1
|
Alperi A, Antuna P, Almendárez M, Álvarez R, del Valle R, Pascual I, Hernández-Vaquero D, Avanzas P. Perspectives in the Diagnosis, Clinical Impact, and Management of the Vulnerable Plaque. J Clin Med 2025; 14:1539. [PMID: 40095464 PMCID: PMC11899957 DOI: 10.3390/jcm14051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Coronary artery disease is a highly prevalent disease that constitutes the leading cause of mortality worldwide. Acute coronary syndromes are the most devastating form of presentation of coronary disease, involving the acute formation of a thrombus within the coronary vessel lumen, further leading to flow limitation and diminished myocardial perfusion. Vulnerable plaques, which are characterized by thin-cap fibroatheroma, a large lipid pool, and macrophage infiltration and spotty calcification of the cap, pose a higher risk of coronary events despite not being flow-limiting. Iterations in intravascular imaging and coronary computed tomography have largely increased the ability to detect and define vulnerable plaques, and its clinical impact in early- and mid-term outcomes has been confirmed in several studies. In this review, we aimed to revise the current concept of vulnerable coronary plaque and its repercussion, to summarize the main pharmacological approaches for its management, and to provide an updated overview of the available evidence on preventive percutaneous interventional strategies in this clinical setting.
Collapse
Affiliation(s)
- Alberto Alperi
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
| | - Paula Antuna
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
| | - Marcel Almendárez
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Rut Álvarez
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Raquel del Valle
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Isaac Pascual
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
| | - Daniel Hernández-Vaquero
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
| | - Pablo Avanzas
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28046 Madrid, Spain
| |
Collapse
|
2
|
Siciliano GG, Onnis C, Barr J, Assen MV, De Cecco CN. Artificial Intelligence Applications in Cardiac CT Imaging for Ischemic Disease Assessment. Echocardiography 2025; 42:e70098. [PMID: 39927866 DOI: 10.1111/echo.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Artificial intelligence (AI) has transformed medical imaging by detecting insights and patterns often imperceptible to the human eye, enhancing diagnostic accuracy and efficiency. In cardiovascular imaging, numerous AI models have been developed for cardiac computed tomography (CCT), a primary tool for assessing coronary artery disease (CAD). CCT provides comprehensive, non-invasive assessment, including plaque burden, stenosis severity, and functional assessments such as CT-derived fractional flow reserve (FFRct). Its prognostic value in predicting major adverse cardiovascular events (MACE) has increased the demand for CCT, consequently adding to radiologists' workloads. This review aims to examine AI's role in CCT for ischemic heart disease, highlighting its potential to streamline workflows and improve the efficiency of cardiac care through machine learning and deep learning applications.
Collapse
Affiliation(s)
- Gianluca G Siciliano
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Diagnostic and Interventional Radiology, Vita-Salute San Raffaele University, Milan, Italy
| | - Carlotta Onnis
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Monserrato, Cagliari, Italy
| | - Jaret Barr
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Marly van Assen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Carlo N De Cecco
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Ihdayhid AR, Tzimas G, Peterson K, Ng N, Mirza S, Maehara A, Safian RD. Diagnostic Performance of AI-enabled Plaque Quantification from Coronary CT Angiography Compared with Intravascular Ultrasound. Radiol Cardiothorac Imaging 2024; 6:e230312. [PMID: 39540820 PMCID: PMC11683154 DOI: 10.1148/ryct.230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Purpose To assess the diagnostic performance of a coronary CT angiography (CCTA) artificial intelligence (AI)-enabled tool (AI-QCPA; HeartFlow) to quantify plaque volume, as compared with intravascular US (IVUS). Materials and Methods A retrospective subanalysis of a single-center prospective registry study was conducted in participants with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention of the culprit vessel. Participants with greater than 50% stenosis in nonculprit vessels underwent CCTA, invasive coronary angiography, and IVUS of nonculprit lesion(s) between 2 and 40 days after primary percutaneous coronary intervention. Comparisons of plaque volumes obtained using AI-QCPA (HeartFlow) and IVUS were assessed using Spearman rank correlation (ρ) and Bland-Altman analysis. Results Thirty-three participants (mean age, 59.1 years ± 8.8 [SD]; 27 [82%] male and six [18%] female participants) and 67 vessels were included for analysis. There was strong agreement between AI-QCPA and IVUS in vessel (ρ = 0.94) and lumen volumes (ρ = 0.97). High agreement between AI-QCPA and IVUS was also found for total plaque volume (ρ = 0.92), noncalcified plaque (ρ = 0.91), and calcified plaque (ρ = 0.87). Bland-Altman analysis demonstrated AI-QCPA underestimated total plaque volume (-9.4 mm3) and calcified plaque (-11.4 mm3) and overestimated for noncalcified plaque (2.0 mm3) when compared with IVUS. Conclusion An AI-enabled automated plaque quantification tool for CCTA had high agreement with IVUS for quantifying plaque volume and characterizing plaque. Keywords: Coronary Plaque, Intravascular US, Coronary CT Angiography, Artificial Intelligence Supplemental material is available for this article. ClinicalTrials.gov registration no. NCT02926755 © RSNA, 2024.
Collapse
Affiliation(s)
- Abdul Rahman Ihdayhid
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Georgios Tzimas
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Kersten Peterson
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Nicholas Ng
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Saba Mirza
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Akiko Maehara
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| | - Robert D Safian
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (A.R.I.); Harry Perkins Institute of Medical Research, Curtin Medical School, Curtin University, 11 Robin Warren Dr, Murdoch, WA 6150, Australia (A.R.I.); Department of Radiology, St Paul's Hospital, University of British Columbia, Vancouver, Canada (G.T.); HeartFlow Inc, Mountain View, Calif (K.P., N.N., S.M.); Cardiovascular Research Foundation, Columbia University, New York, NY (A.M.); and Department of Cardiovascular Medicine, William Beaumont University Hospital-Corewell Health East, Royal Oak, Mich (R.D.S.)
| |
Collapse
|
4
|
van Rosendael SE, Shiyovich A, Cardoso RN, Souza Freire CV, van Rosendael AR, Lin FY, Larocca G, Bienstock SW, Blankstein R, Shaw LJ. The Role of Cardiac Computed Tomography Angiography in Risk Stratification for Coronary Artery Disease. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:102230. [PMID: 39649823 PMCID: PMC11624369 DOI: 10.1016/j.jscai.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 12/11/2024]
Abstract
Coronary computed tomography angiography (CCTA) allows the assessment of the presence and severity of obstructive and nonobstructive atherosclerotic coronary artery disease. With software developments incorporating artificial intelligence-based automated image analysis along with improved spatial resolution of CT scanners, volumetric measurements of atherosclerotic plaque, detection of high-risk plaque features, and delineation of pericoronary adipose tissue density can now be readily and accurately evaluated for a given at-risk patient. Many of these expanded diagnostic measures have been shown to be prognostically useful for prediction of major adverse cardiac events. The incremental value of plaque quantification over diameter stenosis has yet to be thoroughly discovered in current studies. Furthermore, the physiological significance of lesions can also be assessed with CT-derived fractional flow reserve, myocardial CT perfusion, and more recently shear stress, potentially leading to selective invasive coronary angiography and revascularization. Along with these technological advancements, there has been additional high-quality evidence for CCTA including large randomized clinical trials supporting high-level recommendations from many international clinical practice guidelines. Current trials largely compare a CCTA vs functional testing strategy, yet there is minimal evidence on CCTA plaque-guided therapeutic trials to measure regression of atherosclerosis and prevention of major coronary artery disease events. In this review, we summarize current evidence on comprehensive risk assessment with CCTA and future directions.
Collapse
Affiliation(s)
- Sophie E. van Rosendael
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rhanderson N. Cardoso
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Camila Veronica Souza Freire
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Fay Y. Lin
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Gina Larocca
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Solomon W. Bienstock
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leslee J. Shaw
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| |
Collapse
|
5
|
Dimitriadis K, Pyrpyris N, Theofilis P, Mantzouranis E, Beneki E, Kostakis P, Koutsopoulos G, Aznaouridis K, Aggeli K, Tsioufis K. Computed Tomography Angiography Identified High-Risk Coronary Plaques: From Diagnosis to Prognosis and Future Management. Diagnostics (Basel) 2024; 14:1671. [PMID: 39125547 PMCID: PMC11311283 DOI: 10.3390/diagnostics14151671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
CT angiography has become, in recent years, a main evaluating modality for patients with coronary artery disease (CAD). Recent advancements in the field have allowed us to identity not only the presence of obstructive disease but also the characteristics of identified lesions. High-risk coronary atherosclerotic plaques are identified in CT angiographies via a number of specific characteristics and may provide prognostic and therapeutic implications, aiming to prevent future ischemic events via optimizing medical treatment or providing coronary interventions. In light of new evidence evaluating the safety and efficacy of intervening in high-risk plaques, even in non-flow-limiting disease, we aim to provide a comprehensive review of the diagnostic algorithms and implications of plaque vulnerability in CT angiography, identify any differences with invasive imaging, analyze prognostic factors and potential future therapeutic options in such patients, as well as discuss new frontiers, including intervening in non-flow-limiting stenoses and the role of CT angiography in patient stratification.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.P.); (P.T.); (E.M.); (E.B.); (P.K.); (G.K.); (K.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee SN, Lin A, Dey D, Berman DS, Han D. Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography. Korean J Radiol 2024; 25:518-539. [PMID: 38807334 PMCID: PMC11136945 DOI: 10.3348/kjr.2023.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/30/2024] Open
Abstract
Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.
