1
|
Lin Y, Gao B, Du Y, Li M, Liu Y, Zhao X. Cortical thickness and structural covariance network alterations in cerebral amyloid angiopathy: A graph theoretical analysis. Neurobiol Dis 2025; 210:106911. [PMID: 40239845 DOI: 10.1016/j.nbd.2025.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025] Open
Abstract
AIMS This study investigates large-scale brain network alterations in cerebral amyloid angiopathy (CAA) using structural covariance network (SCN) analysis and graph theory based on 7 T MRI. METHODS We employed structural covariance network (SCN) analysis based on cortical thickness data from ultra-high field 7 T MRI to investigate network alterations in CAA patients. Graph theoretical analysis was applied to quantify topological properties, including small-worldness, nodal centrality, and network efficiency. Between-group differences were assessed using permutation tests and false discovery rate (FDR) correction. RESULTS CAA patients exhibited significant alterations in small-world properties, with decreased Gamma (p = 0.002) and Sigma (p < 0.001), suggesting a shift toward a less optimal network configuration. Local efficiency was significantly different between groups (p = 0.045), while global efficiency remained unchanged (p = 0.127), indicating regionally disrupted rather than globally impaired network efficiency. At the nodal level, the right superior frontal gyrus exhibited increased betweenness centrality (p = 0.013), whereas the right banks of the superior temporal sulcus, left postcentral gyrus, and left superior temporal gyrus showed significantly reduced centrality (all p < 0.05). Additionally, nodal degree and efficiency were altered in key memory-related and association regions, including the entorhinal cortex, fusiform gyrus, and temporal pole. CONCLUSION SCN analysis combined with graph theory offers a valuable approach for understanding disease-related connectivity disruptions and may contribute to the development of network-based biomarkers for CAA.
Collapse
Affiliation(s)
- Yijun Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Gao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengyao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
2
|
Singh A, Kaakinen M, Elamaa H, Kiviniemi V, Eklund L. The glycosaminoglycan chains of perlecan regulate the perivascular fluid transport. Fluids Barriers CNS 2025; 22:48. [PMID: 40340918 PMCID: PMC12063283 DOI: 10.1186/s12987-025-00648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND The perivascular conduct pathway that connects the cerebrospinal fluid spaces with the interstitial fluid in the parenchyma are of importance for solute clearance from the brain. In this pathway, the relatively wide perivascular space (PVS) surrounding the pial arteries provides a low-resistant passage while around the perforating arteries, the solute movement is along the basement membrane (BM), that prevents the free exchange of interstitial fluids and solutes. We hypothesize that this selectivity involves specific components of the vascular BM, which is mainly composed of type IV collagen (Col IV) and laminin networks interconnected by nidogens and heparan sulphate proteoglycans (HSPGs). Perlecan is the major HSPG in the BM that binds to Col IV and laminin via glycosaminoglycan (GAG) chains to form a molecular sieve. GAGs may also provide the charge selectivity required for filtration, and also a scaffold for amyloid-β (Aβ) aggregation. The purpose of this study was the functional characterization of perivascular fluid transport and brain clearance in mice lacking perlecan GAG chains. METHODS We generated a novel mouse line (Hspg2∆3∆91) lacking perlecan GAG side chains and investigated perivascular flow and brain clearance in these mice using intravital multiphoton and fluorescence recovery after photobleaching techniques, and functional assays with various tracers. Potentially deleterious effects on brain homeostasis were investigated using transcriptomic, proteomic and immunohistochemical methods. The Hspg2∆3∆91 mice were crossed with a 5xFAD line to examine the importance of GAGs in Aβ aggregation. RESULTS We observed a delayed inflow of CSF tracer into the Hspg2∆3∆91 brain with no changes in the clearance of parenchymal injected tracers. Quantification of the Aβ plaques revealed fewer and smaller plaques in the walls of the pial arteries at six months of age, but not in the brain parenchyma. Surprisingly, perlecan GAG deficiency had no severe deleterious effects on brain homeostasis in transcriptomic and proteomic analyses. CONCLUSIONS Potential brain clearance mechanisms are dependent on the flow through special ECM structures. BM is mainly known for its barrier function, whereas very little is known about how passage along the perivascular ECM is established. This study shows that the GAG composition of the BM affects the solute dynamics and Aβ deposition in the periarterial space.
Collapse
Affiliation(s)
- Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Oulu Functional Neuroimaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Deshpande T, Hannocks M, Kapupara K, Samawar SKR, Wachsmuth L, Faber C, Smith C, Wardlaw J, Sorokin L. Microglial activation without peripheral immune cell infiltration characterises mouse and human cerebral small vessel disease. Neuropathol Appl Neurobiol 2024; 50:e13015. [PMID: 39543785 PMCID: PMC11618487 DOI: 10.1111/nan.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
AIMS Cerebral small vessel diseases (SVDs) involve diverse pathologies of the brain's small blood vessels, leading to cognitive deficits. Cerebral magnetic resonance imaging (MRI) reveals white matter hyperintensities (WMHs), lacunes, microbleeds and enlarged perivascular spaces in SVD patients. Although correlations of MRI and histopathology help to understand the pathogenesis of SVD, they do not explain disease progression. Mouse models, both genetic and sporadic, are valuable for studying SVD, but their resemblance to clinical SVD is unclear. The study examined similarities and differences between mouse models of SVDs and human nonamyloid SVD specimens. METHODS We analysed four mouse models of SVD (hypertensive BPH mice, Col4a1 mutants, Notch3 mutants and Htra1-/- mice) at different stages for changes in myelin, blood-brain barrier (BBB) markers, immune cell populations and immune activation. The observations from mouse models were compared with human SVD specimens from different regions, including the periventricular, frontal, central and occipital white matter. Postmortem MRI followed by MBP immunostaining was used to identify white matter lesions (WMLs). RESULTS Only Notch3 mutant and hypertensive BPH mice showed significant changes in myelin basic protein (MBP) immunostaining, correlating with MRI patterns. These changes were linked to altered microglial morphology and focal plasma protein staining around blood vessels, without peripheral immune cell infiltration. In human specimens, both normal-appearing white matter (NAWM) and WMLs lacked peripheral cell infiltration. However, WMLs displayed altered microglial morphology, reduced myelin staining and occasional fibrinogen staining around arterioles and venules. CONCLUSIONS Our data show that Notch3 mutants and hypertensive BPH/2J mice recapitulate several features of human SVD, including microglial activation, focal sites of demyelination and perivascular plasma protein leakage without peripheral immune cell infiltration.
