1
|
Wu D, Hu Q, Li H, Yin Y, Wang P, Wang W. Drp1 knockdown aggravates obesity-induced cardiac dysfunction and remodeling. Mitochondrion 2025; 83:102023. [PMID: 40049542 PMCID: PMC12065651 DOI: 10.1016/j.mito.2025.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Obesity is an independent risk factor for heart failure with preserved ejection fraction (HFpEF). Dynamin related protein 1 (Drp1) is a key regulator of mitochondrial morphology, bioenergetics and quality control. The role of endogenous Drp1 in obesity induced HFpEF remains largely unknown. Here, adult heterozygous Drp1 floxed (Drp1fl/+) mice were bred with αMHC-MerCreMer mice and injected with tamoxifen to induce heterogenous Drp1 knockout (hetCKO) in the heart. Control and hetCKO mice exhibited similar increases in body weight and blood glucose and developed insulin resistance after 18-week high-fat diet (HFD)-fed. HFD had no effect on cardiac contractility but induced diastolic dysfunction, fibrosis, cell death and inflammation in Control and hetCKO mice hearts. Importantly, all these adverse effects were exacerbated in the hearts of hetCKO mice, suggesting aggravated cardiac remodeling and diastolic dysfunction. HFD induced mitochondrial fission was blocked, whereas energy deficiency was exaggerated in hetCKO hearts. These effects were associated with suppressed mitochondrial quality control via mitophagy, and increased apoptosis and oxidative stress. These findings suggest that endogenous Drp1 may play an important role in limiting metabolic stress induced heart dysfunction through regulating mitophagy, oxidative stress, mitochondrial function, apoptosis, and inflammation. Our study provides critical insights into how endogenous Drp1 plays a beneficial role in metabolic stress-induced HFpEF.
Collapse
Affiliation(s)
- Dan Wu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qingxun Hu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Huimin Li
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yun Yin
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Wang X, Ding J, Chen X, Wang S, Chen Z, Chen Y, Zhang G, Liu J, Shi T, Song J, Sheng S, Wang G, Xu J, Su J, Zhang W, Lian X. Light-activated nanoclusters with tunable ROS for wound infection treatment. Bioact Mater 2024; 41:385-399. [PMID: 39184828 PMCID: PMC11342113 DOI: 10.1016/j.bioactmat.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024] Open
Abstract
Infected wounds pose a significant clinical challenge due to bacterial resistance, recurrent infections, and impaired healing. Reactive oxygen species (ROS)-based strategies have shown promise in eradicating bacterial infections. However, the excess ROS in the infection site after treatments may cause irreversible damage to healthy tissues. To address this issue, we developed bovine serum albumin-iridium oxide nanoclusters (BSA-IrOx NCs) which enable photo-regulated ROS generation and scavenging using near infrared (NIR) laser. Upon NIR laser irradiation, BSA-IrOx NCs exhibit enhanced photodynamic therapy, destroying biofilms and killing bacteria. When the NIR laser is off, the nanoclusters' antioxidant enzyme-like activities prevent inflammation and repair damaged tissue through ROS clearance. Transcriptomic and metabolomic analyses revealed that BSA-IrOx NCs inhibit bacterial nitric oxide synthase, blocking bacterial growth and biofilm formation. Furthermore, the nanoclusters repair impaired skin by strengthening cell junctions and reducing mitochondrial damage in a fibroblast model. In vivo studies using rat infected wound models confirmed the efficacy of BSA-IrOx NCs. This study presents a promising strategy for treating biofilm-induced infected wounds by regulating the ROS microenvironment, addressing the challenges associated with current ROS-based antibacterial approaches.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianing Ding
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuanyuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ji Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Song
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Shihao Sheng
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Guangchao Wang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiacan Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Zhang L, Zhang M, Huang J, Huang J, Zhang Y, Zhang Y, Chen H, Wang C, Xi X, Fan H, Wang J, Jiang D, Tian J, Zhang J, Chang Y. Klf9 is essential for cardiac mitochondrial homeostasis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1318-1336. [PMID: 39528719 DOI: 10.1038/s44161-024-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Mitochondrial dynamics and mitophagy are intimately linked physiological processes that are essential for cardiac homeostasis. Here we show that cardiac Krüppel-like factor 9 (Klf9) is dysregulated in human and rodent cardiomyopathy. Both global and cardiac-specific Klf9-deficient mice displayed hypertrophic cardiomyopathy. Klf9 knockout led to mitochondrial disarray and fragmentation, impairing mitochondrial respiratory function in cardiomyocytes. Furthermore, cardiac Klf9 deficiency inhibited mitophagy, thereby causing accumulation of dysfunctional mitochondria and acceleration of heart failure in response to angiotensin II treatment. In contrast, cardiac-specific Klf9 transgene improved cardiac systolic function. Mechanistically, Klf9 knockout decreased the expression of PGC-1α and its target genes involved in mitochondrial energy metabolism. Moreover, Klf9 controlled the expression of Mfn2, thereby regulating mitochondrial dynamics and mitophagy. Finally, adeno-associated virus-mediated Mfn2 rescue in Klf9-CKO hearts improved cardiac mitochondrial and systolic function. Thus, Klf9 integrates cardiac energy metabolism, mitochondrial dynamics and mitophagy. Modulating Klf9 activity may have therapeutic potential in the treatment of heart failure.
