1
|
Hanfi Y. Cardiac Magnetic Resonance Imaging and Coronary Computed Tomography Angiography in Cardiomyopathy: Diagnostic and Prognostic Insights. Echocardiography 2025; 42:e70140. [PMID: 40260894 DOI: 10.1111/echo.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
This review focuses on the key noninvasive cardiac imaging techniques, including coronary computed tomographic angiography (CCTA) and cardiac magnetic resonance imaging (CMR). It highlights essential publications pertinent to clinicians managing ischemic and nonischemic cardiomyopathy. CCTA provides an anatomical assessment that offers superior diagnostic accuracy compared to functional tests. It is a valuable tool for understanding the impact of nonobstructive coronary artery disease on patient outcomes. Additionally, CCTA is beneficial in defining the morphology of vulnerable plaque, which closely aligns with IVUS findings. It also demonstrates safety advantages, including reduced contrast volume and radiation dose and a lower risk of contrast-induced nephropathy when used in post-CABG besides conventional coronary angiograms. CMR provides invaluable insight into MI size and microvascular obstruction, critical for understanding a patient's prognosis. The assessment of scar tissue with CMR has become an essential tool for risk stratification and informs therapeutic decisions regarding the implantation of ICD.
Collapse
Affiliation(s)
- Yasmin Hanfi
- Department of Cardiology, Dallah Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Teraoka Y, Kato S, Yasuda N, Sawamura S, Horita N, Utsunomiya D. Late Gadolinium Enhancement Magnetic Resonance Imaging (MRI) for Predicting Left Ventricular Reverse Remodeling in Non-Ischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:895. [PMID: 39941566 PMCID: PMC11818329 DOI: 10.3390/jcm14030895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Late gadolinium enhancement (LGE)-MRI has proven utility in prognosticating outcomes in patients with non-ischemic cardiomyopathy (NICM). However, evidence regarding its ability to predict responsiveness to optimal medical therapy remains insufficient. This study conducted a meta-analysis to evaluate the predictive utility of LGE-MRI for left ventricular reverse remodeling (LVRR) in response to pharmacological therapy. Methods: Data from 1092 NICM patients across 13 studies were included in the analysis. To assess the predictive ability of LGE-MRI for LVRR following optimal medical therapy, a pooled odds ratio was calculated using an inverse variance random-effects meta-analysis. Subgroup analyses were performed by stratifying patients based on the presence or absence of left ventricular dilation and by LVEF (<30% vs. ≥30%). Results: The pooled odds ratio of the absence of LGE for predicting LVRR in NICM was 3.72 (95% CI: 2.83-4.90, I2 = 0, P for heterogeneity = 0.54). A comparison of pooled odds ratios between dilated cardiomyopathy (DCM) and NICM showed no significant difference (p = 0.16). A subgroup analysis in NICM based on the left ventricular ejection fraction (LVEF) demonstrated no significant difference in odds ratios between patients with LVEF <30% (OR: 2.96, 95% CI: 1.80-4.87) and those with LVEF ≥30% (OR: 3.97, 95% CI: 2.97-5.31), (p = 0.13). Conclusions: This meta-analysis suggested that LGE-MRI serves as a reliable predictor of LVRR in patients with NICM, regardless of left ventricular dilation or baseline LVEF classification.
Collapse
Affiliation(s)
- Yuri Teraoka
- Department of Diagnostic Radiology, Graduate School of Medicine, Yokohama City University, Kanagawa 236-00204, Japan (N.Y.); (S.S.)
| | - Shingo Kato
- Department of Diagnostic Radiology, Graduate School of Medicine, Yokohama City University, Kanagawa 236-00204, Japan (N.Y.); (S.S.)
| | - Naofumi Yasuda
- Department of Diagnostic Radiology, Graduate School of Medicine, Yokohama City University, Kanagawa 236-00204, Japan (N.Y.); (S.S.)
| | - Shungo Sawamura
- Department of Diagnostic Radiology, Graduate School of Medicine, Yokohama City University, Kanagawa 236-00204, Japan (N.Y.); (S.S.)
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Kanagawa 236-0004, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Graduate School of Medicine, Yokohama City University, Kanagawa 236-00204, Japan (N.Y.); (S.S.)
| |
Collapse
|
3
|
Matusik PS, Mikrut K, Bryll A, Popiela TJ, Matusik PT. Cardiac Magnetic Resonance Imaging in Diagnostics and Cardiovascular Risk Assessment. Diagnostics (Basel) 2025; 15:178. [PMID: 39857062 PMCID: PMC11764230 DOI: 10.3390/diagnostics15020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiac magnetic resonance (CMR) allows for analysis of cardiac function and myocardial tissue characterization. Increased left ventricular mass (LVM) is an independent predictor of cardiovascular events; however, the diagnosis of left ventricular hypertrophy and its prognostic value strongly depend on the LVM indexation method. Evaluation of the quantity and distribution of late gadolinium enhancement assists in clinical decisions on diagnosis, cardiovascular assessment, and interventions, including the placement of cardiac implantable electronic devices and the choice of an optimal procedural approach. Novel CMR techniques, such as T1 and T2 mapping, may be used for the longitudinal follow-up of myocardial fibrosis and myocardial edema or inflammation in different groups of patients, including patients with systemic sclerosis, myocarditis, cardiac sarcoidosis, amyloidosis, and both ischemic and non-ischemic cardiomyopathy, among others. Moreover, CMR tagging and feature tracking techniques might improve cardiovascular risk stratification in patients with different etiologies of left ventricular dysfunction. This review summarizes the knowledge about the current role of CMR in diagnostics and cardiovascular risk assessment to enable more personalized approach in clinical decision making.
Collapse
Affiliation(s)
- Patrycja S. Matusik
- Department of Radiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.S.M.); (A.B.); (T.J.P.)
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
| | - Katarzyna Mikrut
- Department of Cardiology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA;
| | - Amira Bryll
- Department of Radiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.S.M.); (A.B.); (T.J.P.)
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
| | - Tadeusz J. Popiela
- Department of Radiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.S.M.); (A.B.); (T.J.P.)
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland
- Department of Electrocardiology, St. John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
4
|
Kiang A, Al-Deiri D, Ming Wang TK, Nezafat R, Rizkallah D, Callahan TD, Lee JZ, Santangeli P, Wazni OM, Varma N, Nguyen C, Sroubek J, Kwon D. Late-gadolinium enhancement predicts appropriate device therapies in nonischemic recipients of primary prevention implantable cardioverter-defibrillators. Heart Rhythm 2025:S1547-5271(25)00010-4. [PMID: 39798682 DOI: 10.1016/j.hrthm.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Better risk stratification is needed to evaluate patients with nonischemic cardiomyopathy (NICM) for prophylactic implantable cardioverter-defibrillators (ICDs). Growing evidence suggests that cardiac magnetic resonance (CMR) imaging may be useful in this regard. OBJECTIVE We aimed to determine if late gadolinium enhancement (LGE) seen on CMR (dichotomized as none or minimal <2% vs significant ≥2%) predicts appropriate ICD therapies (primary endpoint) or all-cause mortality/transplant/left-ventricular assist device (LVAD) implantation (secondary endpoint) in patients with NICM. METHODS We identified 344 patients with NICM who underwent primary prevention ICD implantation at Cleveland Clinic between 2003 and 2021 with CMR within 12 months before implant. LGE was calculated as percentage myocardium with pixel intensity ≥5 standard deviations higher than that of reference myocardium. Endpoints were adjudicated retrospectively by chart review. RESULTS A total of 125 of 344 patients (36%) had none or minimal LGE, and 219 (64%) had significant LGE. Over a median follow-up of 61 months, 53 patients (24%) with significant LGE vs 10 (8%) with none or minimal LGE met the primary endpoint, and 56 patients (26%) vs 21 (17%) met the secondary endpoint, respectively. Significant LGE predicted the primary outcome in multivariable competing-risks regression (hazard ratio [HR] 2.99, 95% confidence interval [CI] 1.48-6.02, P = .002), but did not predict the secondary outcome in multivariable Cox regression (HR 1.34, 95% CI 0.78-2.29, P = .287). CONCLUSION In patients with NICM and primary prevention ICDs, LGE ≥2% is predictive of appropriate device therapies but not all-cause mortality/LVAD/transplant. LGE may be a relatively specific predictor of sudden cardiac arrest risk and therefore could potentially be used during evaluation for prophylactic ICD implantation.
Collapse
Affiliation(s)
- Alan Kiang
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Danah Al-Deiri
- Department of Cardiovascular Medicine, Section of Cardiovascular Imaging, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Tom Kai Ming Wang
- Department of Cardiovascular Medicine, Section of Cardiovascular Imaging, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Reza Nezafat
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Diane Rizkallah
- Department of Cardiovascular Medicine, Section of Cardiovascular Imaging, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Thomas D Callahan
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Justin Z Lee
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Pasquale Santangeli
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Oussama M Wazni
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Niraj Varma
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christopher Nguyen
- Department of Cardiovascular Medicine, Section of Cardiovascular Imaging, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jakub Sroubek
- Department of Cardiovascular Medicine, Section of Cardiac Electrophysiology and Pacing, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Deborah Kwon
- Department of Cardiovascular Medicine, Section of Cardiovascular Imaging, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
5
|
El-Damaty A, Sayed M, El-Maghawry M, Kandil H, Hassan M. Utility of Cardiac Magnetic Resonance in Assessing Arrhythmic Risk in Patients With Nonischemic Cardiomyopathy Undergoing Biventricular Pacing. Pacing Clin Electrophysiol 2024; 47:1528-1538. [PMID: 39311305 DOI: 10.1111/pace.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Nonischemic cardiomyopathy (NICM) is responsible for approximately one-third of heart failure and is associated with significant morbidity and mortality. Recent data suggested the lack of mortality reduction from adding a defibrillator to cardiac resynchronization therapy (CRT) in all patients with NICM. Myocardial fibrosis detected by cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) can help risk stratify patients who would benefit from adding a defibrillator to CRT in this patient population. OBJECTIVES We aim to assess the relationship between the presence of myocardial fibrosis detected by CMR-LGE and the rate of major arrhythmic events (MAE) that included sustained ventricular tachycardia (VT), appropriate cardiac resynchronization therapy-defibrillator (CRT-D) intervention, ventricular fibrillation (VF), and sudden cardiac death (SCD) in patients with NICM undergoing CRT and to compare all-cause mortality and heart failure improvement between patients receiving cardiac resynchronization therapy-pacing (CRT-P) versus those receiving CRT-D based on the presence of myocardial fibrosis. METHODS All consecutive patients with NICM satisfying a guideline-directed indication for CRT implantation were included in the study after excluding patients who refused to consent, patients with acute decompensated heart failure, and those contraindicated for a cardiac magnetic resonance (CMR). Patients were divided into two groups based on the presence of fibrosis in cardiac MRI: the LGE/CRT-D group and the No LGE/CRT-P group. They were then followed for 1 year. RESULTS Sixty patients were enrolled. Sixteen patients (26.6%) developed MAE during the study duration, among those patients, seven had myocardial fibrosis (receiving CRT-D as per protocol), while nine had no myocardial fibrosis (receiving CRT-P as per protocol), (41.2% vs. 20.9%, p = 0.045). The presence of CMR-LGE, regardless of the extent and distribution, predicted MAE with an odds ratio of 2.6 (CI = 1.78-8.9, p = 0.04). The presence of ≥7.5% of myocardial fibrosis by CMR was associated with 54% sensitivity and 100% specificity for MAE in the study population. All-cause mortality was significantly higher in the No LGE/CRT-P group versus the LGE/CRT-D group (15 [34.9%] vs. 2 [11.8%], p = 0.076). CONCLUSION In patients with NICM candidates for biventricular pacing, the presence of LGE on CMR, irrespective of the extent or segmental pattern, is independently associated with an MAE and is associated with worse heart failure outcomes. However, the absence of LGE did not rule out MAE, and implanting CRT-P based on lack of fibrosis may result in higher all-cause mortality.
