1
|
Ricci F, Molinari LV, Mansour D, Galanti K, Vagnarelli F, Renda G, Gallina S, Owens A, Luzum JA, Olivotto I, Khanji MY, Chahal AA. Managing drug-drug interactions with mavacamten: A focus on combined use of antiarrhythmic drugs and anticoagulants. Heart Rhythm 2025; 22:510-525. [PMID: 39613202 DOI: 10.1016/j.hrthm.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Mavacamten is a selective, allosteric, and reversible cardiac myosin inhibitor, representing the first disease-specific treatment for obstructive hypertrophic cardiomyopathy (HCM) that targets the core pathophysiological mechanism of this condition. Clinical evidence supports its efficacy in improving symptoms, cardiac function, and remodeling, thereby supplementing established treatment regimens. However, mavacamten is extensively metabolized by hepatic cytochromes, and its half-life is contingent upon CYP2C19 phenotype. Consequently, coadministered medications that inhibit or induce these enzymes may significantly alter mavacamten pharmacokinetics, potentially leading to reversible systolic dysfunction or diminished therapeutic efficacy. This paper provides a comprehensive analysis of mavacamten pharmacokinetics and its potential interactions with antithrombotic and antiarrhythmic agents, which are the cornerstones of atrial fibrillation management in HCM population. Our aim is to offer clinicians practical guidance on safely administering mavacamten in conjunction with these medications, discuss the role of pharmacogenomics, and outline rigorous patient safety monitoring strategies to ensure effective and individualized treatment.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy; University Cardiology Division, Heart Department, Policlinico SS Annunziata, Chieti, Italy; Department of Clinical Sciences, Lund University, Malmö, Sweden; Institute for Advanced Biomedical Technologies, G D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lorenzo V Molinari
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Davide Mansour
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Kristian Galanti
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Fabio Vagnarelli
- Department of Cardiology, Lancisi Cardiovascular Center, Marche University Hospital, Ancona, Italy
| | - Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy; University Cardiology Division, Heart Department, Policlinico SS Annunziata, Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy; University Cardiology Division, Heart Department, Policlinico SS Annunziata, Chieti, Italy
| | - Anjali Owens
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - Iacopo Olivotto
- Meyer Children's Hospital IRCCS, Florence, Italy; Cardiomyopathy Unit, Careggi University Hospital, FlSorence, Italy
| | - Mohammed Y Khanji
- Barts Heart Centre, Barts Health NHS Trust, London, UK; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK; Newham University Hospital, Barts Health NHS Trust, London, UK
| | - Anwar A Chahal
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; Center for Inherited Cardiovascular Disease, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Dai Y, Wang Y, Fan Y, Han B. Genotype-phenotype insights of pediatric dilated cardiomyopathy. Front Pediatr 2025; 13:1505830. [PMID: 39959410 PMCID: PMC11825472 DOI: 10.3389/fped.2025.1505830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Dilated cardiomyopathy (DCM) in children is a severe myocardial disease characterized by enlargement of the left ventricle or both ventricles with impaired contractile function. DCM can cause adverse consequences such as heart failure, sudden death, thromboembolism, and arrhythmias. This article reviews the latest advances in genotype and phenotype research in pediatric DCM. With the development of gene sequencing technologies, considerable progress has been made in genetic research on DCM. Research has shown that DCM exhibits notable genetic heterogeneity, with over 100 DCM-related genes identified to date, primarily involving functions such as calcium handling, the cytoskeleton, and ion channels. As human genomic variations are linked to phenotypes, DCM phenotypes are influenced by numerous genetic variations across the entire genome. Children with DCM display high genetic heterogeneity and are characterized by early onset, rapid disease progression, and poor prognosis. The genetic architecture of pediatric DCM markedly differs from that of adult DCM, necessitating analyses through clinical phenotyping, familial cosegregation studies, and functional validation. Clarifying the genotype-phenotype relationship can improve diagnostic accuracy, enhance prognosis, and guide follow-up treatment for genotype-positive and phenotype-negative patients identified through genetic testing, providing new insights for precision medicine. Future research should further explore novel pathogenic genes and mutations and strengthen genotype-phenotype correlation analyses to facilitate precise diagnosis and treatment of DCM in children.
Collapse
Affiliation(s)
| | | | - Youfei Fan
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Hiruma T, Inoue S, Dai Z, Nomura S, Kubo T, Sugiura K, Suzuki A, Kashimura T, Matsushima S, Yamada T, Tobita T, Katoh M, Ko T, Ito M, Ishida J, Amiya E, Hatano M, Takeda N, Takimoto E, Akazawa H, Morita H, Yamaguchi J, Inomata T, Tsutsui H, Kitaoka H, Aburatani H, Takeda N, Komuro I. Association of Multiple Nonhypertrophic Cardiomyopathy-Related Genetic Variants and Outcomes in Patients With Hypertrophic Cardiomyopathy. JACC. HEART FAILURE 2024; 12:2041-2052. [PMID: 39340495 DOI: 10.1016/j.jchf.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Approximately 10% of hypertrophic cardiomyopathy (HCM) patients have left ventricular systolic dysfunction (end-stage HCM) leading to severe heart-failure; however, risk stratification to identify patients at risk of progressing to end-stage HCM remains insufficient. OBJECTIVES In this study, the authors sought to elucidate whether the coexistence of other cardiovascular disease (CVD)-related variants is associated with progression to end-stage HCM in patients with HCM harboring pathogenic or likely pathogenic (P/LP) sarcomeric variants. METHODS The authors performed genetic analysis of 83 CVD-related genes in HCM patients from a Japanese multicenter cohort. P/LP variants in 8 major sarcomeric genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL2, MYL3, and ACTC1) definitive for HCM were defined as "sarcomeric variants." In addition, P/LP variants associated with other CVDs, such as dilated cardiomyopathy and arrhythmogenic cardiomyopathy, were referred to as "other CVD-related variants." RESULTS Among 394 HCM patients, 139 carried P/LP sarcomeric variants: 11 (7.9%) carried other CVD-related variants, 6 (4.3%) multiple sarcomeric variants, and 122 (87.8%) single sarcomeric variants. In a multivariable Cox regression analysis, presence of multiple sarcomeric variants (adjusted HR [aHR]: 3.35 [95% CI: 1.25-8.95]; P = 0.016) and coexistence of other CVD-related variants (aHR: 2.80 [95% CI: 1.16-6.78]; P = 0.022) were independently associated with progression to end-stage HCM. Coexisting other CVD-related variants were also associated with heart failure events (aHR: 2.75 [95% CI: 1.27-5.94]; P = 0.010). CONCLUSIONS Approximately 8% of sarcomeric HCM patients carried other CVD-related variants, which were associated with progression to end-stage HCM and heart failure events. Comprehensive surveillance of CVD-related variants within sarcomeric HCM patients contributes to risk stratification and understanding of mechanisms underlying end-stage HCM.
Collapse
Affiliation(s)
- Takashi Hiruma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Zhehao Dai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Kashimura
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashige Tobita
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Yamaguchi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; School of Medicine and Graduate School, International University of Health and Welfare, Okawa, Japan
| | - Hiroaki Kitaoka
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
4
|
Młynarska E, Radzioch E, Dąbek B, Leszto K, Witkowska A, Czarnik W, Jędraszak W, Rysz J, Franczyk B. Hypertrophic Cardiomyopathy with Special Focus on Mavacamten and Its Future in Cardiology. Biomedicines 2024; 12:2675. [PMID: 39767581 PMCID: PMC11727519 DOI: 10.3390/biomedicines12122675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of heart muscle disorders that affects millions, with an incidence from 1 in 500 to 1 in 200. Factors such as genetics, age, gender, comorbidities, and environmental factors may contribute to the course of this disease. Diagnosis of HCM has improved significantly in the past few decades from simple echocardiographic evaluations to a more complex, multimodal approach embracing advanced imaging, genetic, and biomarker studies. This review focuses on Mavacamten, a selective allosteric inhibitor of cardiac myosin, as a pharmacological treatment for HCM. Patients with HCM experience pathological actomyosin interactions, leading to impaired relaxation and increased energy expenditure. Mavacamten decreases available myosin heads, reducing actomyosin cross-bridges during systole and diastole. By reducing the number of bridges left ventricular outflow tract pressure is normalized and cardiac cavities are filled. This mechanism enhances patient performance and alleviates symptoms such as chest pain and dyspnea. The results suggest the potential for Mavacamten to transform the treatment of obstructive hypertrophic cardiomyopathy. Studies to date have shown significant improvement in exercise capacity, symptom relief, and a reduction in the need for invasive procedures such as septal myectomy. Further studies are needed to confirm the clinical results.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Jędraszak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
5
|
Lee YS, Pua CJ, Bylstra Y, Shekhar Jamuar S, Devi Balakrishnan I. Coinheritance of Hypertrophic and Arrhythmogenic Cardiomyopathy Variants in a Patient With Hypertrophic Cardiomyopathy. JACC Case Rep 2024; 29:102646. [PMID: 39691896 PMCID: PMC11646882 DOI: 10.1016/j.jaccas.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 12/19/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) are phenotypically distinct inherited cardiac diseases. This case report presents a woman aged 51 years with coinheritance of pathogenic/likely pathogenic variants of the β-myosin heavy chain (MYH7 p.Glu924Lys) and plakophilin 2 (PKP2 p.Leu442Argfs∗5), each implicated in HCM and ARVC, respectively. Interestingly, she exhibits the classic HCM phenotype with a heavy arrhythmic burden but no diagnostic features of ARVC. The coinheritance of disease-causing variants in cardiomyopathies has been posited to result in an earlier disease onset and more aggressive clinical course. However, such a relationship has yet to be established when the variants are each robustly associated with different cardiomyopathy phenotypes. The limited existing literature on such cases paints a heterogenous picture of clinical phenotypes with no obvious trend. Here, we explore the interplay between coinheritance of disease-causing variants and resultant disease manifestation, particularly in the context of cardiomyopathies.
