1
|
Chen D, Shu J, Zhang X, Wang S, Sun J, Chong N, Sun Z, Xu Y, Wang Q. Non-steroidal mineralocorticoid receptor antagonist finerenone inhibits peritoneal fibrosis induced by high-glucose dialysate via regulating enhancer of zeste homolog 2 (EZH2) expression. Ren Fail 2025; 47:2491156. [PMID: 40364455 PMCID: PMC12082730 DOI: 10.1080/0886022x.2025.2491156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Finerenone, a novel high-selective aldosterone receptor antagonist, exhibits powerful anti-inflammatory and antifibrotic effects in previous researches. The aim of our study was to investigate of it on peritoneal fibrosis. In our current research, we found that high glucose could induce epithelial mesothelial transformation (EMT) of peritoneal mesothelial cells (HPMCs). Under high glucose stimulation, the addition of finerenone could alleviate high glucose induced EMT and disordered cytoskeleton rearrangement in HPMCs. Moreover, finerenone decreased the expression of enhancer of zeste homolog 2 (EZH2). Results of rescue experiment showed that after overexpression of EZH2 in the presence of finerenone, the protective effect of finerenone on EMT, migration capacity and cytoskeleton rearrangement was counteracted by EZH2 overexpression. The above results have also been demonstrated in in vivo experiments. These findings imply that finerenone could alleviate EMT and peritoneal fibrosis via regulating EZH2. More studies are needed to validate it and explore further mechanism.
Collapse
Affiliation(s)
- Dandan Chen
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianqiang Shu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xinyu Zhang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Simeng Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jingshu Sun
- Weifang People’s Hospital, Weifang, Shandong, China
| | - Nannan Chong
- Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhikang Sun
- Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinglian Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Chen Y, Liu F, Dai R, Cheng M, Wang W, Sang Y, Wei L, Wang Y, Zhang L. Mechanisms and therapeutic potential of multiple forms of programmed cell death in renal fibrosis. Cell Signal 2025; 134:111926. [PMID: 40490146 DOI: 10.1016/j.cellsig.2025.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Revised: 05/27/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025]
Abstract
Programmed cell death (PCD), particularly necroptosis, ferroptosis, and pyroptosis alongside classical apoptosis has attracted considerable attention in recent years in the context of renal fibrosis (RF). Accumulating evidence indicates that these regulated cell death pathways contribute substantially to renal tissue damage and fibrosis progression by promoting inflammation and extracellular matrix (ECM) accumulation. Renal fibrosis, a common pathological process to various chronic kidney diseases (CKD), is closely intertwined with diverse forms of cell death. Elucidating the underlying molecular mechanisms is critical for identifying effective therapeutic targets. This review systematically summarizes the signaling mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis, detailing their roles in the pathogenesis of RF. We analyze recent advances in pharmacological treatment and emerging therapies targeting these pathways, and explore potential therapeutic targets for clinical implementation. Targeting multiple forms of regulated cell death pathways concurrently may offer a promising avenue for the precision treatment of RF.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Fan Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yonghao Sang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liuting Wei
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
3
|
Gulzar MAR. Finerenone and semaglutide: Role in heart failure with reduced ejection fraction. World J Cardiol 2025; 17:105822. [DOI: 10.4330/wjc.v17.i5.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Obesity and type 2 diabetes mellitus commonly coexist with heart failure (HF) and may contribute to the pathogenesis of HF with preserved ejection fraction. With progression in management therapies for HF with preserved ejection fraction, the mechanism behind beneficial actions of finerenone and semaglutide remains enigmatic. For decades, the cardiorenal protective effects of aldosterone blockage in patients with chronic kidney disease have been of significant interest. But due to multiple side effects, these trials were likely to stop.
Collapse
|
4
|
Hakim JP, Handelsman Y, Banerjee T. Use of finerenone in patients with chronic kidney disease at high risk of heart failure. Metabolism 2025; 169:156297. [PMID: 40368158 DOI: 10.1016/j.metabol.2025.156297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/29/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Treatment of symptomatic/advanced heart failure (HF) in patients who also have chronic kidney disease (CKD) and type 2 diabetes (T2D) may include a steroidal mineralocorticoid receptor antagonist (MRA). However, patients with CKD and T2D who are at high risk of developing HF may benefit from taking the nonsteroidal MRA finerenone. Results from phase 3 placebo-controlled trials of finerenone in patients with CKD associated with T2D showed that finerenone (plus a renin-angiotensin-aldosterone system inhibitor) reduced the risk of new-onset HF, improved other HF outcomes, and caused a significant slowing of CKD progression. Those who work in cardiology need to be aware of the HF risk-reduction effects of finerenone in patients with CKD and T2D. In this review, we provide a rationale for finerenone use in cardiology based on the available finerenone clinical trial data and from the perspective of a cardiologist who prescribes finerenone to patients who have comorbid CKD and T2D.
Collapse
Affiliation(s)
- John P Hakim
- Maryland Heart and Vascular Medical Center, Clinton, MD, USA.
| | | | | |
Collapse
|
5
|
Ye K, Li J, Huo Z, Xu J, Dai Q, Qiao K, Cao Y, Yan L, Liu W, Hu Y, Xu L, Su R, Zhu Y, Mi Y. Down-regulating HDAC2-LTA4H pathway ameliorates renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167889. [PMID: 40324735 DOI: 10.1016/j.bbadis.2025.167889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The activation of histone deacetylase 2 (HDAC2) is the main pathogenesis of acute kidney injury (AKI), one of the leading causes of end-stage kidney disease. However, the regulatory role of HDAC2 upregulation on inflammation in AKI is still unclear. RESULTS In this study, we found that treatment with HDAC2 inhibitor BRD6688 could mitigate the degree of mesangial sclerosis, interstitial infiltration and tubular atrophy, reduce the concentration of blood urea nitrogen (BUN) and serum creatinine (Scr), improve the proliferation, anti-apoptotic, anti-oxidative stress and angiogenesis effects of renal cells. Our results mainly indicated that renal HDAC2 activity was increased by casein kinase 2 (CK2) in renal ischemia reperfusion (I/R) models, and HDAC2 genetic ablation in HREpiC cells suppressed the leukotriene B4 (LTB4) production. Renal leukotriene A4 hydrolase (LTA4H) activity was increased in AKI mice in a HDAC2-dependent manner. LTB4 could induce monocytes to differentiate into M1 macrophages, while BRD6688 could suppress this effect and force the M1 macrophages polarize to M2 macrophages. CONCLUSION Inhibition of HDAC2 activities by BRD6688 could suppress the progression of renal I/R injury through the regulation of LTA4H and macrophage polarization.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Jixuan Li
- Department of internal medicine, Tianjin Fourth Hospital, Tianjin 300222, China
| | - Zhixiao Huo
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Jian Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Qinghai Dai
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Kunyan Qiao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Yu Cao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Lihua Yan
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Wei Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Yue Hu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Liang Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| | - Rui Su
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| | - Yu Zhu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| |
Collapse
|
6
|
Wang QR, Yang Y. Mineralocorticoid receptor antagonists promote renal immunosenescence. Int Urol Nephrol 2025:10.1007/s11255-025-04530-1. [PMID: 40304997 DOI: 10.1007/s11255-025-04530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Chronic kidney disease (CKD) is often associated with chronic inflammation, influenced by the activation of mineralocorticoid receptors (MR). This review focuses on changes in immune cells and explores the important role that MR antagonists (MRAs), especially the new nonsteroidal MRA, finerenone, play in alleviating renal and cardiac injury by affecting the transformation of stimulated immune cells. We found that MR can promote the transformation of macrophages to M1 pro-inflammatory phenotype through IL-14 receptor and mitogen-activated protein kinase (MAPK)-JNK. MR also activates helper T cells and reduces the generation of regulatory T cells by promoting the interaction between nuclear factor and activator protein-1, increasing the secretion of IL-2 and IL-18, increasing the expression of CD38 and CD69, especially the IL-17/IL-23 axis. The above immune system changes jointly mediate inflammation leading to kidney damage and fibrosis. In addition, we propose that the NLRP3 inflammasome is associated with macrophage imbalance. Preclinical studies indicate that finerenone effectively reduces inflammation and prevents structural kidney damage without significant systemic blood pressure changes. These data will provide some ideas for further research in the field of immune mechanisms in future, and drug research targeting specific targets and channels may also become a new type of diagnostic and treatment measure.