Collapse
Affiliation(s)
| | - Mohamed Sayed
- Department of Cardiology, Aswan Heart Center, Aswan, Egypt
| | | | - Hossam Kandil
- Department of Cardiology, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Bernhard B, Ge Y, Antiochos P, Heydari B, Islam S, Sanchez Santiuste N, Steel KE, Bingham S, Mikolich JR, Arai AE, Bandettini WP, Patel AR, Shanbhag SM, Farzaneh-Far A, Heitner JF, Shenoy C, Leung SW, Gonzalez JA, Raman SV, Ferrari VA, Shah DJ, Schulz-Menger J, Stuber M, Simonetti OP, Kwong RY. Association of Adverse Clinical Outcomes With Peri-Infarct Ischemia Detected by Stress Cardiac Magnetic Imaging. J Am Coll Cardiol 2024; 84:417-429. [PMID: 39048273 DOI: 10.1016/j.jacc.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Early invasive revascularization guided by moderate to severe ischemia did not improve outcomes over medical therapy alone, underlying the need to identify high-risk patients for a more effective invasive referral. CMR could determine the myocardial extent and matching locations of ischemia and infarction. OBJECTIVES This study sought to investigate if CMR peri-infarct ischemia is associated with adverse events incremental to known risk markers. METHODS Consecutive patients were included in an expanded cohort of the multicenter SPINS (Stress CMR Perfusion Imaging in the United States) study. Peri-infarct ischemia was defined by the presence of any ischemic segment neighboring an infarcted segment by late gadolinium enhancement imaging. Primary outcome events included acute myocardial infarction and cardiovascular death, whereas secondary events included any primary events, hospitalization for unstable angina, heart failure hospitalization, and late coronary artery bypass surgery. RESULTS Among 3,915 patients (age: 61.0 ± 12.9 years; 54.7% male), ischemia, infarct, and peri-infarct ischemia were present in 752 (19.2%), 1,123 (28.8%), and 382 (9.8%) patients, respectively. At 5.3 years (Q1-Q3: 3.9-7.2 years) of median follow-up, primary and secondary events occurred in 406 (10.4%) and 745 (19.0%) patients, respectively. Peri-infarct ischemia was the strongest multivariable predictor for primary and secondary events (HRadjusted: 1.72 [95% CI: 1.23-2.41] and 1.71 [95% CI: 1.32-2.20], respectively; both P < 0.001), adjusted for clinical risk factors, left ventricular function, ischemia extent, and infarct size. The presence of peri-infarct ischemia portended to a >6-fold increased annualized primary event rate compared to those with no infarct and ischemia (6.5% vs 0.9%). CONCLUSIONS Peri-infarct ischemia is a novel and robust prognostic marker of adverse cardiovascular events.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Yin Ge
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | | | - Bobak Heydari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Sabeeh Islam
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Natalia Sanchez Santiuste
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kevin E Steel
- St Joseph Medical Center, Bellingham, Washington, USA
| | | | - J Ronald Mikolich
- Department of Cardiovascular Medicine, Sharon Regional Health System, Sharon, Pennsylvania, USA
| | - Andrew E Arai
- Division of Intramural Research, Cardiology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - W Patricia Bandettini
- Division of Intramural Research, Cardiology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Amit R Patel
- Division of Cardiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Sujata M Shanbhag
- Division of Intramural Research, Cardiology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - John F Heitner
- Cardiovascular Division, New York University Grossman School of Medicine, New York, New York, USA
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Steve W Leung
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Jorge A Gonzalez
- Division of Cardiology and Radiology, Scripps Clinic, La Jolla, California, USA
| | | | - Victor A Ferrari
- Hospital of the University of Pennsylvania and Penn Cardiovascular Institute, Philadelphia, Pennsylvania, USA
| | - Dipan J Shah
- Weill Cornell Medical College, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Jeanette Schulz-Menger
- Charité, Medical Faculty of the Humboldt University, Experimental and Clinical Research Center, Berlin, Germany; Helios Clinics, Cardiology, Berlin, Germany
| | - Matthias Stuber
- Department of Radiology, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio University, Columbus, Ohio, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Karur GR, Aneja A, Stojanovska J, Hanneman K, Latchamsetty R, Kersting D, Rajiah PS. Imaging of Cardiac Fibrosis: An Update, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329870. [PMID: 37753860 DOI: 10.2214/ajr.23.29870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Myocardial fibrosis (MF) is defined as excessive production and deposition of extra-cellular matrix proteins that result in pathologic myocardial remodeling. Three types of MF have been identified: replacement fibrosis from tissue necrosis, reactive fibrosis from myocardial stress, and infiltrative interstitial fibrosis from progressive deposition of nondegradable material such as amyloid. Although echocardiography, nuclear medicine, and CT play important roles in the assessment of MF, MRI is pivotal in the evaluation of MF, with the late gadolinium enhancement (LGE) technique used as a primary end point. The LGE technique focuses on the pattern and distribution of gadolinium accumulation in the myocardium and assists in the diagnosis and establishment of the cause of both ischemic and nonischemic cardiomyopathy. LGE MRI also aids prognostication and risk stratification. In addition, LGE MRI is used to guide the management of patients considered for ablation for arrhythmias. Parametric mapping techniques, including T1 mapping and extracellular volume measurement, allow detection and quantification of diffuse fibrosis, which may not be detected by LGE MRI. These techniques also allow monitoring of disease progression and therapy response. This review provides an update on the imaging of MF, including prognostication and risk stratification tools, electrophysiologic considerations, and disease monitoring.
Collapse
Affiliation(s)
- Gauri R Karur
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON, Canada
| | - Ashish Aneja
- Department of Cardiology, MetroHealth System, Cleveland, OH
| | | | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON, Canada
| | | | - David Kersting
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | | |
Collapse
|
8
|
Lund GK, Leptin S, Ragab H, Sinn MR, Fierenz A, Cavus E, Muellerleile K, Chen H, Erley J, Harms P, Kisters A, Starekova J, Adam G, Tahir E. Prognostic Relevance of Ischemic Late Gadolinium Enhancement in Apparently Healthy Endurance Athletes: A Follow-up Study Over 5 years. SPORTS MEDICINE - OPEN 2024; 10:13. [PMID: 38282168 PMCID: PMC10822825 DOI: 10.1186/s40798-024-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND In many cardiac diseases, myocardial scar tissue detected by late gadolinium enhancement (LGE) is a risk factor for cardiac arrhythmia and sudden cardiac death. Previous studies in athletes reported an increased risk for cardiac events in this group of ostensibly healthy subjects. However, the currently available longitudinal studies on this topic included fairly old marathon runners with a mean age of 57 ± 6 years or represent a case-control study in athletes with preexisting ventricular arrhythmia. The purpose of this prospective study was to analyze the prognostic relevance of LGE cardiac magnetic resonance (CMR) in middle-aged endurance athletes without known preexisting cardiac disorders. METHODS Three-hundred and twelve apparently healthy athletes were prospectively enrolled. Inclusion criteria were a training for a minimum of 10 h per week and regularly participation in competitions. LGE CMR was obtained at baseline in all athletes and presence of LGE was classified visually according to established criteria as ischemic LGE, major or minor non-ischemic LGE or absent LGE. Follow-up consisted of a standardized questionnaire and an additional phone call in case of incomplete data. An event was defined as fatal myocardial infarction, ventricular tachycardia, ventricular fibrillation or sudden cardiac death (SCD). RESULTS Complete follow-up was available for 293/312 athletes (94%) including 145 triathletes, 74 marathon runners and 74 cyclists after a median of 5.6 [quartiles 4,3, 6,4] years. Median age was 44 [35, 50] years at study enrollment. Spiroergometry did not reveal heart rhythm disturbances or significant ECG changes in the study population. LGE CMR revealed myocardial scar/focal fibrosis in 80 of 293 athletes (27%) including 7 athletes (2%) with ischemic subendocardial LGE of the left ventricle (LV), 16 athletes (6%) with major non-ischemic LGE of the LV and 57 athletes (19%) with minor non-ischemic LGE. During follow-up, two athletes experienced SCD. One marathon runner died during a training run and one cyclist died suddenly at rest. Both athletes had ischemic LGE of the LV. The event rate for SCD was 0.7% in the entire study population and 28% in the 7 athletes with ischemic LGE (p < 0.001 compared to athletes without LGE). CONCLUSIONS Our findings indicate that athletes with ischemic LGE due to unrecognized myocardial infarction are at increased risk for SCD. Our findings highlight the value of LGE CMR to detect occult ischemic scar in asymptomatic apparently healthy athletes, which is of importance, since current guidelines do not recommend to incorporate routine cardiac imaging in pre-participation screening. Athletes with ischemic myocardial scar should at least consider to refrain from high-level exercise as an individual decision.
Collapse
Affiliation(s)
- Gunnar K Lund
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Sharon Leptin
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Haissam Ragab
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin R Sinn
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alexander Fierenz
- Institution for Medical Biometry and Epidemiology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Ersin Cavus
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Germany
| | - Kai Muellerleile
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Germany
| | - Hang Chen
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jennifer Erley
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Phillip Harms
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anna Kisters
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jitka Starekova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Enver Tahir
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
9
|
Kim D, Collins JD, White JA, Hanneman K, Lee DC, Patel AR, Hu P, Litt H, Weinsaft JW, Davids R, Mukai K, Ng MY, Luetkens JA, Roguin A, Rochitte CE, Woodard PK, Manisty C, Zareba KM, Mont L, Bogun F, Ennis DB, Nazarian S, Webster G, Stojanovska J. SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device. J Cardiovasc Magn Reson 2024; 26:100995. [PMID: 38219955 PMCID: PMC11211236 DOI: 10.1016/j.jocmr.2024.100995] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - James A White
- Departments of Cardiac Sciences and Diagnostic Imaging, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital and Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
| | - Daniel C Lee
- Department of Medicine (Division of Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amit R Patel
- Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Division of Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Rachel Davids
- SHS AM NAM USA DI MR COLLAB ADV-APPS, Siemens Medical Solutions USA, Inc., Chicago, Il, USA
| | - Kanae Mukai
- Salinas Valley Memorial Healthcare System, Ryan Ranch Center for Advanced Diagnostic Imaging, Monterey, CA, USA
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera and Faculty of Medicine. Technion - Israel Institute of Technology, Israel
| | - Carlos E Rochitte
- Heart Institute, InCor, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karolina M Zareba
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Webster
- Department of Pediatrics (Cardiology), Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Jadranka Stojanovska
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
10
|
Argentiero A, Carella MC, Mandunzio D, Greco G, Mushtaq S, Baggiano A, Fazzari F, Fusini L, Muscogiuri G, Basile P, Siena P, Soldato N, Napoli G, Santobuono VE, Forleo C, Garrido EC, Di Marco A, Pontone G, Guaricci AI. Cardiac Magnetic Resonance as Risk Stratification Tool in Non-Ischemic Dilated Cardiomyopathy Referred for Implantable Cardioverter Defibrillator Therapy-State of Art and Perspectives. J Clin Med 2023; 12:7752. [PMID: 38137821 PMCID: PMC10743710 DOI: 10.3390/jcm12247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is a disease characterized by left ventricular dilation and systolic dysfunction. Patients with DCM are at higher risk for ventricular arrhythmias and sudden cardiac death (SCD). According to current international guidelines, left ventricular ejection fraction (LVEF) ≤ 35% represents the main indication for prophylactic implantable cardioverter defibrillator (ICD) implantation in patients with DCM. However, LVEF lacks sensitivity and specificity as a risk marker for SCD. It has been seen that the majority of patients with DCM do not actually benefit from the ICD implantation and, on the contrary, that many patients at risk of SCD are not identified as they have preserved or mildly depressed LVEF. Therefore, the use of LVEF as unique decision parameter does not maximize the benefit of ICD therapy. Multiple risk factors used in combination could likely predict SCD risk better than any single risk parameter. Several predictors have been proposed including genetic variants, electric indexes, and volumetric parameters of LV. Cardiac magnetic resonance (CMR) can improve risk stratification thanks to tissue characterization sequences such as LGE sequence, parametric mapping, and feature tracking. This review evaluates the role of CMR as a risk stratification tool in DCM patients referred for ICD.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Maria Cristina Carella
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Donato Mandunzio
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Giulia Greco
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Fabio Fazzari
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | | | - Paolo Basile
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Paola Siena
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Nicolò Soldato
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Gianluigi Napoli
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Eduard Claver Garrido
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Andrea Di Marco
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| |
Collapse
|
11
|
Assaf A, van der Graaf M, van Boven N, van Ettinger MJB, Diletti R, Hoogendijk MG, Szili-Torok T, Theuns DAMJ, Yap SC. Effect of myocardial scar size on the risk of ventricular arrhythmias in patients with chronic total coronary occlusion. Int J Cardiol 2023; 390:131205. [PMID: 37482094 DOI: 10.1016/j.ijcard.2023.131205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The presence of an untreated chronic total coronary occlusion (CTO) is associated with a higher risk of ventricular arrhythmias (VAs). This increased risk may be modulated by the presence of an existing scar. OBJECTIVES To evaluate whether scar size is associated with VA in patients with an implantable cardioverter-defibrillator (ICD) and a CTO. METHODS In this retrospective study we included patients with a CTO that received an ICD between 2005 and 2015. Scar size was estimated using the Selvester QRS score on a baseline 12‑lead ECG. The primary endpoint was any appropriate ICD therapy. RESULTS Our study population comprised 148 CTO patients with a median scar size at baseline of 18% (IQR, 9-27%). Patients with a scar size ≥18% more often had a CTO located in the left anterior descending artery and a higher proportion of poor left ventricular function (<35%) and infarct-related CTO compared to patients with a smaller scar size (<18%). During a median follow-up of 35 months (interquartile range [IQR], 8-60 months), 42 patients (28%) received appropriate ICD therapy. The cumulative 5-year event rate was higher in the patients with a large scar in comparison to those with a smaller or no scar (36% versus 19%, P = 0.04). Multivariable Cox regression analysis demonstrated that large scar and diabetes mellitus were independent factors associated with appropriate ICD therapy. CONCLUSION In ICD recipients with an untreated CTO, a larger scar is an independent factor associated with an increased risk of VA.
Collapse
Affiliation(s)
- Amira Assaf
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marisa van der Graaf
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nick van Boven
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maarten J B van Ettinger
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mark G Hoogendijk
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tamas Szili-Torok
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dominic A M J Theuns
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sing-Chien Yap
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Thomsen AF, Winkel BG, Golvano LCC, Porta-Sánchez A, Jøns C, Ferro E, Bertelsen L, Vazquez S, Bhardwaj P, Stampe NK, Ortiz-Perez JT, Andrea R, Engstrøm T, Køber L, Vejlstrup N, Mont L, Roca-Luque I, Jacobsen PK. Myocardial scarring and recurrence of ventricular arrhythmia in patients surviving an out-of-hospital cardiac arrest. J Cardiovasc Electrophysiol 2023; 34:2286-2295. [PMID: 37681321 DOI: 10.1111/jce.16058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION Prediction of recurrent ventricular arrhythmia (VA) in survivors of an out-of-hospital cardiac arrest (OHCA) is important, but currently difficult. Risk of recurrence may be related to presence of myocardial scarring assessed with late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Our study aims to characterize myocardial scarring as defined by LGE-CMR in survivors of a VA-OHCA and investigate its potential role in the risk of new VA events. METHODS Between 2015 and 2022, a total of 230 VA-OHCA patients without ST-segment elevation myocardial infarction had CMR before implantable cardioverter-defibrillator implantation for secondary prevention at Copenhagen University Hospital, Rigshospitalet, and Hospital Clínic, University of Barcelona, of which n = 170 patients had a conventional (no LGE protocol) CMR and n = 60 patients had LGE-CMR (including LGE protocol). Scar tissue including core, border zone (BZ) and BZ channels were automatically detected by specialized investigational software in patients with LGE-CMR. The primary endpoint was recurrent VA. RESULTS After exclusion, n = 52 VA-OHCA patients with LGE-CMR and a mean left ventricular ejection fraction of 49 ± 16% were included, of which 18 (32%) patients reached the primary endpoint of VA. Patients with recurrent VA in exhibited greater scar mass, core mass, BZ mass, and presence of BZ channels compared with patients without recurrent VA. The presence of BZ channels identified patients with recurrent VA with 67% sensitivity and 85% specificity (area under the ROC curve (AUC) 0.76; 95% CI: 0.63-0.89; p < .001) and was the strongest predictor of the primary endpoint. CONCLUSIONS The presence of BZ channels was the strongest predictor of recurrent VA in patients with an out of-hospital cardiac arrest and LGE-CMR.