Collapse
Affiliation(s)
- Yi Siang Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Duke NUS Medical School, Singapore
| | - Saumya Shekhar Jamuar
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Duke NUS Medical School, Singapore
- Genetics Service, KK Women’s and Children’s Hospital, Singapore
| | - Iswaree Devi Balakrishnan
- SingHealth Duke-NUS Genomic Medicine Centre, Duke NUS Medical School, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore
| |
Collapse
|
6
|
Mertens J, De Lange WJ, Farrell ET, Harbaugh EC, Gauchan A, Fitzsimons DP, Moss RL, Ralphe JC. The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium. J Mol Cell Cardiol 2024; 195:14-23. [PMID: 39059462 DOI: 10.1016/j.yjmcc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
Collapse
Affiliation(s)
- Jasmine Mertens
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Ella C Harbaugh
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Angeela Gauchan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Daniel P Fitzsimons
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Richard L Moss
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
| |
Collapse
|
7
|
Boen HM, Alaerts M, Van Laer L, Saenen JB, Goovaerts I, Bastianen J, Koopman P, Vanduynhoven P, De Vuyst E, Rosseel M, Heidbuchel H, Van Craenenbroeck EM, Loeys B. Phenotypic spectrum of the first Belgian MYBPC3 founder: a large multi-exon deletion with a varying phenotype. Front Genet 2024; 15:1392527. [PMID: 38836037 PMCID: PMC11148247 DOI: 10.3389/fgene.2024.1392527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Background Variants in the MYBPC3 gene are a frequent cause of hypertrophic cardiomyopathy (HCM) but display a large phenotypic heterogeneity. Founder mutations are often believed to be more benign as they prevailed despite potential negative selection pressure. We detected a pathogenic variant in MYBPC3 (del exon 23-26) in several probands. We aimed to assess the presence of a common haplotype and to describe the cardiac characteristics, disease severity and long-term outcome of mutation carriers. Methods Probands with HCM caused by a pathogenic deletion of exon 23-26 of MYBPC3 were identified through genetic screening using a gene panel encompassing 59 genes associated with cardiomyopathies in a single genetic center in Belgium. Cascade screening of first-degree relatives was performed, and genotype positive relatives were further phenotyped. Clinical characteristics were collected from probands and relatives. Cardiac outcomes included death, heart transplantation, life-threatening arrhythmia, heart failure hospitalization or septal reduction therapy. Haplotype analysis, using microsatellite markers surrounding MYBPC3, was performed in all index patients to identify a common haplotype. The age of the founder variant was estimated based on the size of the shared haplotype using a linkage-disequilibrium based approach. Results We identified 24 probands with HCM harbouring the MYBPC3 exon 23-26 deletion. Probands were on average 51 ± 16 years old at time of clinical HCM diagnosis and 62 ± 10 years old at time of genetic diagnosis. A common haplotype of 1.19 Mb was identified in all 24 probands, with 19 of the probands sharing a 13.8 Mb haplotype. The founder event was estimated to have happened five generations, or 175-200 years ago, around the year 1830 in central Flanders. Through cascade screening, 59 first-degree relatives were genetically tested, of whom 37 (62.7%) were genotype positive (G+) and 22 (37.3%) genotype negative (G-). They were on average 38 ± 19 years old at time of genetic testing. Subsequent clinical assessment revealed a HCM phenotype in 19 (51.4%) G+ relatives. Probands were older (63 ± 10 vs. 42 ± 21 years; p < 0.001) and had more severe phenotypes than G+ family members, presenting with more symptoms (50% vs. 13.5%; p = 0.002), arrhythmia (41.7% vs. 12.9%, p = 0.014), more overt hypertrophy and left ventricular outflow tract obstruction (43.5% vs. 3.0%; p < 0.001). Male G+ relatives more often had a HCM phenotype (78.6% vs. 34.8%; p = 0.010) and were more severely affected than females. At the age of 50, a penetrance of 78.6% was observed, defined as the presence of HCM in 11 of 14 G+ relatives with age ≥50 years. Overall, 20.3% of all variant carriers developed one of the predefined cardiac outcomes after a median follow-up of 5.5 years with an average age of 50 (±21) years. Conclusion A Belgian founder variant, an exon 23-26 deletion in MYBPC3, was identified in 24 probands and 37 family members. The variant is characterized by a high penetrance of 78.6% at the age of 50 years but has variable phenotypic expression. Adverse outcomes were observed in 20.3% of patients during follow-up.
Collapse
Affiliation(s)
- Hanne M Boen
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Cardiogenomics, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Cardiogenomics, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Johan B Saenen
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Inge Goovaerts
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Center of Medical Genetics, Cardiogenomics, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Jarl Bastianen
- Center of Medical Genetics, Cardiogenomics, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Pieter Koopman
- Hartcentrum Hasselt, Jessa Hospital Hasselt, Hasselt, Belgium
| | | | | | | | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, Cardiogenomics, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) Department, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Topriceanu CC, Pereira AC, Moon JC, Captur G, Ho CY. Meta-Analysis of Penetrance and Systematic Review on Transition to Disease in Genetic Hypertrophic Cardiomyopathy. Circulation 2024; 149:107-123. [PMID: 37929589 PMCID: PMC10775968 DOI: 10.1161/circulationaha.123.065987] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy and is classically caused by pathogenic or likely pathogenic variants (P/LP) in genes encoding sarcomere proteins. Not all subclinical variant carriers will manifest clinically overt disease because penetrance (proportion of sarcomere or sarcomere-related P/LP variant carriers who develop disease) is variable, age dependent, and not reliably predicted. METHODS A systematic search of the literature was performed. We used random-effects generalized linear mixed model meta-analyses to contrast the cross-sectional prevalence and penetrance of sarcomere or sarcomere-related genes in 2 different contexts: clinically-based studies on patients and families with HCM versus population or community-based studies. Longitudinal family/clinical studies were additionally analyzed to investigate the rate of phenotypic conversion from subclinical to overt HCM during follow-up. RESULTS In total, 455 full-text manuscripts and articles were assessed. In family/clinical studies, the prevalence of sarcomere variants in patients diagnosed with HCM was 34%. The penetrance across all genes in nonproband relatives carrying P/LP variants identified during cascade screening was 57% (95% CI, 52%-63%), and the mean age at HCM diagnosis was 38 years (95% CI, 36%-40%). Penetrance varied from ≈32% for MYL3 (myosin light chain 3) to ≈55% for MYBPC3 (myosin-binding protein C3), ≈60% for TNNT2 (troponin T2) and TNNI3 (troponin I3), and ≈65% for MYH7 (myosin heavy chain 7). Population-based genetic studies demonstrate that P/LP sarcomere variants are present in the background population but at a low prevalence of <1%. The penetrance of HCM in incidentally identified P/LP variant carriers was also substantially lower at ≈11%, ranging from 0% in Atherosclerosis Risk in Communities to 18% in UK Biobank. In longitudinal family studies, the pooled phenotypic conversion across all genes was 15% over an average of ≈8 years of follow-up, starting from a mean of ≈16 years of age. However, short-term gene-specific phenotypic conversion varied between ≈12% for MYBPC3 and ≈23% for MYH7. CONCLUSIONS The penetrance of P/LP variants is highly variable and influenced by currently undefined and context-dependent genetic and environmental factors. Additional longitudinal studies are needed to improve our understanding of true lifetime penetrance in families and in the community and to identify drivers of the transition from subclinical to overt HCM.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Alexandre C. Pereira
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - James C. Moon
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Gabriella Captur
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Carolyn Y. Ho
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| |
Collapse
|
10
|
Peña F, Jones R. Aborted sudden cardiac death and a severe form of hypertrophic cardiomyopathy in a 2-year-old. Cardiol Young 2023; 33:2628-2631. [PMID: 37092670 DOI: 10.1017/s1047951123000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Although hypertrophic cardiomyopathy has a reported prevalence of 1/500, compound, double, and triple mutations are infrequent. There is phenotypic variation between individuals with HCM, making disease course difficult to predict. There is some debate as to whether multiple mutations confer a worse prognosis and the extent to which the mutations affect an individual's prognosis. We report a case of homozygous MYBPC3 mutations in a 2-year-old presenting with aborted sudden cardiac death and a severe form of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Faith Peña
- Pediatrics, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, Louisiana, USA
| | - Ryan Jones
- Pediatrics, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, Louisiana, USA
| |
Collapse
|
11
|
García-Vielma C, Lazalde-Córdova LG, Arzola-Hernández JC, González-Aceves EN, López-Zertuche H, Guzmán-Delgado NE, González-Salazar F. Identification of variants in genes associated with hypertrophic cardiomyopathy in Mexican patients. Mol Genet Genomics 2023; 298:1289-1299. [PMID: 37498360 PMCID: PMC10657276 DOI: 10.1007/s00438-023-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
The objective of this work was to identify genetic variants in Mexican patients diagnosed with hypertrophic cardiomyopathy (HCM). According to world literature, the genes mainly involved are MHY7 and MYBPC3, although variants have been found in more than 50 genes related to heart disease and sudden death, and to our knowledge there are no studies in the Mexican population. These variants are reported and classified in the ClinVar (PubMed) database and only some of them are recognized in the Online Mendelian Information in Men (OMIM). The present study included 37 patients, with 14 sporadic cases and 6 familial cases, with a total of 21 index cases. Next-generation sequencing was performed on a predesigned panel of 168 genes associated with heart disease and sudden death. The sequencing analysis revealed twelve (57%) pathogenic or probably pathogenic variants, 9 of them were familial cases, managing to identify pathogenic variants in relatives without symptoms of the disease. At the molecular level, nine of the 12 variants (75%) were single nucleotide changes, 2 (17%) deletions, and 1 (8%) splice site alteration. The genes involved were MYH7 (25%), MYBPC3 (25%) and ACADVL, KCNE1, TNNI3, TPM1, SLC22A5, TNNT2 (8%). In conclusion; we found five variants that were not previously reported in public databases. It is important to follow up on the reclassification of variants, especially those of uncertain significance in patients with symptoms of the condition. All patients included in the study and their relatives received family genetic counseling.