Collapse
Affiliation(s)
- Su Nam Lee
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Cardiology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| | - Damini Dey
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donghee Han
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Nurmohamed NS, van Rosendael AR, Danad I, Ngo-Metzger Q, Taub PR, Ray KK, Figtree G, Bonaca MP, Hsia J, Rodriguez F, Sandhu AT, Nieman K, Earls JP, Hoffmann U, Bax JJ, Min JK, Maron DJ, Bhatt DL. Atherosclerosis evaluation and cardiovascular risk estimation using coronary computed tomography angiography. Eur Heart J 2024; 45:1783-1800. [PMID: 38606889 PMCID: PMC11129796 DOI: 10.1093/eurheartj/ehae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Clinical risk scores based on traditional risk factors of atherosclerosis correlate imprecisely to an individual's complex pathophysiological predisposition to atherosclerosis and provide limited accuracy for predicting major adverse cardiovascular events (MACE). Over the past two decades, computed tomography scanners and techniques for coronary computed tomography angiography (CCTA) analysis have substantially improved, enabling more precise atherosclerotic plaque quantification and characterization. The accuracy of CCTA for quantifying stenosis and atherosclerosis has been validated in numerous multicentre studies and has shown consistent incremental prognostic value for MACE over the clinical risk spectrum in different populations. Serial CCTA studies have advanced our understanding of vascular biology and atherosclerotic disease progression. The direct disease visualization of CCTA has the potential to be used synergistically with indirect markers of risk to significantly improve prevention of MACE, pending large-scale randomized evaluation.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit
Amsterdam, Amsterdam, The
Netherlands
- Department of Vascular Medicine, Amsterdam UMC, University of
Amsterdam, Amsterdam, The
Netherlands
- Division of Cardiology, The George Washington University School of
Medicine, Washington, DC, United States
| | | | - Ibrahim Danad
- Department of Cardiology, University Medical Center Utrecht,
Utrecht, The Netherlands
- Department of Cardiology, Radboud University Medical Center,
Nijmegen, The Netherlands
| | - Quyen Ngo-Metzger
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson
School of Medicine, Pasadena, CA, United States
| | - Pam R Taub
- Section of Cardiology, Department of Medicine, University of
California, San Diego, CA, United States
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College
London, London, United
Kingdom
| | - Gemma Figtree
- Faculty of Medicine and Health, University of Sydney,
Australia, St Leonards, Australia
| | - Marc P Bonaca
- Department of Medicine, University of Colorado School of
Medicine, Aurora, CO, United States
| | - Judith Hsia
- Department of Medicine, University of Colorado School of
Medicine, Aurora, CO, United States
| | - Fatima Rodriguez
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, United States
| | - Alexander T Sandhu
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, United States
| | - Koen Nieman
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, United States
| | - James P Earls
- Cleerly, Inc., Denver, CO, United States
- Department of Radiology, The George Washington University School of
Medicine, Washington, DC, United States
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center,
Leiden, The Netherlands
| | | | - David J Maron
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, United States
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount
Sinai, 1 Gustave Levy Place, Box 1030, New York, NY
10029, United States
| |
Collapse
|
8
|
Cheng DCY, Climie RE, Shu M, Grieve SM, Kozor R, Figtree GA. Vascular aging and cardiovascular disease: pathophysiology and measurement in the coronary arteries. Front Cardiovasc Med 2023; 10:1206156. [PMID: 38089775 PMCID: PMC10715672 DOI: 10.3389/fcvm.2023.1206156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2024] Open
Abstract
Age is a key risk factor for cardiovascular disease, including atherosclerosis. However, pathophysiological disease processes in the arteries are not an inevitable feature of aging. Large cohort studies with arterial phenotyping along with clinical and demographic data are essential to better understand factors related to the susceptibility or resilience to age-related vascular pathophysiology in humans. This review explores the mechanisms by which vascular structure and function alters with age, and how these changes relate to cardiovascular pathophysiology and disease. Features of vascular aging in the coronary arteries have historically been difficult to quantify pre-mortem due to their size and location. However, non-invasive imaging modalities including CT Coronary Angiogram are now being used to assess coronary vascular age, and further advances in imaging analysis such as the CT Fat Attenuation Index will help provide further measurement of features associated with coronary vascular aging. Currently, markers of vascular aging are not used as therapeutic targets in routine clinical practice, but non-pharmacological interventions including aerobic exercise and low salt diet, as well as anti-hypertensives have been demonstrated to reduce arterial stiffness. Advances in imaging technology, both in acquisition and advanced analysis, as well as harmonisation of measurements for researchers across the globe will be invaluable in understanding what constitutes healthy vascular aging and in identifying features of vascular aging that are associated with coronary artery disease and its adverse outcomes. Assessing such images in large cohorts can facilitate improved definitions of resilient and susceptible phenotypes to vascular aging in the coronary arteries. This is a critical step in identifying further risk factors and biomarkers within these groups and driving forward the development of novel therapies aimed at slowing or stopping age-related vascular changes in the coronary arteries.
Collapse
Affiliation(s)
- Daniel C. Y. Cheng
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Rachel E. Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Matthew Shu
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Kozor
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
9
|
Salem AM, Davis J, Gopalan D, Rudd JHF, Clarke SC, Schofield PM, Bennett MR, Brown AJ, Obaid DR. Characteristics of conventional high-risk coronary plaques and a novel CT defined thin-cap fibroatheroma in patients undergoing CCTA with stable chest pain. Clin Imaging 2023; 101:69-76. [PMID: 37311397 DOI: 10.1016/j.clinimag.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) can identify high-risk coronary plaque types. However, the inter-observer variability for high-risk plaque features, including low attenuation plaque (LAP), positive remodelling (PR), and the Napkin-Ring sign (NRS), may reduce their utility, especially amongst less experienced readers. METHODOLOGY In a prospective study, we compared the prevalence, location and inter-observer variability of both conventional CT-defined high-risk plaques with a novel index based on quantifying the ratio of necrotic core to fibrous plaque using individualised X-ray attenuation cut-offs (the CT-defined thin-cap fibroatheroma - CT-TCFA) in 100 patients followed-up for 7 years. RESULTS In total, 346 plaques were identified in all patients. Seventy-two (21%) of all plaques were classified by conventional CT parameters as high-risk (either NRS or PR and LAP combined), and 43 (12%) of plaques were considered high-risk using the novel CT-TCFA definition of (Necrotic Core/fibrous plaque ratio of >0.9). The majority (80%) of the high-risk plaques (LAP&PR, NRS and CT-TCFA) were located in the proximal and mid-LAD and RCA. The kappa co-efficient of inter-observer variability (k) for NRS was 0.4 and for PR and LAP combined 0.4. While the kappa co-efficient of inter-observer variability (k) for the new CT-TCFA definition was 0.7. During follow-up, patients with either conventional high-risk plaques or CT-TCFAs were significantly more likely to have MACE (Major adverse cardiovascular events) compared to patients without coronary plaques (p value 0.03 & 0.03, respectively). CONCLUSION The novel CT-TCFA is associated with MACE and has improved inter-observer variability compared with current CT-defined high-risk plaques.
Collapse
Affiliation(s)
- Ahmed M Salem
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK
| | - Joel Davis
- Southampton General Hospital, Southampton, UK
| | | | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sarah C Clarke
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | | | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Adam J Brown
- The School of Clinical Sciences at Monash Health, Melbourne, Australia
| | - Daniel R Obaid
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK.
| |
Collapse
|
10
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
11
|
Smit JM, El Mahdiui M, de Graaf MA, Montero-Cabezas JM, Reiber JHC, Jukema JW, Scholte AJ, Knuuti J, Wijns W, Narula J, Bax JJ. Relation Between Coronary Plaque Composition Assessed by Intravascular Ultrasound Virtual Histology and Myocardial Ischemia Assessed by Quantitative Flow Ratio. Am J Cardiol 2023; 186:228-235. [PMID: 36333150 DOI: 10.1016/j.amjcard.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
Coronary plaque composition may play an important role in the induction of myocardial ischemia. Our objective was to further clarify the relation between coronary plaque composition and myocardial ischemia in patients with chest pain symptoms. The study population consisted of 103 patients who presented to the outpatient clinic or emergency department with chest pain symptoms and were referred for diagnostic invasive coronary angiography. Intravascular ultrasound virtual histology was used for the assessment of coronary plaque composition. A noncalcified plaque was defined as a combination of necrotic core and fibrofatty tissue. Quantitative flow ratio (QFR), which is a coronary angiography-based technique used to calculate fractional flow reserve without the need for hyperemia induction or for a pressure wire, was used as the reference standard for the evaluation of myocardial ischemia. Coronary artery plaques with QFR of ≤0.80 were considered abnormal-that is, ischemia-generating. In total, 149 coronary plaques were analyzed, 21 of which (14%) were considered abnormal according to QFR. The percentage of noncalcified tissue was significantly higher in plaques with abnormal QFR (38.2 ± 6.5% vs 33.1 ± 9.0%, p = 0.014). After univariable analysis, both plaque load (odds ratio [OR] per 1% increase 1.081, p <0.001) and the percentage of noncalcified tissue (OR per 1% increase 1.070, p = 0.020) were significantly associated with reduced QFR. However, after multivariable analysis, only plaque load remained significantly associated with abnormal QFR (OR per 1% increase 1.072, p <0.001). In conclusion, the noncalcified plaque area was significantly higher in hemodynamically significant coronary lesions than in nonsignificant lesions. Although an increase in the noncalcified plaque area was significantly associated with a reduced QFR, this association lost significance after adjustment for localized plaque load.
Collapse
Affiliation(s)
- Jeff M Smit
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed El Mahdiui
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel A de Graaf
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johan H C Reiber
- Medis Medical Imaging, Leiden, The Netherlands; Departments of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands
| | - Arthur J Scholte
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands
| | - Juhani Knuuti
- Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | - William Wijns
- Lambe Institute for Translational Medicine and Curam, National University of Ireland Galway and Saolta University Healthcare Group, University College Hospital Galway, Galway, Ireland
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeroen J Bax
- Departments of Cardiology Leiden University Medical Center, Leiden, The Netherlands; Heart Center, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
12
|
Ramasamy A, Hamid A Khan A, Cooper J, Simon J, Maurovich-Horvat P, Bajaj R, Kitslaar P, Amersey R, Jain A, Deaner A, Reiber JH, Moon JC, Dijkstra J, Serruys PW, Mathur A, Baumbach A, Torii R, Pugliese F, Bourantas CV. Implications of computed tomography reconstruction algorithms on coronary atheroma quantification: Comparison with intravascular ultrasound. J Cardiovasc Comput Tomogr 2023; 17:43-51. [PMID: 36270952 DOI: 10.1016/j.jcct.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Advances in coronary computed tomography angiography (CCTA) reconstruction algorithms are expected to enhance the accuracy of CCTA plaque quantification. We aim to evaluate different CCTA reconstruction approaches in assessing vessel characteristics in coronary atheroma using intravascular ultrasound (IVUS) as the reference standard. METHODS Matched cross-sections (n = 7241) from 50 vessels in 15 participants with chronic coronary syndrome who prospectively underwent CCTA and 3-vessel near-infrared spectroscopy-IVUS were included. Twelve CCTA datasets per patient were reconstructed using two different kernels, two slice thicknesses (0.75 mm and 0.50 mm) and three different strengths of advanced model-based iterative reconstruction (IR) algorithms. Lumen and vessel wall borders were manually annotated in every IVUS and CCTA cross-section which were co-registered using dedicated software. Image quality was sub-optimal in the reconstructions with a sharper kernel, so these were excluded. Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) were used to compare the estimations of the 6 CT reconstruction approaches with those derived by IVUS. RESULTS Segment-level analysis showed good agreement between CCTA and IVUS for assessing atheroma volume with approach 0.50/5 (slice thickness 0.50 mm and highest strength 5 ADMIRE IR) being the best (total atheroma volume ICC: 0.91, RC: 0.67, p < 0.001 and percentage atheroma volume ICC: 0.64, RC: 14.06, p < 0.001). At lesion-level, there was no difference between the CCTA reconstructions for detecting plaques (accuracy range: 0.64-0.67; p = 0.23); however, approach 0.50/5 was superior in assessing IVUS-derived lesion characteristics associated with plaque vulnerability (minimum lumen area ICC: 0.64, RC: 1.31, p < 0.001 and plaque burden ICC: 0.45, RC: 32.0, p < 0.001). CONCLUSION CCTA reconstruction with thinner slice thickness, smooth kernel and highest strength advanced IR enabled more accurate quantification of the lumen and plaque at a segment-, and lesion-level analysis in coronary atheroma when validated against intravascular ultrasound. CLINICALTRIALS gov (NCT03556644).