Collapse
Affiliation(s)
- Anna F Thomsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bo G Winkel
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Andreu Porta-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Christian Jøns
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Elisenda Ferro
- Arrhythmia Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Litten Bertelsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sara Vazquez
- Arrhythmia Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Priya Bhardwaj
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Kjaer Stampe
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - José T Ortiz-Perez
- Cardiology Department, Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rut Andrea
- Cardiology Department, Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lluís Mont
- Arrhythmia Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ivo Roca-Luque
- Arrhythmia Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Peter K Jacobsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
13
|
Claessen G, La Gerche A, De Bosscher R. Return to play after myocarditis: time to abandon the one-size-fits-all approach? Br J Sports Med 2023; 57:1282-1283. [PMID: 37280039 PMCID: PMC10579467 DOI: 10.1136/bjsports-2022-106447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Affiliation(s)
- Guido Claessen
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Limburg, Belgium
- Hartcentrum Hasselt, Jessa Hospital, Hasselt, Limburg, Belgium
- Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - André La Gerche
- Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Ruben De Bosscher
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Gatterer C, Wollenweber T, Pichler V, Vraka C, Sunder-Plassmann G, Lenz M, Hengstenberg C, Hacker M, Loewe C, Graf S, Beitzke D. Detection of sympathetic denervation defects in Fabry disease by hybrid [ 11C]meta-hydroxyephedrine positron emission tomography and cardiac magnetic resonance. J Nucl Cardiol 2023; 30:1810-1821. [PMID: 36855009 PMCID: PMC10558396 DOI: 10.1007/s12350-023-03205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/05/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Myocardial glycosphingolipid accumulation in patients with Fabry disease (FD) causes biochemical and structural changes. This study aimed to investigate sympathetic innervation in FD using hybrid cardiac positron emission tomography (PET)/magnetic resonance imaging (MRI). METHODS AND RESULTS Patients with different stages of Fabry disease were prospectively enrolled to undergo routine CMR at 1.5T, followed by 3T hybrid cardiac PET/MRI with [11C]meta-hydroxyephedrine ([11C]mHED). Fourteen patients with either no evidence of cardiac involvement (n = 5), evidence of left ventricular hypertrophy (LVH) (n = 3), or evidence of LVH and fibrosis via late gadolinium enhancement (LGE) (n = 6) were analyzed. Compared to patients without LVH, patients with LVH or LVH and LGE had lower median T1 relaxation times (ms) at 1.5 T (1007 vs. 889 vs. 941 ms, p = 0.003) and 3T (1290 vs. 1172 vs. 1184 p = .014). Myocardial denervation ([11C]mHED retention < 7%·min) was prevalent only in patients with fibrosis, where a total of 16 denervated segments was found in two patients. The respective area of denervation exceeded the area of LGE in both patients (24% vs. 36% and 4% vs. 32%). However, sympathetic innervation defects ([11C]mHED retention ≤ 9%·min) occurred in all study groups. Furthermore, a reduced sympathetic innervation correlated with an increased left ventricular mass (p = .034, rs = - 0.57) and a reduced global longitudinal strain (GLS) (p = 0.023, rs = - 0.6). CONCLUSION Hybrid cardiac PET/MR with [11C]mHED revealed sympathetic innervation defects, accompanied by impaired GLS, in early stages of Fabry disease. However, denervation is only present in patients with advanced stages of FD showing fibrosis on CMR.
Collapse
Affiliation(s)
- Constantin Gatterer
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Tim Wollenweber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Verena Pichler
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Loewe
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Senta Graf
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
15
|
Theerasuwipakorn N, Chokesuwattanaskul R, Phannajit J, Marsukjai A, Thapanasuta M, Klem I, Chattranukulchai P. Impact of late gadolinium-enhanced cardiac MRI on arrhythmic and mortality outcomes in nonischemic dilated cardiomyopathy: updated systematic review and meta-analysis. Sci Rep 2023; 13:13775. [PMID: 37612359 PMCID: PMC10447440 DOI: 10.1038/s41598-023-41087-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Risk stratification based mainly on the impairment of left ventricular ejection fraction has limited performance in patients with nonischemic dilated cardiomyopathy (NIDCM). Evidence is rapidly growing for the impact of myocardial scar identified by late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (CMR) on cardiovascular events. We aim to assess the prognostic value of LGE on long-term arrhythmic and mortality outcomes in patients with NIDCM. PubMed, Scopus, and Cochrane databases were searched from inception to January 21, 2022. Studies that included disease-specific subpopulations of NIDCM were excluded. Data were independently extracted and combined via random-effects meta-analysis using a generic inverse-variance strategy. Data from 60 studies comprising 15,217 patients were analyzed with a 3-year median follow-up. The presence of LGE was associated with major ventricular arrhythmic events (pooled OR: 3.99; 95% CI 3.08, 5.16), all-cause mortality (pooled OR: 2.14; 95% CI 1.81, 2.52), cardiovascular mortality (pooled OR 2.83; 95% CI 2.23, 3.60), and heart failure hospitalization (pooled OR: 2.53; 95% CI 1.78, 3.59). Real-world evidence suggests that the presence of LGE on CMR was a strong predictor of adverse long-term outcomes in patients with NIDCM. Scar assessment should be incorporated as a primary determinant in the patient selection criteria for primary prophylactic implantable cardioverter-defibrillator placement.
Collapse
Affiliation(s)
- Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Ronpichai Chokesuwattanaskul
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Jeerath Phannajit
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Apichai Marsukjai
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Mananchaya Thapanasuta
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Igor Klem
- Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Pairoj Chattranukulchai
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Vázquez-Calvo S, Roca-Luque I, Althoff TF. Management of Ventricular Arrhythmias in Heart Failure. Curr Heart Fail Rep 2023; 20:237-253. [PMID: 37227669 DOI: 10.1007/s11897-023-00608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE OF REVIEW Despite substantial progress in medical and device-based heart failure (HF) therapy, ventricular arrhythmias (VA) and sudden cardiac death (SCD) remain a major challenge. Here we review contemporary management of VA in the context of HF with one particular focus on recent advances in imaging and catheter ablation. RECENT FINDINGS Besides limited efficacy of antiarrhythmic drugs (AADs), their potentially life-threatening side effects are increasingly acknowledged. On the other hand, with tremendous advances in catheter technology, electroanatomical mapping, imaging, and understanding of arrhythmia mechanisms, catheter ablation has evolved into a safe, efficacious therapy. In fact, recent randomized trials support early catheter ablation, demonstrating superiority over AAD. Importantly, CMR imaging with gadolinium contrast has emerged as a central tool for the management of VA complicating HF: CMR is not only essential for an accurate diagnosis of the underlying entity and subsequent treatment decisions, but also improves risk stratification for SCD prevention and patient selection for ICD therapy. Finally, 3-dimensional characterization of arrhythmogenic substrate by CMR and imaging-guided ablation approaches substantially enhance procedural safety and efficacy. VA management in HF patients is highly complex and should be addressed in a multidisciplinary approach, preferably at specialized centers. While recent evidence supports early catheter ablation of VA, an impact on mortality remains to be demonstrated. Moreover, risk stratification for ICD therapy may have to be reconsidered, taking into account imaging, genetic testing, and other parameters beyond left ventricular function.
Collapse
Affiliation(s)
- Sara Vázquez-Calvo
- Arrhythmia Section, Cardiovascular Institute (ICCV), CLÍNIC Barcelona University Hospital, C/Villarroel N° 170, 08036, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Ivo Roca-Luque
- Arrhythmia Section, Cardiovascular Institute (ICCV), CLÍNIC Barcelona University Hospital, C/Villarroel N° 170, 08036, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Till F Althoff
- Arrhythmia Section, Cardiovascular Institute (ICCV), CLÍNIC Barcelona University Hospital, C/Villarroel N° 170, 08036, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Wang TKM, Kocyigit D, Choi H, Anthony CM, Chan N, Bullen J, Popović ZB, Kapadia SR, Krishnaswamy A, Griffin BP, Flamm SD, Tang WHW, Kwon DH. Prognostic Power of Quantitative Assessment of Functional Mitral Regurgitation and Myocardial Scar Quantification by Cardiac Magnetic Resonance. Circ Cardiovasc Imaging 2023; 16:e015134. [PMID: 37503633 PMCID: PMC11447619 DOI: 10.1161/circimaging.122.015134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The severity classification of functional mitral regurgitation (FMR) remains controversial despite adverse prognosis and rapidly evolving interventions. Furthermore, it is unclear if quantitative assessment with cardiac magnetic resonance can provide incremental risk stratification for patients with ischemic cardiomyopathy (ICM) or non-ICM (NICM) in terms of FMR and late gadolinium enhancement (LGE). We evaluated the impact of quantitative cardiac magnetic resonance parameters on event-free survival separately for ICM and NICM, to assess prognostic FMR thresholds and interactions with LGE quantification. METHODS Patients (n=1414) undergoing cardiac magnetic resonance for cardiomyopathy (ejection fraction<50%) assessment from April 1, 2001 to December 31, 2017 were evaluated. The primary end point was all-cause death, heart transplant, or left ventricular assist device implantation during follow-up. Multivariable Cox analyses were conducted to determine the impact of FMR, LGE, and their interactions with event-free survival. RESULTS There were 510 primary end points, 395/782 (50.5%) in ICM and 114/632 (18.0%) in NICM. Mitral regurgitation-fraction per 5% increase was independently associated with the primary end point, hazards ratios (95% CIs) of 1.04 (1.01-1.07; P=0.034) in ICM and 1.09 (1.02-1.16; P=0.011) in NICM. Optimal mitral regurgitation-fraction threshold for moderate and severe FMR were ≥20% and ≥35%, respectively, in both ICM and NICM, based on the prediction of the primary outcome. Similarly, optimal LGE thresholds were ≥5% in ICM and ≥2% in NICM. Mitral regurgitation-fraction×LGE emerged as a significant interaction for the primary end point in ICM (P=0.006), but not in NICM (P=0.971). CONCLUSIONS Mitral regurgitation-fraction and LGE are key quantitative cardiac magnetic resonance biomarkers with differential associations with adverse outcomes in ICM and NICM. Optimal prognostic thresholds may provide important clinical risk prognostication and may further facilitate the ability to derive selection criteria to guide therapeutic decision-making.
Collapse
Affiliation(s)
- Tom Kai Ming Wang
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
- Section of Cardiovascular Imaging, Imaging Institute (T.K.M.W., Z.B.P., S.D.F., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Duygu Kocyigit
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Harry Choi
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Chris M Anthony
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Nicholas Chan
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Jennifer Bullen
- Department of Quantitative Health Sciences (J.B.), Cleveland Clinic, Cleveland, OH
| | - Zoran B Popović
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
- Section of Cardiovascular Imaging, Imaging Institute (T.K.M.W., Z.B.P., S.D.F., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Samir R Kapadia
- Section of Invasive and Interventional Cardiology, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (S.R.K., A.K.), Cleveland Clinic, Cleveland, OH
| | - Amar Krishnaswamy
- Section of Invasive and Interventional Cardiology, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (S.R.K., A.K.), Cleveland Clinic, Cleveland, OH
| | - Brian P Griffin
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - Scott D Flamm
- Section of Cardiovascular Imaging, Imaging Institute (T.K.M.W., Z.B.P., S.D.F., D.H.K.), Cleveland Clinic, Cleveland, OH
| | - W H Wilson Tang
- Section of Heart Failure and Transplantation Medicine, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (W.H.W.T.), Cleveland Clinic, Cleveland, OH
| | - Deborah H Kwon
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute (T.K.M.W., D.K., H.C., C.M.A., N.C., Z.B.P., B.P.G., D.H.K.), Cleveland Clinic, Cleveland, OH
- Section of Cardiovascular Imaging, Imaging Institute (T.K.M.W., Z.B.P., S.D.F., D.H.K.), Cleveland Clinic, Cleveland, OH
| |
Collapse
|
18
|
Konst RE, Parker M, Bhatti L, Kaolawanich Y, Alenezi F, Elias-Smale SE, Nijveldt R, Kim RJ. Prognostic Value of Cardiac Magnetic Resonance Imaging in Patients With a Working Diagnosis of MINOCA-An Outcome Study With up to 10 Years of Follow-Up. Circ Cardiovasc Imaging 2023; 16:e014454. [PMID: 37582156 DOI: 10.1161/circimaging.122.014454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Patients with a working diagnosis of myocardial infarction with unobstructed coronary arteries (MINOCA) represent a heterogeneous cohort. The prognosis could vary substantially depending on the underlying cause. Although cardiac magnetic resonance (CMR) is considered a key diagnostic tool in these patients, there are limited data linking the CMR diagnosis with the outcome. METHODS This study is a prospective outcomes registry of consecutive patients presenting with a working diagnosis of MINOCA who were clinically referred for CMR at an academic hospital from October 2003 to February 2020. We assessed the relationships between the prespecified CMR diagnoses of acute myocardial infarction (AMI), myocarditis, nonischemic cardiomyopathy (NICM), normal CMR study, and major adverse cardiac events (MACEs). RESULTS Of 252 patients, the CMR diagnosis was AMI in 63 (25%), myocarditis in 33 (13%), NICM in 111 (44%), normal CMR in 37 (15%), and other diagnoses in 8 (3%). A specific nonischemic cause was diagnosed allowing true MINOCA to be ruled-out in 57% of the cohort. During up to 10 years of follow-up (1595 patient-years), MACE occurred in 84 patients (33%), which included 64 deaths (25%). The unadjusted cumulative 10-year rate of MACE was 47% in AMI, 24% in myocarditis, 50% in NICM, and 3.5% in patients with a normal CMR (Log-rank P<0.001). The CMR diagnosis provided incremental prognostic value over clinical factors including age, gender, coronary artery disease risk factors, presentation with ST-elevation, and peak troponin (incremental χ² 17.9, P<0.001); and patients with diagnoses of AMI, myocarditis, and NICM had worse MACE-free survival than patients with a normal CMR. CONCLUSIONS In patients with a working diagnosis of MINOCA, CMR allows ruling-out true MINOCA in over half of the patients. CMR diagnoses of AMI, myocarditis, and NICM are associated with worse MACE-free survival, whereas a normal CMR study portends a benign prognosis.