Collapse
MESH Headings
- Animals
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/deficiency
- Myocytes, Cardiac/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/genetics
- Mice, Knockout
- Mitophagy
- Humans
- Energy Metabolism
- Homeostasis
- Mitochondrial Dynamics
- Heart Failure/metabolism
- Heart Failure/genetics
- Disease Models, Animal
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Angiotensin II/pharmacology
- Angiotensin II/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglin Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong Huang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jincan Huang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yinliang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Houzao Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuizhe Wang
- Department of Basic Medicine, Shihezi University School of Medicine, Shihezi, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dingsheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
| | - Jun Zhang
- Department of Basic Medicine, Shihezi University School of Medicine, Shihezi, China.
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
Nishida M, Mi X, Ishii Y, Kato Y, Nishimura A. Cardiac remodeling: novel pathophysiological mechanisms and therapeutic strategies. J Biochem 2024; 176:255-262. [PMID: 38507681 DOI: 10.1093/jb/mvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered as a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and β-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and aetiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulphide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.
Collapse
Key Words
- Abbreviations: CTGF, connective tissue growth factor
- GEF-H1, guanine nucleotide exchange factor
- HFpEF, heart failure with preserved ejection fraction
- MHC, myosin heavy chain
- MMP, matrix metalloproteinase
- MRTF, myocardin-related transcription factor
- NFAT, nuclear factor of activated T cell
- PICP, procollagen type 1 carboxy-terminal peptide
- PIIINP, procollagen type III amino-terminal
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRPC, transient receptor potential canonical
- cardiac remodeling
- mitochondria
- redox/energy metabolism
- supersulphide
- transient receptor potential
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Ishii
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
6
|
Shokri F, Ramezani-Aliakbari K, Zarei M, Komaki A, Raoufi S, Naddaf H, Ramezani-Aliakbari F. Cardioprotective effect of Vitamin D on cardiac hypertrophy through improvement of mitophagy and apoptosis in an experimental rat model of levothyroxine -induced hyperthyroidism. Mol Biol Rep 2024; 51:969. [PMID: 39249564 DOI: 10.1007/s11033-024-09897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Mitochondria are known to be involved in mediating the calorigenic effects of thyroid hormones. With an abundance of these hormones, alterations in energy metabolism and cellular respiration take place, leading to the development of cardiac hypertrophy. Vitamin D has recently gained attention due to its involvement in the regulation of mitochondrial function, demonstrating promising potential in preserving the integrity and functionality of the mitochondrial network. The present study aimed to investigate the therapeutic potential of Vitamin D on cardiac hypertrophy induced by hyperthyroidism, with a focus on the contributions of mitophagy and apoptosis as possible underlying molecular mechanisms. METHODS AND RESULTS The rats were divided into three groups: control; hyperthyroid; hyperthyroid + Vitamin D. Hyperthyroidism was induced by Levothyroxine administration for four weeks. Serum thyroid hormones levels, myocardial damage markers, cardiac hypertrophy indices, and histological examination were assessed. The assessment of Malondialdehyde (MDA) levels and the expression of the related genes were conducted using heart tissue samples. Vitamin D pretreatment exhibited a significant improvement in the hyperthyroidism-induced decline in markers indicative of myocardial damage, oxidative stress, and indices of cardiac hypertrophy. Vitamin D pretreatment also improved the downregulation observed in myocardial expression levels of genes involved in the regulation of mitophagy and apoptosis, including PTEN putative kinase 1 (PINK1), Mitofusin-2 (MFN2), Dynamin-related Protein 1 (DRP1), and B cell lymphoma-2 (Bcl-2), induced by hyperthyroidism. CONCLUSIONS These results suggest that supplementation with Vitamin D could be advantageous in preventing the progression of cardiac hypertrophy and myocardial damage.
Collapse
Affiliation(s)
- Farid Shokri
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Zarei
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanieh Naddaf
- Core facility lab, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Berti B, Verrigni D, Nasca A, Di Nottia M, Leone D, Torraco A, Rizza T, Bellacchio E, Legati A, Palermo C, Marchet S, Lamperti C, Novelli A, Mercuri EM, Bertini ES, Pane M, Ghezzi D, Carrozzo R. De Novo DNM1L Mutation in a Patient with Encephalopathy, Cardiomyopathy and Fatal Non-Epileptic Paroxysmal Refractory Vomiting. Int J Mol Sci 2024; 25:7782. [PMID: 39063023 PMCID: PMC11277250 DOI: 10.3390/ijms25147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.