Collapse
Affiliation(s)
- Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Departamento de Citogenética, Instituto Mexicano del Seguro Social, Monterrey, NL, México.
| | - Luis Gerardo Lazalde-Córdova
- Centro de Investigación Biomédica del Noreste, Departamento de Citogenética, Instituto Mexicano del Seguro Social, Monterrey, NL, México
| | - José Cruz Arzola-Hernández
- Departamento de Electrofisiología, Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad. Hospital de cardiología No. 34 "Dr. Alfonso J. Treviño Treviño" del Centro Médico Nacional del Noreste, Monterrey, NL, México
| | - Erick Noel González-Aceves
- Departamento de Electrofisiología, Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad. Hospital de cardiología No. 34 "Dr. Alfonso J. Treviño Treviño" del Centro Médico Nacional del Noreste, Monterrey, NL, México
| | | | - Nancy Elena Guzmán-Delgado
- Departamento de Electrofisiología, Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad. Hospital de cardiología No. 34 "Dr. Alfonso J. Treviño Treviño" del Centro Médico Nacional del Noreste, Monterrey, NL, México.
| | - Francisco González-Salazar
- Centro de Investigación Biomédica del Noreste, Departamento de Citogenética, Instituto Mexicano del Seguro Social, Monterrey, NL, México
| |
Collapse
|
12
|
Rani DS, Kasala A, Dhandapany PS, Muthusami U, Kunnoth S, Rathinavel A, Ayapati DR, Thangaraj K. Novel MYBPC3 Mutations in Indian Population with Cardiomyopathies. Pharmgenomics Pers Med 2023; 16:883-893. [PMID: 37750083 PMCID: PMC10518145 DOI: 10.2147/pgpm.s407179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Background Mutations in Myosin Binding Protein C (MYBPC3) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India. Methods We carried out targeted direct sequencing of MYBPC3 in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India. Results We detected 34 single nucleotide variations in MYBPC3, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in MYBPC3 were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the MYBPC3 gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V]. Conclusion The present comprehensive study on MYBPC3 has revealed both single and compound mutations in MYBPC3 and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.
Collapse
Grants
- Rani DS has been supported by the CSIR-CCMB, Hyderabad, Telangana, India. K Thangaraj has been supported by the JC Bose Fellowship
- SERB, DST, and The Government of India. However, the funders had no role in designing the study, the collection of data, the analysis of sequence data, the decision to publish, or the preparation of the manuscript
Collapse
Affiliation(s)
- Deepa Selvi Rani
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Apoorva Kasala
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Perundurai S Dhandapany
- Department of Cardiovascular Biology and Medicine, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, India
| | - Uthiralingam Muthusami
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Sreejith Kunnoth
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Andiappan Rathinavel
- Department of Cardiology, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Dharma Rakshak Ayapati
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Kumarasamy Thangaraj
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Kubo T, Kitaoka H. Genetic Testing for Cardiomyopathy in Japan 2022: Current Status and Issues of Precision Medicine. J Card Fail 2023; 29:805-814. [PMID: 37169422 DOI: 10.1016/j.cardfail.2022.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
Although many causative genes for primary cardiomyopathy have been identified, the use of genetic testing in routine practice is limited in Japan presently. Genetic diagnosis has been reported to be useful for early diagnosis through cascade genetic screening in the family, differentiating secondary cardiomyopathies, and predicting prognosis in some patients; nonetheless, the acquisition of genetic information for cardiomyopathy is stagnating in actual clinical practice. There seem to be a number of reasons for this phenomenon, and although the use of next-generation sequencers has resolved some of the past issues, the importance of pathogenicity studies of variants that are identified is growing. To ensure that patients with cardiomyopathy and their relatives can receive precision medicine, the results of genetic analysis linked to clinical information need to be collected, and a database of variants in Japanese people needs to be established.
Collapse
Affiliation(s)
- Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Hiroaki Kitaoka
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
14
|
Fernández Suárez N, Viadero Ubierna MT, Garde Basas J, Onecha de la Fuente ME, Amigo Lanza MT, Martin Gorria G, Rivas Pérez A, Ruiz Guerrero L, González-Lamuño D. Description of a Cohort with a New Truncating MYBPC3 Variant for Hypertrophic Cardiomyopathy in Northern Spain. Genes (Basel) 2023; 14:genes14040840. [PMID: 37107598 PMCID: PMC10137663 DOI: 10.3390/genes14040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Background: The pathogenicity of the different genetic variants causing hypertrophic cardiomyopathy (HCM) and the genotype/phenotype correlations are difficult to assess in clinical practice, as most mutations are unique or identified in non-informative families. Pathogenic variants in the sarcomeric gene MYBPC3 inherited with an autosomal dominant pattern, whereas incomplete and age-dependent penetrance are the most common causes of HCM. Methods: We describe the clinical characteristics of a new truncating MYBPC3 variant, p.Val931Glyfs*120, in 75 subjects from 18 different families from northern Spain with the p.Val931Glyfs*120 variant. Results: Our cohort allows us to estimate the penetrance and prognosis of this variant. The penetrance of the disease increases with age, whereas 50% of males in our sample developed HCM by the age of 36 years old, and 50% of women developed the disease by the time they reached 48 years of age (p = 0.104). Men have more documented arrhythmias with potential risk of sudden death (p = 0.018), requiring implantation of cardioverter defibrillators (p = 0.024). Semi-professional/competitive sport among males is related to earlier onset of HCM (p = 0.004). Conclusions: The p.Val931Glyfs*120 truncating variant in MYBPC3 is associated with a moderate phenotype of HCM, with a high penetrance, onset in middle age, and a worse outcome in males due to higher risk of sudden death due to arrhythmias.
Collapse
|
15
|
Molecular Diagnosis of Hypertrophic Cardiomyopathy (HCM): In the Heart of Cardiac Disease. J Clin Med 2022; 12:jcm12010225. [PMID: 36615026 PMCID: PMC9821215 DOI: 10.3390/jcm12010225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with the presence of left ventricular hypertrophy (LVH). The disease is characterized by high locus, allelic and phenotypic heterogeneity, even among members of the same family. The list of confirmed and potentially relevant genes implicating the disease is constantly increasing, with novel genes frequently reported. Heterozygous alterations in the five main sarcomeric genes (MYBPC3, MYH7, TNNT2, TNNI3, and MYL2) are estimated to account for more than half of confirmed cases. The genetic discoveries of recent years have shed more light on the molecular pathogenic mechanisms of HCM, contributing to substantial advances in the diagnosis of the disease. Genetic testing applying next-generation sequencing (NGS) technologies and early diagnosis prior to the clinical manifestation of the disease among family members demonstrate an important improvement in the field.
Collapse
|
16
|
Kucher AN, Valiakhmetov NR, Salakhov RR, Golubenko MV, Pavlyukova EN, Nazarenko MS. Phenotype variation of hypertrophic cardiomyopathy in carriers of the p.Arg870His pathogenic variant in the MYH7 gene. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-205-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review analyzes variability of clinical manifestations of p.Arg870His in the MYH7 gene, which is repeatedly registered in patients with hypertrophic cardiomyopathy (HCM). The analysis involves the data from scientific publications obtained as a search result in the PubMed, СlinVar, and eLibrary.ru databases, as well as authors’ own results. A wide range of phenotypic manifestations have been revealed in carriers of p.Arg870His, from the asymptomatic to severe course, rapid progression, and early death. The review considers possible factors that modify the effect of the pathogenic variant (i.e. dosage of the pathogenic variant, the presence of other unfavorable genetic variants, etc.). The importance of accumulating information on the clinical features of HCM in the carriers of specific gene variants is emphasized in order to clarify their pathogenicity and to identify factors modifying the clinical outcome, which is important for the choice of the treatment strategy for HCM.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - R. R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| | - M. V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - E. N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| |
Collapse
|
17
|
Field E, Norrish G, Acquaah V, Dady K, Cicerchia MN, Ochoa JP, Syrris P, McLeod K, McGowan R, Fell H, Lopes LR, Cervi E, Kaski JPP. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet 2022; 59:768-775. [PMID: 34400558 PMCID: PMC7613139 DOI: 10.1136/jmedgenet-2021-107774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Variants in the cardiac myosin-binding protein C gene (MYBPC3) are a common cause of hypertrophic cardiomyopathy (HCM) in adults and have been associated with late-onset disease, but there are limited data on their role in paediatric-onset HCM. The objective of this study was to describe natural history and clinical outcomes in a large cohort of children with HCM and pathogenic/likely pathogenic (P/LP) MYBPC3 variants. METHODS AND RESULTS Longitudinal data from 62 consecutive patients diagnosed with HCM under 18 years of age and carrying at least one P/LP MYBPC3 variant were collected from a single specialist referral centre. The primary patient outcome was a major adverse cardiac event (MACE). Median age at diagnosis was 10 (IQR: 2-14) years, with 12 patients (19.4%) diagnosed in infancy. Forty-seven (75%) were boy and 31 (50%) were probands. Median length of follow-up was 3.1 (IQR: 1.6-6.9) years. Nine patients (14.5%) experienced an MACE during follow-up and five (8%) died. Twenty patients (32.3%) had evidence of ventricular arrhythmia, including 6 patients (9.7%) presenting with out-of-hospital cardiac arrest. Five-year freedom from MACE for those with a single or two MYBPC3 variants was 95.2% (95% CI: 78.6% to 98.5%) and 68.4% (95% CI: 40.6% to 88.9%), respectively (HR 4.65, 95% CI: 1.16 to 18.66, p=0.03). CONCLUSIONS MYBPC3 variants can cause childhood-onset disease, which is frequently associated with life-threatening ventricular arrhythmia. Clinical outcomes in this cohort vary substantially from aetiologically and genetically mixed paediatric HCM cohorts described previously, highlighting the importance of identifying specific genetic subtypes for clinical management of childhood HCM.
Collapse
Affiliation(s)
- Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kathleen Dady
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karen McLeod
- Department of Paediatric Cardiology, Royal Hospital for Children, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Hannah Fell
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, London, UK
- Inherited Cardiovascular Disease Unit, Saint Bartholomew's Hospital Barts Heart Centre, London, UK
| | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Juan Pablo Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
18
|
Rodríguez-López R, García-Planells J, Martínez-Matilla M, Pérez-García C, García Banacloy A, Guzmán Luján C, Zomeño Alcalá O, Belchi Navarro J, Martínez-León J, Salguero-Bodes R. Homozygous Pro1066Arg MYBPC3 Pathogenic Variant in a 26Mb Region of Homozygosity Associated with Severe Hypertrophic Cardiomyopathy in a Patient of an Apparent Non-Consanguineous Family. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071035. [PMID: 35888124 PMCID: PMC9316903 DOI: 10.3390/life12071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
MYPBC3 and MYH7 are the most frequently mutated genes in patients with hereditary HCM. Homozygous and compound heterozygous genotypes generate the most severe phenotypes. A 35-year-old woman who was a homozygous carrier of the p.(Pro1066Arg) variant in the MYBPC3 gene, developed HCM phenocopy associated with left ventricular noncompaction and various degrees of conduction disease. Her father, a double heterozygote for this variant in MYBPC3 combined with the variant p.(Gly1931Cys) in the MYH7 gene, was affected by HCM. The variant in MYBPC3 in the heterozygosis-produced phenotype was neither in the mother nor in her only sister. Familial segregation analysis showed that the homozygous genotype p.(Pro1066Arg) was located in a region of 26 Mb loss of heterozygosity due to some consanguinity in the parents. These findings describe the pathogenicity of this variant, supporting the hypothesis of cumulative variants in cardiomyopathies, as well as the modulatory effect of the phenotype by other genes such as MYH7. Advancing HPO phenotyping promoted by the Human Phenotype Ontology, the gene-disease correlation, and vice versa, is evidence for the phenotypic heterogeneity of familial heart disease. The progressive establishment of phenotypic characteristics over time also complicates the clinical description.