Collapse
Affiliation(s)
- Regina E Konst
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (R.E.K., S.E.E.-S., R.N.)
- Duke Cardiovascular Magnetic Resonance Center (R.E.K., M.P., L.B., Y.K., F.A., R.J.K.), Duke University Medical Center, Durham, NC
| | - Michele Parker
- Duke Cardiovascular Magnetic Resonance Center (R.E.K., M.P., L.B., Y.K., F.A., R.J.K.), Duke University Medical Center, Durham, NC
| | - Lubna Bhatti
- Duke Cardiovascular Magnetic Resonance Center (R.E.K., M.P., L.B., Y.K., F.A., R.J.K.), Duke University Medical Center, Durham, NC
| | - Yodying Kaolawanich
- Duke Cardiovascular Magnetic Resonance Center (R.E.K., M.P., L.B., Y.K., F.A., R.J.K.), Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Y.K.)
| | - Fawaz Alenezi
- Duke Cardiovascular Magnetic Resonance Center (R.E.K., M.P., L.B., Y.K., F.A., R.J.K.), Duke University Medical Center, Durham, NC
| | - Suzette E Elias-Smale
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (R.E.K., S.E.E.-S., R.N.)
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (R.E.K., S.E.E.-S., R.N.)
| | - Raymond J Kim
- Division of Cardiology (F.A., R.J.K.), Duke University Medical Center, Durham, NC
- Department of Radiology (R.J.K.), Duke University Medical Center, Durham, NC
| |
Collapse
|
19
|
De Lio F, Andreis A, De Lio G, Bellettini M, Pidello S, Raineri C, Gallone G, Alunni G, Frea S, Imazio M, Castagno D, De Ferrari GM. Cardiac imaging for the prediction of sudden cardiac arrest in patients with heart failure. Heliyon 2023; 9:e17710. [PMID: 37456051 PMCID: PMC10338975 DOI: 10.1016/j.heliyon.2023.e17710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The identification of heart failure (HF) patients at risk for arrhythmic sudden cardiac arrest (SCA) is a major challenge in the cardiovascular field. In addition to optimal medical treatment for HF, implantable cardioverter defibrillator (ICD) is currently recommended to prevent SCA in patients with reduced left ventricular ejection fraction (LVEF). The indication for an ICD implantation, in addition to HF etiology, New York Health Association (NYHA) class and life expectancy, mainly depends on LVEF value at echocardiography. However, the actual role of LVEF in the prediction of SCA has recently been debated, while newer multimodality imaging techniques with increased prognostic accuracy have been developed. Speckle tracking imaging allows the quantification of mechanical dispersion, a marker of electrophysiological heterogeneity predisposing to malignant arrhythmias, while advanced cardiac magnetic resonance techniques such as myocardial T1-mapping and extracellular volume fraction assessment allow the evaluation of interstitial diffuse fibrosis. Nuclear imaging is helpful for the appraisal of sympathetic nervous system dysfunction, while newer computed tomography techniques assessing myocardial delayed enhancement allow the identification of focal myocardial scar. This review will focus on the most modern advances in the field of cardiovascular imaging along with its applications for the prediction of SCA in patients with HF. Modern artificial intelligence applications in cardiovascular imaging will also be discussed.
Collapse
Affiliation(s)
- Francesca De Lio
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Alessandro Andreis
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Giulia De Lio
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Matteo Bellettini
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Stefano Pidello
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Claudia Raineri
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Guglielmo Gallone
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Gianluca Alunni
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Simone Frea
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Massimo Imazio
- Cardiology Unit, Cardiothoracic Department, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Davide Castagno
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Città della Salute e della Scienza di Torino University Hospital, University of Torino, Turin, Italy
| |
Collapse
|
20
|
Frey SM, Brenner R, Theuns DA, Al-Shoaibi N, Crawley RJ, Ammann P, Sticherling C, Kühne M, Osswald S, Schaer B. Follow-up of CRT-D patients downgraded to CRT-P at the time of generator exchange. Front Cardiovasc Med 2023; 10:1217523. [PMID: 37396585 PMCID: PMC10308007 DOI: 10.3389/fcvm.2023.1217523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Background Some patients with cardiac resynchronisation therapy (CRT) experience super-response (LVEF improvements to ≥50%). At generator exchange (GE), downgrading (DG) from CRT-defibrillator (CRT-D) to CRT-pacemaker (CRT-P) could be an option for these patients on primary prevention ICD indication and no required ICD therapies. Long-term data on arrhythmic events in super-responders is scarce. Methods CRT-D patients with LVEF improvement to ≥50% at GE were identified in four large centres for retrospective analysis. Mortality, significant ventricular tachyarrhythmia and appropriate ICD-therapy were determined, and patient analysis was split into two groups (downgraded to CRT-P or not). Results Sixty-six patients (53% male, 26% coronary artery disease) on primary prevention were followed for a median of 129 months [IQR: 101-155] after implantation. 27 (41%) patients were downgraded to CRT-P at GE after a median of 68 [IQR: 58-98] months (LVEF 54% ± 4%). The other 39 (59%) continued with CRT-D therapy (LVEF 52% ± 6%). No cardiac death or significant arrhythmia occurred in the CRT-P group (median follow-up (FU) 38 months [IQR: 29-53]). Three appropriate ICD-therapies occurred in the CRT-D group [median FU 70 months (IQR: 39-97)]. Annualized event-rates after DG/GE were 1.5%/year and 1.0%/year in the CRT-D group and the whole cohort, respectively. Conclusions No significant tachyarrhythmia were detected in the patients downgraded to CRT-P during follow-up. However, three events were observed in the CRT-D group. Whilst downgrading CRT-D patients is an option, a small residual risk for arrhythmic events remains and decisions regarding downgrade should be made on a case-by-case basis.
Collapse
Affiliation(s)
- Simon Martin Frey
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Roman Brenner
- Department of Cardiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Dominic A. Theuns
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Naeem Al-Shoaibi
- Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Richard J. Crawley
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Peter Ammann
- Department of Cardiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Michael Kühne
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Stefan Osswald
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Beat Schaer
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Olausson E, Wertz J, Fridman Y, Bering P, Maanja M, Niklasson L, Wong TC, Fukui M, Cavalcante JL, Cater G, Kellman P, Bukhari S, Miller CA, Saba S, Ugander M, Schelbert EB. Diffuse myocardial fibrosis associates with incident ventricular arrhythmia in implantable cardioverter defibrillator recipients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.15.23285925. [PMID: 36824921 PMCID: PMC9949189 DOI: 10.1101/2023.02.15.23285925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background Diffuse myocardial fibrosis (DMF) quantified by extracellular volume (ECV) may represent a vulnerable phenotype and associate with life threatening ventricular arrhythmias more than focal myocardial fibrosis. This principle remains important because 1) risk stratification for implantable cardioverter defibrillators (ICD) remains challenging, and 2) DMF may respond to current or emerging medical therapies (reversible substrate). Objectives To evaluate the association between quantified by ECV in myocardium without focal fibrosis by late gadolinium enhancement (LGE) with time from ICD implantation to 1) appropriate shock, or 2) shock or anti-tachycardia pacing. Methods Among patients referred for cardiovascular magnetic resonance (CMR) without congenital disease, hypertrophic cardiomyopathy, or amyloidosis who received ICDs (n=215), we used Cox regression to associate ECV with incident ICD therapy. Results After a median of 2.9 (IQR 1.5-4.2) years, 25 surviving patients experienced ICD shock and 44 experienced shock or anti-tachycardia pacing. ECV ranged from 20.2% to 39.4%. No patient with ECV<25% experienced an ICD shock. ECV associated with both endpoints, e.g., hazard ratio 2.17 (95%CI 1.17-4.00) for every 5% increase in ECV, p=0.014 in a stepwise model for ICD shock adjusting for ICD indication, age, smoking, atrial fibrillation, and myocardial infarction, whereas focal fibrosis by LGE and global longitudinal strain (GLS) did not. Conclusions DMF measured by ECV associates with ventricular arrhythmias requiring ICD therapy in a dose-response fashion, even adjusting for potential confounding variables, focal fibrosis by LGE, and GLS. ECV-based risk stratification and DMF representing a therapeutic target to prevent ventricular arrhythmia warrant further investigation.
Collapse
Affiliation(s)
- Eric Olausson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | | | - Yaron Fridman
- Asheville Cardiology Associates, Mission Hospital, Asheville, NC, USA
| | | | - Maren Maanja
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Louise Niklasson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Timothy C Wong
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
| | - Miho Fukui
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - João L. Cavalcante
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - George Cater
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Syed Bukhari
- Department of Medicine, Temple University, Philadelphia, PA, USA
| | - Christopher A. Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Kolling Institute, Royal North Shore Hospital, and Sydney Medical School, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Samir Saba
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Kolling Institute, Royal North Shore Hospital, and Sydney Medical School, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Erik B. Schelbert
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
- Minneapolis Heart Institute East, United Hospital, Saint Paul, Minnesota
| |
Collapse
|
22
|
Wu KC. Myocardial Tissue Characterization to Predict Ventricular Arrhythmic Risk: Road Well-Traveled But So Far to Go. JACC Cardiovasc Imaging 2023; 16:639-641. [PMID: 36707355 PMCID: PMC10159956 DOI: 10.1016/j.jcmg.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Katherine C Wu
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Falasconi G, Penela D, Soto-Iglesias D, Francia P, Teres C, Viveros D, Bellido A, Alderete J, Meca-Santamaria J, Franco P, Ordoñez A, Díaz-Escofet M, Matiello M, Maldonado G, Scherer C, Huguet M, Cámara Ó, Ortiz-Pérez JT, Martí-Almor J, Berruezo A. Preventive substrate ablation in chronic post-myocardial infarction patients with high-risk scar characteristics for ventricular arrhythmias: rationale and design of PREVENT-VT study. J Interv Card Electrophysiol 2023; 66:39-47. [PMID: 36227461 DOI: 10.1007/s10840-022-01392-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent studies showed that an early strategy for ventricular tachycardia (VT) ablation resulted in reduction of VT episodes or mortality. Cardiac magnetic resonance (CMR)-derived border zone channel (BZC) mass has proved to be a strong non-invasive predictor of VT in post-myocardial infarction (MI). CMR-guided VT substrate ablation proved to be safe and effective for reducing sudden cardiac death (SCD) and VA occurrence. METHODS PREVENT-VT is a prospective, randomized, multicenter, and controlled trial designed to evaluate the safety and efficacy of prophylactic CMR-guided VT substrate ablation in chronic post-MI patients with CMR-derived arrhythmogenic scar characteristics. Chronic post-MI patients with late gadolinium enhancement (LGE) CMR will be evaluated. CMR images will be post-processed and the BZC mass measured: patients with a BZC mass > 5.15 g will be eligible. Consecutive patients will be enrolled at 3 centers and randomized on a 1:1 basis to undergo a VT substrate ablation (ABLATE arm) or optimal medical treatment (OMT arm). Primary prevention ICD will be implanted following guideline recommendations, while non-ICD candidates will be implanted with an implantable cardiac monitor (ICM). The primary endpoint is a composite outcome of sudden cardiac death (SCD) or sustained monomorphic VT, either treated by an ICD or documented with ICM. Secondary endpoints are procedural safety and efficiency outcomes of CMR-guided ablation. DISCUSSION In some patients, the first VA episode causes SCD or severe neurological damage. The aim of the PREVENT-VT is to evaluate whether primary preventive substrate ablation may be a safe and effective prophylactic therapy for reducing SCD and VA occurrence in patients with previous MI and high-risk scar characteristics based on CMR. TRIAL REGISTRATION ClinicalTrials.gov, NCT04675073, registered on January 1, 2021.