Collapse
Affiliation(s)
- Beatrice Berti
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Daniela Verrigni
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Daniela Leone
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Concetta Palermo
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Eugenio Maria Mercuri
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Enrico Silvio Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Marika Pane
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| |
Collapse
|
8
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
10
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
11
|
Nishimura A, Zhou L, Kato Y, Mi X, Ito T, Ibuki Y, Kanda Y, Nishida M. Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation. J Pharmacol Sci 2024; 154:127-135. [PMID: 38246726 DOI: 10.1016/j.jphs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
13
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
16
|
Jain A, Casanova D, Padilla AV, Paniagua Bojorges A, Kotla S, Ko KA, Samanthapudi VSK, Chau K, Nguyen MTH, Wen J, Hernandez Gonzalez SL, Rodgers SP, Olmsted-Davis EA, Hamilton DJ, Reyes-Gibby C, Yeung SCJ, Cooke JP, Herrmann J, Chini EN, Xu X, Yusuf SW, Yoshimoto M, Lorenzi PL, Hobbs B, Krishnan S, Koutroumpakis E, Palaskas NL, Wang G, Deswal A, Lin SH, Abe JI, Le NT. Premature senescence and cardiovascular disease following cancer treatments: mechanistic insights. Front Cardiovasc Med 2023; 10:1212174. [PMID: 37781317 PMCID: PMC10540075 DOI: 10.3389/fcvm.2023.1212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
Collapse
Affiliation(s)
- Ashita Jain
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Casanova
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jake Wen
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Shaefali P. Rodgers
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Dale J. Hamilton
- Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Xiaolei Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, Division of VP Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brain Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, TX, United States
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
17
|
Xu H, Wang X, Yu W, Sun S, Wu NN, Ge J, Ren J, Zhang Y. Syntaxin 17 Protects Against Heart Failure Through Recruitment of CDK1 to Promote DRP1-Dependent Mitophagy. JACC Basic Transl Sci 2023; 8:1215-1239. [PMID: 37791317 PMCID: PMC10544097 DOI: 10.1016/j.jacbts.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 10/05/2023]
Abstract
Mitochondrial dysfunction is suggested to be a major contributor for the progression of heart failure (HF). Here we examined the role of syntaxin 17 (STX17) in the progression of HF. Cardiac-specific Stx17 knockout manifested cardiac dysfunction and mitochondrial damage, associated with reduced levels of p(S616)-dynamin-related protein 1 (DRP1) in mitochondria-associated endoplasmic reticulum membranes and dampened mitophagy. Cardiac STX17 overexpression promoted DRP1-dependent mitophagy and attenuated transverse aortic constriction-induced contractile and mitochondrial damage. Furthermore, STX17 recruited cyclin-dependent kinase-1 through its SNARE domain onto mitochondria-associated endoplasmic reticulum membranes, to phosphorylate DRP1 at Ser616 and promote DRP1-mediated mitophagy upon transverse aortic constriction stress. These findings indicate the potential therapeutic benefit of targeting STX17 in the mitigation of HF.
Collapse
Affiliation(s)
- Haixia Xu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjun Yu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqun Sun
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ne N. Wu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
19
|
Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, Geng G, Ma K, Cheng H, Liu Q, Luo Q, Zhang J, Du Z, Cao L, Wang H, Liu Y, Lin J, Chen G, Liu L, Lam SM, Shui G, Zhu Y, Chen Q. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep 2023; 24:e54731. [PMID: 36847607 PMCID: PMC10074135 DOI: 10.15252/embr.202254731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.