Collapse
Affiliation(s)
- Qiao-Rui Wang
- Department of Nephrology, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
- Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
7
|
Thompson SE, Roy A, Geberhiwot T, Gehmlich K, Steeds RP. Fabry Disease: Insights into Pathophysiology and Novel Therapeutic Strategies. Biomedicines 2025; 13:624. [PMID: 40149601 PMCID: PMC11940501 DOI: 10.3390/biomedicines13030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by deficiency of α-galactosidase A (α-GalA), leading to the accumulation of glycosphingolipids and multi-organ dysfunction, particularly affecting the cardiovascular and renal systems. Disease-modifying treatments such as enzyme replacement therapy (ERT) and oral chaperone therapy (OCT) have limited efficacy, particularly in advanced disease, prompting a need for innovative therapeutic approaches targeting underlying molecular mechanisms beyond glycosphingolipid storage alone. Recent insights into the pathophysiology of FD highlights chronic inflammation and mitochondrial, lysosomal, and endothelial dysfunction as key mediators of disease progression. Adjunctive therapies such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRAs) demonstrate significant cardiovascular and renal benefits in conditions including heart failure and chronic kidney disease. These drugs also modulate pathways involved in the pathophysiology of FD, such as autophagy, oxidative stress, and pro-inflammatory cytokine signaling. While theoretical foundations support their utility, dedicated trials are necessary to confirm efficacy in the FD-specific population. This narrative review highlights the importance of expanding therapeutic strategies in FD, advocating for a multi-faceted approach involving evidence-based adjunctive treatments to improve outcomes. Tailored research focusing on diverse FD phenotypes, including females and non-classical variants of disease, will be critical to advancing care and improving outcomes in this complex disorder.
Collapse
Affiliation(s)
- Sophie Elizabeth Thompson
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ashwin Roy
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Institute of Metabolism and System Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX1 2JD, UK
| | - Richard Paul Steeds
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
8
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. Mineralocorticoid receptor blockage in kidney transplantation: too much of a good thing or not? Int Urol Nephrol 2025; 57:839-854. [PMID: 39470940 DOI: 10.1007/s11255-024-04256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Although, kidney transplantation (KT) is the best treatment option for patients with end-stage kidney disease, long-term complications including chronic kidney allograft disease (CKAD) and major adverse cardiovascular events (MACE) are common. To decrease these complications new therapeutic options are necessary. Mineralocorticoid receptor antagonists (MRAs) are one of the promising drugs in this context. In the general population, MRAs had favorable effects on blood pressure regulation, MACE, proteinuria and progression of chronic kidney disease. In the context of KT, there are limited studies showing beneficial effects such as reducing proteinuria and oxidative stress. In this review, we performed a narrative review to assess the use and impact of MRAs in kidney transplant recipients. We found that in KTRs, MRAs are safe and they have favorable or neutral impact on blood pressure, glomerular filtration rate, urinary protein/albumin excretion, and oxidative stress. No data was found regarding major cardiovascular adverse events.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Yasar Caliskan
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Krista L Lentine
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| |
Collapse
|
9
|
Zhou J, Kang L, Gu C, Li X, Guo X, Fang M. Effectiveness and safety of finerenone in diabetic kidney disease patients: a real-world observational study from China. Ren Fail 2024; 46:2400541. [PMID: 39248389 PMCID: PMC11385639 DOI: 10.1080/0886022x.2024.2400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
AIMS Finerenone has been approved for treating diabetic kidney disease (DKD) with reducing cardiorenal risk. Real-world data on finerenone treatment for the management of DKD are presently lacking. This study aimed to investigate the effect of finerenone on the renal parameters of the Chinese DKD population in the real-world medical setting for the first time, especially in combination with renin-angiotensin system inhibitors (RASi) and sodium-glucose cotransporter 2 inhibitors (SGLT2i). METHODS Forty-two DKD patients were selected and completed a 6-month finerenone treatment. Renal parameters and adverse effects were collected at every visit. RESULTS The median urine albumin-to-creatinine ratio (UACR) was 1426.11 (755.42, 3638.23) mg/g. Among them, the proportion of patients with a UACR of 300-5000 mg/g was 76.2%, and the proportion of patients with a UACR of >5000 mg/g was 14.3%. The median estimated glomerular filtration rate (eGFR) was 54.50 (34.16, 81.73) mL/min/1.73 m2. Finerenone decreased the UACR significantly throughout the study period (p < .05). The maximal decline of UACR at month 6 was 73%. Moreover, the proportion of patients with a 30% or greater reduction in UACR was 68.42% in month 6. There was a smaller decline (9-11%) in the eGFR after initiating finerenone (p > .05). One patient each discontinued finerenone due to hyperkalemia (2.4%) and acute kidney injury (2.4%). No patient reported hypotension, breast pain, and gynecomastia. CONCLUSIONS This study from China first demonstrated finerenone decreased UACR with manageable safety in real-world DKD treatment. A triple regimen of RASi, SGLT2i, and finerenone may be a promising treatment strategy for lowering albuminuria and reducing hyperkalemia risk in advanced DKD patients.
Collapse
Affiliation(s)
- Jingying Zhou
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Renal Translational Medicine Center of Liaoning Province, Dalian, China
| | - Le Kang
- Medical College of Dalian University, Dalian, China
| | - Chenjie Gu
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Renal Translational Medicine Center of Liaoning Province, Dalian, China
| | - Xinwei Li
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Renal Translational Medicine Center of Liaoning Province, Dalian, China
| | - Xianan Guo
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Renal Translational Medicine Center of Liaoning Province, Dalian, China
| | - Ming Fang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Renal Translational Medicine Center of Liaoning Province, Dalian, China
| |
Collapse
|
10
|
Masuda T, Nagata D. Glomerular pressure and tubular oxygen supply: a critical dual target for renal protection. Hypertens Res 2024; 47:3330-3337. [PMID: 39397109 DOI: 10.1038/s41440-024-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The primary treatment goal of chronic kidney disease (CKD) is preserving renal function and preventing its progression to end-stage renal disease. Glomerular hypertension and tubular hypoxia are critical risk factors in CKD progression. However, the renal hemodynamics make it difficult to avoid both factors due to the existence of peritubular capillaries that supply oxygen to the renal tubules downstream from the glomerulus through the efferent arteriole. In the treatment strategies for balancing glomerular pressure and tubular oxygen supply, afferent and efferent arterioles of the glomerulus determine glomerular filtration rate and blood flow to the peritubular capillaries. Therefore, sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors as well as classical renin-angiotensin system inhibitors, which can change the diameter of afferent and/or efferent arterioles, are promising options for balancing this dual target and achieving renal protection. This review focuses on the clinical importance of glomerular pressure and tubular oxygen supply and proposes an effective treatment modality for this dual target.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
11
|
Venkatesan K, Cheryeth MMJ, Verghese AT, Mathews AM, Ravisankar N, Unnikrishnan P, Prakash V, Harimohan H, Haroon NN, James S, Cherian S. Finerenone and diabetic renal disease: a narrative review. Endocrine 2024; 86:882-889. [PMID: 39143421 DOI: 10.1007/s12020-024-03945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Overactivation of mineralocorticoid receptors occurs in cardiorenal diseases. Many patients with type 2 diabetes often progress to chronic kidney disease (CKD) and require dialysis. Finerenone is the first oral non-steroidal mineralocorticoid receptor (MR) antagonist used in patients with diabetic kidney disease and heart failure. Finerenone (also known as Kerendia) is more potent than spironolactone in reducing the progression of CKD and exerts its effect equally on the heart and kidneys, improving cardiovascular outcomes. Research demonstrates that finerenone improves proteinuria and glomerular filtration rate (GFR) if taken alone or in combination with sodium-glucose transporter 2 inhibitors (SGLT2i). Finerenone has been found to decrease mortality in patients with diabetic renal disease and improve quality of life. Its side effects, unlike those of spironolactone, do not include gynecomastia. However, it can result in hyperkalemia, which needs to be monitored. In this narrative review, we aim to investigate the mechanisms of action of finerenone and its implications in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kirthika Venkatesan
- Caribbean Medical University School of Medicine, 25 Pater Euwenswed, Willemstad, Curaçao
- Walden University, 100 Washington Avenue South Suite 1210, Minneapolis, MN, 55401, USA
| | | | - Anna Tintu Verghese
- University of Kerala, Thiruvananthapuram, Kerala, India
- Rajiv Gandhi University of Health Sciences, Bangalore, India
| | | | | | | | | | - Hridya Harimohan
- Kern Medical Center, 1700 Mount Vernon Ave, Bakersfield, CA, 93306, USA
| | - Nisha Nigil Haroon
- Department of Endocrinology and Internal Medicine, Northern Ontario School of Medicine, Sudbury, P3E 2C6, ON, Canada.