Collapse
Affiliation(s)
- Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Ameer Hamid A Khan
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Jackie Cooper
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Pieter Kitslaar
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Medis Medical Imaging, Leiden, the Netherlands
| | - Rajiv Amersey
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Ajay Jain
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Andrew Deaner
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Johan Hc Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Medis Medical Imaging, Leiden, the Netherlands
| | - James C Moon
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Institute of Cardiovascular Sciences, University College London, London, UK
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK; Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Francesca Pugliese
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, UK; Institute of Cardiovascular Sciences, University College London, London, UK.
| |
Collapse
|
13
|
He L, Cai Y, Feng Y, Wang W, Feng T, Shen E, Yang S. Utility of vector flow mapping technology in quantitative assessment of carotid wall shear stress in hypertensive patients: A preliminary study. Front Cardiovasc Med 2022; 9:967763. [PMID: 36386366 PMCID: PMC9649775 DOI: 10.3389/fcvm.2022.967763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Blood flowing in the arterial lumen acts on the surface of the vessel wall to form wall shear stress (WSS). To date, there has been limited research on the utility of non-invasive technology in the accurate quantification of carotid WSS in patients with hypertension (HP). OBJECTIVE The present study aimed to explore the usage of vascular vector flow mapping (VFM) in the quantitative assessment of carotid WSS in hypertensive patients at an early stage and to validate its clinical utility. METHODS A total of 50 individuals confirmed without carotid plaques were grouped into a HP group (n = 25) and a control (CON) group (n = 25) according to blood pressure. An ALOKA LISENDO 880 Color Doppler Ultrasound with a L441 3-15 MHZ probe was used to obtain a longitudinal section scan to determine the regions of interests (ROIs) of the common carotid artery. VFM-based WSS measurements were obtained by selecting the ROI with optimal image quality from three full cardiac cycles. WSS-derived measurements, including WSSmax, WSSmin, and WSSmean, were analyzed and compared between the HP and CON groups. In addition, the correlations between WSS-derived measurements and the carotid artery intima-media thickness (IMT) were also analyzed. RESULTS There were significant statistical differences in WSSmax and WSSmean between patients in the HP and CON groups. Specifically, the HP group had significantly decreased WSSmax and WSSmean compared to the CON group (WSSmax: 1.781 ± 0.305 Pa vs. 2.286 ± 0.257 Pa; WSSmean: 1.276 ± 0.333 Pa vs. 1.599 ± 0.293 Pa, both p < 0.001). However, there was no statistical difference in WSSmin between the groups (0.79 ± 0.36 vs. 0.99 ± 0.42, p = 0.080). Additionally, Spearman's correlation analysis indicated that the WSS-derived parameters were negatively correlated with the IMT (p < 0.001). CONCLUSION Vascular VFM technology shows promising results in the quantitative assessment of difference in hemodynamics of the vascular flow field between patients with HP and normal controls. Difference in WSS may serve as a potential predictor for the development of arteriosclerosis risks.
Collapse
Affiliation(s)
- Lan He
- Department of Ultrasound Medicine, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Yundan Cai
- Department of Ultrasound Medicine, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Yuhong Feng
- FUJIFILM Healthcare (Guangzhou), Co., Ltd., Guangzhou, China
| | - Wenwen Wang
- Department of Ultrasound Medicine, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E. Shen
- Department of Ultrasound Medicine, Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Shaoling Yang
- Department of Ultrasound Medicine, Shanghai Eighth People’s Hospital, Shanghai, China
| |
Collapse
|
14
|
Emfietzoglou M, Mavrogiannis MC, Samaras A, Rampidis GP, Giannakoulas G, Kampaktsis PN. The role of cardiac computed tomography in predicting adverse coronary events. Front Cardiovasc Med 2022; 9:920119. [PMID: 35911522 PMCID: PMC9334665 DOI: 10.3389/fcvm.2022.920119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac computed tomography (CCT) is now considered a first-line diagnostic test for suspected coronary artery disease (CAD) providing a non-invasive, qualitative, and quantitative assessment of the coronary arteries and pericoronary regions. CCT assesses vascular calcification and coronary lumen narrowing, measures total plaque burden, identifies plaque composition and high-risk plaque features and can even assist with hemodynamic evaluation of coronary lesions. Recent research focuses on computing coronary endothelial shear stress, a potent modulator in the development and progression of atherosclerosis, as well as differentiating an inflammatory from a non-inflammatory pericoronary artery environment using the simple measurement of pericoronary fat attenuation index. In the present review, we discuss the role of the above in the diagnosis of coronary atherosclerosis and the prediction of adverse cardiovascular events. Additionally, we review the current limitations of cardiac computed tomography as an imaging modality and highlight how rapid technological advancements can boost its capacity in predicting cardiovascular risk and guiding clinical decision-making.
Collapse
Affiliation(s)
- Maria Emfietzoglou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michail C. Mavrogiannis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | - Polydoros N. Kampaktsis
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Polydoros N. Kampaktsis
| |
Collapse
|
15
|
Doost A, Rankin J, Sapontis J, Ko B, Lo S, Jaltotage B, Dwivedi G, Wood D, Byrne J, Sathananthan J, Ihdayhid AR. Contemporary Evidence-Based Diagnosis and Management of Severe Coronary Artery Calcification. Heart Lung Circ 2022; 31:766-778. [PMID: 35227609 DOI: 10.1016/j.hlc.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/03/2023]
Abstract
Percutaneous treatment of heavily calcified coronary lesions remains a challenge for interventional cardiologists with increased risk of incomplete lesion preparation, suboptimal stent deployment, procedural complications, and a higher rate of acute and late stent failure. Adequate lesion preparation through calcium modification is crucial in optimising procedural outcomes. Several calcium modification devices and techniques exist, with rotational atherectomy the predominant treatment for severely calcified lesions. Novel technologies such as intravascular lithotripsy are now available and show promise as a less technical and highly effective approach for calcium modification. Emerging evidence also emphasises the value of detailed characterisation of calcification severity and distribution especially with intracoronary imaging for appropriate device selection and individualised treatment strategy. This review aims to provide an overview of the non-invasive and invasive evaluation of coronary calcification, discuss calcium modification techniques and propose an algorithm for the management of calcified coronary lesions.
Collapse
Affiliation(s)
- Ata Doost
- Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia; King's College Hospital, London, UK
| | - James Rankin
- Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - James Sapontis
- Monash Heart, Monash Medical Centre, Melbourne, Vic, Australia
| | - Brian Ko
- Monash Heart, Monash Medical Centre, Melbourne, Vic, Australia
| | - Sidney Lo
- Liverpool Hospital, Sydney, NSW, Australia
| | - Biyanka Jaltotage
- Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Girish Dwivedi
- Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - David Wood
- Centre for Cardiovascular Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | | | | | - Abdul Rahman Ihdayhid
- Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
16
|
Williams MC, Earls JP, Hecht H. Quantitative assessment of atherosclerotic plaque, recent progress and current limitations. J Cardiovasc Comput Tomogr 2022; 16:124-137. [PMID: 34326003 DOI: 10.1016/j.jcct.2021.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022]
Abstract
An important advantage of computed tomography coronary angiography (CCTA) is its ability to visualize the presence and severity of atherosclerotic plaque, rather than just assessing coronary artery stenoses. Until recently, assessment of plaque subtypes on CCTA relied on visual assessment of the extent of calcified/non-calcified plaque, or visually identifying high-risk plaque characteristics. Recent software developments facilitate the quantitative assessment of plaque volume or burden on CCTA, and the identification of subtypes of plaque based on their attenuation density. These techniques have shown promise in single and multicenter studies, demonstrating that the amount and type of plaque are associated with subsequent cardiac events. However, there are a number of limitations to the application of these techniques, including the limitations imposed by the spatial resolution of current CT scanners, challenges from variations between reconstruction algorithms, and the additional time to perform these assessments. At present, these are a valuable research technique, but not yet part of routine clinical practice. Future advances that improve CT resolution, standardize acquisition techniques and reconstruction algorithms and automate image analysis will improve the clinical utility of these techniques. This review will discuss the technical aspects of quantitative plaque analysis and present pro and con arguments for the routine use of quantitative plaque analysis on CCTA.
Collapse
Affiliation(s)
- Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - James P Earls
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Harvey Hecht
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Zhang L, Olalere D, Mayrhofer T, Bittner DO, Emami H, Meyersohn NM, Puchner SB, Abidov A, Moloo J, Dolor RJ, Mark DB, Ferencik M, Hoffmann U, Douglas PS, Lu MT. Differences in Cardiovascular Risk, Coronary Artery Disease, and Cardiac Events Between Black and White Individuals Enrolled in the PROMISE Trial. JAMA Cardiol 2022; 7:259-267. [PMID: 34935857 PMCID: PMC8696694 DOI: 10.1001/jamacardio.2021.5340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Race and ethnicity have been studied as risk factors in cardiovascular disease. How risk factors, epicardial coronary artery disease, and cardiac events differ between Black and White individuals undergoing noninvasive testing for coronary artery disease is not known. OBJECTIVE To assess differences in cardiovascular risk burden, coronary plaque, and major adverse cardiac events between Black and White individuals assigned to receive coronary computed tomography angiography (CCTA) or functional testing for stable chest pain. DESIGN, SETTING, AND PARTICIPANTS A nested observational cohort study within the PROMISE trial was conducted at 193 outpatient sites in North America. A total of 1071 non-Hispanic Black (hereafter Black) and 7693 non-Hispanic White (hereafter White) participants with stable chest pain undergoing noninvasive cardiovascular testing were included. This analysis was conducted from February 13, 2015, to November 2, 2021. MAIN OUTCOMES AND MEASURES The primary end point was the composite of death, myocardial infarction, or hospitalization for unstable angina over a median follow-up of 24.4 months. RESULTS Among 1071 Black individuals (12.2%) (women, 646 [60.3%]; mean [SD] age, 59 [8] years) and 7693 White individuals (87.8%) (women, 4029 [52.4%]; mean [SD] age, 61.1 [8.4] years), Black participants had a higher cardiovascular risk burden (more hypertension and diabetes), yet there was a similarly low major adverse cardiovascular events rate over a median 2-year follow-up (32 [3.0%] vs 243 [3.2%]; P = .84). Sensitivity analyses restricted to the 79.8% (6993 of 8764) individuals with a normal or mildly abnormal noninvasive testing result and the 54.3% (4559 of 8396) not receiving statin therapy yielded similar findings. In comparison of Black and White individuals in the CCTA group (n = 3323), significant coronary stenosis (hazard ratio [HR], 7.21; 95% CI, 1.94-26.76 vs HR, 4.30; 95% CI, 2.62-7.04) and high-risk plaque (HR, 3.47; 95% CI, 1.00-12.06 vs HR, 2.21; 95% CI, 1.37-3.57) were associated with major adverse cardiovascular events in both Black and White patients. However, with respect to epicardial coronary artery disease burden, Black individuals had a less-prevalent coronary artery calcium score greater than 0 (45.1% vs 63.2%; P < .001), coronary stenosis greater than or equal to 50% (32 [8.7%] vs 430 [14.6%]; P = .001), and high-risk plaque (139 [37.6%] vs 1547 [52.4%]; P < .001). CONCLUSIONS AND RELEVANCE The findings of this study suggest that, despite a greater cardiovascular risk burden in Black persons, rates of coronary artery calcium, stenosis, and high-risk plaque observed via CCTA were lower in Black persons than White persons. This result suggests differences in cardiovascular risk burden and coronary plaque in Black and White individuals with stable chest pain.
Collapse
Affiliation(s)
- Lili Zhang
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Devvora Olalere
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Daniel O. Bittner
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Cardiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hamed Emami
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,University of Michigan Cardiovascular Center, Ann Arbor
| | - Nina M. Meyersohn
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan B. Puchner
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Radiology, Medical University of Vienna, Vienna, Austria
| | - Aiden Abidov
- Division of Cardiology, Department of Internal Medicine, John D Dingell VAMC, Detroit, Michigan
| | | | - Rowena J. Dolor
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Daniel B. Mark
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Maros Ferencik
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Knight Cardiovascular Institute, Oregon Health and Science University, Portland
| | - Udo Hoffmann
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pamela S. Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Michael T. Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Molecular imaging in atherosclerosis. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
As atherosclerosis is a prominent cause of morbidity and mortality, early detection of atherosclerotic plaques is vital to prevent complications. Imaging plays a significant role in this goal. Molecular imaging and structural imaging detect different phases of atherosclerotic progression. In this review, we explain the relation between these types of imaging with the physiopathology of plaques, along with their advantages and disadvantages. We also discuss in detail the most commonly used positron emission tomography (PET) radiotracers for atherosclerosis imaging.
