.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Amanda J Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Xiaowei Zou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Bloomfield MAP, Green SF, Hindocha C, Yamamori Y, Yim JLL, Jones APM, Walker HR, Tokarczuk P, Statton B, Howes OD, Curran HV, Freeman TP. The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study. J Psychopharmacol 2020; 34:981-989. [PMID: 32762272 PMCID: PMC7436497 DOI: 10.1177/0269881120936419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is being investigated as a potential treatment for several medical indications, many of which are characterised by altered memory processing. However, the mechanisms underlying these effects are unclear. AIMS Our primary aim was to investigate how CBD influences cerebral blood flow (CBF) in regions involved in memory processing. Our secondary aim was to determine if the effects of CBD on CBF were associated with differences in working and episodic memory task performance. METHODS We used a randomised, crossover, double-blind design in which 15 healthy participants were administered 600 mg oral CBD or placebo on separate days. We measured regional CBF at rest using arterial spin labelling 3 h after drug ingestion. We assessed working memory with the digit span (forward, backward) and n-back (0-back, 1-back, 2-back) tasks, and we used a prose recall task (immediate and delayed) to assess episodic memory. RESULTS CBD increased CBF in the hippocampus (mean (95% confidence intervals) = 15.00 (5.78-24.21) mL/100 g/min, t14 = 3.489, Cohen's d = 0.75, p = 0.004). There were no differences in memory task performance, but there was a significant correlation whereby greater CBD-induced increases in orbitofrontal CBF were associated with reduced reaction time on the 2-back working memory task ( r= -0.73, p = 0.005). CONCLUSIONS These findings suggest that CBD increases CBF to key regions involved in memory processing, particularly the hippocampus. These results identify potential mechanisms of CBD for a range of conditions associated with altered memory processing, including Alzheimer's disease, schizophrenia, post-traumatic stress disorder and cannabis-use disorders.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, UK,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK,Michael Bloomfield, Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, University College London, Maple House, Tottenham Court Road, London W1T 7NF, UK.
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Yumeya Yamamori
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Jocelyn Lok Ling Yim
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Augustus P M Jones
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Hannah R Walker
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Pawel Tokarczuk
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ben Statton
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Department of Psychology, University of Bath, Bath, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
40
|
Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, Schäfers M, Grauer O, Jacobs AH, Zinnhardt B. Multimodal Molecular Imaging of the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:71-87. [PMID: 32030648 DOI: 10.1007/978-3-030-35727-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Philipp Backhaus
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Alexandra Winkeler
- UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas Viel
- Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris Descartes, Paris, France
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany. .,PET Imaging in Drug Design and Development (PET3D), Münster, Germany. .,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany.
| |
Collapse
|
41
|
Havlicek M, Uludağ K. A dynamical model of the laminar BOLD response. Neuroimage 2020; 204:116209. [DOI: 10.1016/j.neuroimage.2019.116209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
|
42
|
Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men. Front Aging Neurosci 2019; 11:333. [PMID: 31866855 PMCID: PMC6904365 DOI: 10.3389/fnagi.2019.00333] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Background Physical activity may attenuate age-related cognitive decline by improving cerebrovascular function. The aim of this study was therefore to investigate effects of aerobic exercise training on cerebral blood flow (CBF), which is a sensitive physiological marker of cerebrovascular function, in sedentary older men. Methods Seventeen apparently healthy men, aged 60–70 years and with a BMI between 25 and 35 kg/m2, were included in a randomized, controlled cross-over trial. Study participants were randomly allocated to a fully-supervised, progressive, aerobic exercise training or no-exercise control period for 8 weeks, separated by a 12-week wash-out period. Measurements at the end of each period included aerobic fitness evaluated using peak oxygen consumption during incremental exercise (VO2peak), CBF measured with pseudo-continuous arterial spin labeling magnetic resonance imaging, and post-load glucose responses determined using an oral glucose tolerance test (OGTT). Furthermore, cognitive performance was assessed in the domains of executive function, memory, and psychomotor speed. Results VO2peak significantly increased following aerobic exercise training compared to no-exercise control by 262 ± 236 mL (P < 0.001). CBF was increased by 27% bilaterally in the