Collapse
Affiliation(s)
- Giulio Falasconi
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
- Campus Clínic, University of Barcelona, Barcelona, Spain
| | - Diego Penela
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - David Soto-Iglesias
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - Pietro Francia
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
- Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy
| | - Cheryl Teres
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - Daniel Viveros
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
- Campus Clínic, University of Barcelona, Barcelona, Spain
| | - Aldo Bellido
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - Jose Alderete
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
- Campus Clínic, University of Barcelona, Barcelona, Spain
| | | | - Paula Franco
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | | | - Marta Díaz-Escofet
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | | | | | - Claudia Scherer
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - Marina Huguet
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | | | - José-Tomás Ortiz-Pérez
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
- Campus Clínic, University of Barcelona, Barcelona, Spain
| | - Julio Martí-Almor
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain
| | - Antonio Berruezo
- Teknon Medical Centre, Heart Institute, Calle Villana 12 (08022), Barcelona, Spain.
| |
Collapse
|
24
|
Pandozi C, Mariani MV, Chimenti C, Maestrini V, Filomena D, Magnocavallo M, Straito M, Piro A, Russo M, Galeazzi M, Ficili S, Colivicchi F, Severino P, Mancone M, Fedele F, Lavalle C. The scar: the wind in the perfect storm-insights into the mysterious living tissue originating ventricular arrhythmias. J Interv Card Electrophysiol 2023; 66:27-38. [PMID: 35072829 PMCID: PMC9931863 DOI: 10.1007/s10840-021-01104-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Arrhythmic death is very common among patients with structural heart disease, and it is estimated that in European countries, 1 per 1000 inhabitants yearly dies for sudden cardiac death (SCD), mainly as a result of ventricular arrhythmias (VA). The scar is the result of cardiac remodelling process that occurs in several cardiomyopathies, both ischemic and non-ischemic, and is considered the perfect substrate for re-entrant and non-re-entrant arrhythmias. METHODS Our aim was to review published evidence on the histological and electrophysiological properties of myocardial scar and to review the central role of cardiac magnetic resonance (CMR) in assessing ventricular arrhythmias substrate and its potential implication in risk stratification of SCD. RESULTS Scarring process affects both structural and electrical myocardial properties and paves the background for enhanced arrhythmogenicity. Non-uniform anisotropic conduction, gap junctions remodelling, source to sink mismatch and refractoriness dispersion are some of the underlining mechanisms contributing to arrhythmic potential of the scar. All these mechanisms lead to the initiation and maintenance of VA. CMR has a crucial role in the evaluation of patients suffering from VA, as it is considered the gold standard imaging test for scar characterization. Mounting evidences support the use of CMR not only for the definition of gross scar features, as size, localization and transmurality, but also for the identification of possible conducting channels suitable of discrete ablation. Moreover, several studies call out the CMR-based scar characterization as a stratification tool useful in selecting patients at risk of SCD and amenable to implantable cardioverter-defibrillator (ICD) implantation. CONCLUSIONS Scar represents the substrate of ventricular arrhythmias. CMR, defining scar presence and its features, may be a useful tool for guiding ablation procedures and for identifying patients at risk of SCD amenable to ICD therapy.
Collapse
Affiliation(s)
- C. Pandozi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - C. Chimenti
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - V. Maestrini
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - D. Filomena
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Magnocavallo
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Straito
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - A. Piro
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Russo
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - M. Galeazzi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - S. Ficili
- ASP, Ragusa Maggiore Hospital, Modica, Italy
| | - F. Colivicchi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - P. Severino
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Mancone
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Fedele
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - C. Lavalle
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
25
|
Al-Sadawi M, Aslam F, Tao M, Fan R, Singh A, Rashba E. Association of Late-Gadolinium Enhancement in Cardiac Magnetic Resonance with Mortality, Ventricular Arrhythmias, and Heart Failure in Patients with Non-Ischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. Heart Rhythm O2 2023; 4:241-250. [PMID: 37124560 PMCID: PMC10134398 DOI: 10.1016/j.hroo.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Late gadolinium enhancement (LGE) on cardiac magnetic resonance is a predictor of adverse events in patients with nonischemic cardiomyopathy (NICM). Objective This meta-analysis evaluated the correlation between LGE and mortality, ventricular arrhythmias (VAs) and sudden cardiac death (SCD), and heart failure (HF) outcomes. Methods A literature search was conducted for studies reporting the association between LGE in NICM and the study endpoints. The primary endpoint was mortality. Secondary endpoints included VA and SCD, HF hospitalization, improvement in left ventricular ejection fraction (LVEF) to >35%, and heart transplantation referral. The search was not restricted to time or publication status. The minimum follow-up duration was 1 year. Results A total of 46 studies and 10,548 NICM patients (4610 with LGE, 5938 without LGE) were included; mean follow-up was 3 years (range 13-71 months). LGE was associated with increased mortality (odds ratio [OR] 2.9; 95% confidence interval [CI] 2.3-3.8; P < .01) and VA and SCD (OR 4.6; 95% CI 3.5-6.0; P < .01). LGE was associated with an increased risk of HF hospitalization (OR 3.4; 95% CI 2.3-5.0; P < .01), referral for transplantation (OR 5.1; 95% CI 2.5-10.4; P < .01), and decreased incidence of LVEF improvement to >35% (OR 0.2; 95% CI 0.03-0.85; P = .03). Conclusion LGE in NICM patients is associated with increased mortality, VA and SCD, and HF hospitalization and heart transplantation referral during long-term follow up. Given these competing risks of mortality and HF progression, prospective randomized controlled trials are required to determine if LGE is useful for guiding prophylactic implantable cardioverter-defibrillator placement in NICM patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric Rashba
- Address reprint requests and correspondence: Dr Eric Rashba, Stony Brook Heart Rhythm Center, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794.
| |
Collapse
|
26
|
Tat E, Ball C, Camren GP, Wroblewski I, Dajani KA, Goldberg A, Kinno M, Sanagala T, Syed MA, Wilber DJ, Rabbat M. Impact of late gadolinium enhancement extent, location, and pattern on ventricular tachycardia and major adverse cardiac events in patients with ischemic vs. non-ischemic cardiomyopathy. Front Cardiovasc Med 2022; 9:1026215. [PMID: 36330014 PMCID: PMC9622951 DOI: 10.3389/fcvm.2022.1026215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Left ventricular late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) has been associated with increased risk for life-threatening ventricular tachyarrhythmias. The differences in association between LGE characteristics and prognosis in patients with ischemic (ICM) vs. non-ischemic (NICM) cardiomyopathy is incompletely understood. Methods A total of 168 consecutive patients who underwent CMR imaging with either ICM or NICM were included in our study. LGE extent, location and pattern were examined for association to the primary endpoint of ventricular tachycardia (VT) and secondary endpoint of major adverse cardiac events (MACE). Results Of 68 (41%) patients with ICM and 97 (59%) patients with NICM, median LGE mass was 15% (IQR 9–28) for the ICM group and 10% (IQR 6–15) for the NICM group. On multivariate analysis for both groups, LGE characteristics were prognostic while LVEF was not. In patients with ICM, septal and apical segment LGE, and involvement of multiple walls predicted both endpoints on multivariate analysis. LGE extent (≥median) and inferior wall LGE independently predicted the primary endpoint. In patients with NICM, anterior, inferior and apical segment LGE, and involvement of multiple walls predicted both endpoints on multivariate analysis. LGE extent (≥median, number of LGE segments, LGE stratified per 5% increase) and midwall LGE were independent predictors of the primary endpoint. Conclusions Although LGE was an independent predictor of prognosis in both groups, LGE extent, location, and pattern characteristics were more powerful correlates to worse outcomes in patients with NICM than ICM.
Collapse
Affiliation(s)
- Emily Tat
- Department of Internal Medicine, Columbia University Medical Center, New York, NY, United States
| | - Caroline Ball
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Gerald P. Camren
- Department of Radiology, Loyola University Medical Center, Maywood, IL, United States
| | - Igor Wroblewski
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Khaled A. Dajani
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Ari Goldberg
- Department of Radiology, Loyola University Medical Center, Maywood, IL, United States
| | - Menhel Kinno
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Thriveni Sanagala
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Mushabbar A. Syed
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - David J. Wilber
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Mark Rabbat
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
- *Correspondence: Mark Rabbat
| |
Collapse
|
27
|
Velcea AE, Mihaila Baldea S, Nicula AI, Vinereanu D. The role of multimodality imaging in the selection for implantable cardioverter-defibrillators in heart failure: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1066-1072. [PMID: 35899916 DOI: 10.1002/jcu.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Advanced pharmacologic and interventional therapies have improved survival in heart failure. Implantable cardioverter-defibrillators (ICD) have been shown to reduce mortality in patients with heart failure, but the benefit appears to be uneven in this population. We reviewed the evidence showing the benefit of ICD therapy in heart failure patients, the main issues arising from these studies, and the possible answers for a better risk stratification. In addition, we showed that multimodality imaging could improve patient selection for the implantation of ICDs, in both primary and secondary prevention, beyond the selection using only the left ventricular ejection fraction, by concentrating on arrhythmic substrate.
Collapse
Affiliation(s)
- Andreea Elena Velcea
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| | - Sorina Mihaila Baldea
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Radiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| |
Collapse
|
28
|
van der Bijl P, Bax JJ. Imaging for risk stratification of sudden cardiac death. Herzschrittmacherther Elektrophysiol 2022; 33:261-267. [PMID: 35841401 PMCID: PMC9411093 DOI: 10.1007/s00399-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
Sudden cardiac death (SCD) can be effectively prevented with the use of implantable cardioverter-defibrillator (ICD). Current guidelines advocate an ICD for primary prevention in the presence of an left ventricular ejection fraction (LVEF) ≤ 35%. The majority of individuals that experience SCD, however, have an LVEF > 35%. Multimodality cardiac imaging has the ability to visualize the three factors responsible for arrhythmia-mediated SCD, namely substrate, trigger and modulator. Advances in cardiac imaging techniques have allowed improved SCD risk stratification, especially in the group of patients with an LVEF > 35%. However, clinical integration of cardiac imaging for SCD risk stratification will require more comparative data between modalities and parameters, as well as evidence of an impact on outcomes. The current review represents an update on the use of multimodality imaging techniques for SCD risk stratification.
Collapse
Affiliation(s)
- Pieter van der Bijl
- Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre, Albinusdreef 2, 2300, RC, Leiden, The Netherlands. .,Turku Heart Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.
| |
Collapse
|
29
|
Jáuregui B, Calvo N, Olóriz T, López-Perales C, Asso A. Cardiac Magnetic Resonance and Ventricular Arrhythmia Risk Assessment in Chronic Ischemic Cardiomyopathy: An Unmet Need? Rev Cardiovasc Med 2022; 23:246. [PMID: 39076917 PMCID: PMC11266788 DOI: 10.31083/j.rcm2307246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 07/31/2024] Open
Abstract
Ischemic cardiomyopathy (ICM) constitutes a major public health issue, directly involved in the prevalence and incidence of heart failure, ventricular arrhythmias (VA) and sudden cardiac death (SCD). Severe impairment of left ventricular ejection fraction (LVEF) is considered a high-risk marker for SCD, conditioning the criteria that determine an implantable cardiac defibrillator (ICD) placement in primary prevention according to current clinical guidelines. However, its sensitivity and specificity values for the prediction of SCD in ICM may not be highest. Myocardial characterization using cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) sequences has made it possible to answer clinically relevant questions that are currently not assessable with LVEF alone. There is growing scientific evidence in favor of the relationship between fibrosis evaluated with CMR and the appearance of VA/SCD in patients with ICM. This evidence should make us contemplate a more realistic clinical value of LVEF in our daily clinical decision-making.
Collapse
Affiliation(s)
- Beatriz Jáuregui
- Arrhytmia Section, Cardiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Naiara Calvo
- Arrhytmia Section, Cardiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Teresa Olóriz
- Arrhytmia Section, Cardiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Carlos López-Perales
- Arrhytmia Section, Cardiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Antonio Asso
- Arrhytmia Section, Cardiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| |
Collapse
|
30
|
Dawkins JF, Ehdaie A, Rogers R, Soetkamp D, Valle J, Holm K, Sanchez L, Tremmel I, Nawaz A, Shehata M, Wang X, Prakosa A, Yu J, Van Eyk JE, Trayanova N, Marbán E, Cingolani E. Biological substrate modification suppresses ventricular arrhythmias in a porcine model of chronic ischaemic cardiomyopathy. Eur Heart J 2022; 43:2139-2156. [PMID: 35262692 PMCID: PMC9649918 DOI: 10.1093/eurheartj/ehac042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 08/15/2023] Open
Abstract
AIMS Cardiomyopathy patients are prone to ventricular arrhythmias (VA) and sudden cardiac death. Current therapies to prevent VA include radiofrequency ablation to destroy slowly conducting pathways of viable myocardium which support re-entry. Here, we tested the reverse concept, namely that boosting local tissue viability in zones of slow conduction might eliminate slow conduction and suppress VA in ischaemic cardiomyopathy. METHODS AND RESULTS Exosomes are extracellular vesicles laden with bioactive cargo. Exosomes secreted by cardiosphere-derived cells (CDCEXO) reduce scar and improve heart function after intramyocardial delivery. In a VA-prone porcine model of ischaemic cardiomyopathy, we injected CDCEXO or vehicle into zones of delayed conduction defined by electroanatomic mapping. Up to 1-month post-injection, CDCEXO, but not the vehicle, decreased myocardial scar, suppressed slowly conducting electrical pathways, and inhibited VA induction by programmed electrical stimulation. In silico reconstruction of electrical activity based on magnetic resonance images accurately reproduced the suppression of VA inducibility by CDCEXO. Strong anti-fibrotic effects of CDCEXO, evident histologically and by proteomic analysis from pig hearts, were confirmed in a co-culture assay of cardiomyocytes and fibroblasts. CONCLUSION Biological substrate modification by exosome injection may be worth developing as a non-destructive alternative to conventional ablation for the prevention of recurrent ventricular tachyarrhythmias.
Collapse
Affiliation(s)
- James F. Dawkins
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ashkan Ehdaie
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jackelyn Valle
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Kevin Holm
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ileana Tremmel
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Asma Nawaz
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael Shehata
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Xunzhang Wang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Yu
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Natalia Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
31
|
Terenicheva MA, Stukalova OV, Shakhnovich RM, Ternovoy SK. The role of cardiac magnetic resonance imaging in defining the prognosis of patients with acute <i>ST</i>-segment elevation myocardial infarction. Part 2. Assessment of the disease prognosis. TERAPEVT ARKH 2022; 94:552-557. [DOI: 10.26442/00403660.2022.04.201458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
Currently the incidence of congestive heart failure after ST-segment elevation myocardial infarction (STEMI) tends to increase. Reperfusion therapy is still the only effective method to reduce an infarct size. Therefore, there is a high unmet need of novel cardioprotective treatments that would improve outcomes in such patients. Recent advances in cardiovascular magnetic resonance (CMR) methods enabled the identification of certain new infarct characteristics associated with the development of heart failure and sudden cardiac death. These characteristics can help identify new groups of high risk patients and used as a targets for novel cardioprotective treatments. This part of the review summarizes novel CMR-based characteristics of myocardial infarction and their role in the prognostic stratification of STEMI patients.