Method
A comprehensive search was conducted to extract articles related to imaging of atherosclerosis in PubMed, Google Scholar, and Web of Science. The obtained papers were reviewed regarding precise relation with our topic. Among the search keywords utilized were "atherosclerosis imaging", "atherosclerosis structural imaging", "atherosclerosis CT scan" "positron emission tomography", "PET imaging", "18F-NaF", "18F-FDG", and "atherosclerosis calcification."
Result
Although structural imaging such as computed tomography (CT) offers essential information regarding plaque structure and morphologic features, these modalities can only detect macroscopic alterations that occur later in the disease’s progression, when the changes are frequently irreversible. Molecular imaging modalities like PET, on the other hand, have the advantage of detecting microscopic changes and allow us to treat these plaques before irreversible changes occur. The two most commonly used tracers in PET imaging of atherosclerosis are 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG). While there are limitations in the use of 18F-FDG for the detection of atherosclerosis in coronary arteries due to physiological uptake in myocardium and high luminal blood pool activity of 18F-FDG, 18F-NaF PET is less affected and can be utilized to analyze the coronary arteries in addition to the peripheral vasculature.
Conclusion
Molecular imaging with PET/CT has become a useful tool in the early detection of atherosclerosis. 18F-NaF PET/CT shows promise in the early global assessment of atherosclerosis, but further prospective studies are needed to confirm its role in this area.
Collapse
|
19
|
Lee SH, Choo KS. The Potential Role of Cardiac CT in Patients with Acute Coronary Syndrome. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:28-41. [PMID: 36237362 PMCID: PMC9238217 DOI: 10.3348/jksr.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Sang Hyun Lee
- Department of Cardiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ki Seok Choo
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
20
|
Low attenuation plaque volume on coronary computed tomography angiography is associated with plaque progression. Coron Artery Dis 2021; 33:176-181. [PMID: 34618752 DOI: 10.1097/mca.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patient-related clinical factors, laboratory factors, and some imaging factors may lead to statistical bias when investigating coronary plaque progression. In this study, we avoided patient characteristics by comparing morphological characteristics of plaque progression and nonprogression within the same patient with multiple plaques. METHODS From August 2011 to December 2018, 177 consecutive patients with 424 plaques who were followed with coronary computed tomography angiography (CTA) were reviewed retrospectively. Follow-up images of the plaques were used to determine whether the plaque volume or stenosis grade increased. The plaques were divided into progressive and nonprogressive groups. Logistic regression analysis was used to identify the factors associated with plaque progression. Through clinical follow-up, we analyzed whether the factors associated with plaque progression were related to major adverse cardiac events (MACEs). RESULTS There were 223 plaques that progressed during a mean follow-up period of 27.6 ± 15.9 months. The univariate logistic regression model revealed that only low attenuation plaque (LAP) volume (P = 0.02) was associated with plaque progression. After a mean post-CTA follow-up period of 36.7 ± 18.4 months, 37 patients experienced MACEs, and LAP volume was significantly related to future MACEs. CONCLUSION Only a high baseline LAP volume was associated with plaque progression, and patients with progressive plaques and a high LAP volume were more likely to have future MACEs. More attention should be given to plaques with LAP volumes larger than 2.4 mm3.
Collapse
|
21
|
Measurement of Plaque Characteristics Using Coronary Computed Tomography Angiography: Achieving High Interobserver Performance. CJC Open 2021; 4:189-196. [PMID: 35198936 PMCID: PMC8843959 DOI: 10.1016/j.cjco.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Background Coronary computed tomography angiography (CCTA) is used to assess plaque characteristics, remodelling, and progression and regression. Few papers address standard operating procedures that ensure achievement of high interobserver reproducibility. Moreover, assessment of coronary artery bypass grafts has not been reported. Methods A training set of images was created of native coronary segments, spanning the full range of atheromatous disease from normal to severe, excluding totally occluded segments, and including segments with or without calcification (n = 24) and completely normal-appearing bypass grafts (n = 16). Three observers used a validated software program during a training phase to establish standard operating procedures and then to achieve high intraobserver performance based on Pearson’s correlation coefficient. Subsequently, interobserver variability for the laboratory as a whole was determined with a focus on measures of plaque volume, low- attenuation plaque (LAP), mixed plaque (MP), and calcified plaque (CP). Results We found no substantive differences in analytical issues between grafts and native vessels and emphasize the aggregated data. The range of mean total plaque percent was approximately 55% of total vessel volume with maximal interobserver mean absolute differences of 2% or less. Percent of LAP, MP, and CP demonstrated interobserver standard errors of 1% to 2% and interobserver mean absolute differences of 0% to 1%. Pearson’s correlations were all highly significant and ranged from 0.969 to 0.999. Conclusions CCTA provides a rich diversity of measures of atherosclerosis in coronary and bypass segments that are highly reproducible with experience and adherence to standard operating procedures.
Collapse
|
22
|
Yoon YE, Baskaran L, Lee BC, Pandey MK, Goebel B, Lee SE, Sung JM, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Chun EJ, Conte E, Gottlieb I, Hadamitzky M, Kim YJ, Lee BK, Leipsic JA, Maffei E, Marques H, de Araújo Gonçalves P, Pontone G, Shin S, Narula J, Bax JJ, Lin FYH, Shaw L, Chang HJ. Differential progression of coronary atherosclerosis according to plaque composition: a cluster analysis of PARADIGM registry data. Sci Rep 2021; 11:17121. [PMID: 34429500 PMCID: PMC8385056 DOI: 10.1038/s41598-021-96616-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
Patient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.
Collapse
Affiliation(s)
- Yeonyee E Yoon
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA. .,Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea. .,Cardiovascular Center, Seoul National University Bundang Hospital, Sungnam, South Korea.
| | - Lohendran Baskaran
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiovascular Medicine, National Heart Centre, Singapore, Singapore
| | - Benjamin C Lee
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | | | - Benjamin Goebel
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Ji Min Sung
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Daniele Andreini
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Eun Ju Chun
- Cardiovascular Center, Seoul National University Bundang Hospital, Sungnam, South Korea
| | - Edoardo Conte
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Centre Munich, Munich, Germany
| | - Yong Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Kwon Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/Azienda Sanitaria Unica Regionale (ASUR) Marche, Urbino, Italy
| | - Hugo Marques
- Unit of Cardiovascular Imaging, UNICA, Hospital da Luz, Lisbon, Portugal
| | - Pedro de Araújo Gonçalves
- Unit of Cardiovascular Imaging, UNICA, Hospital da Luz, Lisbon, Portugal.,NOVA Medical School, Lisbon, Portugal
| | - Gianluca Pontone
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sanghoon Shin
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Fay Yu-Huei Lin
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Leslee Shaw
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
23
|
Woodward W, Dockerill C, McCourt A, Upton R, O'Driscoll J, Balkhausen K, Chandrasekaran B, Firoozan S, Kardos A, Wong K, Woodward G, Sarwar R, Sabharwal N, Benedetto E, Spagou N, Sharma R, Augustine D, Tsiachristas A, Senior R, Leeson P, Boardman H, d'Arcy J, Abraheem A, Banypersad S, Boos C, Bulugahapitiya S, Butts J, Coles D, Easaw J, Hamdan H, Jamil-Copley S, Kanaganayagam G, Mwambingu T, Pantazis A, Papachristidis A, Rajani R, Rasheed MA, Razvi NA, Rekhraj S, Ripley DP, Rose K, Scheuermann-Freestone M, Schofield R, Sultan A. Real-world performance and accuracy of stress echocardiography: the EVAREST observational multi-centre study. Eur Heart J Cardiovasc Imaging 2021; 23:689-698. [PMID: 34148078 PMCID: PMC9016358 DOI: 10.1093/ehjci/jeab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Aims Stress echocardiography is widely used to identify obstructive coronary artery disease (CAD). High accuracy is reported in expert hands but is dependent on operator training and image quality. The EVAREST study provides UK-wide data to evaluate real-world performance and accuracy of stress echocardiography. Methods and results Participants undergoing stress echocardiography for CAD were recruited from 31 hospitals. Participants were followed up through health records which underwent expert adjudication. Cardiac outcome was defined as anatomically or functionally significant stenosis on angiography, revascularization, medical management of ischaemia, acute coronary syndrome, or cardiac-related death within 6 months. A total of 5131 patients (55% male) participated with a median age of 65 years (interquartile range 57–74). 72.9% of studies used dobutamine and 68.5% were contrast studies. Inducible ischaemia was present in 19.3% of scans. Sensitivity and specificity for prediction of a cardiac outcome were 95.4% and 96.0%, respectively, with an accuracy of 95.9%. Sub-group analysis revealed high levels of predictive accuracy across a wide range of patient and protocol sub-groups, with the presence of a resting regional wall motion abnormalitiy significantly reducing the performance of both dobutamine (P < 0.01) and exercise (P < 0.05) stress echocardiography. Overall accuracy remained consistently high across all participating hospitals. Conclusion Stress echocardiography has high accuracy across UK-based hospitals and thus indicates stress echocardiography is being delivered effectively in real-world practice, reinforcing its role as a first-line investigation in the assessment of patients with stable chest pain.
Collapse
Affiliation(s)
- William Woodward
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Cameron Dockerill
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Annabelle McCourt
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Ross Upton
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK.,Ultromics Ltd, Wood Centre for Innovation, OxfordOX3 8SB, UK
| | - Jamie O'Driscoll
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK.,School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | - Katrin Balkhausen
- Department of Cardiology, Royal Berkshire Hospitals NHS Foundation Trust, Reading RG1 5AN, UK
| | | | - Soroosh Firoozan
- Department of Cardiology, Buckinghamshire Healthcare NHS Trust, High Wycombe HP11 2TT, UK
| | - Attila Kardos
- Department of Cardiology, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes MK6 5LD, UK
| | - Kenneth Wong
- Lancashire Cardiac Centre, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NP, UK
| | - Gary Woodward
- Ultromics Ltd, Wood Centre for Innovation, OxfordOX3 8SB, UK
| | - Rizwan Sarwar
- Ultromics Ltd, Wood Centre for Innovation, OxfordOX3 8SB, UK.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Nikant Sabharwal
- Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Elena Benedetto
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Nancy Spagou
- Ultromics Ltd, Wood Centre for Innovation, OxfordOX3 8SB, UK
| | - Rajan Sharma
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Daniel Augustine
- Department of Cardiology, Royal United Hospitals NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Apostolos Tsiachristas
- Health Economic Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Roxy Senior
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NJ, UK.,Department of Cardiology, London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Paul Leeson
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Henry Boardman
- Department of Cardiology, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes MK6 5LD, UK.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Joanna d'Arcy
- Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Abraheem Abraheem
- Department of Cardiology, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne, UK
| | - Sanjay Banypersad
- Department of Cardiology, East Lancashire Hospitals NHS Trust, Burnley, UK
| | - Christopher Boos
- Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | - Jeremy Butts
- Department of Cardiology, Calderdale and Huddersfield NHS Foundation Trust, Calderdale, UK
| | - Duncan Coles
- Department of Cardiology, Mid Essex NHS Hospital Services NHS Trust, Broomfield, UK
| | - Jacob Easaw
- Department of Cardiology, Royal United Hospitals NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Haytham Hamdan
- Department of Cardiology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - Shahnaz Jamil-Copley
- Department of Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Gajen Kanaganayagam
- Department of Cardiology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Tom Mwambingu
- Department of Cardiology, The Mid Yorkshire Hospitals NHS Trust, Pinderfields, UK
| | - Antonis Pantazis
- Department of Cardiology, North Middlesex University Hospital NHS Trust, London, UK
| | | | - Ronak Rajani
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Naveed A Razvi
- Department of Cardiology, East Suffolk and North Essex NHS Foundation Trust, Ipswich, UK
| | - Sushma Rekhraj
- Department of Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David P Ripley
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Tyneside, UK
| | - Kathleen Rose
- Department of Cardiology, Northampton General Hospital NHS Trust, Northampton, UK
| | | | - Rebecca Schofield
- Department of Cardiology, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Ayyaz Sultan
- Department of Cardiology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| |
Collapse
|
24
|
Vizirianakis IS, Chatzopoulou F, Papazoglou AS, Karagiannidis E, Sofidis G, Stalikas N, Stefopoulos C, Kyritsis KA, Mittas N, Theodoroula NF, Lampri A, Mezarli E, Kartas A, Chatzidimitriou D, Papa-Konidari A, Angelis E, Karvounis Η, Sianos G. The GEnetic Syntax Score: a genetic risk assessment implementation tool grading the complexity of coronary artery disease-rationale and design of the GESS study. BMC Cardiovasc Disord 2021; 21:284. [PMID: 34103005 PMCID: PMC8186185 DOI: 10.1186/s12872-021-02092-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide and is associated with multiple inherited and environmental risk factors. This study is designed to identify, design, and develop a panel of genetic markers that combined with clinical and angiographic information, will facilitate the creation of a personalized risk prediction algorithm (GEnetic Syntax Score—GESS). GESS score could be a reliable tool for predicting cardiovascular risk for future adverse events and for guiding therapeutic strategies.