frontal lobe, particularly the subcallosal and anterior cingulate gyrus (cluster volume: 1008 mm3; P < 0.05), while CBF was reduced by 19% in the right medial temporal lobe, mainly temporal fusiform gyrus (cluster volume: 408 mm3; P < 0.05). Mean post-load glucose concentrations determined using an OGTT decreased by 0.33 ± 0.63 mmol/L (P = 0.049). Furthermore, executive function improved as the latency of response was reduced by 5% (P = 0.034), but no changes were observed in memory or psychomotor speed. Conclusion Aerobic exercise training improves regional CBF in sedentary older men. These changes in CBF may underlie exercise-induced beneficial effects on executive function, which could be partly mediated by improvements in glucose metabolism. This clinical trial is registered on ClinicalTrials.gov as NCT03272061.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jos J Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea.,Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Kim CM, Alvarado RL, Stephens K, Wey HY, Wang DJJ, Leritz EC, Salat DH. Associations between cerebral blood flow and structural and functional brain imaging measures in individuals with neuropsychologically defined mild cognitive impairment. Neurobiol Aging 2019; 86:64-74. [PMID: 31813626 DOI: 10.1016/j.neurobiolaging.2019.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
Reduced cerebral blood flow (CBF), an indicator of neurovascular processes and metabolic demands, is a common finding in Alzheimer's disease. However, little is known about what contributes to CBF deficits in individuals with mild cognitive impairment (MCI). We examine regional CBF differences in 17 MCI compared with 21 age-matched cognitively healthy older adults. Next, we examined associations between CBF, white matter lesion (WML) volume, amplitude of low-frequency fluctuations, and cortical thickness to better understand whether altered CBF was detectable before other markers and the potential mechanistic underpinnings of CBF deficits in MCI. MCI had significantly reduced CBF, whereas cortical thickness and amplitude of low-frequency fluctuation were not affected. Reduced CBF was associated with the WML volume but not associated with other measures. Given the presumed vascular etiology of WML and relative worsening of vascular health in MCI, it may suggest CBF deficits result from early vascular as opposed to metabolic deficits in MCI. These findings may support vascular mechanisms as an underlying component of cognitive impairment.
Collapse
Affiliation(s)
- Chan-Mi Kim
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Rachel L Alvarado
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kimberly Stephens
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Dany J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth C Leritz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Geriatric Research, Education & Clinical Center & Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | - David H Salat
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
44
|
Albers F, Wachsmuth L, Schache D, Lambers H, Faber C. Functional MRI Readouts From BOLD and Diffusion Measurements Differentially Respond to Optogenetic Activation and Tissue Heating. Front Neurosci 2019; 13:1104. [PMID: 31708721 PMCID: PMC6821691 DOI: 10.3389/fnins.2019.01104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Functional blood-oxygenation-level-dependent (BOLD) MRI provides a brain-wide readout that depends on the hemodynamic response to neuronal activity. Diffusion fMRI has been proposed as an alternative to BOLD fMRI and has been postulated to directly rely on neuronal activity. These complementary functional readouts are versatile tools to be combined with optogenetic stimulation to investigate networks of the brain. The cell-specificity and temporal precision of optogenetic manipulations promise to enable further investigation of the origin of fMRI signals. The signal characteristics of the diffusion fMRI readout vice versa may better resolve network effects of optogenetic stimulation. However, the light application needed for optogenetic stimulation is accompanied by heat deposition within the tissue. As both diffusion and BOLD are sensitive to temperature changes, light application can lead to apparent activations confounding the interpretation of fMRI data. The degree of tissue heating, the appearance of apparent activation in different fMRI sequences and the origin of these phenomena are not well understood. Here, we disentangled apparent activations in BOLD and diffusion measurements in rats from physiological activation upon sensory or optogenetic stimulation. Both, BOLD and diffusion fMRI revealed similar signal shapes upon sensory stimulation that differed clearly from those upon heating. Apparent activations induced by high-intensity light application were dominated by T2∗-effects and resulted in mainly negative signal changes. We estimated that even low-intensity light application used for optogenetic stimulation reduces the BOLD response close to the fiber by up to 0.4%. The diffusion fMRI signal contained T2, T2∗ and diffusion components. The apparent diffusion coefficient, which reflects the isolated diffusion component, showed negative changes upon both optogenetic and electric forepaw stimulation. In contrast, positive changes were detected upon high-intensity light application and thus ruled out heating as a major contributor to the diffusion fMRI signal.