| | - Sandra James
- Thanjavur Medical College, Thanjavur, Tamil Nadu, India
| | - Somy Cherian
- Amrita Vishwa Vidyapeetham University, Kochi, Kerala, India
- Humber College, Toronto, ON, Canada
| |
Collapse
|
12
|
Zachariah T, Radhakrishnan J. Potential Role of Mineralocorticoid Receptor Antagonists in Nondiabetic Chronic Kidney Disease and Glomerular Disease. Clin J Am Soc Nephrol 2024; 19:1499-1512. [PMID: 39037799 PMCID: PMC11556932 DOI: 10.2215/cjn.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Glomerular disease is a leading cause of CKD and ESKD. Although diabetic kidney disease is the most common cause of glomerular disease, nondiabetic causes include malignancy, systemic autoimmune conditions, drug effects, or genetic conditions. Nondiabetic glomerular diseases are rare diseases, with a paucity of high-quality clinical trials in this area. Furthermore, late referral can result in poor patient outcomes. This article reviews the current management of nondiabetic glomerular disease and explores the latest developments in drug treatment in this area. Current treatment of nondiabetic glomerular disease aims to manage complications (edema, hypertension, proteinuria, hyperlipidemia, hypercoagulability, and thrombosis) as well as target the underlying cause of glomerular disease. Treatment options include renin-angiotensin-aldosterone system inhibitors, statins/nonstatin alternatives, loop diuretics, anticoagulation agents, immunosuppressives, and lifestyle and dietary modifications. Effective treatment of nondiabetic glomerular disease is limited by heterogeneity and a lack of understanding of the disease pathogenesis. Sodium-glucose cotransporter-2 inhibitors and nonsteroidal mineralocorticoid receptor antagonists (ns-MRAs, such as finerenone), with their broad anti-inflammatory and antifibrotic effects, have emerged as valuable therapeutic options for a range of cardiorenal conditions, including CKD. ns-MRAs are an evolving drug class of particular interest for the future treatment of nondiabetic glomerular disease, and there is evidence that these agents may improve kidney prognosis in various subgroups of patients with CKD. The benefits offered by ns-MRAs may present an opportunity to reduce the progression of CKD from a spectrum of glomerular disease. Several novel ns-MRA are in clinical development for both diabetic and nondiabetic CKD.
Collapse
|
13
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Escobar Vasco MA, Fantaye SH, Raghunathan S, Solis-Herrera C. The potential role of finerenone in patients with type 1 diabetes and chronic kidney disease. Diabetes Obes Metab 2024; 26:4135-4146. [PMID: 39021345 DOI: 10.1111/dom.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Chronic kidney disease (CKD) represents a global health concern, associated with an increased risk of cardiovascular morbidity and mortality and decreased quality of life. Many patients with type 1 diabetes (T1D) will develop CKD over their lifetime. Uncontrolled glucose levels, which occur in patients with T1D as well as type 2 diabetes (T2D), are associated with substantial mortality and cardiovascular disease burden. T2D and T1D share common pathological features of CKD, which is thought to be driven by haemodynamic dysfunction, metabolic disturbances, and subsequently an influx of inflammatory and profibrotic mediators, both of which are major interrelated contributors to CKD progression. The mineralocorticoid receptor is also involved, and, under conditions of oxidative stress, salt loading and hyperglycaemia, it switches from homeostatic regulator to pathophysiological mediator by promoting oxidative stress, inflammation and fibrosis. Progressive glomerular and tubular injury leads to macroalbuminuria a progressive reduction in the glomerular filtration rate and eventually end-stage renal disease. Finerenone, a non-steroidal, selective mineralocorticoid receptor antagonist, is approved for treatment of patients with CKD associated with T2D; however, the benefit of finerenone in patients with T1D has yet to be determined. This narrative review will discuss treatment of CKD in T1D and the potential future role of finerenone in this setting.
Collapse
Affiliation(s)
| | - Samuel H Fantaye
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | - Sapna Raghunathan
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Shen Q, Li L, Qian W, Dong X, Bao M, Huang R, Li N, Ye Z, Cheng G, Wang Q, Shen K, Luo Z. A four-in-one first-in-human study to assess safety, tolerability, pharmacokinetics, pharmacodynamics, and concentration-QTc relationship of HRS-1780, a selective non-steroidal mineralocorticoid receptor antagonist, in healthy men. Expert Opin Investig Drugs 2024; 33:1083-1093. [PMID: 39155700 DOI: 10.1080/13543784.2024.2393867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND This first-in-human study evaluated HRS-1780, an oral selective non-steroidal mineralocorticoid receptor antagonist, in healthy men. RESEARCH DESIGN AND METHODS In single ascending dose (SAD) part, 10 participants for each dose cohort (5, 10, 20, 40, 60, and 80 mg) were randomized (8:2) to HRS-1780 or placebo. In multiple ascending dose part, 12 participants for each dose (10, 20, and 40 mg) were randomized (9:3) to HRS-1780 or placebo once daily for 7 days. The primary endpoint was safety and tolerability. RESULTS HRS-1780 was well tolerated with all adverse events being mild. In the steady state, the median time to maximum concentration (Tmax) was 0.750 h and mean half-life was 1.76-1.96 h. High-fat/high-calorie meal prolonged Tmax but did not affect exposure. Multiple dosing of HRS-1780 at 40 mg showed a decreasing trend in systolic blood pressure compared with placebo. Changes in plasma aldosterone and norepinephrine with HRS-1780 were higher compared to placebo. Upper bounds of two-sided 90% confidence interval of placebo-adjusted change-from-baseline QTcF were below 10 msec at the maximum concentration in SAD. The trial had limited sample size and short study duration. CONCLUSIONS HRS-1780 had favorable safety and pharmacokinetic profiles and did not cause clinically meaningful QTcF prolongation. TRIAL REGISTRATION ClinicalTrials.gov (NCT05638126).
Collapse
Affiliation(s)
- Qi Shen
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Lingzhi Li
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Weilin Qian
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Xue Dong
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Manchen Bao
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Rong Huang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Na Li
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Zi Ye
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Gang Cheng
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Quanren Wang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Kai Shen
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Zhu Luo
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhai S, Ma B, Chen W, Zhao Q. A comprehensive review of finerenone-a third-generation non-steroidal mineralocorticoid receptor antagonist. Front Cardiovasc Med 2024; 11:1476029. [PMID: 39376623 PMCID: PMC11456546 DOI: 10.3389/fcvm.2024.1476029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/09/2024] Open
Abstract
Multiple studies have shown that finerenone (BAY 94-8862), a third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), possesses different or superior mechanisms of action to traditional MRAs. Specifically, animal and cell-based experiments have demonstrated that this compound exerts multiple effects including fibrosis inhibition, reduced pulmonary artery pressure, improved diabetic retinopathy, enhanced endothelial functions, metabolic optimization as well as reduced oxidative stress, thereby exerting overall positive effects on renal and cardiovascular diseases. Consequently, clinical research, such as the FIGARO-DKD and FIDELIO-DKD trials, has demonstrated dual benefits for patients with type 2 diabetes mellitus and chronic kidney disease (T2DM-CKD), especially by validating MRAs' potential in reducing risks of renal and cardiovascular composite endpoints. Currently, cardiovascular indications for finerenone are limited to patients with T2DM-CKD, while its use in non-T2DM CKD patients remains at clinical trial stages. Despite showing good safety and efficacy in T2DM-CKD patients, there are insufficient corresponding data for those presenting chronic kidney disease without diabetes (ndCKD). Furthermore, the application of this compound in diseases such as primary aldosteronism and its association with cancer risk need to be further validated through larger-scale and longer-term clinical studies. Nevertheless, the development of finerenone provides an additional option for treating cardiovascular and renal diseases. With further research, it is expected that finerenone will be relevant to a broader range of CKD patient populations by addressing current knowledge gaps to comprehensively evaluate its clinical value and potentially alter existing treatment strategies. The current review aims to comprehensively analyze the basic research and clinical advancements involving finerenone in order to explore its prospects for treating cardiovascular and renal diseases, while addressing unmet needs in current treatment strategies. Additionally, through a comprehensive analysis of relevant research findings, a deeper understanding of finerenone's drug characteristics will be provided alongside scientific guidance for future treatment strategies and their clinical significance.