Methods GESS (ClinicalTrials.gov Identifier: NCT03150680) is a prospective, non-interventional clinical study designed to enroll 1080 consecutive patients with no prior history of coronary revascularization procedure, who undergo scheduled or emergency coronary angiography in AHEPA, University General Hospital of Thessaloniki. Next generation sequencing (NGS) technology will be used to genotype specific single-nucleotide polymorphisms (SNPs) across the genome of study participants, which were identified as clinically relevant to CAD after extensive bioinformatic analysis of literature-based SNPs. Enrichment analyses of Gene Ontology-Molecular Function, Reactome Pathways and Disease Ontology terms were also performed to identify the top 15 statistically significant terms and pathways. Furthermore, the SYNTAX score will be calculated for the assessment of CAD severity of all patients based on their angiographic findings. All patients will be followed-up for one-year, in order to record any major adverse cardiovascular events. Discussion A group of 228 SNPs was identified through bioinformatic and pharmacogenomic analysis to be involved in CAD through a wide range of pathways and was correlated with various laboratory and clinical parameters, along with the patients' response to clopidogrel and statin therapy. The annotation of these SNPs revealed 127 genes being affected by the presence of one or more SNPs. The first patient was enrolled in the study in February 2019 and enrollment is expected to be completed until June 2021. Hence, GESS is the first trial to date aspiring to develop a novel risk prediction algorithm, the GEnetic Syntax Score, able to identify patients at high risk for complex CAD based on their molecular signature profile and ultimately promote pharmacogenomics and precision medicine in routine clinical settings. Trial registration GESS trial registration: ClinicalTrials.gov Number: NCT03150680. Registered 12 May 2017- Prospectively registered, https://clinicaltrials.gov/ct2/show/NCT03150680.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Life and Health Sciences, University of Nicosia, 1700, Nicosia, Cyprus
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Labnet Laboratories, Thessaloniki, Greece
| | - Andreas S Papazoglou
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Efstratios Karagiannidis
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Sofidis
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Nikolaos Stalikas
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Christos Stefopoulos
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Konstantinos A Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Nikoleta F Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Anastasios Kartas
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Papa-Konidari
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Angelis
- Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ηaralambos Karvounis
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Sianos
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
| |
Collapse
|
25
|
Kocyigit D, Scanameo A, Xu B. Multimodality imaging for the prevention of cardiovascular events: Coronary artery calcium and beyond. Cardiovasc Diagn Ther 2021; 11:840-858. [PMID: 34295709 PMCID: PMC8261752 DOI: 10.21037/cdt-19-654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) has been the leading cause of death worldwide for more than a decade. Prevention is of utmost importance to reduce related mortality. The innovations in cardiovascular imaging technology, in addition to our improved understanding of coronary atherosclerosis pathogenesis, have resulted in cardiovascular imaging becoming one of the most influential tools for diagnosis and risk stratification in ASCVD. Although numerous publications have emerged on this topic, data that guide routine cardiology clinical practice currently focus on the utility of a limited number of such modalities, namely arterial ultrasonography and computed tomography. Herein, current evidence with respect to the role of multimodality cardiovascular imaging on ASCVD prevention will be reviewed.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Bo Xu
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
26
|
Vernon ST, Kott KA, Hansen T, Zhang KJ, Cole BR, Coffey S, Grieve SM, Figtree GA. Coronary artery disease burden in women poorly explained by traditional risk factors: Sex disaggregated analyses from the BioHEART-CT study. Atherosclerosis 2021; 333:100-107. [PMID: 34045070 DOI: 10.1016/j.atherosclerosis.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Targeting the modifiable risk factors for coronary artery disease (CAD) has substantial impact at the community level. However, it is not uncommon for individuals to present with atherosclerosis related events without identified risk factors. We examined sex differences in the association of risk factors and atherosclerotic burden assessed by CT coronary angiography (CTCA). METHODS We analysed clinical and imaging data in 1002 individuals in the BioHEART cohort. RESULTS 45% were female, 35% had no CAD identified. Median coronary calcium score was 9.9 Agatston units (IQR: 0-146), and median Gensini Score was 3.5 (IQR: 0-11.5). 26% had a calcified plaque predominant phenotype, and 18% had a non-calcified plaque predominant phenotype. There were no sex differences in the prevalence of risk factors. However, there were notable sex differences in the adjusted associations of risk factors with CAD. Age and hypercholesterolaemia (OR 1.56, 95% CI 1.03-2.36, p = 0.04 in males, and OR 1.75, 95% CI 1.09-2.78, p = 0.02 in females) were associated with the presence of CAD in both genders (p < 0.05). Diabetes and smoking were associated with presence of CAD, calcified CAD, and non-calcified plaque in males (p < 0.05) but not females. In women, none of the standard modifiable risk factors were associated with the amount of plaque present when adjusted for age, BMI, and family history of premature CAD. CONCLUSIONS CTCA provides an important opportunity for improving the stratification of cohorts to assess underlying biology and risk. We demonstrate sex-specific differences in associations of risk factors with atherosclerosis burden.
Collapse
Affiliation(s)
- Stephen T Vernon
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Katharine A Kott
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Thomas Hansen
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Kimble J Zhang
- Faculty of Science, University of Sydney, Australia; Charles Perkins Centre, University of Sydney, Australia
| | - Ben R Cole
- Cardiology Department, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Sean Coffey
- Dunedin School of Medicine University of Otago Dunedin New Zealand, New Zealand
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Gemma A Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Charles Perkins Centre, University of Sydney, Australia.
| |
Collapse
|
27
|
Yuvaraj J, Cheng K, Lin A, Psaltis PJ, Nicholls SJ, Wong DTL. The Emerging Role of CT-Based Imaging in Adipose Tissue and Coronary Inflammation. Cells 2021; 10:1196. [PMID: 34068406 PMCID: PMC8153638 DOI: 10.3390/cells10051196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence arising from recent randomized clinical trials demonstrate the association of vascular inflammatory mediators with coronary artery disease (CAD). Vascular inflammation localized in the coronary arteries leads to an increased risk of CAD-related events, and produces unique biological alterations to local cardiac adipose tissue depots. Coronary computed tomography angiography (CTA) provides a means of mapping inflammatory changes to both epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) as independent markers of coronary risk. Radiodensity or attenuation of PCAT on coronary CTA, notably, provides indirect quantification of coronary inflammation and is emerging as a promising non-invasive imaging implement. An increasing number of observational studies have shown robust associations between PCAT attenuation and major coronary events, including acute coronary syndrome, and 'vulnerable' atherosclerotic plaque phenotypes that are associated with an increased risk of the said events. This review outlines the biological characteristics of both EAT and PCAT and provides an overview of the current literature on PCAT attenuation as a surrogate marker of coronary inflammation.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Andrew Lin
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, USA;
| | - Peter J. Psaltis
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia;
- South Australian Health Medical Research Institute, Adelaide, SA 5000, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Dennis T. L. Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| |
Collapse
|
28
|
Vernon ST, Tang O, Kim T, Chan AS, Kott KA, Park J, Hansen T, Koay YC, Grieve SM, O’Sullivan JF, Yang JY, Figtree GA. Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study. Cells 2021; 10:980. [PMID: 33922315 PMCID: PMC8145337 DOI: 10.3390/cells10050980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023] Open
Abstract
Despite effective prevention programs targeting cardiovascular risk factors, coronary artery disease (CAD) remains the leading cause of death. Novel biomarkers are needed for improved risk stratification and primary prevention. To assess for independent associations between plasma metabolites and specific CAD plaque phenotypes we performed liquid chromatography mass-spectrometry on plasma from 1002 patients in the BioHEART-CT study. Four metabolites were examined as candidate biomarkers. Dimethylguanidino valerate (DMGV) was associated with presence and amount of CAD (OR) 1.41 (95% Confidence Interval [CI] 1.12-1.79, p = 0.004), calcified plaque, and obstructive CAD (p < 0.05 for both). The association with amount of plaque remained after adjustment for traditional risk factors, ß-coefficient 0.17 (95% CI 0.02-0.32, p = 0.026). Glutamate was associated with the presence of non-calcified plaque, OR 1.48 (95% CI 1.09-2.01, p = 0.011). Phenylalanine was associated with amount of CAD, ß-coefficient 0.33 (95% CI 0.04-0.62, p = 0.025), amount of calcified plaque, (ß-coefficient 0.88, 95% CI 0.23-1.53, p = 0.008), and obstructive CAD, OR 1.84 (95% CI 1.01-3.31, p = 0.046). Trimethylamine N-oxide was negatively associated non-calcified plaque OR 0.72 (95% CI 0.53-0.97, p = 0.029) and the association remained when adjusted for traditional risk factors. In targeted metabolomic analyses including 53 known metabolites and controlling for a 5% false discovery rate, DMGV was strongly associated with the presence of calcified plaque, OR 1.59 (95% CI 1.26-2.01, p = 0.006), obstructive CAD, OR 2.33 (95% CI 1.59-3.43, p = 0.0009), and amount of CAD, ß-coefficient 0.3 (95% CI 0.14-0.45, p = 0.014). In multivariate analyses the lipid and nucleotide metabolic pathways were both associated with the presence of CAD, after adjustment for traditional risk factors. We report novel associations between CAD plaque phenotypes and four metabolites previously associated with CAD. We also identified two metabolic pathways strongly associated with CAD, independent of traditional risk factors. These pathways warrant further investigation at both a biomarker and mechanistic level.