Collapse
Affiliation(s)
- Franziska Albers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Daniel Schache
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Henriette Lambers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
45
|
Liu TT. MRI in systems medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1463. [PMID: 31365953 DOI: 10.1002/wsbm.1463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the primary medical imaging modalities and a key component of the standard of care in modern healthcare systems. One of the factors that distinguishes MRI from other imaging methods is the ability to program the MRI system to reveal a wide range of imaging contrasts, where each type of contrast offers unique information about the biological sample of interest. This ability stems from the fact that both the amplitude and phase of the magnetization of the underlying tissue can be manipulated to highlight different biological phenomenon. The flexibility and capabilities offered by modern MRI systems have enabled the development of a myriad of techniques for characterizing anatomy, physiology, and function. These include methods to characterize gross anatomy, tissue microstructure, bulk blood flow, tissue perfusion, and functional changes in blood oxygenation. This article is categorized under: Laboratory Methods and Technologies > Imaging Translational, Genomic, and Systems Medicine > Diagnostic Methods.
Collapse
Affiliation(s)
- Thomas T Liu
- Center for Functional MRI and Departments of Radiology, Psychiatry, and Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
46
|
Pang H, Dang X, Ren Y, Zhuang D, Qiu T, Chen H, Zhang J, Ma N, Li G, Zhang J, Wu J, Feng X. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis. J Magn Reson Imaging 2019; 50:209-220. [PMID: 30652410 DOI: 10.1002/jmri.26562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND There is a need for an imaging-based tool for measuring vascular endothelial growth factor (VEGF) expression and overall survival (OS) in patients with glioma. PURPOSE To assess the correlation between cerebral blood flow (CBF), measured by 3D pseudo-continuous arterial spin-labeling (3D-ASL), and VEGF expression in gliomas on the basis of coregistered localized biopsy, and investigate whether CBF correlated with survival month (SM) in glioma patients. STUDY TYPE Prospective cohort. SUBJECTS Thirty-seven patients with gliomas from whom 63 biopsy specimens were obtained. SEQUENCE 3D-ASL acquired with a 3.0T MR unit. ASSESSMENT Biopsy specimens were grouped as high-grade (HGG) or low-grade glioma (LGG). CBF measurements were spatially matched with VEGF expression by coregistered localized biopsies, and the CBF value was correlated with quantitative VEGF expression for each specimen. Patients' survival information was derived and connected with CBF. STATISTICAL TESTS Patients' OS was analyzed by Kaplan-Meier and Cox-regression methods. VEGF expression and CBF were compared in both LGG and HGG. The Spearman rank correlation was calculated for CBF and VEGF expression, SM. Significance level, P < 0.05. RESULTS CBF-derived 3D-ASL positively correlated significantly with VEGF expression in both LGG (31 specimens) and HGG (32 specimens), r = 0.604 (P < 0.001) and r = 0.665 (P < 0.001), respectively. LGG and HGG together gave a correlation coefficient r = 0.728 (P < 0.001). Median survival for LGG and HGG patients was 34.19 and 17.17 months, respectively (P = 0.037); CBF value negatively correlated significantly with SM with r = -0.714 (P < 0.001) regardless of glioma grade. CBF was an independent risk factor for OS with HR = 1.027 (P = 0.044), 1.028 (P = 0.010) for univariate/multivariate regression analysis. DATA CONCLUSION CBF determined by 3D-ASL correlates with VEGF expression in glioma and is an independent risk factor for OS in these patients. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:209-220.
Collapse
Affiliation(s)
- Haopeng Pang
- Department of Interventional Radiology, Affiliated Ruijin Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Yan Ren
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Tianming Qiu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Hong Chen
- Department of Pathology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jie Zhang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Ningning Ma
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, P.R. China
| | - Gang Li
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Junhai Zhang
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jinsong Wu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaoyuan Feng
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
47
|
Toma S, MacIntosh BJ, Swardfager W, Goldstein BI. Cerebral blood flow in bipolar disorder: A systematic review. J Affect Disord 2018; 241:505-513. [PMID: 30149339 DOI: 10.1016/j.jad.2018.08.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neuroimaging of cerebral blood flow (CBF) can inform our understanding of the pathophysiology of bipolar disorder (BD) as there is increasing support for the concept that BD is in part a vascular disease. Despite numerous studies examining CBF in BD, there has not yet been a review of the literature on the topic of CBF in BD. METHODS A systematic review of the literature on CBF in BD was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Studies included measured CBF by single-photon emission computerized tomography (SPECT), positron emission tomography (PET), arterial spin labelling (ASL) or perfusion weighted imaging (PWI) in a group of BD patients. RESULTS Thirty-three studies with a total of 508 subjects with BD and 538 controls were included (n = 15 SPECT; n = 8 PET; n = 7 ASL; n = 1 PWI; n = 2 other). The majority of studies in BD depression and mania reported widespread resting hypoperfusion in cingulate gyrus, frontal, and anterior temporal regions in comparison to healthy controls (HC). Findings in euthymic BD subjects and in symptomatically heterogeneous groups were less consistent. Studies that examined CBF responses to cognitive or emotional stimuli in BD subjects have reported hypoperfusion or different regions involved in comparison to HC. LIMITATIONS Important methodological heterogeneity between studies, and small number of subjects per study. CONCLUSIONS The most consistent findings to date are hypoperfusion in BD mood episodes, and hypoactive CBF responses to emotional or cognitive challenges. Future studies examining CBF are warranted, including prospective studies, studies examining CBF as a treatment target, and multimodal imaging studies.