Collapse
Affiliation(s)
- Raquel Rodríguez-López
- Laboratory of Molecular Genetics, Clinical Analysis Service, Consortium General University Hospital, 46014 Valencia, Spain; (C.G.L.); (O.Z.A.)
- Correspondence: ; Tel.: +34-963-131-800-437-317; Fax: +34-963-131-979
| | | | | | | | - Amor García Banacloy
- Department of Surgery, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Carola Guzmán Luján
- Laboratory of Molecular Genetics, Clinical Analysis Service, Consortium General University Hospital, 46014 Valencia, Spain; (C.G.L.); (O.Z.A.)
| | - Otilia Zomeño Alcalá
- Laboratory of Molecular Genetics, Clinical Analysis Service, Consortium General University Hospital, 46014 Valencia, Spain; (C.G.L.); (O.Z.A.)
| | | | | | - Rafael Salguero-Bodes
- Cardiology Department and Research Institute Hospital Universitario, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Carlos III Health Institute, 28029 Madrid, Spain
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
A Novel Loss-of-function Mutation in MYBPC3 Causes Familial Hypertrophic Cardiomyopathy with Extreme Intrafamilial Phenotypic Heterogeneity. Balkan J Med Genet 2022; 25:71-78. [PMID: 36880031 PMCID: PMC9985356 DOI: 10.2478/bjmg-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of diseases predominantly affecting the heart muscle and often lead to progressive heart failure-related disability or cardiovascular death. Hypertrophic cardiomyopathy (HCM) is a cardiac muscle disorder mostly caused by the mutations in genes encoding cardiac sarcomere. Germ-line mutations in MYBPC3 causes hypertrophic cardiomyopathy (HCM). However, most of the HCM associated MYBPC3 mutations were truncating mutations. Extreme phenotypic heterogeneity was observed among HCM patients with MYBPC3 mutations. In this study, we investigated a Chinese man who presented with HCM. Whole exome sequencing identified a novel heterozygous deletion (c.3781_3785delGAGGC) in exon 33 of the MYBPC3 in the proband. This heterozygous variant causes frameshift (p.Glu1261Thrfs*3), which predicted to form a truncated MYBPC3 protein. The proband's father also carries this variant in a heterozygous state while the proband's mother did not harbor this variant. Here, we report on a novel deletion in the MYBPC3 gene associated with HCM. We also highlight the importance of whole exome sequencing for molecular diagnosis for the patients with familial HCM.
Collapse
|
20
|
Pham HM, Tran VK, Mai TA, Luong LH, Le Pham M, Nguyen CK, Nguyen HTT, Pham MN, Thuy C, Le TT, Van Ta T, Tran TH. A Case Series of Hypertrophic Cardiomyopathy Conducted in Vietnam Revealing a Novel Pathogenic Variant of the TNNT2 Gene. Open Cardiovasc Med J 2022. [DOI: 10.2174/18741924-v16-e2202280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Hypertrophic Cardiomyopathy (HCM) is one of the leading causes of sudden cardiac death in adults.HCM is inherited in an autosomal dominant manner; however, the genetic etiology of the disease is not fully explained and studies on the hereditary characteristics in family trees are still underway.
Methods:
Ten HCM patients and 31 of their relatives were recruited. Targeted sequencing for 4 HCM related-genes, including MYH7, MYBPC3, TNNT2, and TNNI3, using targeted next-generation sequencing (NGS) was carried out. Demographic, clinical, electrocardiography, and echocardiography characteristics were also characterized.
Results:
Among the 10 HCM patients, 5 were identified with the HCM pathogenic variants in MYH7 (3 patients), MYBPC3 (1 patient), and TNNT2 (1 patient) genes. Eleven out of 31 relatives from these 5 genotype-positive patients carried the same pathogenic variants. We found the novel c.822-2 A>G variant in the splicing site of the TNNT2 gene responsible for HCM disease in a family with 7 subjects genotype positive and 3 others who suffered from sudden cardiac death.
Conclusion:
This case series highlighted the importance of genetic testing for clinically confirmed HCM patients and family members. The genetic information can be used as a molecular marker to complement the clinical presentation in the diagnosis of HCM, as well as a prognostic tool for the patients and their family members.
Collapse
|
21
|
Christian S, Cirino A, Hansen B, Harris S, Murad AM, Natoli JL, Malinowski J, Kelly MA. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: a systematic review and meta-analysis. Open Heart 2022; 9:openhrt-2021-001815. [PMID: 35387861 PMCID: PMC8987756 DOI: 10.1136/openhrt-2021-001815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study summarises the diagnostic validity and clinical utility of genetic testing for patients with hypertrophic cardiomyopathy (HCM) and their at-risk relatives. Methods A systematic search was performed in PubMed (MEDLINE), Embase, CINAHL and Cochrane Central Library databases from inception through 2 March 2020. Subgroup and sensitivity analyses were prespecified for individual sarcomere genes, presence/absence of pathogenic variants, paediatric and adult cohorts, family history, inclusion of probands, and variant classification method. Study quality was assessed using the Newcastle-Ottawa tool. Results A total of 132 articles met inclusion criteria. The detection rate based on pathogenic and likely pathogenic variants was significantly higher in paediatric cohorts compared with adults (56% vs 42%; p=0.01) and in adults with a family history compared with sporadic cases (59% vs 33%; p=0.005). When studies applied current, improved, variant interpretation standards, the adult detection rate significantly decreased from 42% to 33% (p=0.0001) because less variants met criteria to be considered pathogenic. The mean difference in age-of-onset in adults was significantly earlier for genotype-positive versus genotype-negative cohorts (8.3 years; p<0.0001), MYH7 versus MYBPC3 cohorts (8.2 years; p<0.0001) and individuals with multiple versus single variants (7.0 years; p<0.0002). Overall, disease penetrance in adult cohorts was 62%, but differed significantly depending on if probands were included or excluded (73% vs 55%; p=0.003). Conclusions This systematic review and meta-analysis is the first, to our knowledge, to collectively quantify historical understandings of detection rate, genotype-phenotype associations and disease penetrance for HCM, while providing the answers to important routine clinical questions and highlighting key areas for future study.
Collapse
Affiliation(s)
- Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Brittany Hansen
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephanie Harris
- Cardiology Division, Cardiovascular Genetics Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea M Murad
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Jaime L Natoli
- Kaiser Permanente, Southern California Permanente Medical Group, Pasadena, California, USA
| | | | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
22
|
Zhang M, Sun X, Wu G, Wang D, Wang L, Zhang C, Zou Y, Wang J, Song L. Effect of Cis-Compound Variants in MYH7 on Hypertrophic Cardiomyopathy With a Mild Phenotype. Am J Cardiol 2022; 167:104-110. [PMID: 35065800 DOI: 10.1016/j.amjcard.2021.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Patients with hypertrophic cardiomyopathy (HC) caused by compound variants have severe clinical manifestations, but significant clinical heterogeneity remains. Clinical diversity in these patients may result from different combinations of variants. We analyzed the role of cis-compound variants in a Chinese HC pedigree. Exome sequencing was performed in the proband. Identified variants were detected with bi-directional Sanger sequencing in a pedigree that comprised 3 generations and 28 family members. Follow-up was performed for 16 years. Two missense variants (c.2465T>C, p.Met822Thr; c.4258C>T, p.Arg1420Trp) were identified in the MYH7 gene. These variants were absent in our 761 in-house people without HC and predicted to be pathogenic.Both variants were detected in 11 family members, thus they were believed to inherit cis. In the 11 members, only 5 developed HC, the other 6 were asymptomatic variant carriers with an abnormal electrocardiogram. The HC members had mild hypertrophy with a maximum left ventricular wall thickness of 13 to 21 mm and showed a low incidence of cardiovascular events. In conclusion, the cis-compound variants of Met822Thr and Arg1420Trp in MYH7 are causal but relatively benign, variants associated with familial HC. This finding suggests that different types of compound variants might need to be analyzed for a genotype-phenotype study.
Collapse
Affiliation(s)
| | | | - Guixin Wu
- Department of Cardiology; State Key Laboratory of Cardiovascular Diseases
| | | | | | | | | | - Jizheng Wang
- State Key Laboratory of Cardiovascular Diseases.
| | - Lei Song
- Department of Cardiology; National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
23
|
Emrahi L, Hosseinzadeh H, Tabrizi MT. Two rare variants in the MYBPC3 gene associated with familial hypertrophic cardiomyopathy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
25
|
Vähätalo JH, Holmström LTA, Pylkäs K, Skarp S, Porvari K, Pakanen L, Kaikkonen KS, Perkiömäki JS, Kerkelä R, Huikuri HV, Myerburg RJ, Junttila MJ. Genetic Variants Associated With Sudden Cardiac Death in Victims With Single Vessel Coronary Artery Disease and Left Ventricular Hypertrophy With or Without Fibrosis. Front Cardiovasc Med 2022; 8:755062. [PMID: 35087879 PMCID: PMC8788946 DOI: 10.3389/fcvm.2021.755062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: Cardiac hypertrophy with varying degrees of myocardial fibrosis is commonly associated with coronary artery disease (CAD) related sudden cardiac death (SCD), especially in young victims among whom patterns of coronary artery lesions do not entirely appear to explain the cause of SCD. Our aim was to study the genetic background of hypertrophy, with or without fibrosis, among ischemic SCD victims with single vessel CAD. Methods: The study population was derived from the Fingesture study, consisting of all autopsy-verified SCDs in Northern Finland between the years 1998 and 2017 (n = 5,869). We carried out targeted next-generation sequencing using a panel of 174 genes associated with myocardial structure and ion channel function in 95 ischemic-SCD victims (mean age 63.6 ± 10.3 years; 88.4% males) with single-vessel CAD in the absence of previously diagnosed CAD and cardiac hypertrophy with or without myocardial fibrosis at autopsy. Results: A total of 42 rare variants were detected in 43 subjects (45.3% of the study subjects). Five variants in eight subjects (8.4%) were classified as pathogenic or likely pathogenic. We observed 37 variants of uncertain significance in 39 subjects (40.6%). Variants were detected in myocardial structure protein coding genes, associated with arrhythmogenic right ventricular, dilated, hypertrophic and left ventricular non-compaction cardiomyopathies. Also, variants were detected in ryanodine receptor 2 (RYR2), a gene associated with both cardiomyopathies and catecholaminergic polymorphic ventricular tachycardias. Conclusions: Rare variants associated with cardiomyopathies, in the absence of anatomic evidence of the specific inherited cardiomyopathies, were common findings among CAD-related SCD victims with single vessel disease and myocardial hypertrophy found at autopsies, suggesting that these variants may modulate the risk for fatal arrhythmias and SCD in ischemic disease.