Collapse
Affiliation(s)
| | | | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qini Zhao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Jia G, Lastra G, Bostick BP, LahamKaram N, Laakkonen JP, Ylä-Herttuala S, Whaley-Connell A. The mineralocorticoid receptor in diabetic kidney disease. Am J Physiol Renal Physiol 2024; 327:F519-F531. [PMID: 39024357 PMCID: PMC11460335 DOI: 10.1152/ajprenal.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus is one of the leading causes of chronic kidney disease and its progression to end-stage kidney disease (ESKD). Diabetic kidney disease (DKD) is characterized by glomerular hypertrophy, hyperfiltration, inflammation, and the onset of albuminuria, together with a progressive reduction in glomerular filtration rate. This progression is further accompanied by tubulointerstitial inflammation and fibrosis. Factors such as genetic predisposition, epigenetic modifications, metabolic derangements, hemodynamic alterations, inflammation, and inappropriate renin-angiotensin-aldosterone system (RAAS) activity contribute to the onset and progression of DKD. In this context, decades of work have focused on glycemic and blood pressure reduction strategies, especially targeting the RAAS to slow disease progression. Although much of the work has focused on targeting angiotensin II, emerging data support that the mineralocorticoid receptor (MR) is integral in the development and progression of DKD. Molecular mechanisms linked to the underlying pathophysiological changes derived from MR activation include vascular endothelial and epithelial cell responses to oxidative stress and inflammation. These responses lead to alterations in the microcirculatory environment, the abnormal release of extracellular vesicles, gut dysbiosis, epithelial-mesenchymal transition, and kidney fibrosis. Herein, we present recent experimental and clinical evidence on the MR in DKD onset and progress along with new MR-based strategies for the treatment and prevention of DKD.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Guido Lastra
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Brian P Bostick
- Department of Medicine-Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Nihay LahamKaram
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Adam Whaley-Connell
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Medicine-Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri, United States
| |
Collapse
|
18
|
Varda L, Ekart R, Lainscak M, Maver U, Bevc S. Clinical Properties and Non-Clinical Testing of Mineralocorticoid Receptor Antagonists in In Vitro Cell Models. Int J Mol Sci 2024; 25:9088. [PMID: 39201774 PMCID: PMC11354261 DOI: 10.3390/ijms25169088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are one of the renin-angiotensin-aldosterone system inhibitors widely used in clinical practice. While spironolactone and eplerenone have a long-standing profile in clinical medicine, finerenone is a novel agent within the MRA class. It has a higher specificity for mineralocorticoid receptors, eliciting less pronounced adverse effects. Although approved for clinical use in patients with chronic kidney disease and heart failure, intensive non-clinical research aims to further elucidate its mechanism of action, including dose-related selectivity. Within the field, animal models remain the gold standard for non-clinical testing of drug pharmacological and toxicological properties. Their role, however, has been challenged by recent advances in in vitro models, mainly through sophisticated analytical tools and developments in data analysis. Currently, in vitro models are gaining momentum as possible platforms for advanced pharmacological and pathophysiological studies. This article focuses on past, current, and possibly future in vitro cell models research with clinically relevant MRAs.
Collapse
Affiliation(s)
- Luka Varda
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
| | - Mitja Lainscak
- Division of Cardiology, Murska Sobota General Hospital, Ulica Dr. Vrbnjaka 6, 9000 Murska Sobota, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Uroš Maver
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
19
|
Palacios-Ramirez R, Soulié M, Fernandez-Celis A, Nakamura T, Boujardine N, Bonnard B, Bamberg K, Lopez-Andres N, Jaisser F. Mineralocorticoid receptor (MR) antagonist eplerenone and MR modulator balcinrenone prevent renal extracellular matrix remodeling and inflammation via the MR/proteoglycan/TLR4 pathway. Clin Sci (Lond) 2024; 138:1025-1038. [PMID: 39092535 DOI: 10.1042/cs20240302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Excessive activation of the mineralocorticoid receptor (MR) is implicated in cardiovascular and renal disease. Decreasing MR activation with MR antagonists (MRA) is effective to slow chronic kidney disease (CKD) progression and its cardiovascular comorbidities in animal models and patients. The present study evaluates the effects of the MR modulator balcinrenone and the MRA eplerenone on kidney damage in a metabolic CKD mouse model combining nephron reduction and a 60% high-fat diet. Balcinrenone and eplerenone prevented the progression of renal damages, extracellular matrix remodeling and inflammation to a similar extent. We identified a novel mechanism linking MR activation to the renal proteoglycan deposition and inflammation via the TLR4 pathway activation. Balcinrenone and eplerenone similarly blunted this pathway activation.
Collapse
Affiliation(s)
- Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Matthieu Soulié
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Toshifumi Nakamura
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Nabiha Boujardine
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Krister Bamberg
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
- Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| |
Collapse
|
20
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. SCIENCE ADVANCES 2024; 10:eado2849. [PMID: 39110788 PMCID: PMC11305376 DOI: 10.1126/sciadv.ado2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Kanbay M, Copur S, Mizrak B, Mallamaci F, Zoccali C. Mineralocorticoid receptor antagonists in kidney transplantation. Eur J Clin Invest 2024; 54:e14206. [PMID: 38578116 DOI: 10.1111/eci.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The fundamental role of the renin-angiotensin-aldosterone system in the pathophysiology of chronic kidney disease, congestive heart failure, hypertension and proteinuria is well established in pre-clinical and clinical studies. Mineralocorticoid receptor antagonists are among the primary options for renin-angiotensin-aldosterone system blockage, along with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS In this narrative review, we aim to evaluate the efficiency and safety of mineralocorticoid receptor antagonists in kidney transplant recipients, including the potential underlying pathophysiology. RESULTS The efficiency and safety of mineralocorticoid receptor antagonists in managing chronic kidney disease and proteinuria, either non-nephrotic or nephrotic range, have been demonstrated among nontransplanted patients, though studies investigating the role of mineralocorticoid receptor antagonists among kidney transplant recipients are scarce. Nevertheless, promising results have been reported in pre-clinical and clinical studies among kidney transplant recipients regarding the role of mineralocorticoid receptor antagonists in terms of ischaemia-reperfusion injury, proteinuria, or calcineurin inhibitor-mediated nephrotoxicity without considerable adverse events such as hypotension, hyperkalaemia or worsening renal functions. CONCLUSION Even though initial results regarding the role of mineralocorticoid receptor antagonist therapy for kidney transplant recipients are promising, there is clear need for large-scale randomized clinical trials with long-term follow-up data.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Berk Mizrak
- Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli" & CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Associazione Ipertensione Nefrologia Trapianto Renal (IPNET), Reggio Calabria, Italy
| |
Collapse
|
22
|
Arici M, Altun B, Araz M, Atmaca A, Demir T, Ecder T, Guz G, Gogas Yavuz D, Yildiz A, Yilmaz T. The significance of finerenone as a novel therapeutic option in diabetic kidney disease: a scoping review with emphasis on cardiorenal outcomes of the finerenone phase 3 trials. Front Med (Lausanne) 2024; 11:1384454. [PMID: 38947237 PMCID: PMC11214281 DOI: 10.3389/fmed.2024.1384454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
This scoping review prepared by endocrinology and nephrology experts aimed to address the significance of finerenone, as a novel therapeutic option, in diabetic kidney disease (DKD), based on the biological prospect of cardiorenal benefit due to non-steroidal mineralocorticoid receptor antagonist (MRA) properties, and the recent evidence from the finerenone phase 3 program clinical trials. The importance of finerenone in slowing DKD progression was critically reviewed in relation to the role of MR overactivation in the pathogenesis of cardiorenal disease and unmet needs in the current practice patterns. The efficacy and safety outcomes of finerenone phase III study program including FIDELIO-DKD, FIGARO-DKD and FIDELITY were presented. Specifically, perspectives on inclusion of patients with preserved estimated glomerular filtration rate (eGFR) or high albuminuria, concomitant use of sodium-glucose co-transporter-2 inhibitor (SGLT2i) or glucagon-like peptide 1 receptor agonist (GLP-1 RA), baseline glycated hemoglobin (HbA1c) level and insulin treatment, clinically meaningful heart failure outcomes and treatment-induced hyperkalemia were addressed. Finerenone has emerged as a new therapeutic agent that slows DKD progression, reduces albuminuria and risk of cardiovascular complications, regardless of the baseline HbA1c levels and concomitant treatments (SGLT2i, GLP-1 RA, or insulin) and with a favorable benefit-risk profile. The evolving data on the benefit of SGLT2is and non-steroidal MRAs in slowing or reducing cardiorenal risk seem to provide the opportunity to use these pillars of therapy in the management of DKD, after a long-period of treatment scarcity in this field. Along with recognition of the albuminuria as a powerful marker to detect those patients at high risk of cardiorenal disease, these important developments would likely to impact standard-of-care options in the setting of DKD.