Collapse
Affiliation(s)
- Tushar Deshpande
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Melanie‐Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Sai Kiran Reddy Samawar
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | | | | | - Colin Smith
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Joanna Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain Sciences, UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| |
Collapse
|
5
|
Jäkel L, Claassen KKWJ, De Kort AM, Jolink WMT, Vermeiren Y, Schreuder FHBM, Küsters B, Klijn CJM, Kuiperij HB, Verbeek MM. Decreased microvascular claudin-5 levels in cerebral amyloid angiopathy associated with intracerebral haemorrhage. Brain Pathol 2024; 34:e13270. [PMID: 38763889 PMCID: PMC11483184 DOI: 10.1111/bpa.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Decreased microvascular levels of claudin-5 in the occipital and temporal lobe of patients with cerebral amyloid angiopathy are associated with intracerebral haemorrhage.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Kiki K. W. J. Claassen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Anna M. De Kort
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional BiologyWageningen University & Research (WUR)WageningenThe Netherlands
- Faculty of Medicine & Health Sciences, Translational NeurosciencesInstitute Born‐Bunge, University of AntwerpAntwerpBelgium
| | - Floris H. B. M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Benno Küsters
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
6
|
Li C, Wu J, Dong Q, Ma J, Gao H, Liu G, Chen Y, Ning J, Lv X, Zhang M, Zhong H, Zheng T, Liu Y, Peng Y, Qu Y, Gao X, Shi H, Sun C, Hui Y. The crosstalk between oxidative stress and DNA damage induces neural stem cell senescence by HO-1/PARP1 non-canonical pathway. Free Radic Biol Med 2024; 223:443-457. [PMID: 39047850 DOI: 10.1016/j.freeradbiomed.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Huiqun Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - You Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiaqi Ning
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xuebing Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Mingyang Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Haojie Zhong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Tianhu Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
7
|
Bezerra B, Fisher M, Pirih FQ, Casarin M. The potential impact of periodontitis on cerebral small vessel disease. Mol Oral Microbiol 2024; 39:190-198. [PMID: 37929810 DOI: 10.1111/omi.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Cerebral small vessel disease (CSVD) is a term used to describe abnormalities in the intracranial microvasculature affecting small arteries, arterioles, capillaries, and venules. The etiology of these conditions is not fully understood but inflammation appears to play a significant role. Periodontal diseases have been associated with conditions such as stroke and dementia, which are clinical consequences of CSVD. Periodontitis is a highly prevalent chronic multifactorial inflammatory disease regulated by the host immune response against pathogenic bacterial colonization around the teeth. The inflammatory response and the microbial dysbiosis produce pro-inflammatory cytokines that can reach the brain and promote local changes. This review will explore the potential association between periodontitis and CSVD by assessing the impact of periodontitis-induced inflammation and periodontopathogenic bacteria on the underlying mechanisms leading to CSVD. Given the association of periodontitis with stroke and dementia, which are clinical features of CSVD, it may be possible to suggest a link with CSVD. Current evidence linking periodontitis with neuroimaging findings of CSVD enforces the possible link between these conditions.
Collapse
Affiliation(s)
- Beatriz Bezerra
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, UC Irvine Medical Center, Orange, California, USA
| | - Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Maísa Casarin
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
- School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
8
|
Leitner D, Kavanagh T, Kanshin E, Balcomb K, Pires G, Thierry M, Suazo JI, Schneider J, Ueberheide B, Drummond E, Wisniewski T. Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment. Acta Neuropathol 2024; 148:9. [PMID: 39039355 PMCID: PMC11263258 DOI: 10.1007/s00401-024-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jianina I Suazo
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Department Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Fotuhi SN, Khalaj-Kondori M. Imbalanced clearance of Aβ peptide cause presynaptic plaque formation. Int J Neurosci 2024; 134:66-70. [PMID: 35639020 DOI: 10.1080/00207454.2022.2085099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease is characterized by abnormal increase of Aβ peptide which is likely as the result of imbalanced homeostasis of its production and clearance mechanisms. Here, we briefly review that the uncleaned extracellular Aβ peptides are loaded into presynaptic neurons. The Aβ oligomers desperately affect pre- and post-synapse neuron activity and turn into plaques inside the presynaptic neurons over the time passes.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Fusco L, Palamà Z, Scarà A, Borrelli A, Robles AG, De Masi De Luca G, Romano S, Sciarra L. Management of cerebral amyloid angiopathy and atrial fibrillation: We are still far from precision medicine. World J Cardiol 2024; 16:231-239. [PMID: 38817646 PMCID: PMC11135332 DOI: 10.4330/wjc.v16.i5.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
The use of anticoagulation therapy could prove to be controversial when trying to balance ischemic stroke and intracranial bleeding risks in patients with concurrent cerebral amyloid angiopathy (CAA) and atrial fibrillation (AF). In fact, CAA is an age-related cerebral vasculopathy that predisposes patients to intracerebral hemorrhage. Nevertheless, many AF patients require oral systemic dose-adjusted warfarin, direct oral anticoagulants (such as factor Xa inhibitors) or direct thrombin inhibitors to control often associated with cardioembolic stroke risk. The prevalence of both CAA and AF is expected to rise, due to the aging of the population. This clinical dilemma is becoming increasingly common. In patients with coexisting AF and CAA, the risks/benefits profile of anticoagulant therapy must be assessed for each patient individually due to the lack of a clear-cut consensus with regard to its risks in scientific literature. This review aims to provide an overview of the management of patients with concomitant AF and CAA and proposes the implementation of a risk-based decision-making algorithm.