Collapse
|
32
|
Corbo MD, Vitale E, Pesolo M, Casavecchia G, Gravina M, Pellegrino P, Brunetti ND, Iacoviello M. Recent Non-Invasive Parameters to Identify Subjects at High Risk of Sudden Cardiac Death. J Clin Med 2022; 11:1519. [PMID: 35329848 PMCID: PMC8955301 DOI: 10.3390/jcm11061519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases remain among the leading causes of death worldwide and sudden cardiac death (SCD) accounts for ~25% of these deaths. Despite its epidemiologic relevance, there are very few diagnostic strategies available useful to prevent SCD mainly focused on patients already affected by specific cardiovascular diseases. Unfortunately, most of these parameters exhibit poor positive predictive accuracy. Moreover, there is also a need to identify parameters to stratify the risk of SCD among otherwise healthy subjects. This review aims to provide an update on the most relevant non-invasive diagnostic features to identify patients at higher risk of developing malignant ventricular arrhythmias and SCD.
Collapse
Affiliation(s)
- Maria Delia Corbo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Enrica Vitale
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Maurizio Pesolo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Grazia Casavecchia
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Matteo Gravina
- University Radiology Unit, University Polyclinic Hospital of Foggia, 71100 Foggia, Italy;
| | - Pierluigi Pellegrino
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Natale Daniele Brunetti
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| |
Collapse
|
33
|
Holtackers RJ, Emrich T, Botnar RM, Kooi ME, Wildberger JE, Kreitner KF. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. ROFO-FORTSCHR RONTG 2022; 194:491-504. [PMID: 35196714 DOI: 10.1055/a-1718-4355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) is a widely used cardiac magnetic resonance imaging (MRI) technique to diagnose a broad range of ischemic and non-ischemic cardiomyopathies. Since its development and validation against histology already more than two decades ago, the clinical utility of LGE and its span of applications have increased considerably. METHODS In this review we will present the basic concepts of LGE imaging and its diagnostic and prognostic value, elaborate on recent developments and emerging methods, and finally discuss future prospects. RESULTS Continuous developments in 3 D imaging methods, motion correction techniques, water/fat-separated imaging, dark-blood methods, and scar quantification improved the performance and further expanded the clinical utility of LGE imaging. CONCLUSION LGE imaging is the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened its position. KEY POINTS · LGE MRI is the reference standard for the noninvasive assessment of myocardial viability. · LGE MRI is used to diagnose a broad range of non-ischemic cardiomyopathies in everyday clinical practice.. · Improvements in spatial resolution and scar-to-blood contrast further strengthened its position. · Continuous developments improve its performance and further expand its clinical utility. CITATION FORMAT · Holtackers RJ, Emrich T, Botnar RM et al. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1718-4355.
Collapse
Affiliation(s)
- Robert J Holtackers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands.,School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - René M Botnar
- School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - M Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
| | - K-F Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
| |
Collapse
|
34
|
Popescu DM, Abramson HG, Yu R, Lai C, Shade JK, Wu KC, Maggioni M, Trayanova NA. Anatomically informed deep learning on contrast-enhanced cardiac magnetic resonance imaging for scar segmentation and clinical feature extraction. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2022; 3:2-13. [PMID: 35265930 PMCID: PMC8890075 DOI: 10.1016/j.cvdhj.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Visualizing fibrosis on cardiac magnetic resonance (CMR) imaging with contrast enhancement (late gadolinium enhancement; LGE) is paramount in characterizing disease progression and identifying arrhythmia substrates. Segmentation and fibrosis quantification from LGE-CMR is intensive, manual, and prone to interobserver variability. There is an unmet need for automated LGE-CMR image segmentation that ensures anatomical accuracy and seamless extraction of clinical features. Objective This study aimed to develop a novel deep learning solution for analysis of contrast-enhanced CMR images that produces anatomically accurate myocardium and scar/fibrosis segmentations and uses these to calculate features of clinical interest. Methods Data sources were 155 2-dimensional LGE-CMR patient scans (1124 slices) and 246 synthetic "LGE-like" scans (1360 slices) obtained from cine CMR using a novel style-transfer algorithm. We trained and tested a 3-stage neural network that identified the left ventricle (LV) region of interest (ROI), segmented ROI into viable myocardium and regions of enhancement, and postprocessed the segmentation results to enforce conforming to anatomical constraints. The segmentations were used to directly compute clinical features, such as LV volume and scar burden. Results Predicted LV and scar segmentations achieved 96% and 75% balanced accuracy, respectively, and 0.93 and 0.57 Dice coefficient when compared to trained expert segmentations. The mean scar burden difference between manual and predicted segmentations was 2%. Conclusion We developed and validated a deep neural network for automatic, anatomically accurate expert-level LGE- CMR myocardium and scar/fibrosis segmentation, allowing direct calculation of clinical measures. Given the training set heterogeneity, our approach could be extended to multiple imaging modalities and patient pathologies.
Collapse
Affiliation(s)
- Dan M. Popescu
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
| | - Haley G. Abramson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rebecca Yu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Changxin Lai
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie K. Shade
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
| | - Katherine C. Wu
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mauro Maggioni
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland
| | - Natalia A. Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Savarese G, Stolfo D, Sinagra G, Lund LH. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol 2022; 19:100-116. [PMID: 34489589 PMCID: PMC8420965 DOI: 10.1038/s41569-021-00605-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Left ventricular ejection fraction (EF) remains the major parameter for diagnosis, phenotyping, prognosis and treatment decisions in heart failure. The 2016 ESC heart failure guidelines introduced a third EF category for an EF of 40-49%, defined as heart failure with mid-range EF (HFmrEF). This category has been largely unexplored compared with heart failure with reduced EF (HFrEF; defined as EF <40% in this Review) and heart failure with preserved EF (HFpEF; defined as EF ≥50%). The prevalence of HFmrEF within the overall population of patients with HF is 10-25%. HFmrEF seems to be an intermediate clinical entity between HFrEF and HFpEF in some respects, but more similar to HFrEF in others, in particular with regard to the high prevalence of ischaemic heart disease in these patients. HFmrEF is milder than HFrEF, and the risk of cardiovascular events is lower in patients with HFmrEF or HFpEF than in those with HFrEF. By contrast, the risk of non-cardiovascular adverse events is similar or greater in patients with HFmrEF or HFpEF than in those with HFrEF. Evidence from post hoc and subgroup analyses of randomized clinical trials and a trial of an SGLT1-SGLT2 inhibitor suggests that drugs that are effective in patients with HFrEF might also be effective in patients with HFmrEF. Although the EF is a continuous measure with considerable variability, in this comprehensive Review we suggest that HFmrEF is a useful categorization of patients with HF and shares the most important clinical features with HFrEF, which supports the renaming of HFmrEF to HF with mildly reduced EF.
Collapse
Affiliation(s)
- Gianluigi Savarese
- grid.4714.60000 0004 1937 0626Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Davide Stolfo
- grid.4714.60000 0004 1937 0626Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden ,Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University Hospital of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University Hospital of Trieste, Trieste, Italy
| | - Lars H. Lund
- grid.4714.60000 0004 1937 0626Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Jáuregui B, Soto-Iglesias D, Penela D, Acosta J, Fernández-Armenta J, Linhart M, Ordóñez A, San Antonio R, Terés C, Chauca A, Carreño JM, Scherer C, Falasconi G, Prat-González S, Perea RJ, Mont L, Bosch X, Ortiz-Pérez JT, Berruezo A. Cardiovascular magnetic resonance determinants of ventricular arrhythmic events after myocardial infarction. Europace 2021; 24:938-947. [PMID: 34849726 DOI: 10.1093/europace/euab275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS To non-invasively characterize, by means of late gadolinium enhancement cardiac magnetic resonance (LGE-CMR), scar differences, and potential variables associated with ventricular tachycardia (VT) occurrence in chronic post-myocardial infarction (MI) patients. METHODS AND RESULTS A case-control study was designed through retrospective LGE-CMR data analysis of chronic post-MI patients (i) consecutively referred for VT substrate ablation after a first VT episode (n = 66) and (ii) from a control group (n = 84) with no arrhythmia evidence. The myocardium was characterized differentiating core, border zone (BZ), and BZ channels (BZCs) using the ADAS 3D post-processing imaging platform. Clinical and scar characteristics, including a novel parameter, the BZC mass, were compared between both groups. One hundred and fifty post-MI patients were included. Four multivariable Cox proportional hazards regression models were created for total scar mass, BZ mass, core mass, and BZC mass, adjusting them by age, sex, and left ventricular ejection fraction (LVEF). A cut-off of 5.15 g of BZC mass identified the cases with 92.4% sensitivity and 86.9% specificity [area under the ROC curve (AUC) 0.93 (0.89-0.97); P < 0.001], with a significant increase in the AUC compared to other scar parameters (P < 0.001 for all pairwise comparisons). Adding BZC mass to LVEF allowed to reclassify 33.3% of the cases and 39.3% of the controls [net reclassification improvement = 0.73 (0.71-0.74)]. CONCLUSIONS The mass of BZC is the strongest independent variable associated with the occurrence of sustained monomorphic ventricular tachycardia in post-MI patients after adjustment for age, sex, and LVEF. Border zone channel mass measurement could permit a more accurate VT risk stratification than LVEF in chronic post-MI patients.
Collapse
Affiliation(s)
- Beatriz Jáuregui
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain.,Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - David Soto-Iglesias
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain.,Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Diego Penela
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain.,Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Juan Acosta
- Arrhythmia Department, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Fernández-Armenta
- Arrhythmia Department, Puerta del Mar University Hospital, Avda. Ana de Viya 21, 11009 Cádiz, Spain
| | - Markus Linhart
- Arrhythmia Department, Josep Trueta University Hospital, Avda. de França s/n, 17007 Girona, Spain
| | - Augusto Ordóñez
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Rodolfo San Antonio
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Cheryl Terés
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Alfredo Chauca
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - José M Carreño
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Claudia Scherer
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Giulio Falasconi
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain
| | - Susana Prat-González
- Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Rosario J Perea
- Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Lluís Mont
- Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Xavier Bosch
- Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - José T Ortiz-Pérez
- Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| | - Antonio Berruezo
- Arrhythmia Department, Heart Institute, Teknon Medical Center, C/Vilana 12, 08022 Barcelona, Spain.,Arrhythmia Department, Hospital Clínic, University of Barcelona, C/Villarroel 170, 08024 Barcelona, Spain
| |
Collapse
|
37
|
Maleckar MM, Myklebust L, Uv J, Florvaag PM, Strøm V, Glinge C, Jabbari R, Vejlstrup N, Engstrøm T, Ahtarovski K, Jespersen T, Tfelt-Hansen J, Naumova V, Arevalo H. Combined In-silico and Machine Learning Approaches Toward Predicting Arrhythmic Risk in Post-infarction Patients. Front Physiol 2021; 12:745349. [PMID: 34819872 PMCID: PMC8606551 DOI: 10.3389/fphys.2021.745349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to clinical practice. Classical machine learning (ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and decision trees) as well as neural network techniques, shown to increase prediction accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations based solely on infarct and ventricular geometry. We present an initial combined image-based patient-specific in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate that simulation-supported data augmentation improves prediction models, combining patient data, computational simulation, and advanced statistical modeling, improving overall accuracy for arrhythmia risk assessment. Methods: MRI-based computational models were constructed from 30 patients 5 days post-MI (the “baseline” population). In order to assess the utility biophysical model-supported data augmentation for improving arrhythmia prediction, we augmented the virtual baseline patient population. Each patient ventricular and ischemic geometry in the baseline population was used to create a subfamily of geometric models, resulting in an expanded set of patient models (the “augmented” population). Arrhythmia induction was attempted via programmed stimulation at 17 sites for each virtual patient corresponding to AHA LV segments and simulation outcome, “arrhythmia,” or “no-arrhythmia,” were used as ground truth for subsequent statistical prediction (machine learning, ML) models. For each patient geometric model, we measured and used choice data features: the myocardial volume and ischemic volume, as well as the segment-specific myocardial volume and ischemia percentage, as input to ML algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support vector machine, logistic regression, xgboost, and decision tree models to predict the simulation outcome from these geometric features alone. To explore neural network ML techniques, we trained both a three - and a four-hidden layer multilayer perceptron feed forward neural networks (NN), again predicting simulation outcomes from these geometric features alone. ML and NN models were trained on 70% of randomly selected segments and the remaining 30% was used for validation for both baseline and augmented populations. Results: Stimulation in the baseline population (30 patient models) resulted in reentry in 21.8% of sites tested; in the augmented population (129 total patient models) reentry occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from 0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases. Conclusion: Machine learning techniques, combined with patient-specific, image-based computational simulations, can provide key clinical insights with high accuracy rapidly and efficiently. In the case of sparse or missing patient data, simulation-supported data augmentation can be employed to further improve predictive results for patient benefit. This work paves the way for using data-driven simulations for prediction of dangerous arrhythmia in MI patients.
Collapse
Affiliation(s)
- Mary M Maleckar
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Lena Myklebust
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Julie Uv
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | | - Vilde Strøm
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Charlotte Glinge
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Reza Jabbari
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kiril Ahtarovski
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Naumova
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | |
Collapse
|
38
|
Haanschoten D, Elvan A. The DAPA Trial in the Context of Previous Prophylactic ICD Landmark Trials. Arrhythm Electrophysiol Rev 2021; 10:154-158. [PMID: 34777819 PMCID: PMC8576491 DOI: 10.15420/aer.2021.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
In patients with ischaemic cardiomyopathy and severely reduced left ventricular ejection fraction (LVEF), an arrhythmogenic milieu is created by a complex interplay between myocardial scarring (assessed by cardiac MRI) and multiple other factors (ventricular ectopy, ischaemia and autonomic imbalance), favouring the occurrence of arrhythmic sudden cardiac death (SCD). Currently, a dynamic and robust model of dichotomised SCD risk assessment after primary percutaneous coronary intervention (PCI) is lacking, underlining the urgent need for further refinement of the widely accepted and guidelines-based criteria (ischaemic cardiomyopathy, LVEF ≤35%) for primary prevention. This review addresses the potential additional value of the recently published Defibrillator After Primary Angioplasty (DAPA) trial results. The DAPA trial conveys important messages and provides novel perspectives regarding left ventricular function post-primary PCI as an (early) risk marker for SCD and the impact of prophylactic ICD implantation on survival in this cohort. In the context of other previous primary prevention trials, DAPA was the first trial including only ST-elevation MI patients all treated with acute PCI.