Collapse
Affiliation(s)
- Stephen T. Vernon
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Owen Tang
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
| | - Taiyun Kim
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
- Computational Systems Biology Group, Children’s Medical Research Institute, Westmead, NSW 2145, Australia
| | - Adam S. Chan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - John Park
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
| | - Thomas Hansen
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Yen C. Koay
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F. O’Sullivan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Jean Y. Yang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
| |
Collapse
|
29
|
Shaw LJ, Blankstein R, Bax JJ, Ferencik M, Bittencourt MS, Min JK, Berman DS, Leipsic J, Villines TC, Dey D, Al'Aref S, Williams MC, Lin F, Baskaran L, Litt H, Litmanovich D, Cury R, Gianni U, van den Hoogen I, R van Rosendael A, Budoff M, Chang HJ, E Hecht H, Feuchtner G, Ahmadi A, Ghoshajra BB, Newby D, Chandrashekhar YS, Narula J. Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging - Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque. J Cardiovasc Comput Tomogr 2021; 15:93-109. [PMID: 33303383 DOI: 10.1016/j.jcct.2020.11.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coronary computed tomographic angiography (CCTA) provides a wealth of clinically meaningful information beyond anatomic stenosis alone, including the presence or absence of nonobstructive atherosclerosis and high-risk plaque features as precursors for incident coronary events. There is, however, no uniform agreement on how to identify and quantify these features or their use in evidence-based clinical decision-making. This statement from the Society of Cardiovascular Computed Tomography and North American Society of Cardiovascular Imaging addresses this gap and provides a comprehensive review of the available evidence on imaging of coronary atherosclerosis. In this statement, we provide standardized definitions for high-risk plaque (HRP) features and distill the evidence on the effectiveness of risk stratification into usable practice points. This statement outlines how this information should be communicated to referring physicians and patients by identifying critical elements to include in a structured CCTA report - the presence and severity of atherosclerotic plaque (descriptive statements, CAD-RADS™ categories), the segment involvement score, HRP features (e.g., low attenuation plaque, positive remodeling), and the coronary artery calcium score (when performed). Rigorous documentation of atherosclerosis on CCTA provides a vital opportunity to make recommendations for preventive care and to initiate and guide an effective care strategy for at-risk patients.
Collapse
Affiliation(s)
- Leslee J Shaw
- Weill Cornell School of Medicine, New York, NY, USA.
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - James K Min
- Weill Cornell School of Medicine; Cleerly, Inc. (started in 2020), New York, NY, USA
| | - Daniel S Berman
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Fay Lin
- Weill Cornell School of Medicine, New York, NY, USA
| | | | - Harold Litt
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Litmanovich
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ricardo Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, FL, USA
| | | | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | | - Amir Ahmadi
- Mount Sinai School of Medicine, New York, NY, USA
| | | | - David Newby
- University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Jagat Narula
- Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
30
|
Merkulova IN, Shariya MA, Mironov VM, Shabanova MS, Veselova TN, Gaman SA, Barysheva NA, Shakhnovich RM, Zhukova NI, Sukhinina TS, Staroverov II, Ternovoy SK. [Computed Tomography Coronary Angiography Possibilities in "High Risk" Plaque Identification in Patients with non-ST-Elevation Acute Coronary Syndrome: Comparison with Intravascular Ultrasound]. ACTA ACUST UNITED AC 2021; 60:64-75. [PMID: 33522469 DOI: 10.18087/cardio.2020.12.n1304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
Aim To evaluate structural characteristics of atherosclerotic plaques (ASP) by coronary computed tomography arteriography (CCTA) and intravascular ultrasound (IVUS).Material and methods This study included 37 patients with acute coronary syndrome (ACS). 64-detector-row CCTA, coronarography, and grayscale IVUS were performed prior to coronary stenting. The ASP length and burden, remodeling index (RI), and known CT signs of unstable ASP (presence of dot calcification, positive remodeling of the artery in the ASP area, irregular plaque contour, presence of a peripheral high-density ring and a low-density patch in the ASP). The ASP type and signs of rupture or thrombosis were determined by IVUS.Results The IVUS study revealed 45 unstable ASP (UASP), including 25 UASP with rupture and 20 thin-cap fibroatheromas (TCFA), and 13 stable ASP (SASP). No significant differences were found between distribution of TCFA and ASP with rupture among symptom-associated plaques (SAP, n=28) and non-symptom-associated plaques (NSAP, n=30). They were found in 82.1 and 73.3 % of cases, respectively (p>0.05), which indicated generalization of the ASP destabilization process in the coronary circulation. However, the incidence of mural thrombus was higher for SAP (53.5 and 16.6 % of ASP, respectively; p<0.001). There was no difference between UASP and SASP in the incidence of qualitative ASP characteristics or in values of quantitative ASP characteristics, including known signs of instability, except for the irregular contour, which was observed in 92.9 % of UASP and 46.1 % of SASP (p=0.0007), and patches with X-ray density ≤46 HU, which were detected in 83.3 % of UASP and 46.1 % of SASP (р=0.01). The presence of these CT criteria 11- and 7-fold increased the likelihood of unstable ASP (odd ratio (OR), 11.1 at 95 % confidence interval (CI), from 2.24 to 55.33 and OR, 7.0 at 95 % CI, from 5.63 to 8.37 for the former and the latter criterion, respectively).Conclusion According to IVUS data, two X-ray signs are most characteristic for UASP, the irregular contour and a patch with X-ray density ≤46 HU. The presence of these signs 11- and 7-fold, respectively, increases the likelihood of unstable ASP.
Collapse
Affiliation(s)
- I N Merkulova
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - M A Shariya
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - V M Mironov
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - M S Shabanova
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - T N Veselova
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - S A Gaman
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - N A Barysheva
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - R M Shakhnovich
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - N I Zhukova
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - T S Sukhinina
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - I I Staroverov
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| | - S K Ternovoy
- Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, Moscow
| |
Collapse
|
31
|
Shin CI, Park SJ, Kim JH, Yoon YE, Park EA, Koo BK, Lee W. Coronary Artery Lumen Segmentation Using Location-Adaptive Threshold in Coronary Computed Tomographic Angiography: A Proof-of-Concept. Korean J Radiol 2020; 22:688-696. [PMID: 33543843 PMCID: PMC8076829 DOI: 10.3348/kjr.2020.0296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/06/2020] [Accepted: 08/05/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the lumen parameters measured by the location-adaptive threshold method (LATM), in which the inter- and intra-scan attenuation variabilities of coronary computed tomographic angiography (CCTA) were corrected, and the scan-adaptive threshold method (SATM), in which only the inter-scan variability was corrected, with the reference standard measurement by intravascular ultrasonography (IVUS). MATERIALS AND METHODS The Hounsfield unit (HU) values of whole voxels and the centerline in each of the cross-sections of the 22 target coronary artery segments were obtained from 15 patients between March 2009 and June 2010, in addition to the corresponding voxel size. Lumen volume was calculated mathematically as the voxel volume multiplied by the number of voxels with HU within a given range, defined as the lumen for each method, and compared with the IVUS-derived reference standard. Subgroup analysis of the lumen area was performed to investigate the effect of lumen size on the studied methods. Bland-Altman plots were used to evaluate the agreement between the measurements. RESULTS Lumen volumes measured by SATM was significantly smaller than that measured by IVUS (mean difference, 14.6 mm³; 95% confidence interval [CI], 4.9-24.3 mm³); the lumen volumes measured by LATM and IVUS were not significantly different (mean difference, -0.7 mm³; 95% CI, -9.1-7.7 mm³). The lumen area measured by SATM was significantly smaller than that measured by LATM in the smaller lumen area group (mean of difference, 1.07 mm²; 95% CI, 0.89-1.25 mm²) but not in the larger lumen area group (mean of difference, -0.07 mm²; 95% CI, -0.22-0.08 mm²). In the smaller lumen group, the mean difference was lower in the Bland-Altman plot of IVUS and LATM (0.46 mm²; 95% CI, 0.27-0.65 mm²) than in that of IVUS and SATM (1.53 mm²; 95% CI, 1.27-1.79 mm²). CONCLUSION SATM underestimated the lumen parameters for computed lumen segmentation in CCTA, and this may be overcome by using LATM.
Collapse
Affiliation(s)
- Cheong Il Shin
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Joon Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji Hyun Kim
- Division of Cardiology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Yeonyee Elizabeth Yoon
- Department of Cardiology and Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ah Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Bon Kwon Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute on Aging, Seoul National University, Seoul, Korea.
| | - Whal Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
32
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Liu S, Neleman T, Hartman EMJ, Ligthart JMR, Witberg KT, van der Steen AFW, Wentzel JJ, Daemen J, van Soest G. Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2801-2809. [PMID: 32636052 DOI: 10.1016/j.ultrasmedbio.2020.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was >0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tara Neleman
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eline M J Hartman
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen M R Ligthart
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen T Witberg
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, The Netherlands; Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost Daemen
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gijs van Soest
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Li S, Tang X, Luo Y, Wu B, Huang Z, Li Z, Peng L, Ling Y, Zhu J, Zhong J, Liu J, Chen Y. Impact of long-term glucose variability on coronary atherosclerosis progression in patients with type 2 diabetes: a 2.3 year follow-up study. Cardiovasc Diabetol 2020; 19:146. [PMID: 32977802 PMCID: PMC7517679 DOI: 10.1186/s12933-020-01126-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Glycemic variability (GV) confers a risk of cardiovascular events. In this study, we aimed to investigate whether long-term GV has an impact on coronary atherosclerosis progression in patients with type 2 diabetes mellitus (T2DM). Methods A total of 396 patients with T2DM who had coronary computed tomography angiography and laboratory data available at baseline and for follow-up evaluations [median 2.3 (1.8–3.1) years] were included. Fasting plasma glucose (FPG) was measured every 1–3 months, and HbA1c was measured quarterly. The coefficient of variation (CV) of HbA1c and FPG were calculated as measures of GV. Quantitative assessment of coronary plaques was performed by measuring the annual change and progression rate of total plaque volume (TPV). Significant progression was defined as annual TPV progression ≥ 15%. Multivariable regression analyses were used to assess the effects of GV on atherosclerosis progression. Results In the 396 patients, the annual change in TPV was 12.35 ± 14.23 mm3, and annual progression rate was 13.36 ± 12.69%. There were 143 (36.11%) patients with significant progression, and they had a significantly higher CV-HbA1c (P < 0.001) and CV-FPG (P < 0.001) than those without significant progression. In multivariable regression analyses, both CV-HbA1c and CV-FPG were independent predictors of annual change in TPV [CV-HbA1c: β = 0.241 (0.019–0.462), P = 0.034; CV-FPG: β = 0.265 (0.060–0.465), P = 0.012], annual TPV progression [CV-HbA1c: β = 0.214 (0.023–0.405), P = 0.029; CV-FPG: β = 0.218 (0.037–0.399), P = 0.019], and significant atherosclerosis progression [CV-HbA1c: odds ratio [OR] = 1.367 (1.149–1.650), P = 0.010; CV-FPG: OR = 1.321 (1.127–1.634), P = 0.013]. Conclusions Long-term GV is associated with accelerated progression of coronary atherosclerosis independent of conventional risk factors in patients with T2DM. Trial registration ClinicalTrials.gov (NCT02587741), October 27, 2015; retrospectively registered
Collapse
Affiliation(s)
- Suhua Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xixiang Tang
- Department of Endocrinology & Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.,VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanting Luo
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bingyuan Wu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhuoshan Huang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zexiong Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Long Peng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yesheng Ling
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jieming Zhu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Junlin Zhong
- Department of Ultrasonography, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jinlai Liu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yanming Chen
- Department of Endocrinology & Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
35
|
Affiliation(s)
- Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, and Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO. Department of Biomedical Engineering, Washington University, McKelvey School of Engineering, St. Louis, MO. Veterans Affairs St. Louis Health Care System, St. Louis, MO
| |
Collapse
|
36
|
Qi L, Shi K, Li C, Ju Z, Mao D, Zhang L, Qu X, Hua Y, Li M. Coronary Computed Tomography (CT) Angiography Characteristics of High-Risk Plaque: Correlation with Stress Myocardial Perfusion Imaging in Patients with Moderate Coronary Stenosis. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e920950. [PMID: 32495750 PMCID: PMC7294846 DOI: 10.12659/msm.920950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The aim of this study was to investigate the ability of coronary computed tomographic angiography (CCTA) characteristics of high-risk plaque (HRP) in moderate stenosis to improve differentiation of myocardial ischemia detected by stress CT perfusion (CTP) imaging. Material/Methods Sixty-two patients with coronary plaques and moderate stenosis confirmed by invasive coronary angiography (ICA) had stress CTP and 26 of these patients were found to have myocardial ischemia. The other 36 patients without myocardial ischemia were defined as controls. Characteristics of major plaques on CCTA images of the ischemia and non-ischemia groups were analyzed and compared. Results Differences between the 2 groups were observed in plaque volume, burden and rough inner surface necrotic core volume, plaque-lipid interface and plaque length. In a multivariable analysis, plaque burden and necrotic core volume were significantly associated with myocardial ischemia: plaque burden odds ratio (OR) was 1.28 (95% confidence interval [CI], 1.12–1.48); necrotic core volume OR was 1.78 (95% CI, 1.03–1.34). Compared with other quantitative measurements, optimized thresholds for plaque burden (area under the curve was 0.852) and necrotic core volume (area under the curve was 0.730) showed significantly higher diagnostic performance for ischemia with threshold values of 60.8% and 11.25 mm3, respectively. Conclusions CCTA characteristics of major plaques may improve the discrimination of ACS patients with myocardial ischemia on stress CTP.