Collapse
Affiliation(s)
- Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qianping Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Changying Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Caijuan Deng
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Jianyu Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Siling Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hui Wang
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Yong Liu
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Jianping Lin
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- LipidAll Technologies Company LimitedChangzhouChina
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
20
|
Wang R, Xu H, Tan B, Yi Q, Sun Y, Xiang H, Chen T, Liu H, Xie Q, Wang L, Tian J, Zhu J. SIRT3 promotes metabolic maturation of human iPSC-derived cardiomyocytes via OPA1-controlled mitochondrial dynamics. Free Radic Biol Med 2023; 195:270-282. [PMID: 36596388 DOI: 10.1016/j.freeradbiomed.2022.12.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
The metabolic patterns and energetics of human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) are much less than those of normal adult cardiomyocytes, which has limited their application in disease therapy and regenerative medicine. It has been demonstrated that SIRT3, a mitochondria-target deacetylase, controls mitochondrial metabolism in physiological and pathological conditions. In this research, We investigated the role and regulatory mechanism of SIRT3 in energy metabolism in HiPSC-CMs. We found that the expression of SIRT3 was increased during the differentiation and maturation of HiPSC-CMs. Knocking down SIRT3 impaired mitochondrial structure, mitochondrial respiration capacity, and fatty acid oxidation but enhanced glycolysis. However, honokiol, a pharmacological activator of SIRT3, improved the mitochondrial ultrastructure and energetics, and promoted oxidative phosphorylation in HiPSC-CMs. Furthermore, SIRT3 regulated the acetylation of OPA1, and the knockdown of OPA1 blocked the promotion of energy metabolism by honokiol, meanwhile, knocking down OPA1 impaired mitochondrial fusion, mitochondrial respiration capacity, and fatty acid oxidation which were reversed by M1 (a mitochondrial fusion promoter) in HiPSC-CMs. In summary, SIRT3 regulated energetics and promoted metabolism remodeling by targeting the OPA1-controlled mitochondrial dynamics in HiPSC-CMs, and targeting SIRT3 may have revelatory implications in the treatment of cardiovascular diseases and the application of HiPSC-CMs to regenerative medicine.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yanting Sun
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Xiang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tangtian Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiumin Xie
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Tian
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Cardiovascular Internal Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
21
|
Duan J, Liu X, Shen S, Tan X, Wang Y, Wang L, Kang L, Wang K, Wei Z, Qi Y, Hu L, Xu B, Gu R. Trophoblast Stem-Cell-Derived Exosomes Alleviate Cardiotoxicity of Doxorubicin via Improving Mfn2-Mediated Mitochondrial Fusion. Cardiovasc Toxicol 2023; 23:23-31. [PMID: 36609664 PMCID: PMC9859904 DOI: 10.1007/s12012-022-09774-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
Doxorubicin (Dox) is an anticancer drug widely used in tumor chemotherapy, but it has the side-effect of cardiotoxicity, which is closely related to mitochondrial damage. Mitochondrial dynamics is a quality control mechanism that usually helps to maintain a healthy mitochondrial pool. Trophoblast stem cell-derived exosomes (TSC-Exos) have been shown to protect cardiomyocytes from DOX-induced cardiotoxicity. To explore whether the cardioprotective role is mediated by the regulation of mitochondrial dynamic mechanism, TSC-Exos were isolated from human trophoblast stem cells by ultracentrifugation and characterized by Western blot and transmission electron microscopy. Cellular experiments of H9c2 cardiomyocytes co-cultured with Dox and TSC-Exos were performed in vitro to determine the levels of reactive oxygen species generation and apoptosis level. An animal model of heart failure was established by intraperitoneal injection of Dox in vivo, therapy mice were received additional intracardiac injection of TSC-Exos, then, the cardiac function, cardiomyocyte apoptosis and mitochondrial fragmentation were ameliorated. Histology assays suggest that Dox caused an increased tendency of mitochondrial fission, which was manifested by a decrease in the average size of mitochondria. By receiving TSC-Exos treatment, this effect was eliminated. In summary, these results suggest that TSC-Exos alleviate DOX-induced cardiotoxicity through antiapoptotic effect and improving mitochondrial fusion with an increase in Mfn2 expression. This study is the first to provide a potential new treatment scheme for the treatment of heart failure from the perspective of the relationship between TSC-Exos and mitochondrial dynamics.
Collapse
Affiliation(s)
- Junfeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoli Liu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Song Shen
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lian Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lina Kang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhonghai Wei
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu Qi
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lei Hu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Biao Xu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
22
|
Sandroni PB, Fisher-Wellman KH, Jensen BC. Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes. J Cardiovasc Pharmacol 2022; 80:364-377. [PMID: 35170492 PMCID: PMC9365878 DOI: 10.1097/fjc.0000000000001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors (ARs) are G protein-coupled receptors that are stimulated by catecholamines to induce a wide array of physiological effects across tissue types. Both α1- and β-ARs are found on cardiomyocytes and regulate cardiac contractility and hypertrophy through diverse molecular pathways. Acute activation of cardiomyocyte β-ARs increases heart rate and contractility as an adaptive stress response. However, chronic β-AR stimulation contributes to the pathobiology of heart failure. By contrast, mounting evidence suggests that α1-ARs serve protective functions that may mitigate the deleterious effects of chronic β-AR activation. Here, we will review recent studies demonstrating that α1- and β-ARs differentially regulate mitochondrial biogenesis and dynamics, mitochondrial calcium handling, and oxidative phosphorylation in cardiomyocytes. We will identify potential mechanisms of these actions and focus on the implications of these findings for the modulation of contractile function in the uninjured and failing heart. Collectively, we hope to elucidate important physiological processes through which these well-studied and clinically relevant receptors stimulate and fuel cardiac contraction to contribute to myocardial health and disease.