Collapse
Affiliation(s)
- Mustafa Arici
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Bulent Altun
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Mustafa Araz
- Department of Endocrinology and Metabolic Diseases, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Aysegul Atmaca
- Department of Endocrinology and Metabolic Diseases, Ondokuz Mayis University Faculty of Medicine, Samsun, Türkiye
| | - Tevfik Demir
- Department of Endocrinology and Metabolic Diseases, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Tevfik Ecder
- Department of Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Galip Guz
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Dilek Gogas Yavuz
- Section of Endocrinology and Metabolism, Marmara University School of Medicine, Istanbul, Türkiye
| | - Alaattin Yildiz
- Department of Nephrology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Temel Yilmaz
- Clinics of Endocrinology and Metabolic Diseases, Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
23
|
Filardi T, Feraco A, Ouvrard-Pascaud A, Rizzo M, Caprio M. Managing cardio-renal-metabolic risk in patients with type 2 diabetes: the role of finerenone. J Diabetes Complications 2024; 38:108741. [PMID: 38574693 DOI: 10.1016/j.jdiacomp.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Tiziana Filardi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | | | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy.
| |
Collapse
|
24
|
Fraccarollo D, Geffers R, Galuppo P, Bauersachs J. Mineralocorticoid receptor promotes cardiac macrophage inflammaging. Basic Res Cardiol 2024; 119:243-260. [PMID: 38329499 PMCID: PMC11008080 DOI: 10.1007/s00395-024-01032-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Inflammaging, a pro-inflammatory status that characterizes aging and primarily involving macrophages, is a master driver of age-related diseases. Mineralocorticoid receptor (MR) activation in macrophages critically regulates inflammatory and fibrotic processes. However, macrophage-specific mechanisms and the role of the macrophage MR for the regulation of inflammation and fibrotic remodeling in the aging heart have not yet been elucidated. Transcriptome profiling of cardiac macrophages from male/female young (4 months-old), middle (12 months-old) and old (18 and 24 months-old) mice revealed that myeloid cell-restricted MR deficiency prevents macrophage differentiation toward a pro-inflammatory phenotype. Pathway enrichment analysis showed that several biological processes related to inflammation and cell metabolism were modulated by the MR in aged macrophages. Further, transcriptome analysis of aged cardiac fibroblasts revealed that macrophage MR deficiency reduced the activation of pathways related to inflammation and upregulation of ZBTB16, a transcription factor involved in fibrosis. Phenotypic characterization of macrophages showed a progressive replacement of the TIMD4+MHC-IIneg/low macrophage population by TIMD4+MHC-IIint/high and TIMD4-MHC-IIint/high macrophages in the aging heart. By integrating cell sorting and transwell experiments with TIMD4+/TIMD4-macrophages and fibroblasts from old MRflox/MRLysMCre hearts, we showed that the inflammatory crosstalk between TIMD4- macrophages and fibroblasts may imply the macrophage MR and the release of mitochondrial superoxide anions. Macrophage MR deficiency reduced the expansion of the TIMD4- macrophage population and the emergence of fibrotic niches in the aging heart, thereby protecting against cardiac inflammation, fibrosis, and dysfunction. This study highlights the MR as an important mediator of cardiac macrophage inflammaging and age-related fibrotic remodeling.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str.1 30625, Hannover, Germany.
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str.1 30625, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str.1 30625, Hannover, Germany.
| |
Collapse
|
25
|
Bondar C, de Bolla MDLA, Neumann P, Pisani A, Feriozzi S, Rozenfeld PA. Pathogenic pathways of renal damage in Fabry nephropathy: interplay between immune cell infiltration, apoptosis and fibrosis. J Nephrol 2024; 37:625-634. [PMID: 38512375 DOI: 10.1007/s40620-024-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Fabry nephropathy is a consequence of the deposition of globotriaosylceramide, caused by deficient GLA enzyme activity in all types of kidney cells. These deposits are perceived as damage signals leading to activation of inflammation resulting in renal fibrosis. There are few studies related to immunophenotype characterization of the renal infiltrate in kidneys in patients with Fabry disease and its relationship to mechanisms of fibrosis. This work aims to quantify TGF-β1 and active caspase 3 expression and to analyze the profile of cells in inflammatory infiltration in kidney biopsies from Fabry naïve-patients, and to investigate correlations with clinical parameters. METHODS Renal biopsies from 15 treatment-naïve Fabry patients were included in this study. Immunostaining was performed to analyze active caspase 3, TGF-β1, TNF-α, CD3, CD20, CD68 and CD163. Clinical data were retrospectively gathered at time of kidney biopsy. RESULTS Our results suggest the production of TNFα and TGFβ1 by tubular cells, in Fabry patients. Active caspase 3 staining revealed that tubular cells are in apoptosis, and apoptotic levels correlated with clinical signs of chronic kidney disease, proteinuria, and inversely with glomerular filtration rate. The cell infiltrates consisted of macrophages, T and B cells. CD163 macrophages were found in biopsy specimens and their number correlates with TGFβ1 and active caspase 3 tubular expression. CONCLUSIONS These results suggest that CD163+ cells could be relevant mediators of fibrosis in Fabry nephropathy, playing a role in the induction of TGFβ1 and apoptotic cell death by tubular cells. These cells may represent a new player in the pathogenic mechanisms of Fabry nephropathy.
Collapse
Affiliation(s)
- Constanza Bondar
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, CONICET, Asociado CIC PBA, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, Bv 120 Nro 1489, 47 y 115, 1900, La Plata, Argentina
| | | | - Pablo Neumann
- Servicio de Diálisis y Nefrologia, IPENSA, Calle 59 N°434, 1900, La Plata, Argentina
| | - Antonio Pisani
- Chair of Nephrology, Federico II University of Naples, Naples, Italy
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy
| | - Paula Adriana Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, CONICET, Asociado CIC PBA, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, Bv 120 Nro 1489, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
26
|
Savarese G, Lindberg F, Filippatos G, Butler J, Anker SD. Mineralocorticoid receptor overactivation: targeting systemic impact with non-steroidal mineralocorticoid receptor antagonists. Diabetologia 2024; 67:246-262. [PMID: 38127122 PMCID: PMC10789668 DOI: 10.1007/s00125-023-06031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physiological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.
Collapse
Affiliation(s)
- Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Felix Lindberg
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerasimos Filippatos
- Department of Cardiology, University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Internal Medicine, University of Mississippi, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
27
|
Chen X, Li X, Zhang K, Lian K, Zhang W, Song Y, Kan C, Zhang J, Han F, Sun X, Guo Z. The role of a novel mineralocorticoid receptor antagonist, finerenone, in chronic kidney disease: mechanisms and clinical advances. Clin Exp Nephrol 2024; 28:125-135. [PMID: 37847437 DOI: 10.1007/s10157-023-02413-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) poses a significant health risk in contemporary society. Current CKD treatments primarily involve renin-angiotensin-aldosterone system inhibitors and mineralocorticoid receptor antagonists, albeit associated with hyperkalemia risks. A novel selective mineralocorticoid receptor antagonist, finerenone, offers a promising, safer alternative for CKD therapy. This review comprehensively assesses the role and efficacy of finerenone in CKD treatment by analyzing clinical and animal studies. Emerging evidence consistently supports finerenone's ability to effectively slow the progression of CKD. By targeting the mineralocorticoid receptor, finerenone not only mitigates renal damage but also exhibits a favorable safety profile, minimizing hyperkalemia concerns. CONCLUSION Finerenone emerges as a valuable addition to CKD therapy, demonstrating potential benefits in delaying CKD progression while minimizing side effects. Nevertheless, further clinical trials are necessary to provide a comprehensive understanding of its safety and efficacy.