Collapse
Affiliation(s)
- Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Kailei Shi
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Cheng Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Zhiguo Ju
- Department of Radiology, College of Medical Imaging, Shanghai University of Medicine and Health Science, Shanghai, China (mainland)
| | - Dingbiao Mao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Lukai Zhang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Yanqing Hua
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China (mainland)
| |
Collapse
|
37
|
Noncalcified plaque burden quantified from coronary computed tomography angiography improves prediction of side branch occlusion after main vessel stenting in bifurcation lesions: results from the CT-PRECISION registry. Clin Res Cardiol 2020; 110:114-123. [PMID: 32385529 PMCID: PMC7806530 DOI: 10.1007/s00392-020-01658-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess the incremental value of quantitative plaque features measured from computed tomography angiography (CTA) for predicting side branch (SB) occlusion in coronary bifurcation intervention. METHODS We included 340 patients with 377 bifurcation lesions in the post hoc analysis of the CT-PRECISION registry. Each bifurcation was divided into three segments: the proximal main vessel (MV), the distal MV, and the SB. Segments with evidence of coronary plaque were analyzed using semi-automated software allowing for quantitative analysis of coronary plaque morphology and stenosis. Coronary plaque measurements included calcified and noncalcified plaque volumes, and corresponding burdens (respective plaque volumes × 100%/vessel volume), remodeling index, and stenosis. RESULTS SB occlusion occurred in 28 of 377 bifurcation lesions (7.5%). The presence of visually identified plaque in the SB segment, but not in the proximal and distal MV segments, was the only qualitative parameter that predicted SB occlusion with an area under the curve (AUC) of 0.792. Among quantitative plaque parameters calculated for the SB segment, the addition of noncalcified plaque burden (AUC 0.840, p = 0.003) and low-density plaque burden (AUC 0.836, p = 0.012) yielded significant improvements in predicting SB occlusion. Using receiver operating characteristic curve analysis, optimal cut-offs for noncalcified plaque burden and low-density plaque burden were > 33.6% (86% sensitivity and 78% specificity) and > 0.9% (89% sensitivity and 73% specificity), respectively. CONCLUSIONS CTA-derived noncalcified plaque burden, when added to the visually identified SB plaque, significantly improves the prediction of SB occlusion in coronary bifurcation intervention. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03709836 registered on October 17, 2018.
Collapse
|
38
|
Miller RJH, Kwiecinski J, Shah KS, Eisenberg E, Patel J, Kobashigawa JA, Azarbal B, Tamarappoo B, Berman DS, Slomka PJ, Kransdorf E, Dey D. Coronary computed tomography-angiography quantitative plaque analysis improves detection of early cardiac allograft vasculopathy: A pilot study. Am J Transplant 2020; 20:1375-1383. [PMID: 31758640 DOI: 10.1111/ajt.15721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is an increasingly important complication after cardiac transplant. We assessed the additive diagnostic benefit of quantitative plaque analysis in patients undergoing coronary computed tomography-angiography (CCTA). Consecutive patients undergoing CCTA for CAV surveillance were identified. Scans were visually interpreted for coronary stenosis. Semiautomated software was used to quantify noncalcified plaque (NCP), as well as its components. Optimal diagnostic cut-offs for CAV, with coronary angiography as gold standard, were defined using receiver operating characteristic curves. In total, 36 scans were identified in 17 patients. CAV was present in 17 (46.0%) reference coronary angiograms, at a median of 1.9 years before CCTA. Median NCP (147 vs 58, P < .001), low-density NCP (median 4.5 vs 0.9, P = .003), fibrous plaque (median 76.1 vs 31.1, P = .003), and fibrofatty plaque (median 63.6 vs 27.6, P < .001) volumes were higher in patients with CAV, whereas calcified plaque was not (median 0.0 vs 0.0, P = .510). Visual assessment of CCTA alone was 70.6% sensitive and 100% specific for CAV. The addition of total NCP volume increased sensitivity to 82.4% while maintaining 100% specificity. NCP volume is significantly higher in patients with CAV. The addition of quantitative analysis to visual interpretation improves the sensitivity for detecting CAV without reducing specificity.
Collapse
Affiliation(s)
- Robert J H Miller
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jacek Kwiecinski
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Kevin S Shah
- Smidt Heart Institute, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Evann Eisenberg
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jignesh Patel
- Smidt Heart Institute, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jon A Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Babak Azarbal
- Smidt Heart Institute, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Balaji Tamarappoo
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S Berman
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Piotr J Slomka
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Evan Kransdorf
- Smidt Heart Institute, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Damini Dey
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
40
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|
41
|
Ramasamy A, Safi H, Moon J, Andiapen M, Rathod K, Maurovich-Horvat P, Bajaj R, Serruys P, Mathur A, Baumbach A, Pugliese F, Torii R, Bourantas C. Evaluation of the Efficacy of Computed Tomographic Coronary Angiography in Assessing Coronary Artery Morphology and Physiology: Rationale and Study Design. Cardiology 2020; 145:285-293. [DOI: 10.1159/000506537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022]
Abstract
Computed tomographic coronary angiography (CTCA) is a non-invasive imaging modality, which allows plaque burden and composition assessment and detection of plaque characteristics associated with increased vulnerability. In addition, CTCA-based coronary artery reconstruction enables local haemodynamic forces assessment, which regulate plaque formation and vascular inflammation and prediction of lesions that are prone to progress and cause events. However, the use of CTCA for vulnerable plaque detection in the clinical arena remains limited. To unlock the full potential of CTCA and enable its broad use, further work is needed to develop user-friendly processing tools that will allow fast and accurate analysis of CTCA, computational fluid dynamic modelling, and evaluation of the local haemodynamic forces. The present study aims to develop a seamless platform that will overcome the limitations of CTCA and enable fast and accurate evaluation of plaque morphology and physiology. We will analyse imaging data from 70 patients with coronary artery disease who will undergo state-of-the-art CTCA and near-infrared spectroscopy-intravascular ultrasound imaging and develop and train algorithms that will take advantage of the intravascular imaging data to optimise vessel segmentation and plaque characterisation. Furthermore, we will design an advanced module that will enable reconstruction of coronary artery anatomy from CTCA, blood flow simulation, shear stress estimation, and comprehensive visualisation of vessel pathophysiology. These advances are expected to facilitate the broad use of CTCA, not only for risk stratification but also for the evaluation of the effect of emerging therapies on plaque evolution.
Collapse
|
42
|
Shaikh K, Kinninger A, Cherukuri L, Birudaraju D, Nakanishi R, Almeida S, Jayawardena E, Shekar C, Flores F, Hamal S, Sheikh MS, Johanis A, Cu B, Budoff MJ. Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with diabetes: A randomized, double-blind, placebo-controlled study. Exp Ther Med 2020; 19:1457-1461. [PMID: 32010322 PMCID: PMC6966158 DOI: 10.3892/etm.2019.8371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023] Open
Abstract
Several previous studies have demonstrated that aged garlic extract (AGE) inhibits the progression of coronary artery calcification and non-calcified plaque (NCP) in the general population. However, its effects on plaque progression in patients with diabetes have not yet been investigated, at least to the best of our knowledge. This study investigated whether AGE reduces the coronary plaque volume measured by cardiac computed tomography angiography (CCTA) in patients with diabetes mellitus (DM). A total of 80 participants with DM with a median age of 57 years were prospectively assigned to consume 2,400 mg AGE/day (after completion, 37 participants) or placebo (after completion, 29 participants) orally. Both groups underwent CCTA at baseline and follow-up 365 days apart. In total, 66 participants completed the study. Coronary plaque volume, including total plaque (TP), dense calcium (DC), fibrous, fibro-fatty and low-attenuation plaque (LAP) volumes were measured based upon pre-defined intensity cut-off values using semi-automated software (QAngio CT). Changes in various plaque types were normalized to the total coronary artery length. The non-parametric Wilcoxon rank-sum test was performed to examine the differences in plaque formation between the 2 groups. No significant differences were found in the baseline characteristics between the AGE and placebo groups. Compared with the placebo group, the AGE group exhibited a statistically significant regression in normalized LAP [median and standard deviation (SD) -0.2 (18.8) vs. 2.5 (69.3), P=0.0415]. No differences were observed in TP, fibrous, or fibrofatty plaque volumes between the AGE and placebo group. On the whole, this study indicated that the %LAP change in the AGE group was significantly greater than that in the placebo group in patients with diabetes. However, further studies are warranted to evaluate whether AGE has the ability to stabilize vulnerable plaque and decrease adverse cardiovascular events.
Collapse
Affiliation(s)
- Kashif Shaikh
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - April Kinninger
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Lavanya Cherukuri
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Divya Birudaraju
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Rine Nakanishi
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Shone Almeida
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Eranthi Jayawardena
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Chandana Shekar
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Ferdinand Flores
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Sajad Hamal
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohammed Salman Sheikh
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Amit Johanis
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Benedict Cu
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Matthew J. Budoff
- Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
43
|
Syed MBJ, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJR. Emerging techniques in atherosclerosis imaging. Br J Radiol 2019; 92:20180309. [PMID: 31502858 PMCID: PMC6849665 DOI: 10.1259/bjr.20180309] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic immunomodulated disease that affects multiple vascular beds and results in a significant worldwide disease burden. Conventional imaging modalities focus on the morphological features of atherosclerotic disease such as the degree of stenosis caused by a lesion. Modern CT, MR and positron emission tomography scanners have seen significant improvements in the rapidity of image acquisition and spatial resolution. This has increased the scope for the clinical application of these modalities. Multimodality imaging can improve cardiovascular risk prediction by informing on the constituency and metabolic processes within the vessel wall. Specific disease processes can be targeted using novel biological tracers and "smart" contrast agents. These approaches have the potential to inform clinicians of the metabolic state of atherosclerotic plaque. This review will provide an overview of current imaging techniques for the imaging of atherosclerosis and how various modalities can provide information that enhances the depiction of basic morphology.