Collapse
Affiliation(s)
- Peyton B. Sandroni
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
| | - Kelsey H. Fisher-Wellman
- East Carolina University Brody School of Medicine, Department of Physiology
- East Carolina University Diabetes and Obesity Institute
| | - Brian C. Jensen
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
- University of North Carolina School of Medicine, Department of Medicine, Division of Cardiology
| |
Collapse
|
23
|
Tan N, Liu T, Wang X, Shao M, Zhang M, Li W, Ling G, Jiang J, Wang Q, Li J, Li C, Wang W, Wang Y. The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Front Cell Dev Biol 2022; 10:918943. [PMID: 35959490 PMCID: PMC9358025 DOI: 10.3389/fcell.2022.918943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.
Collapse
Affiliation(s)
- Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| |
Collapse
|
24
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
25
|
陈 韦, 杜 辉, 钱 赓, 周 玉, 陈 韵, 马 茜, 吴 雪, 沙 媛. [Bax inhibitor 1 inhibits vascular calcification in mice by activating optic atrophy 1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:330-337. [PMID: 35426795 PMCID: PMC9010980 DOI: 10.12122/j.issn.1673-4254.2022.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the effects of Bax inhibitor 1 (BI- 1) and optic atrophy protein 1 (OPA1) on vascular calcification (VC). METHODS Mouse models of VC were established in ApoE-deficient (ApoE-/-) diabetic mice by high-fat diet feeding for 12 weeks followed by intraperitoneal injections with Nε-carboxymethyl-lysine for 16 weeks. ApoE-/- mice (control group), ApoE-/- diabetic mice (VC group), ApoE-/- diabetic mice with BI-1 overexpression (VC + BI-1TG group), and ApoE-/- diabetic mice with BI-1 overexpression and OPA1 knockout (VC+BI-1TG+OPA1-/- group) were obtained for examination of the degree of aortic calcification using von Kossa staining. The changes in calcium content in the aorta were analyzed using ELISA. The expressions of Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP-2) were detected using immunohistochemistry, and the expression of cleaved caspase-3 was determined using Western blotting. Cultured mouse aortic smooth muscle cells were treated with 10 mmol/L β-glycerophosphate for 14 days to induce calcification, and the changes in BI-1 and OPA1 protein expressions were examined using Western blotting and cell apoptosis was detected using TUNEL staining. RESULTS ApoE-/- mice with VC showed significantly decreased expressions of BI-1 and OPA1 proteins in the aorta (P=0.0044) with obviously increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P= 0.0041). Overexpression of BI-1 significantly promoted OPA1 protein expression and reduced calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P=0.0006). OPA1 knockdown significantly increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 in the aorta (P=0.0007). CONCLUSION BI-1 inhibits VC possibly by promoting the expression of OPA1, reducing calcium deposition and inhibiting osteogenic differentiation and apoptosis of the vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/metabolism
- Calcium/metabolism
- Caspase 3/metabolism
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- GTP Phosphohydrolases/biosynthesis
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Optic Atrophy, Autosomal Dominant/metabolism
- Optic Atrophy, Autosomal Dominant/pathology
- Osteogenesis
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- 韦任 陈
- 首都医科大学附属北京安贞医院心内12病房,北京市心肺血管疾病研究所,冠心病精准治疗北京市重点实验 室,首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
- 中国人民解放军总医院第二医学中心心血管内 科,国家老年疾病临床医学研究中心,北京 100853Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 辉 杜
- 中国人民解放军总医院第二医学中心心血管内 科,国家老年疾病临床医学研究中心,北京 100853Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 赓 钱
- 中国人民解放军总医院第一医学中心心血管内科,北京 100853Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - 玉杰 周
- 首都医科大学附属北京安贞医院心内12病房,北京市心肺血管疾病研究所,冠心病精准治疗北京市重点实验 室,首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - 韵岱 陈
- 中国人民解放军总医院第一医学中心心血管内科,北京 100853Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - 茜 马
- 首都医科大学附属北京安贞医院心内12病房,北京市心肺血管疾病研究所,冠心病精准治疗北京市重点实验 室,首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - 雪萍 吴
- 中国人民解放军总医院第二医学中心心血管内 科,国家老年疾病临床医学研究中心,北京 100853Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 媛 沙
- 中国人民解放军总医院第二医学中心心血管内 科,国家老年疾病临床医学研究中心,北京 100853Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Dorn GW, Dang X. Predicting Mitochondrial Dynamic Behavior in Genetically Defined Neurodegenerative Diseases. Cells 2022; 11:cells11061049. [PMID: 35326500 PMCID: PMC8947719 DOI: 10.3390/cells11061049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dynamics encompass mitochondrial fusion, fission, and movement. Mitochondrial fission and fusion are seemingly ubiquitous, whereas mitochondrial movement is especially important for organelle transport through neuronal axons. Here, we review the roles of different mitochondrial dynamic processes in mitochondrial quantity and quality control, emphasizing their impact on the neurological system in Charcot–Marie–Tooth disease type 2A, amyotrophic lateral sclerosis, Friedrich’s ataxia, dominant optic atrophy, and Alzheimer’s, Huntington’s, and Parkinson’s diseases. In addition to mechanisms and concepts, we explore in detail different technical approaches for measuring mitochondrial dynamic dysfunction in vitro, describe how results from tissue culture studies may be applied to a better understanding of mitochondrial dysdynamism in human neurodegenerative diseases, and suggest how this experimental platform can be used to evaluate candidate therapeutics in different diseases or in individual patients sharing the same clinical diagnosis.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Correspondence: ; Tel.: +314-362-4892; Fax: +314-362-8844