Collapse
Affiliation(s)
- Simina Toma
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Walter Swardfager
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
48
|
Ulrich M, Niemann J, Boland M, Kammer T, Niemann F, Grön G. The neural correlates of flow experience explored with transcranial direct current stimulation. Exp Brain Res 2018; 236:3223-3237. [DOI: 10.1007/s00221-018-5378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
|
49
|
Ho ML. Arterial spin labeling: Clinical applications. J Neuroradiol 2018; 45:276-289. [PMID: 30016705 DOI: 10.1016/j.neurad.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging perfusion technique that enables quantification of cerebral blood flow (CBF) without the use of intravenous gadolinium contrast. An understanding of the technical basis of ASL and physiologic variations in perfusion are important for recognizing normal variants and artifacts. Pathologic variations in perfusion can be seen in a number of disorders including acute and chronic ischemia, vasculopathy, vascular malformations, tumors, trauma, infection/inflammation, epilepsy and dementia.
Collapse
Affiliation(s)
- Mai-Lan Ho
- Division of Neuroradiology, Mayo Clinic, 200 First St. SW, 55905 Rochester, MN, United States.
| |
Collapse
|
50
|
Guo H, Grajauskas L, Habash B, D'Arcy RCN, Song X. Functional MRI technologies in the study of medication treatment effect on Alzheimer's disease. Aging Med (Milton) 2018; 1:75-95. [PMID: 31942484 PMCID: PMC6880690 DOI: 10.1002/agm2.12017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of late-life dementia. Characterized by progressive neurodegeneration, the disease is expressed as gradual memory loss together with decline in cognitive abilities and other brain functions. Despite extensive research over the past decade, the cause and cure of AD both remain largely unknown. Several AD-associated deficits have been targeted for interventions, including those based on amyloid-beta, tau, and inflammation hypotheses. Only 2 types of medications-cholinesterase inhibitors and memantine-have been approved, to control the cognitive symptoms of AD such as the loss of memory, language, and executive function. Noninvasive in vivo functional magnetic resonance imaging (MRI) technologies, including the blood oxygen level-dependent functional MRI, arterial spin labeling-based perfusion MRI, and the proton magnetic resonance spectroscopy have been used to study the effect of ChEIs and memantine in the brain. Most of these studies have demonstrated increased functional activation and connectivity, increased regional brain blood flow and volume post-treatment, and positive responses of critical brain metabolites reflecting neuronal status and functionality in patients with AD and mild cognitive impairment. The findings have contributed to the understanding of the mechanisms underlying the medication treatments and support the crucial role of functional MRI technologies in the development and refinement of AD medication therapies.
Collapse
Affiliation(s)
- Hui Guo
- SFU ImageTech LaboratorySurrey Memorial HospitalSurreyBCCanada
- Health Sciences and InnovationSurrey Memorial HospitalFraser HealthSurreyBCCanada
- Department of Diagnostic ImagingTianjin Medical University General HospitalTianjinChina
| | - Lukas Grajauskas
- SFU ImageTech LaboratorySurrey Memorial HospitalSurreyBCCanada
- Health Sciences and InnovationSurrey Memorial HospitalFraser HealthSurreyBCCanada
| | - Baraa Habash
- SFU ImageTech LaboratorySurrey Memorial HospitalSurreyBCCanada
- Department of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Ryan CN D'Arcy
- SFU ImageTech LaboratorySurrey Memorial HospitalSurreyBCCanada
- Health Sciences and InnovationSurrey Memorial HospitalFraser HealthSurreyBCCanada
- Department of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
- Department of Computing ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Xiaowei Song
- SFU ImageTech LaboratorySurrey Memorial HospitalSurreyBCCanada
- Health Sciences and InnovationSurrey Memorial HospitalFraser HealthSurreyBCCanada
- Department of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
- Department of Computing ScienceSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|