Collapse
Affiliation(s)
- Maaz BJ Syed
- British Heart Foundation Centre of Cardiovascular Science
| | | | | | | | | | - Marc R Dweck
- British Heart Foundation Centre of Cardiovascular Science
| | | |
Collapse
|
44
|
Ihdayhid AR, Goeller M, Dey D, Nerlekar N, Yap G, Thakur U, Adams D, Cameron J, Seneviratne S, Achenbach S, Ko B. Comparison of Coronary Atherosclerotic Plaque Burden and Composition as Assessed on Coronary Computed Tomography Angiography in East Asian and European-Origin Caucasians. Am J Cardiol 2019; 124:1012-1019. [PMID: 31351575 DOI: 10.1016/j.amjcard.2019.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Recent evidence suggests plaque morphology evaluated on coronary computed tomography angiography has prognostic implications. East Asians have a lower prevalence of myocardial infarction and cardiovascular mortality compared with European-origin Caucasians. We aimed to compare coronary atherosclerotic burden and plaque composition in a matched cohort of Caucasian and East Asians patients with stable chest pain who underwent computed tomography angiography. Two-hundred symptomatic patients (age 58.8 ± 7.9, male 51%) were matched for age, gender, body mass index, and diabetes (100 each ethnic group). A blinded core-laboratory quantified calcified and noncalcified plaque (NCP) volume and burden. Components of NCP were differentiated by plaque hounsfield unit (HU) thresholds which defined high-risk necrotic core (-30 to 30HU), fibrofatty plaque (31 to 130HU); and low-risk fibrous plaque (131 to 350HU). Composition of NCP components was derived as (NCP component volume/total NCP volume) × 100%. Segment Involvement Score, percent diameter and area stenosis were comparable in both groups. Similarly, there was no difference in the volume and burden of total, calcified and NCP. Compared with Caucasians, East Asians demonstrated lower composition of plaque attenuation corresponding to necrotic core (3.5 vs 5.1%; p = 0.004) and fibrofatty plaque (29.6 vs 37.3%; p = 0.005), and higher fibrous plaque (65.7 vs 57.6%; p = 0.004). On multivariable analysis East Asian ethnicity was independently associated with lower composition of high-risk plaque after adjustment for risk factors and scan parameters. These findings were consistent in a propensity-matched sensitivity-analysis. In conclusion, based on this matched cohort, East Asian ethnicity is associated with significantly less composition of high-risk NCP (necrotic core and fibrofatty plaque) and a higher composition of low-risk fibrous plaque compared with Caucasians; which may confer a lower risk of cardiovascular events.
Collapse
Affiliation(s)
- Abdul Rahman Ihdayhid
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Markus Goeller
- Friedrich Alexander University Erlangen Nürnberg (FAU), Faculty of Medicine, Department of Cardiology, Erlangen, Germany; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Grace Yap
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Udit Thakur
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Daniel Adams
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - James Cameron
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Stephan Achenbach
- Friedrich Alexander University Erlangen Nürnberg (FAU), Faculty of Medicine, Department of Cardiology, Erlangen, Germany
| | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia.
| |
Collapse
|
45
|
Nakanishi R, Motoyama S, Leipsic J, Budoff MJ. How accurate is atherosclerosis imaging by coronary computed tomography angiography? J Cardiovasc Comput Tomogr 2019; 13:254-260. [DOI: 10.1016/j.jcct.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023]
|
46
|
Kigka VI, Sakellarios A, Kyriakidis S, Rigas G, Athanasiou L, Siogkas P, Tsompou P, Loggitsi D, Benz DC, Buechel R, Lemos PA, Pelosi G, Michalis LK, Fotiadis DI. A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert's annotations and virtual histology intravascular ultrasound. Comput Biol Med 2019; 113:103409. [PMID: 31480007 DOI: 10.1016/j.compbiomed.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
The detection, quantification and characterization of coronary atherosclerotic plaques has a major effect on the diagnosis and treatment of coronary artery disease (CAD). Different studies have reported and evaluated the noninvasive ability of Computed Tomography Coronary Angiography (CTCA) to identify coronary plaque features. The identification of calcified plaques (CP) and non-calcified plaques (NCP) using CTCA has been extensively studied in cardiovascular research. However, NCP detection remains a challenging problem in CTCA imaging, due to the similar intensity values of NCP compared to the perivascular tissue, which surrounds the vasculature. In this work, we present a novel methodology for the identification of the plaque burden of the coronary artery and the volumetric quantification of CP and NCP utilizing CTCA images and we compare the findings with virtual histology intravascular ultrasound (VH-IVUS) and manual expert's annotations. Bland-Altman analyses were employed to assess the agreement between the presented methodology and VH-IVUS. The assessment of the plaque volume, the lesion length and the plaque area in 18 coronary lesions indicated excellent correlation with VH-IVUS. More specifically, for the CP lesions the correlation of plaque volume, lesion length and plaque area was 0.93, 0.84 and 0.85, respectively, whereas the correlation of plaque volume, lesion length and plaque area for the NCP lesions was 0.92, 0.95 and 0.81, respectively. In addition to this, the segmentation of the lumen, CP and NCP in 1350 CTCA slices indicated that the mean value of DICE coefficient is 0.72, 0.7 and 0.62, whereas the mean HD value is 1.95, 1.74 and 1.95, for the lumen, CP and NCP, respectively.
Collapse
Affiliation(s)
- Vassiliki I Kigka
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Antonis Sakellarios
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Savvas Kyriakidis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - George Rigas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Lambros Athanasiou
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Panagiotis Siogkas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Panagiota Tsompou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece
| | | | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Ronny Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Pedro A Lemos
- Dept. of Interventional Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo-SP, 05403-000, Brazil; Dept. of Interventional Cardiology, Hospital Israelita Albert Einstein, Sao Paulo-SP, 05652-000, Brazil
| | - Gualtiero Pelosi
- Institute of Clinical Physiology, National Research Council, Pisa, IT 56124, Italy
| | - Lampros K Michalis
- Dept. of Interventional Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece.
| |
Collapse
|
47
|
Foldyna B, Lo J, Mayrhofer T, Grinspoon SK, Hoffmann U, Lu MT. Individual coronary plaque changes on serial CT angiography: Within-patient heterogeneity, natural history, and statin effects in HIV. J Cardiovasc Comput Tomogr 2019; 14:144-148. [PMID: 31451438 DOI: 10.1016/j.jcct.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is not known how the volume and composition of individual coronary plaques change over time in HIV-infected people and whether statins influence these changes. METHODS We included forty adults with HIV and subclinical coronary atherosclerosis who participated in a randomized controlled trial of placebo vs. atorvastatin. All participants underwent serial coronary computed tomography angiography at baseline and after one year. Individual coronary plaques were measured to assess the within-patient variability of plaque volume and composition changes. Left-main, proximal-right, proximal-left-anterior descending, and proximal-circumflex coronary segments were considered proximal. Plaque voxels with attenuation ≤130 Hounsfield Units (HU) were defined as noncalcified and further divided into fatty (<40HU) and fibrotic (40-130HU) components. RESULTS In 37 patients who completed the trial, there were 92 coronary plaques. Individual plaque changes varied highly, with some plaques increasing while others decreased in the same patient. Overall, 77% vs. 51% of individual plaques progressed, while 24% vs. 49% regressed in placebo and statin, respectively (p = 0.016). Substantial increases in proximal plaques drove the progression in placebo. Statins suppressed these large increases, resulting in a 3-fold lower variance in plaque volume change compared to placebo (p = 0.025). Statins suppressed progression of fibrotic (p = 0.015) plaque, with a trend towards reducing fatty (p = 0.075) plaque and no significant effect on the calcified portion (p = 0.203). CONCLUSION In persons with HIV, a population with increased atherosclerosis burden and cardiovascular risk, individual coronary plaque changes vary within a given individual. Large increases in proximal plaques characterize progression, and statins act in part by stabilizing progressing plaques by reducing fatty and fibrotic plaque components, without influencing the calcified portion.
Collapse
Affiliation(s)
- Borek Foldyna
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Clinic for Radiology, Cardiovascular Center, Bad Neustadt an der Saale, Germany.
| | - Janet Lo
- Program in Nutritional Metabolism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael T Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Should CT replace IVUS for evaluation of CAD in large-scale clinical trials: Effects of medical therapy on atherosclerotic plaque. J Cardiovasc Comput Tomogr 2019; 13:248-253. [PMID: 31351840 DOI: 10.1016/j.jcct.2019.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/23/2019] [Indexed: 11/22/2022]
Abstract
Clinical trials assessing the effect of medical therapies on atherosclerotic plaques have hitherto employed invasive imaging techniques such as intravascular ultrasound (IVUS). This has limited the study population to high-risk patients in whom invasive coronary angiography is indicated; moreover, IVUS typically is performed utilizing a target lesion-based analysis. Recently, comprehensive quantitative analysis of all atherosclerotic plaques in the complete coronary artery network has become possible through the use of coronary computed tomography angiography (CCTA). Excellent inter-observer and inter-scan reproducibility of CCTA has been reported. Several studies have already tested the applicability of CCTA-measured plaque volume changes as an imaging surrogate endpoint in clinical trials and have found positive results. Further, substantial evidence supports the use of CCTA as a novel imaging surrogate that can accurately assess the changes in plaque characteristics according to medical treatment. In this review, we summarize current evidences that support the use of CCTA as a novel imaging surrogate that can replace IVUS in evaluating the results of treatment. We also attempt to determine whether the technological advances in CCTA will extend its application beyond use as a diagnostic method in clinical practice to use in large-scale clinical trials.
Collapse
|
49
|
Coronary plaque composition assessed by cardiac computed tomography using adaptive Hounsfield unit thresholds. Clin Imaging 2019; 57:7-14. [PMID: 31078917 DOI: 10.1016/j.clinimag.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE Quantitative computed tomography (QCT) may be useful in detecting high-risk patients with coronary atherosclerosis. Assessment of plaque composition using fixed Hounsfield unit (HU) thresholds is influenced by luminal contrast density. A method using adaptive HU thresholds has therefore been developed. This study investigates agreement between plaque volumes derived using fixed and adaptive HU thresholds and the influence of luminal contrast density on the determination of plaque composition. METHODS We performed QCT in 260 patients with recent acute-onset chest pain without acute coronary syndrome. Plaque volumes of necrotic core (NC), fibrous fatty (FF), fibrous (FI) and dense calcium (DC) tissue were measured in 1161 coronary segments. Agreement between plaque volumes using fixed and adaptive HU thresholds was tested using the Bland-Altman method. Additionally, patients were stratified into tertiles of ascending aortic luminal contrast density and plaque volumes were compared. RESULTS Bland-Altman plots revealed that fixed HU thresholds underestimated FI and FF plaque volumes and overestimated NC and DC plaque volumes compared to adaptive HU thresholds. Volumes of dense calcium plaque differed with increasing tertiles of luminal contrast density when using fixed HU thresholds but not when using adaptive HU thresholds: DC for fixed HU thresholds (mm3, median (95%CI)): 7.73 (5.17;12.31), 9.83 (6.55;13.57), 12.02 (8.26;16.24); DC for adaptive HU thresholds (mm3, median (95%CI)): 7.34 (5.12;12.03), 7.78 (5.40;12.61), 8.56 (5.22;12.69). CONCLUSIONS Plaque volumes by fixed and adaptive HU thresholds differed. Plaque volumes by adaptive HU thresholds were more independent of luminal contrast density for higher attenuation tissues compared to fixed HU thresholds.
Collapse
|
50
|
Evaluation of fractional flow reserve in patients with stable angina: can CT compete with angiography? Eur Radiol 2019; 29:3669-3677. [DOI: 10.1007/s00330-019-06023-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|