| | | |
Collapse
|
27
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
28
|
Wang Y, Liu H, Sun N, Li J, Peng X, Jia Y, Karch J, Yu B, Wehrens XHT, Tian J. Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
Affiliation(s)
- Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Huibin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine, Neuroscience, Pediatrics, And Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
29
|
Banerjee R, Mukherjee A, Nagotu S. Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J Mol Med (Berl) 2021; 100:1-21. [PMID: 34657190 DOI: 10.1007/s00109-021-02150-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential organelles that play a significant role in various cellular processes apart from providing energy in eukaryotic cells. An intricate link between mitochondrial structure and function is now unequivocally accepted. Several molecular players have been identified, which are important in maintaining the structure of the organelle. Dynamin-related protein 1 (DRP1) is one such conserved protein that is a vital regulator of mitochondrial dynamics. Multidisciplinary studies have helped elucidate the structure of the protein and its mechanism of action in great detail. Mutations in various domains of the protein have been identified that are associated with debilitating conditions in patients. The involvement of the protein in disease conditions such as neurodegeneration, cancer, and cardiovascular disorders is also gaining attention. The purpose of this review is to highlight recent findings on the role of DRP1 in human disease conditions and address its importance as a therapeutic target.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Agradeep Mukherjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
30
|
Mahmoodzadeh S, Koch K, Schriever C, Xu J, Steinecker M, Leber J, Dworatzek E, Purfürst B, Kunz S, Recchia D, Canepari M, Heuser A, Di Francescantonio S, Morano I. Age-related decline in murine heart and skeletal muscle performance is attenuated by reduced Ahnak1 expression. J Cachexia Sarcopenia Muscle 2021; 12:1249-1265. [PMID: 34212535 PMCID: PMC8517348 DOI: 10.1002/jcsm.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Aging is associated with a progressive reduction in cellular function leading to poor health and loss of physical performance. Mitochondrial dysfunction is one of the hallmarks of aging; hence, interventions targeting mitochondrial dysfunction have the potential to provide preventive and therapeutic benefits to elderly individuals. Meta-analyses of age-related gene expression profiles showed that the expression of Ahnak1, a protein regulating several signal-transduction pathways including metabolic homeostasis, is increased with age, which is associated with low VO2MAX and poor muscle fitness. However, the role of Ahnak1 in the aging process remained unknown. Here, we investigated the age-related role of Ahnak1 in murine exercise capacity, mitochondrial function, and contractile function of cardiac and skeletal muscles. METHODS We employed 15- to 16-month-old female and male Ahnak1-knockout (Ahnak1-KO) and wild-type (WT) mice and performed morphometric, biochemical, and bioenergetics assays to evaluate the effects of Ahnak1 on exercise capacity and mitochondrial morphology and function in cardiomyocytes and tibialis anterior (TA) muscle. A human left ventricular (LV) cardiomyocyte cell line (AC16) was used to investigate the direct role of Ahnak1 in cardiomyocytes. RESULTS We found that the level of Ahnak1 protein is significantly up-regulated with age in the murine LV (1.9-fold) and TA (1.8-fold) tissues. The suppression of Ahnak1 was associated with improved exercise tolerance, as all aged adult Ahnak1-KO mice (100%) successfully completed the running programme, whereas approximately 31% male and 8% female WT mice could maintain the required running speed and distance. Transmission electron microscopic studies showed that LV and TA tissue specimens of aged adult Ahnak1-KO of both sexes have significantly more enlarged/elongated mitochondria and less small mitochondria compared with WT littermates (P < 0.01 and P < 0.001, respectively) at basal level. Further, we observed a shift in mitochondrial fission/fusion balance towards fusion in cardiomyocytes and TA muscle from aged adult Ahnak1-KO mice. The maximal and reserve respiratory capacities were significantly higher in cardiomyocytes from aged adult Ahnak1-KO mice compared with the WT counterparts (P < 0.05 and P < 0.01, respectively). Cardiomyocyte contractility and fatigue resistance of TA muscles were significantly increased in Ahnak1-KO mice of both sexes, compared with the WT groups. In vitro studies using AC16 cells have confirmed that the alteration of mitochondrial function is indeed a direct effect of Ahnak1. Finally, we presented Ahnak1 as a novel cardiac mitochondrial membrane-associated protein. CONCLUSIONS Our data suggest that Ahnak1 is involved in age-related cardiac and skeletal muscle dysfunction and could therefore serve as a promising therapeutical target.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Katharina Koch
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cindy Schriever
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jingman Xu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Heart Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Maria Steinecker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Leber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Elke Dworatzek