Collapse
Affiliation(s)
- Liuba Fusco
- Department of Cardiology, University Hospital of Northamptonshire, Northampton NN1 5BD, United Kingdom
| | - Zefferino Palamà
- Department of Cardiology, Casa di Cura Villa Verde, Taranto 70124, Italy
- Department of Life, Health and Environmental Sciences, University of l'Aquila, L'Aquila 67100, Italy.
| | - Antonio Scarà
- Department of Cardiology, GVM Care and Research, San Carlo di Nancy Hospital, Rome 00100, Italy
| | - Alessio Borrelli
- Department of Cardiology, GVM Care and Research, San Carlo di Nancy Hospital, Rome 00100, Italy
| | - Antonio Gianluca Robles
- Department of Life, Health and Environmental Sciences, University of l'Aquila, L'Aquila 67100, Italy
| | - Gabriele De Masi De Luca
- Department of Life, Health and Environmental Sciences, University of l'Aquila, L'Aquila 67100, Italy
| | - Silvio Romano
- Department of Life, Health and Environmental Sciences, University of l'Aquila, L'Aquila 67100, Italy
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of l'Aquila, L'Aquila 67100, Italy
| |
Collapse
|
11
|
Wang HP, Scalco R, Saito N, Beckett L, Nguyen ML, Huie EZ, Honig LS, DeCarli C, Rissman RA, Teich AF, Mungas DM, Jin LW, Dugger BN. The neuropathological landscape of small vessel disease and Lewy pathology in a cohort of Hispanic and non-Hispanic White decedents with Alzheimer disease. Acta Neuropathol Commun 2024; 12:81. [PMID: 38790074 PMCID: PMC11127432 DOI: 10.1186/s40478-024-01773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, n = 184) from three Alzheimer's Disease Research Centers: Columbia University, University of California San Diego, and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High AD based on the National Institute on Aging- Alzheimer's Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon's test. Ordinal logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW descent and providing insights into precision medicine approaches.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Rebeca Scalco
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Laurel Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - My-Le Nguyen
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Emily Z Huie
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Columbia University Medical Center, New York, USA
| | - Charles DeCarli
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, CA, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Dan M Mungas
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
12
|
Vacondio D, Nogueira Pinto H, Coenen L, Mulder IA, Fontijn R, van Het Hof B, Fung WK, Jongejan A, Kooij G, Zelcer N, Rozemuller AJ, de Vries HE, de Wit NM. Liver X receptor alpha ensures blood-brain barrier function by suppressing SNAI2. Cell Death Dis 2023; 14:781. [PMID: 38016947 PMCID: PMC10684660 DOI: 10.1038/s41419-023-06316-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
In Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology. The Liver X receptor (LXR) family, consisting of LXRα and LXRβ, was reported to inhibit angiogenesis and particularly LXRα was shown to secure BBB stability, suggesting a major role in vascular function. In this study, we unravel the regulatory mechanism exerted by LXRα to preserve BBB integrity in human brain endothelial cells (BECs) and investigate its role during pathological conditions. We report that LXRα ensures BECs identity via constitutive inhibition of the transcription factor SNAI2. Accordingly, deletion of brain endothelial LXRα is associated with impaired DLL4-NOTCH signalling, a critical signalling pathway involved in vessel sprouting. A similar response was observed when BECs were exposed to hypoxia, with concomitant LXRα decrease and SNAI2 increase. In support of our cell-based observations, we report a general increase in vascular SNAI2 in the occipital cortex of AD patients with and without capCAA. Importantly, SNAI2 strongly associated with vascular amyloid-beta deposition and angiopoietin-like 4, a marker for hypoxia. In hypoxic capCAA vessels, the expression of LXRα may decrease leading to an increased expression of SNAI2, and consequently BECs de-differentiation and sprouting. Our findings indicate that LXRα is essential for BECs identity, thereby securing BBB stability and preventing aberrant angiogenesis. These results uncover a novel molecular pathway essential for BBB identity and vascular homeostasis providing new insights on the vascular pathology affecting AD patients.
Collapse
Affiliation(s)
- D Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - H Nogueira Pinto
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L Coenen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Biomedical Primate Research Centre, Department of Neurobiology and Aging, Rijswijk, the Netherlands
| | - I A Mulder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - R Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - B van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - W K Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - A Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - G Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N Zelcer
- Amsterdam UMC location University of Amsterdam Department of Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Cardiovascular Sciences and Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - A J Rozemuller
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Sosa MJ, Shih AY, Bonney SK. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front Cardiovasc Med 2023; 10:1283434. [PMID: 38075961 PMCID: PMC10704358 DOI: 10.3389/fcvm.2023.1283434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease.