Collapse
Affiliation(s)
- Juha H. Vähätalo
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- *Correspondence: Juha H. Vähätalo
| | - Lauri T. A. Holmström
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katja Porvari
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Kari S. Kaikkonen
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S. Perkiömäki
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Heikki V. Huikuri
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert J. Myerburg
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - M. Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
26
|
Pollmann K, Kaltenecker E, Schleihauf J, Ewert P, Görlach A, Wolf CM. Compound Mutation in Cardiac Sarcomere Proteins Is Associated with Increased Risk for Major Arrhythmic Events in Pediatric Onset Hypertrophic Cardiomyopathy. J Clin Med 2021; 10:jcm10225256. [PMID: 34830538 PMCID: PMC8617951 DOI: 10.3390/jcm10225256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is associated with adverse left ventricular (LV) remodeling causing dysfunction and malignant arrhythmias. Severely affected patients present with disease onset during childhood and sudden cardiac death risk (SCD) stratification is of the highest importance in this cohort. This study aimed to investigate genotype–phenotype association regarding clinical outcome and disease progression in pediatric onset HCM. Medical charts from forty-nine patients with pediatric HCM who had undergone genetic testing were reviewed for retrospective analysis. Demographic, clinical, transthoracic echocardiographic, electrocardiographic, long-term electrocardiogram, cardiopulmonary exercise test, cardiac magnetic resonance, and medication data were recorded. Childhood onset HCM was diagnosed in 29 males and 20 females. Median age at last follow-up was 18.7 years (range 2.6–51.7 years) with a median follow-up time since diagnosis of 8.5 years (range 0.2–38.0 years). Comparison of patients carrying mutations in distinct genes and comparison of genotype-negative with genotype-positive individuals, revealed no differences in functional classification, LV morphology, hypertrophy, systolic and diastolic function, fibrosis and cardiac medication. Patients with compound mutations had a significantly higher risk for major arrhythmic events than a single-mutation carrier. No association between affected genes and disease severity or progression was identified in this cohort.
Collapse
Affiliation(s)
- Kathrin Pollmann
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Emanuel Kaltenecker
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Julia Schleihauf
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Peter Ewert
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Agnes Görlach
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Experimental and Molecular Pediatric Cardiology, Technical University of Munich, 80636 Munich, Germany
| | - Cordula M. Wolf
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Correspondence:
| |
Collapse
|
27
|
Filatova EV, Krylova NS, Vlasov IN, Maslova MS, Poteshkina NG, Slominsky PA, Shadrina MI. Targeted exome analysis of Russian patients with hypertrophic cardiomyopathy. Mol Genet Genomic Med 2021; 9:e1808. [PMID: 34598319 PMCID: PMC8606207 DOI: 10.1002/mgg3.1808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM), described as the presence of hypertrophy of left ventricular, is the most prevalent heritable cardiovascular disease with predominantly an autosomal dominant type of inheritance. However, pathogenic alleles are not identified in at least 25% of patients with HCM, and the spectrum of pathogenic variants that contribute to the development of HCM in Russia has not been fully described. Therefore, the goal of our study was to identify genetic variants associated with the etiopathogenesis of HCM in Russian patients. Methods The study cohort included 98 unrelated adult patients with HCM. We performed targeted exome sequencing, an analysis using various algorithms for prediction of the impact of variants on protein structure and the prediction of pathogenicity using ACMG Guidelines. Results The frequency of pathogenic and likely pathogenic variants in all HCM‐related genes was 8% in our patients. We also identified 20 variants of uncertain significance in all HCM‐related genes. Conclusions The prevalence of individual pathogenic variants in HCM‐related genes in Russian population appears to be lower than in general European population, which could be explained by ethnic features of Russian population, age characteristics of our sample, or unidentified pathogenic variants in genes previously not linked with HCM.
Collapse
Affiliation(s)
- Elena V Filatova
- Institute of Molecular Genetics of National Research Centre, Moscow, Russia
| | - Natalia S Krylova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan N Vlasov
- Institute of Molecular Genetics of National Research Centre, Moscow, Russia
| | - Maria S Maslova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Petr A Slominsky
- Institute of Molecular Genetics of National Research Centre, Moscow, Russia
| | - Maria I Shadrina
- Institute of Molecular Genetics of National Research Centre, Moscow, Russia
| |
Collapse
|
28
|
Guo J, Jiang H, Oguntuyo K, Rios B, Boodram Z, Huebsch N. Interplay of Genotype and Substrate Stiffness in Driving the Hypertrophic Cardiomyopathy Phenotype in iPSC-Micro-Heart Muscle Arrays. Cell Mol Bioeng 2021; 14:409-425. [PMID: 34777601 PMCID: PMC8548480 DOI: 10.1007/s12195-021-00684-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION In clinical and animal studies, Hypertrophic Cardiomyopathy (HCM) shares many similarities with non-inherited cardiac hypertrophy induced by pressure overload (hypertension). This suggests a potential role for mechanical stress in priming tissues with mutation-induced changes in the sarcomere to develop phenotypes associated with HCM, including hypercontractility and aberrant calcium handling. Here, we tested the hypothesis that heterozygous loss of function of Myosin Binding Protein C (MYBCP3 +/- , mutations in which account for almost 50% of inherited HCM) combines with environmental stiffness to drive HCM phenotypes. METHODS We differentiated isogenic control (WTC) and MYBPC3 +/- iPSC into cardiomyocytes using small molecule manipulation of Wnt signaling, and then purified them using lactate media. The purified cardiomyocytes were seeded into "dog bone" shaped stencil molds to form micro-heart muscle arrays (μHM). To mimic changes in myocardial stiffness stemming from pressure overload, we varied the rigidity of the substrates μHM contract against. Stiffness levels ranged from those corresponding to fetal (5 kPa), healthy (15 kPa), pre-fibrotic (30 kPa) to fibrotic (65 kPa) myocardium. Substrates were embedded with a thin layer of fluorescent beads to track contractile force, and parent iPSC were engineered to express the genetic calcium indicator, GCaMP6f. High speed video microscopy and image analysis were used to quantify calcium handling and contractility of μHM. RESULTS Substrate rigidity triggered physiological adaptation for both genotypes. However, MYBPC3 +/- μHM showed a lower tolerance to substrate stiffness with the peak traction on 15 kPa, while WTC μHM had peak traction on 30 kPa. MYBPC3 +/- μHM exhibited hypercontractility, which was exaggerated by substrate rigidity. MYBPC3 +/- μHM hypercontractility was associated with longer rise times for calcium uptake and force development, along with higher overall Ca2+ intake. CONCLUSION We found MYBPC3 +/- mutations cause iPSC-μHM to exhibit hypercontractility, and also a lower tolerance for mechanical stiffness. Understanding how genetics work in combination with mechanical stiffness to trigger and/or exacerbate pathophysiology may lead to more effective therapies for HCM. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12195-021-00684-x).
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, USA
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Brandon Rios
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Zoë Boodram
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
- NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, Saint Louis, USA
- Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, Saint Louis, USA
| |
Collapse
|
29
|
Nguyen TV, Tran Vu MT, Do TNP, Tran THN, Do TH, Nguyen TMH, Tran Huynh BN, Le LA, Nguyen Pham NT, Nguyen TDA, Nguyen TMN, Le NHP, Pham Nguyen V, Ho Huynh TD. Genetic Determinants and Genotype-Phenotype Correlations in Vietnamese Patients With Dilated Cardiomyopathy. Circ J 2021; 85:1469-1478. [PMID: 34011823 DOI: 10.1253/circj.cj-21-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is an important cause of heart failure and cardiac transplantation. This study determined the prevalence of DCM-associated genes and evaluated the genotype-phenotype correlation in Vietnamese patients. METHODS AND RESULTS This study analyzed 58 genes from 230 patients. The study cohort consisted of 64.3% men; age at diagnosis 47.9±13.7 years; familial (10.9%) and sporadic DCM (82.2%). The diagnostic yield was 23.5%, 44.0% in familial and 19.6% in sporadic DCM.TTNtruncating variants (TTNtv) were predominant (46.4%), followed byTPM1,DSP,LMNA,MYBPC3,MYH6,MYH7,DES,TNNT2,ACTC1,ACTN2,BAG3,DMD,FKTN,PLN,TBX5,RBM20,TCAP(2-6%). Familial DCM, genotype-positive andTTNtv-positive patients were younger than those with genotype-negative and sporadic DCM. Genotype-positive patients displayed a decreased systolic blood pressure and left ventricular wall thickness compared to genotype-negative patients. Genotype-positive patients, particularly those withTTNtv, had a family history of DCM, higher left atrial volume index and body mass index, and lower right ventricle-fractional area change than genotype-negative patients. Genotype-positive patients reached the combined outcomes more frequently and at a younger age than genotype-negative patients. Major cardiac events occurred more frequently in patients positive with genes other thanTTNtv. CONCLUSIONS The study findings provided an overview of Vietnamese DCM patients' genetic profile and suggested that management of environmental factors may be beneficial for DCM patients.