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Severine Kunz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silvia Di Francescantonio
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Ingo Morano
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
31
|
Liu J, Song X, Yan Y, Liu B. Role of GTPase-Dependent Mitochondrial Dynamins in Heart Diseases. Front Cardiovasc Med 2021; 8:720085. [PMID: 34660720 PMCID: PMC8514750 DOI: 10.3389/fcvm.2021.720085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Heart function maintenance requires a large amount of energy, which is supplied by the mitochondria. In addition to providing energy to cardiomyocytes, mitochondria also play an important role in maintaining cell function and homeostasis. Although adult cardiomyocyte mitochondria appear as independent, low-static organelles, morphological changes have been observed in cardiomyocyte mitochondria under stress or pathological conditions. Indeed, cardiac mitochondrial fission and fusion are involved in the occurrence and development of heart diseases. As mitochondrial fission and fusion are primarily regulated by mitochondrial dynamins in a GTPase-dependent manner, GTPase-dependent mitochondrial fusion (MFN1, MFN2, and OPA1) and fission (DRP1) proteins, which are abundant in the adult heart, can also be regulated in heart diseases. In fact, these dynamic proteins have been shown to play important roles in specific diseases, including ischemia-reperfusion injury, heart failure, and metabolic cardiomyopathy. This article reviews the role of GTPase-dependent mitochondrial fusion and fission protein-mediated mitochondrial dynamics in the occurrence and development of heart diseases.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. BIOLOGY 2021; 10:biology10100981. [PMID: 34681080 PMCID: PMC8533352 DOI: 10.3390/biology10100981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.
Collapse
|
33
|
Heinen-Weiler J, Hasenberg M, Heisler M, Settelmeier S, Beerlage AL, Doepper H, Walkenfort B, Odersky A, Luedike P, Winterhager E, Rassaf T, Hendgen-Cotta UB. Superiority of focused ion beam-scanning electron microscope tomography of cardiomyocytes over standard 2D analyses highlighted by unmasking mitochondrial heterogeneity. J Cachexia Sarcopenia Muscle 2021; 12:933-954. [PMID: 34120411 PMCID: PMC8350221 DOI: 10.1002/jcsm.12742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.
Collapse
Affiliation(s)
- Jacqueline Heinen-Weiler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Heisler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Beerlage
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hannah Doepper
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Andrea Odersky
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Zhang L, Cao H, Tao H, Yang J, Gong W, Hu Q. Effect of the interference with DRP1 expression on the biological characteristics of glioma stem cells. Exp Ther Med 2021; 22:696. [PMID: 33986860 PMCID: PMC8111867 DOI: 10.3892/etm.2021.10128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
In the present study, a model of glioma stem cells (GSCs) was established and combined with molecular targeting drugs in order to observe its inhibitory effect on the proliferation and biological characteristics of GSCs, with the aim of providing a potential target for the treatment of glioma. On the basis of a relatively classical induction strategy with neuron induction medium, a large number of GSC-like cells in good condition and globular growth were amplified in vitro, which had the potential to differentiate into neurons, oligodendrocytes and astrocytes/glioma cells. It was observed that the interference with dynamin-related protein 1 expression using Mdivi-1, a mitochondrial mitotic inhibitor, at the optimal concentration, decreased the expression level of stem cell-associated genes, inhibited proliferation and promoted apoptosis in GSCs. The present study provided an experimental basis for a novel strategy of cancer treatment with tumor stem cells as the target.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huimei Cao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Tao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jijuan Yang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Gong
- Department of Orthopedics, Ningxia People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qikuan Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
35
|
Tur J, Pereira-Lopes S, Vico T, Marín EA, Muñoz JP, Hernández-Alvarez M, Cardona PJ, Zorzano A, Lloberas J, Celada A. Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep 2021; 32:108079. [PMID: 32846136 DOI: 10.1016/j.celrep.2020.108079] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mitofusin 2 (Mfn2) plays a major role in mitochondrial fusion and in the maintenance of mitochondria-endoplasmic reticulum contact sites. Given that macrophages play a major role in inflammation, we studied the contribution of Mfn2 to the activity of these cells. Pro-inflammatory stimuli such as lipopolysaccharide (LPS) induced Mfn2 expression. The use of the Mfn2 and Mfn1 myeloid-conditional knockout (KO) mouse models reveals that Mfn2 but not Mfn1 is required for the adaptation of mitochondrial respiration to stress conditions and for the production of reactive oxygen species (ROS) upon pro-inflammatory activation. Mfn2 deficiency specifically impairs the production of pro-inflammatory cytokines and nitric oxide. In addition, the lack of Mfn2 but not Mfn1 is associated with dysfunctional autophagy, apoptosis, phagocytosis, and antigen processing. Mfn2floxed;CreLysM mice fail to be protected from Listeria, Mycobacterium tuberculosis, or LPS endotoxemia. These results reveal an unexpected contribution of Mfn2 to ROS production and inflammation in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Selma Pereira-Lopes