Collapse
Affiliation(s)
- Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| |
Collapse
|
14
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
15
|
Ramesh S, Almeida SD, Hammigi S, Radhakrishna GK, Sireesha G, Panneerselvam T, Vellingiri S, Kunjiappan S, Ammunje DN, Pavadai P. A Review of PARP-1 Inhibitors: Assessing Emerging Prospects and Tailoring Therapeutic Strategies. Drug Res (Stuttg) 2023; 73:491-505. [PMID: 37890514 DOI: 10.1055/a-2181-0813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Eukaryotic organisms contain an enzyme family called poly (ADP-ribose) polymerases (PARPs), which is responsible for the poly (ADP-ribosylation) of DNA-binding proteins. PARPs are members of the cell signaling enzyme class. PARP-1, the most common isoform of the PARP family, is responsible for more than 90% of the tasks carried out by the PARP family as a whole. A superfamily consisting of 18 PARPs has been found. In order to synthesize polymers of ADP-ribose (PAR) and nicotinamide, the DNA damage nick monitor PARP-1 requires NAD+ as a substrate. The capability of PARP-1 activation to boost the transcription of proinflammatory genes, its ability to deplete cellular energy pools, which leads to cell malfunction and necrosis, and its involvement as a component in the process of DNA repair are the three consequences of PARP-1 activation that are of particular significance in the process of developing new drugs. As a result, the pharmacological reduction of PARP-1 may result in an increase in the cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Soundarya Ramesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Shannon D Almeida
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Sameerana Hammigi
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Govardan Katta Radhakrishna
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Golla Sireesha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Shangavi Vellingiri
- Department of Pharmacy Practice, Swamy Vivekananda College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| |
Collapse
|
16
|
Shi H, Koronyo Y, Fuchs DT, Sheyn J, Jallow O, Mandalia K, Graham SL, Gupta VK, Mirzaei M, Kramerov AA, Ljubimov AV, Hawes D, Miller CA, Black KL, Carare RO, Koronyo-Hamaoui M. Retinal arterial Aβ 40 deposition is linked with tight junction loss and cerebral amyloid angiopathy in MCI and AD patients. Alzheimers Dement 2023; 19:5185-5197. [PMID: 37166032 PMCID: PMC10638467 DOI: 10.1002/alz.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Vascular amyloid beta (Aβ) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS TJ components and Aβ expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aβ40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aβ40 deposition suggests a common pathogenic mechanism of failed Aβ clearance via intramural periarterial drainage.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Krishna Mandalia
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stuart L. Graham
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Vivek K. Gupta
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrei A. Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Debra Hawes
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90048, USA
| | - Carol A. Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90048, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roxana O. Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton SO16 6YD, UK
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
17
|
Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:1027-1041. [PMID: 37051650 PMCID: PMC10291450 DOI: 10.1177/0271678x231170041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and β-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
19
|
Zhukov O, He C, Soylu-Kucharz R, Cai C, Lauritzen AD, Aldana BI, Björkqvist M, Lauritzen M, Kucharz K. Preserved blood-brain barrier and neurovascular coupling in female 5xFAD model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1089005. [PMID: 37261266 PMCID: PMC10228387 DOI: 10.3389/fnagi.2023.1089005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dysfunction of the cerebral vasculature is considered one of the key components of Alzheimer's disease (AD), but the mechanisms affecting individual brain vessels are poorly understood. Methods Here, using in vivo two-photon microscopy in superficial cortical layers and ex vivo imaging across brain regions, we characterized blood-brain barrier (BBB) function and neurovascular coupling (NVC) at the level of individual brain vessels in adult female 5xFAD mice, an aggressive amyloid-β (Aβ) model of AD. Results We report a lack of abnormal increase in adsorptive-mediated transcytosis of albumin and preserved paracellular barrier for fibrinogen and small molecules despite an extensive load of Aβ. Likewise, the NVC responses to somatosensory stimulation were preserved at all regulatory segments of the microvasculature: penetrating arterioles, precapillary sphincters, and capillaries. Lastly, the Aβ plaques did not affect the density of capillary pericytes. Conclusion Our findings provide direct evidence of preserved microvascular function in the 5xFAD mice and highlight the critical dependence of the experimental outcomes on the choice of preclinical models of AD. We propose that the presence of parenchymal Aβ does not warrant BBB and NVC dysfunction and that the generalized view that microvascular impairment is inherent to Aβ aggregation may need to be revised.
Collapse
Affiliation(s)
- Oleg Zhukov
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chen He
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rana Soylu-Kucharz
- Biomarkers in Brain Disease, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Björkqvist
- Biomarkers in Brain Disease, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Magaki SD, Vinters HV. Evaluating when (and how) hypertension may be 'good for your brain'. Brain Commun 2023; 5:fcad127. [PMID: 37113316 PMCID: PMC10128875 DOI: 10.1093/braincomms/fcad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/16/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
This scientific commentary refers to 'Elevated late-life blood pressure may maintain brain oxygenation and slow amyloid-β accumulation, at the expense of cerebral vascular damage', by Tayler et al. (https://doi.org/10.1093/braincomms/fcad112).
Collapse
Affiliation(s)
- Shino D Magaki
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Harry V Vinters
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Brain Research Institute, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS 2022; 19:88. [PMID: 36345028 PMCID: PMC9639294 DOI: 10.1186/s12987-022-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-β (Aβ) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aβ. METHODS To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aβ deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aβ. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS Our data support the cross-talk between metabolic disease and Aβ deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.