Collapse
Affiliation(s)
- Thuy Vy Nguyen
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM [Vietnam National University, Ho Chi Minh City]
| | | | | | | | | | | | | | | | | | | | - Thi My Nuong Nguyen
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM [Vietnam National University, Ho Chi Minh City]
| | - Ngoc Hong Phuong Le
- Research Center for Genetics and Reproductive Health, School of Medicine, VNUHCM [Vietnam National University, Ho Chi Minh City]
| | | | - Thuy Duong Ho Huynh
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM [Vietnam National University, Ho Chi Minh City]
- Research Center for Genetics and Reproductive Health, School of Medicine, VNUHCM [Vietnam National University, Ho Chi Minh City]
- KTEST Science Company
| |
Collapse
|
30
|
Vullaganti S, Levine J, Raiker N, Syed AA, Collins JD, Carr JC, Bonow RO, Choudhury L. Fibrosis in Hypertrophic Cardiomyopathy Patients With and Without Sarcomere Gene Mutations. Heart Lung Circ 2021; 30:1496-1501. [PMID: 34023176 DOI: 10.1016/j.hlc.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with hypertrophic cardiomyopathy (HCM) and an identified sarcomere mutation have worse outcomes than those without though the underlying mechanism is incompletely understood. The presence of replacement fibrosis measured by late gadolinium enhancement (LGE) and diffuse fibrosis measured by extracellular volume (ECV) using cardiac magnetic resonance imaging (CMR) are associated with ventricular arrhythmias and cardiac mortality. We aimed to associate these two forms of fibrosis with identified sarcomere mutations. METHODS AND RESULTS Three hundred and thirty-six (336) patients with HCM underwent CMR at a single quaternary referral centre between January 2012 and February 2017. Genetic testing was performed in 73 of these patients, yielding an identified sarcomeric mutation in 29 (G+), no mutation in 39 (G-), and a variant of unknown significance (VUS) in five. LGE was more prevalent in G+ compared to G- patients (86 vs. 56%, OR 4.3, p=0.01) and was more extensive (7.5±5.5% of left ventricular [LV] mass vs. 3.0±3.0%, p<0.001). Global ECV from myocardial segments excluding LGE was similar among both groups (26.9±2.9 vs. 25.6±2.8%, p=0.46). However, in G+ patients ECV was greater in the hypertrophied regions of the basal anteroseptum (30.2±7.0 vs. 26.8±3.6%, p=0.004) and basal inferoseptum (28.1±4.3 vs. 26.2±2.9%, p=0.005). CONCLUSIONS Genotyped HCM patients with an identified sarcomere mutation have greater LGE and greater regional, but not global, ECV than HCM patients without an identified mutation. This difference in fibrosis may contribute to worse outcomes in patients with an identified HCM mutation.
Collapse
Affiliation(s)
- Sirish Vullaganti
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonathan Levine
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nisha Raiker
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amer Ahmed Syed
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert O Bonow
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lubna Choudhury
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
31
|
Fatkin D, Calkins H, Elliott P, James CA, Peters S, Kovacic JC. Contemporary and Future Approaches to Precision Medicine in Inherited Cardiomyopathies: JACC Focus Seminar 3/5. J Am Coll Cardiol 2021; 77:2551-2572. [PMID: 34016267 DOI: 10.1016/j.jacc.2020.12.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Inherited cardiomyopathies are commonly occurring myocardial disorders that are associated with substantial morbidity and mortality. Clinical management strategies have focused on treatment of heart failure and arrhythmic complications in symptomatic patients according to standardized guidelines. Clinicians are now being urged to implement precision medicine, but what does this involve? Advances in understanding of the genetic underpinnings of inherited cardiomyopathies have brought new possibilities for interventions that are tailored to genes, specific variants, or downstream mechanisms. However, the phenotypic variability that can occur with any given pathogenic variant suggests that factors other than single driver gene mutations are often involved. This is propelling a new imperative to elucidate the nuanced ways in which individual combinations of genetic variation, comorbidities, and lifestyle may influence cardiomyopathy phenotypes. Here, Part 3 of a 5-part precision medicine Focus Seminar series reviews the current status and future opportunities for precision medicine in the inherited cardiomyopathies.
Collapse
Affiliation(s)
- Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Perry Elliott
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stacey Peters
- Departments of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
32
|
Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genet Med 2021; 23:1281-1287. [PMID: 33782553 PMCID: PMC8257482 DOI: 10.1038/s41436-021-01134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. Methods Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. Results We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. Conclusion STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity.
Collapse
|
33
|
Schuldt M, Johnston JR, He H, Huurman R, Pei J, Harakalova M, Poggesi C, Michels M, Kuster DWD, Pinto JR, van der Velden J. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol 2021; 150:77-90. [PMID: 33148509 PMCID: PMC10616699 DOI: 10.1016/j.yjmcc.2020.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Roy Huurman
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jiayi Pei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Micheu MM, Popa-Fotea NM, Oprescu N, Bogdan S, Dan M, Deaconu A, Dorobantu L, Gheorghe-Fronea O, Greavu M, Iorgulescu C, Scafa-Udriste A, Ticulescu R, Vatasescu RG, Dorobanțu M. Yield of Rare Variants Detected by Targeted Next-Generation Sequencing in a Cohort of Romanian Index Patients with Hypertrophic Cardiomyopathy. Diagnostics (Basel) 2020; 10:1061. [PMID: 33297573 PMCID: PMC7762332 DOI: 10.3390/diagnostics10121061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the rare variants in a cohort of Romanian index cases with hypertrophic cardiomyopathy (HCM). METHODS Forty-five unrelated probands with HCM were screened by targeted next generation sequencing (NGS) of 47 core and emerging genes connected with HCM. RESULTS We identified 95 variants with allele frequency < 0.1% in population databases. MYBPC3 and TTN had the largest number of rare variants (17 variants each). A definite genetic etiology was found in 6 probands (13.3%), while inconclusive results due to either known or novel variants were established in 31 cases (68.9%). All disease-causing variants were detected in sarcomeric genes (MYBPC3 and MYH7 with two cases each, and one case in TNNI3 and TPM1 respectively). Multiple variants were detected in 27 subjects (60%), but no proband carried more than one causal variant. Of note, almost half of the rare variants were novel. CONCLUSIONS Herein we reported for the first time the rare variants identified in core and putative genes associated with HCM in a cohort of Romanian unrelated adult patients. The clinical significance of most detected variants is yet to be established, additional studies based on segregation analysis being required for definite classification.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Nicoleta Oprescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
| | - Stefan Bogdan
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Monica Dan
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
| | - Alexandru Deaconu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Lucian Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Monza Hospital, Tony Bulandra Street, No. 27, 021967 Bucharest, Romania; (M.G.); (R.T.)
| | - Oana Gheorghe-Fronea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Maria Greavu
- Monza Hospital, Tony Bulandra Street, No. 27, 021967 Bucharest, Romania; (M.G.); (R.T.)
| | - Corneliu Iorgulescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Razvan Ticulescu
- Monza Hospital, Tony Bulandra Street, No. 27, 021967 Bucharest, Romania; (M.G.); (R.T.)
| | - Radu Gabriel Vatasescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Maria Dorobanțu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; (N.O.); (S.B.); (M.D.); (A.D.); (L.D.); (O.G.-F.); (C.I.); (A.S.-U.); (R.G.V.); (M.D.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| |
Collapse
|
35
|
Implantation of cardiac defibrillator in an infant with hypertrophic cardiomyopathy and newly identified MYBP3 mutation. Turk Arch Pediatr 2020; 55:304-308. [PMID: 33061760 PMCID: PMC7536448 DOI: 10.14744/turkpediatriars.2018.35556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/17/2018] [Indexed: 12/04/2022]
Abstract
Hypertrophic cardiomyopathy has the highest incidence rate among genetically inherited cardiac diseases. It develops as a result of mutations in genes in related to the sarcomere protein in cardiac muscle. Generally, this results in asymmetrical hypertrophy. Patients who are symptomatic and have a significantly narrow left ventricular undergo should receive surgical treatment, whereas patients with a sudden cardiac death risk should receive treatment with an implantable cardiac defibrillator. This paper presents an infant with hypertrophic cardiomyopathy who was recently identified as having a mutation that resulted in a deletion-insertion type framework shift in the gene MYBPC3, who had family history of sudden death at a young age, and received myectomy and treatment with an implantable cardiac defibrillator in the same session due to a severely narrowed left ventricular outflow tract.
Collapse
|
36
|
Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol 2020; 150:101-108. [PMID: 33049255 DOI: 10.1016/j.yjmcc.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany.
| |
Collapse
|
37
|
Mattivi CL, Bos JM, Bagnall RD, Nowak N, Giudicessi JR, Ommen SR, Semsarian C, Ackerman MJ. Clinical Utility of a Phenotype-Enhanced
MYH7
-Specific Variant Classification Framework in Hypertrophic Cardiomyopathy Genetic Testing. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:453-459. [DOI: 10.1161/circgen.120.003039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Missense variants in the
MYH7
-encoded MYH7 (beta myosin heavy chain 7) represent a leading cause of hypertrophic cardiomyopathy (HCM).
MYH7
-specific American College of Medical Genetics and Genomics (ACMG) variant classification guidelines were released recently but have yet to be assessed independently. We set out to assess the performance of the
MYH7
-specific ACMG guidelines and determine if the addition of phenotype-enhanced criteria (PE-ACMG) using the HCM Genotype Predictor Score can further reduce the burden of variants of uncertain significance (VUS).
Methods:
Re-assessment was performed on 70
MYH7
-variants in 121 unique patients from Mayo Clinic, and an independent cohort of 54 variants in 70 patients from Royal Prince Alfred Hospital (Australia). Qualifying variants were re-adjudicated using both standard ACMG and
MYH7
-ACMG guidelines, and HCM Genotype Predictor Score was used to provide a validated measure of strength of clinical phenotype to be incorporated into the
MYH7
-ACMG framework.
Results:
Among Mayo Clinic identified variants, 11/70 (16%) were classified as pathogenic (P), 10/70 (14%) as likely pathogenic, and 49/70 (70%) as a VUS. A similar distribution was seen in the Australian patients (12/54 [22%] P, 12/54 [22%] likely pathogenic, and 30/54 [56%] VUS;
P
=not significant). Application of the
MYH7
-ACMG resulted in a nonsignificant reduction of the VUS burden in both cohorts from 49/70 to 39/70 (56%;
P
=0.1; Mayo Clinic) and from 30/54 to 20/54 (37%;
P
=0.1; Australia). Using the combined PE-MYH7-ACMG framework, the VUS decreased significantly from 49 to 27 (
P
<0.001, Mayo Clinic) and from 30 to 16 (
P
<0.001; Australia).
Conclusions:
Use of the
MYH7
-specific guidelines alone failed to significantly decrease VUS burden in 2 independent cohorts. However, a significant reduction in VUS burden was observed after the addition of phenotypic criteria. Using a patient’s strength of sarcomeric HCM phenotype for variant adjudication can increase significantly the clinical utility of genetic testing for patients with HCM.