Collapse
Affiliation(s)
| | - Arif Elvan
- Heart Centre, Department of Cardiology, Isala Hospital, Zwolle, the Netherlands
| |
Collapse
|
39
|
Merino-Caviedes S, Gutierrez LK, Alfonso-Almazán JM, Sanz-Estébanez S, Cordero-Grande L, Quintanilla JG, Sánchez-González J, Marina-Breysse M, Galán-Arriola C, Enríquez-Vázquez D, Torres C, Pizarro G, Ibáñez B, Peinado R, Merino JL, Pérez-Villacastín J, Jalife J, López-Yunta M, Vázquez M, Aguado-Sierra J, González-Ferrer JJ, Pérez-Castellano N, Martín-Fernández M, Alberola-López C, Filgueiras-Rama D. Time-efficient three-dimensional transmural scar assessment provides relevant substrate characterization for ventricular tachycardia features and long-term recurrences in ischemic cardiomyopathy. Sci Rep 2021; 11:18722. [PMID: 34580343 PMCID: PMC8476552 DOI: 10.1038/s41598-021-97399-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging requires novel and time-efficient approaches to characterize the myocardial substrate associated with ventricular arrhythmia in patients with ischemic cardiomyopathy. Using a translational approach in pigs and patients with established myocardial infarction, we tested and validated a novel 3D methodology to assess ventricular scar using custom transmural criteria and a semiautomatic approach to obtain transmural scar maps in ventricular models reconstructed from both 3D-acquired and 3D-upsampled-2D-acquired LGE-CMR images. The results showed that 3D-upsampled models from 2D LGE-CMR images provided a time-efficient alternative to 3D-acquired sequences to assess the myocardial substrate associated with ischemic cardiomyopathy. Scar assessment from 2D-LGE-CMR sequences using 3D-upsampled models was superior to conventional 2D assessment to identify scar sizes associated with the cycle length of spontaneous ventricular tachycardia episodes and long-term ventricular tachycardia recurrences after catheter ablation. This novel methodology may represent an efficient approach in clinical practice after manual or automatic segmentation of myocardial borders in a small number of conventional 2D LGE-CMR slices and automatic scar detection.
Collapse
Affiliation(s)
| | - Lilian K Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | | | | | - Lucilio Cordero-Grande
- Universidad Politécnica de Madrid, Biomedical Image Technologies, ETSI Telecomunicación, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniel Enríquez-Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Carlos Torres
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Ruber Juan Bravo Quironsalud UEM, Cardiology Department, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,IIS-University Hospital Fundación Jiménez Díaz, Cardiology Department, Madrid, Spain
| | - Rafael Peinado
- Hospital Universitario La Paz, Cardiology Department, Madrid, Spain
| | - Jose Luis Merino
- Hospital Universitario La Paz, Cardiology Department, Madrid, Spain
| | - Julián Pérez-Villacastín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Mariano Vázquez
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,ELEM Biotech SL., Barcelona, Spain
| | | | - Juan José González-Ferrer
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | | | | | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
40
|
Dong Q, Wen X, Chang G, Xia R, Wang S, Yang Y, Tao Y, Zhang D, Qin S. ST-segment resolution as a marker for severe myocardial fibrosis in ST-segment elevation myocardial infarction. BMC Cardiovasc Disord 2021; 21:455. [PMID: 34548012 PMCID: PMC8454141 DOI: 10.1186/s12872-021-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the relationship between ST-segment resolution (STR) and myocardial scar thickness after percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI). Methods Forty-two STEMI patients with single-branch coronary artery stenosis or occlusion were enrolled. ST-segment elevations were measured at emergency admission and at 24 h after PCI. Late gadolinium-enhanced cardiac magnetic resonance imaging (CMR-LGE) was performed 7 days after PCI to evaluate myocardial scars. Statistical analyses were performed to assess the utility of STR to predict the development of transmural (> 75%) or non-transmural (< 75%) myocardial scars, according to previous study. Results The sensitivity and specificity of STR for predicting transmural scars were 96% and 88%, respectively, at an STR cut-off value of 40.15%. The area under the curve was 0.925. Multivariate logistic proportional hazards regression analysis disclosed that patients with STR < 40.15% had a 170.90-fold higher probability of developing transmural scars compared with patients with STR ≥ 40.15%. Pearson correlation and linear regression analyses showed STR percentage was significantly associated with myocardial scar thickness and size. Conclusion STR < 40.15% at 24 h after PCI may provide meaningful diagnostic information regarding the extent of myocardial scarification in STEMI patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02269-y.
Collapse
Affiliation(s)
- Qian Dong
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xuesong Wen
- Chongqing Medical University, Yuzhong, Chongqing, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Rui Xia
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Sihang Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yunjing Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yi Tao
- Chongqing Medical University, Yuzhong, Chongqing, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| |
Collapse
|
41
|
Chen W, Qian W, Zhang X, Li D, Qian Z, Xu H, Liao S, Chen X, Wang Y, Hou X, Patel AR, Xu Y, Zou J. Ring-like late gadolinium enhancement for predicting ventricular tachyarrhythmias in non-ischaemic dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 2021; 22:1130-1138. [PMID: 34160025 DOI: 10.1093/ehjci/jeab117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Myocardial fibrosis is associated with clinical ventricular tachyarrhythmia (VTA) events in patients with non-ischaemic dilated cardiomyopathy (DCM). Subepicardial or mid-wall ring-like late gadolinium enhancement (LGE) has received increasing attention in recent years. The aim of this study was to investigate the relationship between ring-like LGE and VTAs in DCM. METHODS AND RESULTS Patients diagnosed with non-ischaemic DCM who underwent cardiac magnetic resonance with LGE imaging at baseline were investigated. The composite outcome was the occurrence of VTAs defined as sustained ventricular tachycardia, ventricular fibrillation/flutter, aborted sudden cardiac death (SCD), SCD, and appropriate implantable cardioverter-defibrillator intervention. The final cohort comprised 157 patients, including 36 (22.9%) in no LGE group, 48 (30.6%) in focal LGE group, 40 (25.5%) in multi-focal LGE group, and 33 (21%) in ring-like LGE group. Ring-like LGE group patients were younger compared to focal and multi-focal LGE group (P < 0.001) with higher left ventricular ejection fraction (33.0% vs. 24.4% vs. 22.1%, P < 0.001). After a median of 13 ± 7 months follow-up, compared to patients with no LGE, the hazard ratios (HRs) with 95% confidence intervals (CIs) for VTAs were 2.90 (0.56-15.06), 5.55 (1.21-25.44), and 11.75 (2.66-51.92) for patients with focal LGE, multi-focal LGE, and ring-like LGE, respectively. After multivariable adjustment, ring-like LGE group remained associated with increased risk of VTAs (adjusted HR 10.00, 95% CI 1.54-64.98; P = 0.016) independent of the global LGE burden. CONCLUSION The ring-like pattern of LGE is independently associated with an increased risk of VTAs in patients with non-ischaemic DCM.
Collapse
Affiliation(s)
- Wensu Chen
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Huaihai Road 99, Xuzhou 221000, China
| | - Wen Qian
- Department of Radiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xinwei Zhang
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Dongcheng Li
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Zhiyong Qian
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Hai Xu
- Internal Medicine, Northwell Health, 1350 Northern Blvd Suite 202, Manhasset, NY 11030, USA
| | - Shengen Liao
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xing Chen
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yao Wang
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xiaofeng Hou
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Amit R Patel
- Department of Medicine and Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Yi Xu
- Department of Radiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Jiangang Zou
- Department of Cardiology, First Affiliated Hospital, Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| |
Collapse
|
42
|
Baritussio A, Biglino G, Scatteia A, De Garate E, Dastidar AG, Palazzuoli A, Harries I, Strange JW, Diab I, Bucciarelli-Ducci C. Long-term outcome of myocardial scarring and deformation with cardiovascular magnetic resonance in out of hospital cardiac arrest survivors. Eur Heart J Cardiovasc Imaging 2021; 22:1149-1156. [PMID: 33247898 DOI: 10.1093/ehjci/jeaa293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiovascular magnetic resonance (CMR) is increasingly recognized as a diagnostic and prognostic tool in out of hospital cardiac arrest (OHCA) survivors. After assessing CMR findings early after ventricular fibrillation (VF) OHCA, we sought to explore the long-term outcome of myocardial scarring and deformation. METHODS AND RESULTS We included 121 consecutive VF OHCA survivors (82% male, median 62 years) undergoing CMR within 2 weeks from cardiac arrest. Late gadolinium-enhancement (LGE) was quantified using the full width at half maximum method and tissue tracking analysis software was used to assess myocardial deformation. LGE was found in 71% of patients (median LGE mass 6.2% of the left ventricle, LV), mainly with an ischaemic pattern. Myocardial deformation was overall impaired and showed a significant correlation with LGE presence and extent (P < 0.001). A composite end-point of all-cause mortality and appropriate ICD discharge/anti-tachycardia pacing was met in 24% of patients. Patients meeting the end-point had significantly greater LGE extent (8.6% of LV myocardium vs. 4.1%, P = 0.02), while there was no difference with regards to myocardial deformation. Survival rate was significantly lower in patients with LGE (P = 0.05) and LGE mass >4.4% of the LV identified a group of patients at higher risk of adverse events (P = 0.005). CONCLUSIONS We found a high prevalence of LGE, early after OHCA, and an overall impaired myocardial deformation. On long-term follow-up both LGE presence and extent showed a significant association with recurrent adverse events, while LV ejection fraction and myocardial deformation did not identify patients with an unfavourable outcome.
Collapse
Affiliation(s)
- Anna Baritussio
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Giovanni Biglino
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Alessandra Scatteia
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Estefania De Garate
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Amardeep Ghosh Dastidar
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital, University of Siena, Siena 53100, Italy
| | - Iwan Harries
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Julian W Strange
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Ihab Diab
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, NIHR Bristol Biomedical Research Centre University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| |
Collapse
|
43
|
Moura B, Aimo A, Al-Mohammad A, Flammer A, Barberis V, Bayes-Genis A, Brunner-La Rocca HP, Fontes-Carvalho R, Grapsa J, Hülsmann M, Ibrahim N, Knackstedt C, Januzzi JL, Lapinskas T, Sarrias A, Matskeplishvili S, Meijers WC, Messroghli D, Mueller C, Pavo N, Simonavičius J, Teske AJ, van Kimmenade R, Seferovic P, Coats AJS, Emdin M, Richards AM. Integration of imaging and circulating biomarkers in heart failure: a consensus document by the Biomarkers and Imaging Study Groups of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2021; 23:1577-1596. [PMID: 34482622 DOI: 10.1002/ejhf.2339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022] Open
Abstract
Circulating biomarkers and imaging techniques provide independent and complementary information to guide management of heart failure (HF). This consensus document by the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) presents current evidence-based indications relevant to integration of imaging techniques and biomarkers in HF. The document first focuses on application of circulating biomarkers together with imaging findings, in the broad domains of screening, diagnosis, risk stratification, guidance of treatment and monitoring, and then discusses specific challenging settings. In each section we crystallize clinically relevant recommendations and identify directions for future research. The target readership of this document includes cardiologists, internal medicine specialists and other clinicians dealing with HF patients.