Collapse
Affiliation(s)
- Maria Vargas-Soria
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Currently at Department of Physiology, School of Health Sciences, University of Granada, Granada, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susanne J van Veluw
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
22
|
De Kort AM, Kuiperij HB, Kersten I, Versleijen AA, Schreuder FH, Van Nostrand WE, Greenberg SM, Klijn CJ, Claassen JA, Verbeek MM. Normal cerebrospinal fluid concentrations of PDGFRβ in patients with cerebral amyloid angiopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1788-1796. [PMID: 34874603 PMCID: PMC9787758 DOI: 10.1002/alz.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-β (PDGFRβ) has been proposed as a biomarker of blood-brain barrier (BBB) breakdown. We studied PDGFRβ levels as a biomarker for cerebral amyloid angiopathy (CAA), amnestic mild cognitive impairment (aMCI), or Alzheimer's disease (AD). METHODS CSF PDGFRβ levels were quantified by enzyme-linked immunosorbent assay in patients with CAA, patients with aMCI/AD, and in matched controls. In aMCI/AD we evaluated CSF PDGFRβ both by clinical phenotype and by using the AT(N) biomarker classification system defined by CSF amyloid (A), tau (T), and neurodegeneration (N) biomarkers. RESULTS PDGFRβ levels were similar in CAA patients and controls (P = .78) and in aMCI/AD clinical phenotype and controls (P = .91). aMCI/AD patients with an AD+ biomarker profile (A+T+[N+]) had increased PDGFRβ levels compared to (A-T-[N-]) controls (P = .006). CONCLUSION Our findings indicate that PDGFRβ levels are associated with an AD+ biomarker profile but are not a suitable biomarker for CAA or aMCI/AD clinical syndrome.
Collapse
Affiliation(s)
- Anna M. De Kort
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | - H. Bea Kuiperij
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | - Iris Kersten
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Floris H.B.M. Schreuder
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | - William E. Van Nostrand
- George & Anne Ryan Institute for NeuroscienceDepartment of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Steven M. Greenberg
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Catharina J.M. Klijn
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Marcel M. Verbeek
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
23
|
Abstract
Understanding normal brain aging physiology is essential to improving healthy human longevity, differentiation, and early detection of diseases, such as neurodegenerative diseases, which are an enormous social and economic burden. Functional decline, such as reduced physical activity and cognitive abilities, is typically associated with brain aging. The authors summarize the aging brain mechanism and effects of aging on the brain observed by brain structural MR imaging and advanced neuroimaging techniques, such as diffusion tensor imaging and functional MR imaging.
Collapse
Affiliation(s)
- Yoshiaki Ota
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2, Ann Arbor, MI 48109, USA
| | - Gaurang Shah
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Sriram S, Mehkri Y, Quintin S, Lucke-Wold B. Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clin Neurol Neurosurg 2022; 218:107306. [PMID: 35636382 DOI: 10.1016/j.clineuro.2022.107306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease and stroke share several known vascular risk factors. The pathophysiology and whether one predisposes to the other is a topic of ongoing investigation. In this critical review, we highlight what is known about each pathway and the shared potential mechanisms. We offer insight into topics that warrant further investigation. We address topics of both neurodegeneration and secondary cascades. Furthermore, the concept of targeting secondary mechanisms early might be a viable treatment option for ongoing preventative measures. The review is intended to serve as a catalyst for further scientific inquiry into this important topic.
Collapse
Affiliation(s)
- Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Stephan Quintin
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | |
Collapse
|
25
|
Situ M, Citalan-Madrid AF, Stamatovic SM, Keep RF, Andjelkovic AV. Transcriptomic Profile of Blood–Brain Barrier Remodeling in Cerebral Amyloid Angiopathy. Front Cell Neurosci 2022; 16:931247. [PMID: 35813502 PMCID: PMC9257207 DOI: 10.3389/fncel.2022.931247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a small vessel disease characterized by amyloid β (Aβ) peptide deposition within the walls of medium to small-caliber blood vessels, cerebral microhemorrhage, and blood–brain barrier (BBB) leakage. It is commonly associated with late-stage Alzheimer’s disease. BBB dysfunction is indicated as a pathological substrate for CAA progression with hyperpermeability, enhancing the extravasation of plasma components and inducing neuroinflammation, further worsening BBB injury and contributing to cognitive decline. Although significant effort has been made in defining the gene mutations and risk factors involved in microvascular alterations with vascular dementia and Alzheimer’s disease, the intra- and intercellular pathogenic mechanisms responsible for vascular hyperpermeability are still largely unknown. The present study aimed to elucidate the transcriptional profile of the cerebral microvessels (BBB) in a murine model with CAA vasculopathy to define potential causes and underlying mechanisms of BBB injury. A comprehensive RNA sequencing analysis was performed of CAA vasculopathy in Tg-SwDI mice at 6 and 18 months in comparison to age-matched wildtype controls to examine how age and amyloid accumulation impact the transcriptional signature of the BBB. Results indicate that Aβ has a critical role in triggering brain endothelial cell and BBB dysfunction in CAA vasculopathy, causing an intense proinflammatory response, impairing oxidative metabolism, altering the coagulation status of brain endothelial cells, and remodeling barrier properties. The proinflammatory response includes both adaptive and innate immunity, with pronounced induction of genes that regulate macrophage/microglial activation and chemokines/adhesion molecules that support T and B cell transmigration. Age has an important impact on the effects of Aβ, increasing the BBB injury in CAA vasculopathy. However, early inflammation, particularly microglia/macrophage activation and the mediators of B lymphocytes’ activities are underlying processes of BBB hyperpermeability and cerebral microbleeds in the early stage of CAA vasculopathy. These findings reveal a specific profile of the CAA-associated BBB injury that leads to a full progression of CAA.