Collapse
Affiliation(s)
- Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
28
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576421. [PMID: 38328130 PMCID: PMC10849487 DOI: 10.1101/2024.01.20.576421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
29
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
30
|
Abedini A, Sánchez-Navaro A, Wu J, Klötzer KA, Ma Z, Poudel B, Doke T, Balzer MS, Frederick J, Cernecka H, Liu H, Liang X, Vitale S, Kolkhof P, Susztak K. Single-cell transcriptomics and chromatin accessibility profiling elucidate the kidney-protective mechanism of mineralocorticoid receptor antagonists. J Clin Invest 2024; 134:e157165. [PMID: 37906287 PMCID: PMC10760974 DOI: 10.1172/jci157165] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Sánchez-Navaro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konstantin A. Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bibek Poudel
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julia Frederick
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hana Cernecka
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven Vitale
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Kolkhof
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Neumiller JJ, Alicic RZ, Tuttle KR. Optimization of guideline-directed medical therapies in patients with diabetes and chronic kidney disease. Clin Kidney J 2024; 17:sfad285. [PMID: 38213492 PMCID: PMC10783256 DOI: 10.1093/ckj/sfad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetes is the leading cause of chronic kidney disease (CKD) and kidney failure worldwide. CKD frequently coexists with heart failure and atherosclerotic cardiovascular disease in the broader context of cardio-kidney-metabolic syndrome. Diabetes and CKD are associated with increased risk of all-cause and cardiovascular death as well as decreased quality of life. The role of metabolic and hemodynamic abnormalities has long been recognized as an important contributor to the pathogenesis and progression of CKD in diabetes, while a more recent and growing body of evidence supports activation of both systemic and local inflammation as important contributors. Current guidelines recommend therapies targeting pathomechanisms of CKD in addition to management of traditional risk factors such as hyperglycemia and hypertension. Sodium-glucose cotransporter-2 inhibitors are recommended for treatment of patients with CKD and type 2 diabetes (T2D) if eGFR is ≥20 ml/min/173 m2 on a background of renin-angiotensin system inhibition. For patients with T2D, CKD, and atherosclerotic cardiovascular disease, a glucagon-like peptide-1 receptor agonist is recommended as additional risk-based therapy. A non-steroidal mineralocorticoid receptor antagonist is also recommended as additional risk-based therapy for persistent albuminuria in patients with T2D already treated with renin-angiotensin system inhibition. Implementation of guideline-directed medical therapies is challenging in the face of rapidly accumulating knowledge, high cost of medications, and lack of infrastructure for optimal healthcare delivery. Furthermore, studies of new therapies have focused on T2D and CKD. Clinical trials are now planned to inform the role of these therapies in people with type 1 diabetes (T1D) and CKD.
Collapse
Affiliation(s)
- Joshua J Neumiller
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
| | - Radica Z Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Nephrology Division, Kidney Research Institute, and Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Scurt FG, Ganz MJ, Herzog C, Bose K, Mertens PR, Chatzikyrkou C. Association of metabolic syndrome and chronic kidney disease. Obes Rev 2024; 25:e13649. [PMID: 37783465 DOI: 10.1111/obr.13649] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
The prevalence of kidney disease is increasing rapidly worldwide, reflecting rising rates of obesity, diabetes, and associated metabolic syndrome (MetS). Chronic kidney disease and related comorbidities such as obesity, diabetes, and hypertension place a significant financial burden on healthcare systems. Despite the widespread use of RAAS inhibitors, intensive blood pressure and glycemic control, and newer therapeutic options consisting of sodium/glucose cotransporter-2 (SGLT-2) inhibitors or glucagon-like peptide-1 (GLP-1) receptor agonists, a significant risk of progression to end-stage renal disease remains in the high-risk obese and diabetic population. The MetS is a cluster of cardiovascular risk factors that adversely affect the development and progression of chronic kidney failure. According to the criteria of the World Health Organization, it is defined by visceral adiposity, impaired glucose tolerance or insulin resistance, atherogenic dyslipidemia, raised blood pressure, and microalbuminuria with a albumin-to-creatinine ratio ≥30 mg/g. At molecular level MetS is marked by a proinflammatory state and increased oxidative stress leading to various pathophysiological changes causing endothelial dysfunction and a hypercoagulable state. Because the kidney is a highly vascularized organ, it is especially susceptible for those microvascular changes. Therefore, the MetS and its individual components are associated with the premature development, acceleration, and progression of chronic kidney disease. Therefore, it is becoming increasingly important to elucidate the underlying mechanisms of MetS-associated chronic kidney disease in order to develop new strategies for preventing and slowing the progression of renal disease. In this review, we will elucidate (i) the renal structural, hemodynamic, and metabolic changes that occur in obesity and obesity-related kidney injury; (ii) the clinicopathological characteristics of obesity-related kidney injury, primarily focusing on obesity-associated glomerulopathy; (iii) the potential additional factors or predisposing factors that may turn patients more susceptible to renal structural or functional compensatory failure and subsequent injury.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Maximilian J Ganz
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Carolin Herzog
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
33
|
Pour-Reza-Gholi F, Assadiasl S. Immunological Approaches in the Treatment of Diabetic Nephropathy. Curr Diabetes Rev 2024; 21:e061123223172. [PMID: 37936470 DOI: 10.2174/0115733998267893231016062205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023]
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has no definite treatment so far. In fact, a combination of metabolic, hemodynamic, and immunological factors are involved in the pathogenesis of DN; therefore, effective disease management requires a holistic approach to all predisposing contributors. Due to the recent findings about the role of inflammation in the initiation and progression of kidney injury in diabetic patients and considerable advances in immunotherapy methods, it might be useful to revise and reconsider the current knowledge of the potential of immunomodulation in preventing and attenuating DN. In this review, we have summarized the findings of add-on therapeutic methods that have concentrated on regulating inflammatory responses in diabetic nephropathy, including phosphodiesterase inhibitors, nuclear factor-kB inhibitors, Janus kinase inhibitors, chemokine inhibitors, anti-cytokine antibodies, cell therapy, and vaccination.
Collapse
Affiliation(s)
- Fatemeh Pour-Reza-Gholi
- Department of Nephrology, Labbafinezhad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Tarun T, Ghanta SN, Ong V, Kore R, Menon L, Kovesdy C, Mehta JL, Jain N. Updates on New Therapies for Patients with CKD. Kidney Int Rep 2024; 9:16-28. [PMID: 38312786 PMCID: PMC10831355 DOI: 10.1016/j.ekir.2023.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024] Open
Abstract
Individuals diagnosed with chronic kidney disease (CKD) continue to increase globally. This group of patients experience a disproportionately higher risk of cardiovascular (CV) events compared to the general population. Despite multiple guidelines-based medical management, patients with CKD continue to experience residual cardiorenal risk. Several potential mechanisms explain this excessive CV risk observed in individuals with CKD. Several new drugs have become available that could potentially transform CKD care, given their efficacy in this patient population. Nevertheless, use of these drugs presents certain benefits and challenges that are often underrecognized by prescribing these drugs. In this review, we aim to provide a brief discussion about CKD pathophysiology, limiting our discussion to recent published studies. We also explore benefits and limitations of newer drugs, including angiotensin receptor/neprilysin inhibitors (ARNI), sodium glucose transporter 2 inhibitors (SGLT2i), glucagon-like peptides-1 (GLP-1) agonists and finerenone in patients with CKD. Despite several articles covering this topic, our review provides an algorithm where subgroups of patients with CKD might benefit the most from such drugs based on the selection criteria of the landmark trials. Patients with CKD who have nephrotic range proteinuria beyond 5000 mg/g, or those with poorly controlled blood pressure (systolic ≥160 mm Hg or diastolic ≥100 mm Hg) remain understudied.
Collapse
Affiliation(s)
- Tushar Tarun
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sai Nikhila Ghanta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincz Ong
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rajshekhar Kore
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lakshmi Menon
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Csaba Kovesdy
- Renal section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Jawahar L. Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Cardiology Section, Central Arkansas Veterans Affairs Medical Center, Little Rock, Arkansas, USA
| | - Nishank Jain
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
35
|
Hu J, Zhang X, Ma F, Huang C, Jiang Y. LncRNA CASC2 Alleviates Renal Interstitial Inflammation and Fibrosis through MEF2C Downregulation-Induced Hinderance of M1 Macrophage Polarization. Nephron Clin Pract 2023; 148:245-263. [PMID: 38142674 DOI: 10.1159/000531919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.