Collapse
Affiliation(s)
- Connor L. Mattivi
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic Graduate School of Biomedical Sciences (C.L.M., J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
| | - J. Martijn Bos
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic Graduate School of Biomedical Sciences (C.L.M., J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
| | - Richard D. Bagnall
- Molecular Cardiology Program at Centenary Institute (R.D.B., N.N., C.S.), The University of Sydney
- Faculty of Medicine and Health (R.D.B., C.S.), The University of Sydney
| | - Natalie Nowak
- Molecular Cardiology Program at Centenary Institute (R.D.B., N.N., C.S.), The University of Sydney
| | - John R. Giudicessi
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, (J.R.G., S.R.O., M.J.A.), Mayo Clinic, Rochester, MN
| | - Steve R. Ommen
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, (J.R.G., S.R.O., M.J.A.), Mayo Clinic, Rochester, MN
| | - Christopher Semsarian
- Molecular Cardiology Program at Centenary Institute (R.D.B., N.N., C.S.), The University of Sydney
- Faculty of Medicine and Health (R.D.B., C.S.), The University of Sydney
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia (C.S.)
| | - Michael J. Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic Graduate School of Biomedical Sciences (C.L.M., J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, (J.R.G., S.R.O., M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
Helms AS, Thompson AD, Glazier AA, Hafeez N, Kabani S, Rodriguez J, Yob JM, Woolcock H, Mazzarotto F, Lakdawala NK, Wittekind SG, Pereira AC, Jacoby DL, Colan SD, Ashley EA, Saberi S, Ware JS, Ingles J, Semsarian C, Michels M, Olivotto I, Ho CY, Day SM. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients With Hypertrophic Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:396-405. [PMID: 32841044 PMCID: PMC7676622 DOI: 10.1161/circgen.120.002929] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Pathogenic variants in MYBPC3, encoding cardiac MyBP-C (myosin binding protein C), are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped hypertrophic cardiomyopathy cohorts have precluded detailed genotype-phenotype correlations.
Collapse
Affiliation(s)
- Adam S Helms
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Andrea D Thompson
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Amelia A Glazier
- Molecular & Integrative Physiology (A.A.G.), University of Michigan, Ann Arbor
| | - Neha Hafeez
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Samat Kabani
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Juliani Rodriguez
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Jaime M Yob
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Helen Woolcock
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Francesco Mazzarotto
- Department of Experimental & Clinical Medicine, University of Florence, Italy (F.M., I.O.).,National Heart & Lung Institute & Royal Brompton Cardiovascular Research Center, Imperial College London, United Kingdom (F.M., J.S.W.)
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., C.Y.H.)
| | - Samuel G Wittekind
- Cincinnati Children's Hospital Medical Center, Heart Institute, Cincinnati, OH (S.G.W.)
| | - Alexandre C Pereira
- Heart Institute (InCor), University of Sao Paolo Medical School, Brazil (A.C.P.)
| | - Daniel L Jacoby
- Cardiovascular Medicine, Yale University, New Haven, CT (D.L.J.)
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, MA (S.D.C.)
| | - Euan A Ashley
- Center for Inherited Heart Disease, Stanford University, CA (E.A.A.)
| | - Sara Saberi
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Australia (J.I., C.S.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Australia (J.I., C.S.)
| | - Michelle Michels
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.M.)
| | - Iacopo Olivotto
- Department of Experimental & Clinical Medicine, University of Florence, Italy (F.M., I.O.).,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O.)
| | - Carolyn Y Ho
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., C.Y.H.)
| | - Sharlene M Day
- Cardiovascular Medicine, University of Pennsylvania, Philadelphia (S.M.D.)
| |
Collapse
|
39
|
Arif M, Nabavizadeh P, Song T, Desai D, Singh R, Bazrafshan S, Kumar M, Wang Y, Gilbert RJ, Dhandapany PS, Becker RC, Kranias EG, Sadayappan S. Genetic, clinical, molecular, and pathogenic aspects of the South Asian-specific polymorphic MYBPC3 Δ25bp variant. Biophys Rev 2020; 12:1065-1084. [PMID: 32656747 PMCID: PMC7429610 DOI: 10.1007/s12551-020-00725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Pooneh Nabavizadeh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Darshini Desai
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Rohit Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Sholeh Bazrafshan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
40
|
Stochastic allelic expression as trigger for contractile imbalance in hypertrophic cardiomyopathy. Biophys Rev 2020; 12:1055-1064. [PMID: 32661905 PMCID: PMC7429642 DOI: 10.1007/s12551-020-00719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disease, is caused by several mostly heterozygous mutations in sarcomeric genes. Hallmarks of HCM are cardiomyocyte and myofibrillar disarray and hypertrophy and fibrosis of the septum and the left ventricle. To date, a pathomechanism common to all mutations remains elusive. We have proposed that contractile imbalance, an unequal force generation of neighboring cardiomyocytes, may contribute to development of HCM hallmarks. At the same calcium concentration, we found substantial differences in force generation between individual cardiomyocytes from HCM patients with mutations in β-MyHC (β-myosin heavy chain). Variability among cardiomyocytes was significantly larger in HCM patients as compared with donor controls. We assume that this heterogeneity in force generation among cardiomyocytes may lead to myocardial disarray and trigger hypertrophy and fibrosis. We provided evidence that burst-like transcription of the MYH7-gene, encoding for β-MyHC, is associated with unequal fractions of mutant per wild-type mRNA from cell to cell (cell-to-cell allelic imbalance). This will presumably lead to unequal fractions of mutant per wild-type protein from cell to cell which may underlie contractile imbalance. In this review, we discuss molecular mechanisms of burst-like transcription with regard to contractile imbalance and disease development in HCM.
Collapse
|
41
|
Bos JM, Hebl VB, Oberg AL, Sun Z, Herman DS, Teekakirikul P, Seidman JG, Seidman CE, Dos Remedios CG, Maleszewski JJ, Schaff HV, Dearani JA, Noseworthy PA, Friedman PA, Ommen SR, Brozovich FV, Ackerman MJ. Marked Up-Regulation of ACE2 in Hearts of Patients With Obstructive Hypertrophic Cardiomyopathy: Implications for SARS-CoV-2-Mediated COVID-19. Mayo Clin Proc 2020; 95:1354-1368. [PMID: 32448590 PMCID: PMC7186205 DOI: 10.1016/j.mayocp.2020.04.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the transcriptomic differences between patients with hypertrophic cardiomyopathy (HCM) and controls. PATIENTS AND METHODS RNA was extracted from cardiac tissue flash frozen at therapeutic surgical septal myectomy for 106 patients with HCM and 39 healthy donor hearts. Expression profiling of 37,846 genes was performed using the Illumina Human HT-12v3 Expression BeadChip. All patients with HCM were genotyped for pathogenic variants causing HCM. Technical validation was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. This study was started on January 1, 1999, and final analysis was completed on April 20, 2020. RESULTS Overall, 22% of the transcriptome (8443 of 37,846 genes) was expressed differentially between HCM and control tissues. Analysis by genotype revealed that gene expression changes were similar among genotypic subgroups of HCM, with only 4% (1502 of 37,846) to 6% (2336 of 37,846) of the transcriptome exhibiting differential expression between genotypic subgroups. The qRT-PCR confirmed differential expression in 92% (11 of 12 genes) of tested transcripts. Notably, in the context of coronavirus disease 2019 (COVID-19), the transcript for angiotensin I converting enzyme 2 (ACE2), a negative regulator of the angiotensin system, was the single most up-regulated gene in HCM (fold-change, 3.53; q-value =1.30×10-23), which was confirmed by qRT-PCR in triplicate (fold change, 3.78; P=5.22×10-4), and Western blot confirmed greater than 5-fold overexpression of ACE2 protein (fold change, 5.34; P=1.66×10-6). CONCLUSION More than 20% of the transcriptome is expressed differentially between HCM and control tissues. Importantly, ACE2 was the most up-regulated gene in HCM, indicating perhaps the heart's compensatory effort to mount an antihypertrophic, antifibrotic response. However, given that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 for viral entry, this 5-fold increase in ACE2 protein may confer increased risk for COVID-19 manifestations and outcomes in patients with increased ACE2 transcript expression and protein levels in the heart.
Collapse
Key Words
- δct, transcript of interest minus gapdh control
- ace2, angiotensin i converting enzyme 2
- acei, angiotensin-converting enzyme inhibitor
- arb, angiotensin receptor blocker
- at1r, angiotensin type 1 receptor
- bp, blood pressure
- cdna, complementary dna
- chf, congestive heart failure
- covid-19, coronavirus disease 2019
- ecg, electrocardiogram
- gtp, guanosine triphosphate
- hcm, hypertrophic cardiomyopathy
- hrsace2, human recombinant soluble angiotensin i converting enzyme 2
- htn, hypertension
- icu, intensive care unit
- iqr, interquartile range
- lv, left ventricular
- mig, maximum instantaneous gradient
- mrna, messenger rna
- mybpc3, myosin binding protein c
- myh7, beta myosin heavy chain
- na, not available
- ns, not significant
- nyha, new york heart association
- qrt-pcr, quantitative real-time polymerase chain reaction
- raas, renin-angiotensin-aldosterone system
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- scd, sudden cardiac death
- utr, untranslated region
Collapse
Affiliation(s)
- J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Virginia B Hebl
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | | | | | | | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | | | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Steve R Ommen
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN.
| |
Collapse
|
42
|
Hawley MH, Almontashiri N, Biesecker LG, Berger N, Chung WK, Garcia J, Grebe TA, Kelly MA, Lebo MS, Macaya D, Mei H, Platt J, Richard G, Ryan A, Thomson KL, Vatta M, Walsh R, Ware JS, Wheeler M, Zouk H, Mason-Suares H, Funke B. An assessment of the role of vinculin loss of function variants in inherited cardiomyopathy. Hum Mutat 2020; 41:1577-1587. [PMID: 32516855 DOI: 10.1002/humu.24061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/05/2022]
Abstract
The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.