Collapse
Affiliation(s)
- Muyu Situ
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Anuska V. Andjelkovic,
| |
Collapse
|
26
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
27
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
28
|
Brain imaging abnormalities in mixed Alzheimer's and subcortical vascular dementia. Neurol Sci 2022:1-14. [PMID: 35614521 DOI: 10.1017/cjn.2022.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Wang Y, Li M, Kazis LE, Xia W. Clinical outcomes of COVID-19 infection among patients with Alzheimer's disease or mild cognitive impairment. Alzheimers Dement 2022; 18:911-923. [PMID: 35377523 PMCID: PMC9073985 DOI: 10.1002/alz.12665] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and COVID-19 share common risk factors including hypertension. Angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) are frequently prescribed antihypertension medications. METHODS This study analyzed 436,823 veterans tested for SARS-CoV-2 infection. We conducted both classical and propensity score weighted logistic models to compare COVID-19 outcomes between patients with AD or mild cognitive impairment (MCI) to those without cognitive impairment, and examined effect of ACEI/ARB prescription. RESULTS There was a statistically significant association between AD and increased odds of infection and mortality. MCI was not found to be a risk factor for infection. Subjects with MCI exhibited poor clinical outcomes. Prescribing ARBs but not ACEIs was significantly associated with a lower risk of COVID-19 occurrence among AD and MCI patients. DISCUSSION Exploring beneficial effects of existing medications to reduce the impact of COVID-19 on patients with AD or MCI is highly significant. HIGHLIGHTS There is significant association between Alzheimer's disease (AD) and increased risk of COVID-19 infection and odds of mortality. Subjects with mild cognitive impairment (MCI) defined by claims data exhibit poor clinical outcomes, but MCI was not found to be a risk factor for severe acute respiratory syndrome coronavirus 2 infection. Prescribing angiotensin II receptor blockers was significantly associated with a lower risk of COVID-19 occurrence among AD/MCI patients.
Collapse
Affiliation(s)
- Ying Wang
- Geriatric Research Education and Clinical CenterBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Mathematical SciencesBentley UniversityWalthamMassachusettsUSA
| | - Mingfei Li
- Department of Mathematical SciencesBentley UniversityWalthamMassachusettsUSA
- Center for Healthcare Organization and Implementation ResearchBedford VA Healthcare SystemBedfordMassachusettsUSA
| | - Lewis E. Kazis
- Center for Healthcare Organization and Implementation ResearchBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Health Law, Policy and ManagementBoston University School of Public HealthBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Spaulding Rehabilitation HospitalCharlestownMassachusettsUSA
| | - Weiming Xia
- Geriatric Research Education and Clinical CenterBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
30
|
Mao K, Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J 2022; 289:2013-2024. [PMID: 33460497 DOI: 10.1111/febs.15716] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by progressive memory loss and motor impairment. Aging is a major risk factor for neurodegenerative diseases. Neurodegenerative diseases and aging often develop in an irreversible manner and cause a significant socioeconomic burden. When considering their pathogenesis, many studies usually focus on mitochondrial dysfunction and DNA damage. More recently, neuroinflammation, autophagy dysregulation, and SIRT1 inactivation were shown to be involved in the pathogenesis of neurodegenerative diseases and aging. In addition, studies uncovered the role of poly (ADP-ribose)-polymerase-1 (PARP1) in neurodegenerative diseases and aging. PARP1 links to a cluster of stress signals, including those originated by inflammation and autophagy dysregulation. In this review, we summarized the recent research progresses on PARP1 in neurodegenerative diseases and aging, with an emphasis on the relationship among PARP1, neuroinflammation, mitochondria, and autophagy. We discussed the possibilities of treating neurodegenerative diseases and aging through targeting PARP1.
Collapse
Affiliation(s)
- Kanmin Mao
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
32
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
33
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
34
|
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJM, Arzberger T, Gassen NC, Lichtenthaler SF, Kuster B, Haffner C, Dichgans M. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 2022; 10:6. [PMID: 35074002 PMCID: PMC8785498 DOI: 10.1186/s40478-021-01303-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Lindner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
35
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
36
|
Raut S, Patel R, Pervaiz I, Al-Ahmad AJ. Abeta Peptides Disrupt the Barrier Integrity and Glucose Metabolism of Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Neurotoxicology 2022; 89:110-120. [DOI: 10.1016/j.neuro.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
|
37
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
38
|
Gireud-Goss M, Mack AF, McCullough LD, Urayama A. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist 2021; 27:668-684. [PMID: 33238806 PMCID: PMC9853919 DOI: 10.1177/1073858420954811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid β (Aβ) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aβ damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aβ peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aβ vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexis F. Mack
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
39
|
Liu X, Naomi SSM, Sharon WL, Russell EJ. The Applications of Focused Ultrasound (FUS) in Alzheimer's Disease Treatment: A Systematic Review on Both Animal and Human Studies. Aging Dis 2021; 12:1977-2002. [PMID: 34881081 PMCID: PMC8612615 DOI: 10.14336/ad.2021.0510] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) affects the basic ability to function and has imposed an immense burden on the community and health care system. Focused ultrasound (FUS) has recently been proposed as a novel noninvasive therapeutic approach for AD. However, systematic reviews on the FUS application in AD treatment have not been forthcoming. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria to summarize the techniques associated with safety and efficacy, as well as possible underlying mechanisms of FUS effects on AD in animal and human studies. Animal studies demonstrated FUS with microbubbles (FUS-MB) induced blood-brain-barrier (BBB) opening that could facilitate various therapeutic agents entering the brain. Repeated FUS-MB and FUS stimulation can relieve AD pathology and improve cognitive and memory function. Human studies showed repeated FUS-MB are well tolerated with few adverse events and FUS stimulation could enhance local perfusion and neural function, which correlated with cognitive improvement. We conclude that FUS is a feasible and safe therapeutic and drug delivery strategy for AD. However, FUS treatment on humans is still in the early stages and requires further optimization and standardization.