Collapse
Affiliation(s)
- Jinping Hu
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Chen W, Zheng L, Wang J, Lin Y, Zhou T. Overview of the safety, efficiency, and potential mechanisms of finerenone for diabetic kidney diseases. Front Endocrinol (Lausanne) 2023; 14:1320603. [PMID: 38174337 PMCID: PMC10762446 DOI: 10.3389/fendo.2023.1320603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common disorder with numerous severe clinical implications. Due to a high level of fibrosis and inflammation that contributes to renal and cardiovascular disease (CVD), existing treatments have not effectively mitigated residual risk for patients with DKD. Excess activation of mineralocorticoid receptors (MRs) plays a significant role in the progression of renal and CVD, mostly by stimulating fibrosis and inflammation. However, the application of traditional steroidal MR antagonists (MRAs) to DKD has been limited by adverse events. Finerenone (FIN), a third-generation non-steroidal selective MRA, has revealed anti-fibrotic and anti-inflammatory effects in pre-clinical studies. Current clinical trials, such as FIDELIO-DKD and FIGARO-DKD and their combined analysis FIDELITY, have elucidated that FIN reduces the kidney and CV composite outcomes and risk of hyperkalemia compared to traditional steroidal MRAs in patients with DKD. As a result, FIN should be regarded as one of the mainstays of treatment for patients with DKD. In this review, the safety, efficiency, and potential mechanisms of FIN treatment on the renal system in patients with DKD is reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
37
|
Ashjian E, Clarke M, Pogue K. Pharmacotherapy considerations with finerenone in the treatment of chronic kidney disease associated with type 2 diabetes. Am J Health Syst Pharm 2023; 80:1708-1721. [PMID: 37632460 PMCID: PMC10664185 DOI: 10.1093/ajhp/zxad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE This review provides an overview of the management of chronic kidney disease (CKD) associated with type 2 diabetes (T2D), how the novel treatment class of nonsteroidal mineralocorticoid receptor antagonists (MRAs) fits within the treatment landscape, and how pharmacists can contribute to the multidisciplinary care of patients with CKD associated with T2D. SUMMARY Optimizing pharmacotherapy for patients with CKD associated with T2D is critical to prevent or slow progression to end-stage kidney disease and reduce the incidence of cardiovascular events. However, many patients with CKD receive suboptimal treatment, in part because of the high complexity of care required, a lack of disease recognition among providers and patients, and a failure to utilize new kidney-protective therapies. Finerenone is the first nonsteroidal, selective MRA to be approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of adult patients with CKD associated with T2D. Clinical trials have demonstrated that finerenone significantly reduces the risk of cardiorenal disease progression vs placebo and has a reduced risk of hyperkalemia compared to traditional steroidal MRAs. Initiation of finerenone should follow evaluation of baseline estimated glomerular filtration rate and serum potassium levels. Consideration of potential drug-drug interactions, follow-up monitoring of potassium levels, and coordination of changes in pharmacotherapy across the patient care team are also important. CONCLUSION Finerenone is a valuable addition to the treatment landscape for CKD associated with T2D. Through their expertise in -medication -management, transitions of care, and patient education, clinical pharmacists are well positioned to ensure patients receive safe and effective -treatment.
Collapse
Affiliation(s)
- Emily Ashjian
- Pharmacy Innovations & Partnerships, Michigan Medicine, Ann Arbor, MI
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Megan Clarke
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Kristen Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Koca D, Lother A. Molecular pharmacology of mineralocorticoid receptor antagonists: The role of co-regulators. Steroids 2023; 199:109291. [PMID: 37558173 DOI: 10.1016/j.steroids.2023.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Mineralocorticoid receptor (MR) antagonists have shown remarkable benefits in the treatment of cardiovascular disease. However, their underutilization in clinical practice may be attributed to concerns regarding the risk of hyperkalemia. An ideal selective MR modulator would inhibit the detrimental effects of MR in non-epithelial cells of the cardiovascular system while sparing its physiological function in kidney epithelial cells, thereby reducing the risk of adverse events. To address this issue, a new generation of non-steroidal MR antagonists, including esaxereneone, balcinrenone, ocedurenone, and finerenone, has been developed with distinct molecular structures and pharmacology. They share a mechanism of action that is different from the previously developed steroidal MR antagonists, leading to altered co-regulator interaction, potentially involving conformational changes of the receptor. Interfering with MR co-regulator interaction or the co-regulator itself may enable selective targeting of downstream signaling cascades and - in the long term - lead to more personalized medicine. In this review article, we summarize what is currently known about the mechanisms of action of the different MR antagonists with a focus on MR co-factor interaction and what may be inferred from this for future developments.
Collapse
Affiliation(s)
- Duygu Koca
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Belarif L, Girerd S, Jaisser F, Lepage X, Merckle L, Duarte K, Girerd N, Guerci P. Potassium canrenoate in brain-dead organ donors: a randomised controlled clinical trial protocol (CANREO-PMO). BMJ Open 2023; 13:e073831. [PMID: 37821131 PMCID: PMC10582869 DOI: 10.1136/bmjopen-2023-073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Ischaemia/reperfusion injuries (IRIs) are associated with poorer survival of kidney grafts from expanded criteria donors. Preclinical studies have shown that mineralocorticoid receptor antagonists (MRAs) prevent acute and chronic post-ischaemic renal dysfunction by limiting IRI. However, data concerning the safety of MRAs in brain-dead donor patients are scarce. We seek to investigate the tolerance of MRAs on the haemodynamics in this population. METHODS AND ANALYSIS CANREO-PMO is a randomised, controlled, single-centre, double-blind study. Brain-dead organ donors hospitalised in intensive care are randomised 1:1 after consent to receive 200 mg potassium canrenoate or its matching placebo every 6 hours until organ procurement. The primary outcome is a hierarchical composite endpoint that includes: (1) cardiocirculatory arrest, (2) the impossibility of kidney procurement, (3) the average hourly dose of norepinephrine/epinephrine between randomisation and departure to the operating room, and (4) the average hourly volume of crystalloids and/or colloids received. Thirty-six patients will be included. The secondary endpoints evaluated among the graft recipients are the: (1) vital status of the kidney graft recipients and serum creatinine level with estimated glomerular filtration rate (GFR) according to Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) at 3 months after renal transplantation, (2) percentage of patients dependent on dialysis and/or with an estimated GFR <20 mL/min/1.73 m2 at 3 months, (3) vital status of the kidney graft recipients at 3 months, and (4) vital status of the kidney graft recipients and creatinine levels (in μmol/L), with the estimated GFR according to CKD-EPI (in mL/min/1.73 m2), at 1 year, 3 years and 10 years after transplantation. ETHICS AND DISSEMINATION This trial has full ethical approval (Comité de Protection des Personnes: CPP Ouest II-ANGERS, France), and the written consent of relatives will be obtained. Results will be reported at conferences, peer-reviewed publications and using social media channels. TRIAL REGISTRATION NUMBER NCT04714710.
Collapse
Affiliation(s)
- Lilia Belarif
- Department of Anesthesiology and Critical Care Medicine, CHRU de Nancy, Nancy, France
| | - Sophie Girerd
- Department of Nephrology, CHRU de Nancy, Nancy, France
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
| | - Frédéric Jaisser
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universite, Paris, France
| | - Xavier Lepage
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
| | - Ludovic Merckle
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
| | - Kevin Duarte
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
| | - Nicolas Girerd
- Centre d'Investigations Cliniques-Plurithématique 1433 (CIC-P), INI-CRCT-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Nancy, France
| | - Philippe Guerci
- Department of Anesthesiology and Critical Care Medicine, CHRU de Nancy, Nancy, France
- INSERM U1116, DCAC, University of Lorraine, Nancy, France
| |
Collapse
|
40
|
Shah M, Awad AS, Abdel-Rahman EM. Nonsteroidal Mineralocorticoid Receptor Antagonist (Finerenone) in Cardiorenal Disease. J Clin Med 2023; 12:6285. [PMID: 37834929 PMCID: PMC10573495 DOI: 10.3390/jcm12196285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Nonsteroidal mineralocorticoid receptor antagonists (MRAs) present a promising therapeutic option in cardiorenal diseases, mitigating the limitations of steroidal MRAs. Finerenone, a third-generation nonsteroidal MRA, has demonstrated beneficial effects in heart failure (HF) and chronic kidney disease (CKD). Clinical trials, including FIDELIO-DKD and FIGARO-DKD, revealed finerenone's efficacy in improving kidney and cardiovascular (CV) outcomes. Patients with CKD and type 2 diabetes (T2DM) on finerenone experienced reduced rates of cardiovascular events, including hospitalization for HF. However, these trials excluded symptomatic HF patients, focusing on asymptomatic or early-stage HF. The ongoing FINEARTS-HF trial evaluates finerenone in HF with preserved ejection fraction (HFpEF). Additionally, studies exploring finerenone and sodium-glucose cotransporter 2 (SGLT2) inhibitors' (Empagliflozin) combination effects in CKD and T2DM (CONFIDENCE) and the selective MR modulator AZD9977 with another SGLT2 inhibitor (dapagliflozin) in HF and CKD (MIRACLE) aim to expand treatment options. While SGLT-2 inhibitors were shown to reduce hyperkalemia risk in FIDELIO-DKD and potentially lower new-onset HF incidence in FIGARO-DKD, further research is essential. So far, the evidence for the beneficial effect of finerenone in the spectrum of cardiorenal diseases is based only on the results of studies conducted in patients with T2DM, and clinical trials of finerenone in patients with nondiabetic kidney disease are ongoing. Nonsteroidal MRAs hold significant potential as pivotal treatment targets across the cardiorenal disease spectrum. This review will focus on the effects of finerenone on cardiorenal disease.