Collapse
Affiliation(s)
- Megan H Hawley
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Naif Almontashiri
- Faculty of Applied Medical Sciences, Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalie Berger
- Department of Maternal Fetal Medicine, SSM Health St Mary's Hospital, Madison, Wisconsin
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York
| | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Matthew S Lebo
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | | | - Hui Mei
- GeneDx, Inc, Gaithersburg, Maryland
| | - Julia Platt
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Ashley Ryan
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherland
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, UK
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Birgit Funke
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| |
Collapse
|
43
|
Wang J, Yang F, Liu W, Sun J, Han Y, Li D, Gkoutos GV, Zhu Y, Chen Y. Radiomic Analysis of Native T 1 Mapping Images Discriminates Between MYH7 and MYBPC3-Related Hypertrophic Cardiomyopathy. J Magn Reson Imaging 2020; 52:1714-1721. [PMID: 32525266 DOI: 10.1002/jmri.27209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The phenotype via conventional cardiac MRI analysis of MYH7 (β-myosin heavy chain)- and MYBPC3 (β-myosin-binding protein C)-associated hypertrophic cardiomyopathy (HCM) groups is similar. Few studies exist on the genotypic-phenotypic association as assessed by machine learning in HCM patients. PURPOSE To explore the phenotypic differences based on radiomics analysis of T1 mapping images between MYH7 and MYBPC3-associated HCM subgroups. STUDY TYPE Prospective observational study. SUBJECTS In all, 102 HCM patients with pathogenic, or likely pathogenic mutation, in MYH7 (n = 68) or MYBPC3 (n = 34) genes. FIELD STRENGTH/SEQUENCE Cardiac MRI was performed at 3.0T with balanced steady-state free precession (bSSFP), phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE), and modified Look-Locker inversion recovery (MOLLI) T1 mapping sequences. ASSESSMENT All patients underwent next-generation sequencing and Sanger genetic sequencing. Left ventricular native T1 and LGE were analyzed. One hundred and fifty-seven radiomic features were extracted and modeled using a support vector machine (SVM) combined with principal component analysis (PCA). Each subgroup was randomly split 4:1 (feature selection / test validation). STATISTICAL TESTS Mann-Whitney U-tests and Student's t-tests were performed to assess differences between subgroups. A receiver operating characteristic (ROC) curve was used to assess the model's ability to stratify patients based on radiomic features. RESULTS There were no significant differences between MYH7- and MYBPC3-associated HCM subgroups based on traditional native T1 values (global, basal, and middle short-axis slice native T1 ; P = 0.760, 0.914, and 0.178, respectively). However, the SVM model combined with PCA achieved an accuracy and area under the curve (AUC) of 92.0% and 0.968 (95% confidence interval [CI]: 0.968-0.971), respectively. For the test validation dataset, the accuracy and AUC were 85.5% and 0.886 (95% CI: 0.881-0.901), respectively. DATA CONCLUSION Radiomic analysis of native T1 mapping images may be able to discriminate between MYH7- and MYBPC3-associated HCM patients, exceeding the performance of conventional native T1 values. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1714-1721.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Fuyao Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wentao Liu
- Medical Big Data Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dong Li
- Division of Hospital Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR UK), London, UK
| | - Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P. R. China
- Center of Rare diseases, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
44
|
Manivannan SN, Darouich S, Masmoudi A, Gordon D, Zender G, Han Z, Fitzgerald-Butt S, White P, McBride KL, Kharrat M, Garg V. Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 2020; 16:e1008639. [PMID: 32453731 PMCID: PMC7274480 DOI: 10.1371/journal.pgen.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/05/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy. We report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease found in the proband and not in the parents who are carriers of the variant. This contrasts with other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences that correlated with disease pathology. We also show different protein domain requirements for stability and localization of MYL2 in cardiomyocytes. Furthermore, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of disease where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sihem Darouich
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
- * E-mail: (SD); (VG)
| | - Aida Masmoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
| | - David Gordon
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kim L. McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SD); (VG)
| |
Collapse
|
45
|
Tadros HJ, Life CS, Garcia G, Pirozzi E, Jones EG, Datta S, Parvatiyar MS, Chase PB, Allen HD, Kim JJ, Pinto JR, Landstrom AP. Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes. J Mol Cell Cardiol 2020; 142:118-125. [PMID: 32278834 PMCID: PMC7275889 DOI: 10.1016/j.yjmcc.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Chelsea S Life
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Gustavo Garcia
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Elisa Pirozzi
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward G Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Hugh D Allen
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
46
|
Younger J, Lo A, McCormack L, McGaughran J, Prasad S, Atherton JJ. Hypertrophic Cardiomyopathy: Challenging the Status Quo? Heart Lung Circ 2020; 29:556-565. [DOI: 10.1016/j.hlc.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
|
47
|
Gil-Ortuño C, Sebastián-Marcos P, Sabater-Molina M, Nicolas-Rocamora E, Gimeno-Blanes JR, Fernández Del Palacio MJ. Genetics of feline hypertrophic cardiomyopathy. Clin Genet 2020; 98:203-214. [PMID: 32215921 DOI: 10.1111/cge.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by an abnormal increase in myocardial mass that affects cardiac structure and function. HCM is the most common inherited cardiovascular disease in humans (0.2%) and the most common cardiovascular disease in cats (14.7%). Feline HCM phenotype is very similar to the phenotype found in humans, but the time frame for the development of the disease is significantly shorter. Similar therapeutic agents are used in its treatment and it has the same complications, such as heart failure, thromboembolism and sudden cardiac death. In contrast to humans, in whom thousands of genetic variants have been identified, genetic studies in cats have been limited to fragment analysis of two sarcomeric genes identifying two variants in MYBPC3 and one in MYH7. Two of these variants have also been associated with human disease. The high prevalence of the reported variants in non-affected cats hinders the assumption of their pathogenicity in heterozygotes. An in-depth review of the literature about genetic studies on feline HCM in comparison with the same disease in humans is presented here. The close similarity in the phenotype and genotype between cats and humans makes the cat an excellent model for the pathophysiological study of the disease and future therapeutic agents.
Collapse
Affiliation(s)
- Cristina Gil-Ortuño
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | | | - María Sabater-Molina
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain.,Internal Medicine Department, University of Murcia, Murcia, Spain
| | - Elisa Nicolas-Rocamora
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Juan R Gimeno-Blanes
- Internal Medicine Department, University of Murcia, Murcia, Spain.,Department of Cardiology, Inherited Cardiac Disease Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | |
Collapse
|
48
|
Gannon MP, Link MS. Phenotypic variation and targeted therapy of hypertrophic cardiomyopathy using genetic animal models. Trends Cardiovasc Med 2019; 31:20-31. [PMID: 31862214 DOI: 10.1016/j.tcm.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has a variable clinical presentation due to the diversity of causative genetic mutations. Animal models allow in vivo study of genotypic expression through non-invasive imaging, pathologic sampling, and force analysis. This review focuses on the spontaneous and induced mutations in various animal models affecting mainly sarcomere proteins. The sarcomere is comprised of thick (myosin) filaments and related proteins including myosin heavy chain and myosin binding protein-C; thin (actin) filament proteins and their associated regulators including tropomyosin, troponin I, troponin C, and troponin T. The regulatory milieu including transcription factors and cell signaling also play a significant role. Animal models provide a layered approach of understanding beginning with the causative mutation as a foundation. The functional consequences of protein energy utilization and calcium sensitivity in vivo and ex vivo can be studied. Beyond pathophysiologic disruption of sarcomere function, these models demonstrate the clinical sequalae of diastolic dysfunction, heart failure, and arrhythmogenic death. Through this cascade of understanding the mutation followed by their functional significance, targeted therapies have been developed and are briefly discussed.
Collapse
Affiliation(s)
- Michael P Gannon
- National Heart, Lung and Blood Institute, National Institutes of Health, US Department of Health and Human Services, Bldg 10, Rm B1D416, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Mark S Link
- University of Texas Southwestern Medical Center, USA
| |
Collapse
|
49
|
Tran Vu MT, Nguyen TV, Huynh NV, Nguyen Thai HT, Pham Nguyen V, Ho Huynh TD. Presence of Hypertrophic Cardiomyopathy Related Gene Mutations and Clinical Manifestations in Vietnamese Patients With Hypertrophic Cardiomyopathy. Circ J 2019; 83:1908-1916. [PMID: 31308319 DOI: 10.1253/circj.cj-19-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is associated primarily with pathogenic mutations in sarcomeric genes. The aim of this study was to identify the prevalence and distribution of disease-causing mutations in HCM-associated genes and the genotype-phenotype relationship in Vietnamese patients with HCM. METHODS AND RESULTS Genetic testing was performed by next-generation sequencing in 104 unrelated probands for 23 HCM-related genes and in 57 family members for the mutation(s) detected. Clinical manifestations were recorded for genotype-phenotype correlation analysis. Mutation detection rate was 43.4%. Mutations inMYBPC3accounted for 38.6%, followed byTPM1(20.5%),MYH7(18.2%),TNNT2(9.1%),TNNI3(4.5%) andMYL2(2.3%). A mutation inGLAassociated with Fabry disease was found in 1 patient. A mutation inTPM1(c.842T>C, p.Met281Thr) was identified in 8 unrelated probands (18.2%) and 8 family members from 5 probands. Genotype-positive status related toMYH7,TPM1, andTNNT2mutations was associated with severe clinical manifestations.MYH7-positive patients displayed worse prognosis compared withMYBPC3-positive patients. Interestingly,TPM1c.842T>C mutation was associated with high penetrance and severe HCM phenotype. CONCLUSIONS We report for the first time the prevalence of HCM-related gene variants in Vietnamese patients with HCM.MYH7,TPM1, andTNNT2mutations were associated with unfavorable prognosis.
Collapse
Affiliation(s)
| | - Thuy Vy Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Viet Nam National University
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM
| | | | - Hoang Tam Nguyen Thai
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM
| | | | - Thuy Duong Ho Huynh
- Research Center for Genetics and Reproductive Health, School of Medicine, Viet Nam National University
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNUHCM
- KTEST Science Company
| |
Collapse
|
50
|
Affiliation(s)
- Diane Fatkin
- From the Molecular Cardiology Division, Victor Chang Cardiac Research Institute (D.F., R.J.); Cardiology Department, St. Vincent's Hospital (D.F.); and Faculty of Medicine, University of New South Wales; Sydney, Australia (D.F.).
| | - Renee Johnson
- From the Molecular Cardiology Division, Victor Chang Cardiac Research Institute (D.F., R.J.); Cardiology Department, St. Vincent's Hospital (D.F.); and Faculty of Medicine, University of New South Wales; Sydney, Australia (D.F.)
| |
Collapse
|