Collapse
Affiliation(s)
- Xiaodan Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - S. Sta Maria Naomi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Wu Lin Sharon
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - E. Jacobs Russell
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Blinkouskaya Y, Caçoilo A, Gollamudi T, Jalalian S, Weickenmeier J. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev 2021; 200:111575. [PMID: 34600936 PMCID: PMC8627478 DOI: 10.1016/j.mad.2021.111575] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Brain aging is a complex process that affects everything from the subcellular to the organ level, begins early in life, and accelerates with age. Morphologically, brain aging is primarily characterized by brain volume loss, cortical thinning, white matter degradation, loss of gyrification, and ventricular enlargement. Pathophysiologically, brain aging is associated with neuron cell shrinking, dendritic degeneration, demyelination, small vessel disease, metabolic slowing, microglial activation, and the formation of white matter lesions. In recent years, the mechanics community has demonstrated increasing interest in modeling the brain's (bio)mechanical behavior and uses constitutive modeling to predict shape changes of anatomically accurate finite element brain models in health and disease. Here, we pursue two objectives. First, we review existing imaging-based data on white and gray matter atrophy rates and organ-level aging patterns. This data is required to calibrate and validate constitutive brain models. Second, we review the most critical cell- and tissue-level aging mechanisms that drive white and gray matter changes. We focuse on aging mechanisms that ultimately manifest as organ-level shape changes based on the idea that the integration of imaging and mechanical modeling may help identify the tipping point when normal aging ends and pathological neurodegeneration begins.
Collapse
Affiliation(s)
- Yana Blinkouskaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Andreia Caçoilo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Trisha Gollamudi
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Shima Jalalian
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States.
| |
Collapse
|
41
|
Kurz C, Walker L, Rauchmann BS, Perneczky R. Dysfunction of the blood-brain barrier in Alzheimer's disease: evidence from human studies. Neuropathol Appl Neurobiol 2021; 48:e12782. [PMID: 34823269 DOI: 10.1111/nan.12782] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The pathological processes leading to synapse loss, neuronal loss, brain atrophy and gliosis in Alzheimer´s disease (AD) and their relation to vascular disease and immunological changes are yet to be fully explored. Amyloid-β (Aβ) aggregation, vascular damage and altered immune response interact at the blood-brain-barrier (BBB), affecting the brain endothelium and fuelling neurodegeneration. The aim of the present systematic literature review was to critically appraise and to summarise the published evidence on the clinical correlations and pathophysiological concepts of BBB damage in AD, focusing on human data. The PubMed, Cochrane, Medline and Embase databases were searched for original research articles, systematic reviews and meta-analyses, published in English language from 01/2000 to 07/2021, using the keywords Alzheimer*, amyloid-β or β-amyloid or abeta and brain-blood barrier or BBB. This review shows that specific changes of intercellular structures, reduced expression of transendothelial carriers, induction of vasoactive mediators and activation of both astroglia and monocytes/macrophages characterise blood-brain barrier damage in human AD and AD models. BBB dysfunction on magnetic resonance imaging takes place early in the disease course in AD-specific brain regions. The toxic effects of Aβ and apolipoprotein E (ApoE) are likely to induce a non-cerebral-amyloid-angiopathy-related degeneration of endothelial cells, independently of cerebrovascular disease; however, some of the observed structural changes may just arise with age. Small vessel disease, ApoE, loss of pericytes, pro-inflammatory signalling and cerebral amyloid angiopathy enhance blood-brain-barrier damage. Novel therapeutic approaches for AD, including magnetic resonance-guided focused ultrasound, aim to open the BBB, potentially leading to an improved drainage of Aβ along perivascular channels and increased elimination from the brain. In vitro treatments with ApoE-modifying agents yielded promising effects on modulating BBB function. Reducing cardiovascular risk factors represents one of the most promising interventions for dementia prevention at present. However, further research is needed to elucidate the connection of BBB damage and tau pathology, the role of pro-inflammatory mediators in draining macromolecules and cells from the cerebral parenchyma, including their contribution to cerebral amyloid angiopathy. Improved insight into these pathomechanisms may allow to shed light on the role of Aβ deposition as a primary vs. a secondary event in the complex pathogenesis of AD.
Collapse
Affiliation(s)
- Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lauren Walker
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Department of Radiology, Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
42
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
43
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
44
|
Perosa V, Scherlek AA, Kozberg MG, Smith L, Westerling-Bui T, Auger CA, Vasylechko S, Greenberg SM, van Veluw SJ. Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:141. [PMID: 34419154 PMCID: PMC8380352 DOI: 10.1186/s40478-021-01235-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, limiting statistical approaches. To overcome these issues, we have developed six deep learning-based models, that identify some of the most characteristic markers of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The deep learning-based models are trained to differentially detect parenchymal amyloid β (Aβ)-plaques, vascular Aβ-deposition, iron and calcium deposition, reactive astrocytes, microglia, as well as fibrin extravasation. The models were trained on digitized histopathological slides from brains of patients with AD and CAA, using a workflow that allows neuropathology experts to train convolutional neural networks (CNNs) on a cloud-based graphical interface. Validation of all models indicated a very good to excellent performance compared to three independent expert human raters. Furthermore, the Aβ and iron models were consistent with previously acquired semiquantitative scores in the same dataset and allowed the use of more complex statistical approaches. For example, linear mixed effects models could be used to confirm the previously described relationship between leptomeningeal CAA severity and cortical iron accumulation. A similar approach enabled us to explore the association between neuroinflammation and disparate Aβ pathologies. The presented workflow is easy for researchers with pathological expertise to implement and is customizable for additional histopathological markers. The implementation of deep learning-assisted analyses of histopathological slides is likely to promote standardization of the assessment of neuropathological markers across research centers, which will allow specific pathophysiological questions in neurodegenerative disease to be addressed in a harmonized way and on a larger scale.