Collapse
Affiliation(s)
- Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | - Alberto Aimo
- Scuola Superiore Sant'Anna, and Fondazione G. Monasterio, Pisa, Italy
| | - Abdallah Al-Mohammad
- Medical School, University of Sheffield and Sheffield Teaching Hospitals, Sheffield, UK
| | | | | | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ricardo Fontes-Carvalho
- Cardiovascular Research and Development Unit (UnIC), Faculty of Medicine University of Porto, Porto, Portugal.,Cardiology Department, Centro Hospitalar de Vila Nova Gaia/Espinho, Espinho, Portugal
| | - Julia Grapsa
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, UK
| | - Martin Hülsmann
- Department of Internal Medicine, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Nasrien Ibrahim
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomas Lapinskas
- Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Axel Sarrias
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - Daniel Messroghli
- Department of Internal Medicine-Cardiology, Deutsches Herzzentrum Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Mueller
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Noemi Pavo
- Department of Internal Medicine, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Justas Simonavičius
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland van Kimmenade
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Michele Emdin
- Scuola Superiore Sant'Anna, and Fondazione G. Monasterio, Pisa, Italy
| | - A Mark Richards
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand.,Cardiovascular Research Institute, National University of Singapore, Singapore
| |
Collapse
|
44
|
Beijnink CWH, van der Hoeven NW, Konijnenberg LSF, Kim RJ, Bekkers SCAM, Kloner RA, Everaars H, El Messaoudi S, van Rossum AC, van Royen N, Nijveldt R. Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology 2021; 301:4-18. [PMID: 34427461 DOI: 10.1148/radiol.2021204265] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac MRI is a noninvasive diagnostic tool using nonionizing radiation that is widely used in patients with ST-segment elevation myocardial infarction (STEMI). Cardiac MRI depicts different prognosticating components of myocardial damage such as edema, intramyocardial hemorrhage (IMH), microvascular obstruction (MVO), and fibrosis. But how do cardiac MRI findings correlate to histologic findings? Shortly after STEMI, T2-weighted imaging and T2* mapping cardiac MRI depict, respectively, edema and IMH. The acute infarct size can be determined with late gadolinium enhancement (LGE) cardiac MRI. T2-weighted MRI should not be used for area-at-risk delineation because T2 values change dynamically over the first few days after STEMI and the severity of T2 abnormalities can be modulated with treatment. Furthermore, LGE cardiac MRI is the most accurate method to visualize MVO, which is characterized by hemorrhage, microvascular injury, and necrosis in histologic samples. In the chronic setting post-STEMI, LGE cardiac MRI is best used to detect replacement fibrosis (ie, final infarct size after injury healing). Finally, native T1 mapping has recently emerged as a contrast material-free method to measure infarct size that, however, remains inferior to LGE cardiac MRI. Especially LGE cardiac MRI-defined infarct size and the presence and extent of MVO may be used to monitor the effect of new therapeutic interventions in the treatment of reperfusion injury and infarct size reduction. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Casper W H Beijnink
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Nina W van der Hoeven
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Lara S F Konijnenberg
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Raymond J Kim
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Sebastiaan C A M Bekkers
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robert A Kloner
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Henk Everaars
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Saloua El Messaoudi
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Albert C van Rossum
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Niels van Royen
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robin Nijveldt
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| |
Collapse
|
45
|
Arısoy F, Ozcan Celebi O, Erbay İ, Tufekcioglu O, Aydoğdu S, Temizhan A. Selvester score predicts implantable cardioverter defibrillator shocks in patients with non-ischemic cardiomyopathy. J Arrhythm 2021; 37:1046-1051. [PMID: 34386131 PMCID: PMC8339102 DOI: 10.1002/joa3.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The implantable cardiac defibrillator is the cornerstone of prevention of sudden cardiac death in non-ischemic cardiomyopathy. The Selvester score, which is frequently investigated in ischemic cardiomyopathy, has not been investigated in the field of non-ischemic cardiomyopathy. AIM The aim of this study was to evaluate the Selvester score for determining appropriate implantable cardiac defibrillator shocks in non-ischemic cardiomyopathy patients. MATERIALS AND METHODS In all, 131 non-ischemic cardiomyopathy patients were included in the study. A simplified Selvester score was calculated from ECG data. Patients were divided into two groups according to whether they received ICD shock. RESULTS Of the patients, 28.2% received appropriate implantable cardiac defibrillator shock. The Selvester score was significantly higher in patients receiving appropriate shock when compared to patients with no implantable cardiac defibrillator shocks (8.8 ± 4.6 vs 7.2 ± 3.3, P = .040). The median QRS duration was significantly longer in patients receiving appropriate shock than in patients with no shocks (130.14 ± 35.08 ms vs 120.12 ± 20.57 ms, P = .045). We determined that the cutoff value for the Selvester score to predict ICD shocks was 6.5 with a sensitivity of 72.0% and a specificity of 83% (AUC = 0.717; %95 GA: 0.627-0.807, P < .001). CONCLUSION Selvester score was higher in patients receiving appropriate shock than in patients who did not receive any implantable cardiac defibrillator shock. From this study, the Selvester score is associated with the risk of ventricular tachycardia/ventricular fibrillation in non-ischemic cardiomyopathy so that careful attention is necessary to manage the patients with high Selvester score.
Collapse
Affiliation(s)
- Fazıl Arısoy
- Department of CardiologyKilis State HospitalKilisTurkey
| | - Ozlem Ozcan Celebi
- Department of CardiologyUniversity of Health ScienceAnkara City HospitalAnkaraTurkey
| | - İlke Erbay
- Department of CardiologyUniversity of Health ScienceAnkara City HospitalAnkaraTurkey
| | - Omaç Tufekcioglu
- Department of CardiologyUniversity of Health ScienceAnkara City HospitalAnkaraTurkey
| | - Sinan Aydoğdu
- Department of CardiologyUniversity of Health ScienceAnkara City HospitalAnkaraTurkey
| | - Ahmet Temizhan
- Department of CardiologyUniversity of Health ScienceAnkara City HospitalAnkaraTurkey
| |
Collapse
|
46
|
Zhu K, Ma T, Su Y, Pan X, Huang R, Zhang F, Yan C, Xu D. Heart Failure With Mid-range Ejection Fraction: Every Coin Has Two Sides. Front Cardiovasc Med 2021; 8:683418. [PMID: 34368245 PMCID: PMC8333279 DOI: 10.3389/fcvm.2021.683418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
This review summarizes current knowledge regarding clinical epidemiology, pathophysiology, and prognosis for patients with HFmrEF in comparison to HFrEF and HFpEF. Although recommended treatments currently focus on aggressive management of comorbidities, we summarize potentially beneficial therapies that can delay the process of heart failure by blocking the pathophysiology mechanism. More studies are needed to further characterize HFmrEF and identify effective management strategies that can reduce cardiovascular morbidity and mortality of patients with HFmrEF.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- Department of Cardiology, Qidong People's Hospital, Nantong, China
| | - Teng Ma
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Su
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Pan
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongrong Huang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fenglei Zhang
- Department of Cardiology, Qidong People's Hospital, Nantong, China
| | - Chunxi Yan
- Department of Cardiology, Qidong People's Hospital, Nantong, China
| | - Dachun Xu
- Department of Cardiology, Qidong People's Hospital, Nantong, China.,Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
CMR-Based Risk Stratification of Sudden Cardiac Death and Use of Implantable Cardioverter-Defibrillator in Non-Ischemic Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22137115. [PMID: 34281168 PMCID: PMC8268120 DOI: 10.3390/ijms22137115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Non-ischemic cardiomyopathy (NICM) is one of the most important entities for arrhythmias and sudden cardiac death (SCD). Previous studies suggest a lower benefit of implantable cardioverter–defibrillator (ICD) therapy in patients with NICM as compared to ischemic cardiomyopathy (ICM). Nevertheless, current guidelines do not differentiate between the two subgroups in recommending ICD implantation. Hence, risk stratification is required to determine the subgroup of patients with NICM who will likely benefit from ICD therapy. Various predictors have been proposed, among others genetic mutations, left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic volume (LVEDD), and T-wave alternans (TWA). In addition to these parameters, cardiovascular magnetic resonance imaging (CMR) has the potential to further improve risk stratification. CMR allows the comprehensive analysis of cardiac function and myocardial tissue composition. A range of CMR parameters have been associated with SCD. Applicable examples include late gadolinium enhancement (LGE), T1 relaxation times, and myocardial strain. This review evaluates the epidemiological aspects of SCD in NICM, the role of CMR for risk stratification, and resulting indications for ICD implantation.
Collapse
|
48
|
Linhart M, Doltra A, Acosta J, Borràs R, Jáuregui B, Fernández-Armenta J, Anguera I, Bisbal F, Martí-Almor J, Tolosana JM, Penela D, Soto-Iglesias D, Villuendas R, Perea RJ, Ortiz JT, Bosch X, Auricchio A, Mont L, Berruezo A. Ventricular arrhythmia risk is associated with myocardial scar but not with response to cardiac resynchronization therapy. Europace 2021; 22:1391-1400. [PMID: 32898254 DOI: 10.1093/europace/euaa142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
AIMS Sudden cardiac death (SCD) risk estimation in patients referred for cardiac resynchronization therapy (CRT) remains a challenge. By CRT-mediated improvement of left ventricular ejection fraction (LVEF), many patients loose indication for primary prevention implantable cardioverter-defibrillator (ICD). Increasing evidence shows the importance of myocardial scar for risk prediction. The aim of this study was to investigate the prognostic impact of myocardial scar depending on the echocardiographic response in patients undergoing CRT. METHODS AND RESULTS Patients with indication for CRT were prospectively enrolled. Decision about ICD or pacemaker implantation was based on clinical criteria. All patients underwent delayed-enhancement cardiac magnetic resonance imaging. Median follow-up duration was 45 (24-75) months. Primary outcome was a composite of sustained ventricular arrhythmia, appropriate ICD therapy, or SCD. A total of 218 patients with LVEF 25.5 ± 6.6% were analysed [158 (73%) male, 64.9 ± 10.7 years]. Myocardial scar was observed in 73 patients with ischaemic cardiomyopathy (ICM) (95% of ICM patients); in 62 with non-ischaemic cardiomyopathy (45% of these patients); and in all but 1 of 36 (17%) patients who reached the primary outcome. Myocardial scar was the only significant predictor of primary outcome [odds ratio 27.7 (3.8-202.7)], independent of echocardiographic CRT response. A total of 55 (25%) patients died from any cause or received heart transplant. For overall survival, only a combination of the absence of myocardial scar with CRT response was associated with favourable outcome. CONCLUSION Malignant arrhythmic events and SCD depend on the presence of myocardial scar but not on CRT response. All-cause mortality improved only with the combined absence of myocardial scar and CRT response.
Collapse
Affiliation(s)
- Markus Linhart
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Adelina Doltra
- Non-Invasive Cardiac Imaging Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Juan Acosta
- Unidad de Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, S/n, 41013 Sevilla, Spain.,CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain
| | - Roger Borràs
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain
| | - Beatriz Jáuregui
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain.,Cardiology Department, Heart Institute, Teknon Medical Center, C/Vilana, 12, 08022 Barcelona, Spain
| | - Juan Fernández-Armenta
- CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Universitario Puerta del Mar, Av. Ana de Viya, 21, 11009 Cádiz, Spain
| | - Ignasi Anguera
- Cardiology Department, Heart Disease Institute, Bellvitge Biomedical Research Institute IDIBELL, Bellvitge Hospital, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Felipe Bisbal
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain
| | - Julio Martí-Almor
- Electrophysiology Unit, Cardiovascular Division, Department of Medicine, Hospital del Mar, Universitat Autònoma de Barcelona, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Jose M Tolosana
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Diego Penela
- Cardiology Department, Ospedale Guglielmo da Saliceto, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy
| | - David Soto-Iglesias
- Cardiology Department, Heart Institute, Teknon Medical Center, C/Vilana, 12, 08022 Barcelona, Spain
| | - Roger Villuendas
- CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain.,Heart Institute (iCor), University Hospital Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain
| | - Rosario J Perea
- Radiology Department, Hospital Clinic, University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Jose T Ortiz
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Xavier Bosch
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Angelo Auricchio
- Division of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48. CH-6900 Lugano, Switzerland
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), University of Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain
| | - Antonio Berruezo
- CIBERCV, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029, Madrid, Spain.,Cardiology Department, Heart Institute, Teknon Medical Center, C/Vilana, 12, 08022 Barcelona, Spain
| |
Collapse
|
49
|
Abou R, Prihadi EA, Goedemans L, van der Geest R, El Mahdiui M, Schalij MJ, Ajmone Marsan N, Bax JJ, Delgado V. Left ventricular mechanical dispersion in ischaemic cardiomyopathy: association with myocardial scar burden and prognostic implications. Eur Heart J Cardiovasc Imaging 2021; 21:1227-1234. [PMID: 32734280 DOI: 10.1093/ehjci/jeaa187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Left ventricular (LV) mechanical dispersion (MD) may result from heterogeneous electrical conduction and is associated with adverse events. The present study investigated (i) the association between LV MD and the extent of LV scar as assessed with contrast-enhanced cardiac magnetic resonance (CMR) and (ii) the prognostic implications of LV MD in patients after ST-segment elevation myocardial infarction. METHODS AND RESULTS LV MD was calculated by echocardiography and myocardial scar was analysed on CMR data retrospectively. Infarct core and border zone were defined as ≥50% and 35-50% of maximal signal intensity, respectively. Patients were followed for the occurrence of the combined endpoint (all-cause mortality and appropriate implantable cardioverter-defibrillator therapy). In total, 96 patients (87% male, 57 ± 10 years) were included. Median LV MD was 53.5 ms [interquartile range (IQR) 43.4-62.8]. On CMR, total scar burden was 11.4% (IQR 3.8-17.1%), infarct core tissue 6.2% (IQR 2.0-12.7%), and border zone was 3.5% (IQR 1.5-5.7%). Correlations were observed between LV MD and infarct core (r = 0.517, P < 0.001), total scar burden (r = 0.497, P < 0.001), and border zone (r = 0.298, P = 0.003). In total, 14 patients (15%) reached the combined endpoint. Patients with LV MD >53.5 ms showed higher event rates as compared to their counterparts. Finally, LV MD showed the highest area under the curve for the prediction of the combined endpoint. CONCLUSION LV MD is correlated with LV scar burden. In addition, patients with prolonged LV MD showed higher event rates. Finally, LV MD provided the highest predictive value for the combined endpoint when compared with other parameters.
Collapse
Affiliation(s)
- Rachid Abou
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Edgard A Prihadi
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Laurien Goedemans
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Rob van der Geest
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Mohammed El Mahdiui
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Albinusdreef 2, 2300RC Leiden, The Netherlands
| |
Collapse
|
50
|
Schiau C, Leucuța DC, Dudea SM, Manole S. Myocardial Fibrosis as a Predictor of Ventricular Arrhythmias in Patients With Non-ischemic Cardiomyopathy. In Vivo 2021; 35:1677-1685. [PMID: 33910852 DOI: 10.21873/invivo.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM The aim of the study was to assess the relationship between myocardial fibrosis characteristics (percentage, localization, heterogeneity), evaluated by a non-invasive method such as cardiac magnetic resonance (CMR), with the extrasystolic ventricular arrhythmia in patients with non-ischemic cardiomyopathy. PATIENTS AND METHODS The study prospectively included 173 consecutive patients who underwent electrocardiogram Holter monitoring, transthoracic echocardiography and CMR with late gadolinium enhancement (LGE). RESULTS In univariate analysis, both the presence (OR=1.05, 95% CI=1.01-1.09; p=0.015), the percentage of fibrosis >15% (p=0.018), the septum size, the fibrosis in either lateral or septal walls (p=0.004), as well as fibrosis in the midwall (p=0.019) were statistically significant higher in the group with extrasystolic arrhythmia. After adjustment, the percentage of fibrosis >15%, had higher odds of extra systolic arrhythmia [OR=3.78 (95% CI=1.52-10.62, p=0.007)]. CONCLUSION The presence, percentage, and localisation of left ventricle myocardial fibrosis characterized by LGE-CMR was associated with ventricular arrhythmias.
Collapse
Affiliation(s)
- Călin Schiau
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorin Marian Dudea
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Manole
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|