Collapse
Affiliation(s)
- Monarch Shah
- Division of Nephrology, University of Virginia, Charlottesville, VA 22902, USA;
| | - Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
41
|
Naaman SC, Bakris GL. Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression. Diabetes Care 2023; 46:1574-1586. [PMID: 37625003 PMCID: PMC10547606 DOI: 10.2337/dci23-0030] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Management of diabetic kidney disease (DKD) has evolved in parallel with our growing understanding of the multiple interrelated pathophysiological mechanisms that involve hemodynamic, metabolic, and inflammatory pathways. These pathways and others play a vital role in the initiation and progression of DKD. Since its initial discovery, the blockade of the renin-angiotensin system has remained a cornerstone of DKD management, leaving a large component of residual risk to be dealt with. The advent of sodium-glucose cotransporter 2 inhibitors followed by nonsteroidal mineralocorticoid receptor antagonists and, to some extent, glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has ushered in a resounding paradigm shift that supports a pillared approach in maximizing treatment to reduce outcomes. This pillared approach is like that derived from the approach to heart failure treatment. The approach mandates that all agents that have been shown in clinical trials to reduce cardiovascular outcomes and/or mortality to a greater extent than a single drug class alone should be used in combination. In this way, each drug class focuses on a specific aspect of the disease's pathophysiology. Thus, in heart failure, β-blockers, sacubitril/valsartan, a mineralocorticoid receptor antagonist, and a diuretic are used together. In this article, we review the evolution of the pillar concept of therapy as it applies to DKD and discuss how it should be used based on the outcome evidence. We also discuss the exciting possibility that GLP-1 RAs may be an additional pillar in the quest to further slow kidney disease progression in diabetes.
Collapse
Affiliation(s)
- Sandra C. Naaman
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL
| | - George L. Bakris
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
42
|
Estrela GR, Santos RB, Budu A, de Arruda AC, Barrera-Chimal J, Araújo RC. Kinin B1 Receptor Antagonism Prevents Acute Kidney Injury to Chronic Kidney Disease Transition in Renal Ischemia-Reperfusion by Increasing the M2 Macrophages Population in C57BL6J Mice. Biomedicines 2023; 11:2194. [PMID: 37626691 PMCID: PMC10452634 DOI: 10.3390/biomedicines11082194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. METHODS C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. RESULTS The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. CONCLUSIONS The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI.
Collapse
Affiliation(s)
- Gabriel Rufino Estrela
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.B.S.); (A.B.)
- Department of Clinical and Experimental Oncology, Hematology and Hematotherapy Discipline, Federal University of São Paulo, São Paulo 04037-002, Brazil
| | - Raisa Brito Santos
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.B.S.); (A.B.)
- Department of Medicine, Nephrology Discipline, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.B.S.); (A.B.)
| | - Adriano Cleis de Arruda
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.B.S.); (A.B.)
- Department of Medicine, Nephrology Discipline, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | | | - Ronaldo Carvalho Araújo
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.B.S.); (A.B.)
| |
Collapse
|
43
|
Di Lullo L, Lavalle C, Scatena A, Mariani MV, Ronco C, Bellasi A. Finerenone: Questions and Answers-The Four Fundamental Arguments on the New-Born Promising Non-Steroidal Mineralocorticoid Receptor Antagonist. J Clin Med 2023; 12:3992. [PMID: 37373685 PMCID: PMC10299719 DOI: 10.3390/jcm12123992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most common complications of diabetes mellitus and an independent risk factor for cardiovascular disease. Despite guideline-directed therapy of CKD in patients with type 2 diabetes, the risk of renal failure and cardiovascular events still remains high, and diabetes remains the leading cause of end-stage kidney disease in affected patients. To date, current medications for CKD and type 2 diabetes mellitus have not reset residual risk in patients due to a high grade of inflammation and fibrosis contributing to kidney and heart disease. This question-and-answer-based review will discuss the pharmacological and clinical differences between finerenone and other mineralocorticoid receptor antagonists and then move on to the main evidence in the cardiovascular and renal fields, closing, finally, on the potential role of therapeutic combination with sodium-glucose cotransporter 2 inhibitors (SGLT2is).
Collapse
Affiliation(s)
- Luca Di Lullo
- Department of Nephrology and Dialysis, L. Parodi—Delfino Hospital, 00034 Colleferro, Italy
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | | | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | - Claudio Ronco
- International Renal Research Institute (IRRIV), S. Bortolo Hospital, 36100 Vicenza, Italy
| | - Antonio Bellasi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| |
Collapse
|
44
|
Gong S, Zhang A, Yao M, Xin W, Guan X, Qin S, Liu Y, Xiong J, Yang K, Xiong L, He T, Huang Y, Zhao J. REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 2023; 8:166001. [PMID: 37288660 PMCID: PMC10393228 DOI: 10.1172/jci.insight.166001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ischemic-reperfusion injury (IRI) is a major pathogenic factor in acute kidney injury (AKI), which directly leads to the hypoxic injury of renal tubular epithelial cells (RTECs). Although emerging studies suggest repressor element 1-silencing transcription factor (REST) as a master regulator of gene repression under hypoxia, its role in AKI remains elusive. Here, we found that REST was upregulated in AKI patients, mice, and RTECs, which was positively associated with the degree of kidney injury, while renal tubule-specific knockout of Rest significantly alleviated AKI and its progression to chronic kidney disease (CKD). Subsequent mechanistic studies indicated that suppression of ferroptosis was responsible for REST-knockdown-induced amelioration of hypoxia-reoxygenation injury, during which process Cre-expressing adenovirus-mediated REST downregulation attenuated ferroptosis through upregulating glutamate-cysteine ligase modifier subunit (GCLM) in primary RTECs. Further, REST transcriptionally repressed GCLM expression via directly binding to its promoter region. In conclusion, our findings revealed the involvement of REST, a hypoxia regulatory factor, in AKI-to-CKD transition and identified the ferroptosis-inducing effect of REST, which may serve as a promising therapeutic target for ameliorating AKI and its progression to CKD.
Collapse
|
45
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
46
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
47
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
48
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
49
|
Hammad N, Hassanein M, Rahman M. Diabetic Kidney Care Redefined with a New Way into Remission. Endocrinol Metab Clin North Am 2023; 52:101-118. [PMID: 36754487 DOI: 10.1016/j.ecl.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has been a leading cause for end-stage kidney disease. Traditional methods to slow progression include tight glycemic control, blood pressure control, and use of renin-angiotensin axis inhibitors. Finerenone and sodium glucose co-transporters have shown proven benefit in diabetic kidney disease regression recently. Other potential targets for slowing the decline in diabetic kidney disease are transforming growth factor beta, endothelin antagonist, protein kinase C inhibitors, advanced glycation end product inhibition, Janus kinase-signal transducer and activator of transcription pathway inhibition, phosphodiesterase 3 or 5 inhibitors, and Rho kinase inhibitor. These targets are at various trial phases and so far, show promising results.
Collapse
Affiliation(s)
- Nour Hammad
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA. https://twitter.com/nourhammad92
| | - Mohamed Hassanein
- Division of Nephrology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA. https://twitter.com/kidneymo
| | - Mahboob Rahman
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
50
|
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, Navarro-González JF, Ortiz A, Ruiz-Ortega M. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int 2023; 103:282-296. [PMID: 36470394 DOI: 10.1016/j.kint.2022.10.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2022]
Abstract
Diabetic kidney disease (DKD) is one of the fastest growing causes of chronic kidney disease and associated morbidity and mortality. Preclinical research has demonstrated the involvement of inflammation in its pathogenesis and in the progression of kidney damage, supporting clinical trials designed to explore anti-inflammatory strategies. However, the recent success of sodium-glucose cotransporter-2 inhibitors and the nonsteroidal mineralocorticoid receptor antagonist finerenone has changed both guidelines and standard of care, rendering obsolete older studies directly targeting inflammatory mediators and the clinical development was discontinued for most anti-inflammatory drugs undergoing clinical trials for DKD in 2016. Given the contribution of inflammation to the pathogenesis of DKD, we review the impact on kidney inflammation of the current standard of care, therapies undergoing clinical trials, or repositioned drugs for DKD. Moreover, we review recent advances in the molecular regulation of inflammation in DKD and discuss potential novel therapeutic strategies with clinical relevance. Finally, we provide a road map for future research aimed at integrating the growing knowledge on inflammation and DKD into clinical practice to foster improvement of patient outcomes.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Raul R Rodrigues-Diez
- Ricord2040, Instituto de Salud Carlos II, Spain; Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Asturias, Spain
| | - Beatriz Fernandez-Fernandez
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Carmen Mora-Fernández
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Javier Donate-Correa
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain.
| |
Collapse
|