Collapse
|
45
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
46
|
Singh PK, Badimon A, Chen Z, Strickland S, Norris EH. The contact activation system and vascular factors as alternative targets for Alzheimer's disease therapy. Res Pract Thromb Haemost 2021; 5:e12504. [PMID: 33977208 PMCID: PMC8105157 DOI: 10.1002/rth2.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. Extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles are classical hallmarks of AD pathology and thus are the prime targets for AD therapeutics. However, approaches to slow or stop AD progression and dementia by reducing Aβ production, neutralizing toxic Aβ aggregates, or inhibiting tau aggregation have been largely unsuccessful in clinical trials. The contribution of dysregulated vascular components and inflammation is evident in AD pathology. Vascular changes are detectable early in AD progression, so treatment of vascular defects along with anti-Aβ/tau therapy could be a successful combination therapeutic strategy for this disease. Here, we explain how vascular dysfunction mechanistically contributes to thrombosis as well as inflammation and neurodegeneration in AD pathogenesis. This review provides evidence that addressing vascular dysfunction in people with AD could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Ana Badimon
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
47
|
Charcot-Bouchard aneurysms revisited: clinicopathologic correlations. Mod Pathol 2021; 34:2109-2121. [PMID: 34326486 PMCID: PMC8592842 DOI: 10.1038/s41379-021-00847-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022]
Abstract
Intracerebral hemorrhage (ICH) is a significant cause of morbidity and mortality worldwide. Hypertension and cerebral amyloid angiopathy (CAA) are the most common causes of primary ICH, but the mechanism of hemorrhage in both conditions is unclear. Although fibrinoid necrosis and Charcot-Bouchard aneurysms (CBAs) have been postulated to underlie vessel rupture in ICH, the role and significance of CBAs in ICH has been controversial. First described as the source of bleeding in hypertensive hemorrhage, they are also one of the CAA-associated microangiopathies along with fibrinoid necrosis, fibrosis and "lumen within a lumen appearance." We describe clinicopathologic findings of CBAs found in 12 patients out of over 2700 routine autopsies at a tertiary academic medical center. CBAs were rare and predominantly seen in elderly individuals, many of whom had multiple systemic and cerebrovascular comorbidities including hypertension, myocardial and cerebral infarcts, and CAA. Only one of the 12 subjects with CBAs had a large ICH, and the etiology underlying the hemorrhage was likely multifactorial. Two CBAs in the basal ganglia demonstrated associated microhemorrhages, while three demonstrated infarcts in the vicinity. CBAs may not be a significant cause of ICH but are a manifestation of severe cerebral small vessel disease including both hypertensive arteriopathy and CAA.
Collapse
|
48
|
Young KZ, Xu G, Keep SG, Borjigin J, Wang MM. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:1871-1887. [PMID: 33387456 DOI: 10.1016/j.ajpath.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Jimo Borjigin
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| |
Collapse
|
49
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
50
|
Kirabali T, Rust R, Rigotti S, Siccoli A, Nitsch RM, Kulic L. Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer's disease. Brain Pathol 2020; 30:1056-1070. [PMID: 32866303 PMCID: PMC8018068 DOI: 10.1111/bpa.12895] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the brain capillaries, endothelial cells, pericytes, astrocytes and microglia form a structural and functional complex called neurovascular unit (NVU) which is critically involved in maintaining neuronal homeostasis. In the present study, we applied a comprehensive immunohistochemical approach to investigate the structural alterations in the NVU across different Alzheimer's disease (AD) neuropathological stages. Post-mortem human cortical and hippocampal samples derived from AD patients and non-demented elderly control individuals were immunostained using a panel of markers representing specific components of the NVU including Collagen IV (basement membrane), PDGFR-β (pericytes), GFAP (astrocytes), Iba1 (microglia), MRC1 (perivascular macrophages) and lectin as an endothelial cell label. Astrocytes (GFAP) and microglia (Iba1) were quantified both in the whole visual-field and specifically within the NVU, and the sample set was additionally analyzed using anti-tau (AT8) and three different anti-Aβ (clones G2-10, G2-11, 4G8) antibodies. Analyses of lectin labeled sections showed an altered vascular distribution in AD patients as revealed by a reduced nearest distance between capillaries. Within the NVU, a Braak-stage dependent reduction in pericyte coverage was identified as the earliest structural alteration during AD progression. In comparison to non-demented elderly controls, AD patients showed a significantly higher astrocyte coverage within the NVU, which was paralleled by a reduced microglial coverage around capillaries. Assessment of perivascular macrophages moreover demonstrated a relocation of these cells from leptomeningeal arteries to penetrating parenchymal vessels in AD patients. Collectively, the results of our study represent a comprehensive first in-depth analysis of AD-related structural changes in the NVU and suggest distinct alterations in all components of the NVU during AD progression.
Collapse
Affiliation(s)
- Tunahan Kirabali
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
| | - Ruslan Rust
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
| | - Serena Rigotti
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
- Department of BiologyETH ZurichZurichSwitzerland
| | - Alessandro Siccoli
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
- Faculty of MedicineUniversity Hospital ZurichZürichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
- NeurimmuneSchlierenSwitzerland
| | - Luka Kulic
- Institute for Regenerative MedicineUniversity of ZurichSchlierenSwitzerland
- Roche Pharma Research & Early DevelopmentF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| |
Collapse
|