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eros A Marín
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan P Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maribel Hernández-Alvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de tuberculosi experimental, Institut Germans Trias i Pujol, Badalona, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
36
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
37
|
Silwal P, Kim JK, Jeon SM, Lee JY, Kim YJ, Kim YS, Seo Y, Kim J, Kim SY, Lee MJ, Heo JY, Jung MJ, Kim HS, Hyun DW, Han JE, Whang J, Huh YH, Lee SH, Heo WD, Kim JM, Bae JW, Jo EK. Mitofusin-2 boosts innate immunity through the maintenance of aerobic glycolysis and activation of xenophagy in mice. Commun Biol 2021; 4:548. [PMID: 33972668 PMCID: PMC8110749 DOI: 10.1038/s42003-021-02073-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.
Collapse
Affiliation(s)
- Prashanta Silwal
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Kyung Kim
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang Min Jeon
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - June-Young Lee
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Young Jae Kim
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yi Sak Kim
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Yeji Seo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jihye Kim
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soo Yeon Kim
- grid.418980.c0000 0000 8749 5149Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Min Joung Lee
- grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jun Young Heo
- grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Mi-Ja Jung
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Hyun Sik Kim
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Dong-Wook Hyun
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jeong Eun Han
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT), Cheongju, Korea
| | - Yang Hoon Huh
- grid.410885.00000 0000 9149 5707Center for Research Equipment, Korea Basic Science Institute, Cheongju, Korea
| | - Sang-Hee Lee
- grid.410885.00000 0000 9149 5707Center for Research Equipment, Korea Basic Science Institute, Cheongju, Korea
| | - Won Do Heo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jin-Man Kim
- grid.254230.20000 0001 0722 6377Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Woo Bae
- grid.289247.20000 0001 2171 7818Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Eun-Kyeong Jo
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
38
|
Kim K, Lee EY. Excessively Enlarged Mitochondria in the Kidneys of Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:antiox10050741. [PMID: 34067150 PMCID: PMC8151708 DOI: 10.3390/antiox10050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the most serious complication of diabetes and a leading cause of kidney failure and mortality in patients with diabetes. However, the exact pathogenic mechanisms involved are poorly understood. Impaired mitochondrial function and accumulation of damaged mitochondria due to increased imbalance in mitochondrial dynamics are known to be involved in the development and progression of DN. Accumulating evidence suggests that aberrant mitochondrial fission is involved in the progression of DN. Conversely, studies linking excessively enlarged mitochondria to DN pathogenesis are emerging. In this review, we summarize the current concepts of imbalanced mitochondrial dynamics and their molecular aspects in various experimental models of DN. We discuss the recent evidence of enlarged mitochondria in the kidneys of DN and examine the possibility of a therapeutic application targeting mitochondrial dynamics in DN.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| |
Collapse
|
39
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 2021; 66:101250. [PMID: 33388396 DOI: 10.1016/j.arr.2020.101250] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Myocardial infarction (MI) is the irreversible death of cardiomyocyte secondary to prolonged lack of oxygen or fresh blood supply. Historically considered as merely cardiomyocyte powerhouse that manufactures ATP and other metabolites, mitochondrion is recently being identified as a signal regulator that is implicated in the crosstalk and signal integration of cardiomyocyte contraction, metabolism, inflammation, and death. Mitochondria quality surveillance is an integrated network system modifying mitochondrial structure and function through the coordination of various processes including mitochondrial fission, fusion, biogenesis, bioenergetics, proteostasis, and degradation via mitophagy. Mitochondrial fission favors the elimination of depolarized mitochondria through mitophagy, whereas mitochondrial fusion preserves the mitochondrial network upon stress through integration of two or more small mitochondria into an interconnected phenotype. Mitochondrial biogenesis represents a regenerative program to replace old and damaged mitochondria with new and healthy ones. Mitochondrial bioenergetics is regulated by a metabolic switch between glucose and fatty acid usage, depending on oxygen availability. To maintain the diversity and function of mitochondrial proteins, a specialized protein quality control machinery regulates protein dynamics and function through the activity of chaperones and proteases, and induction of the mitochondrial unfolded protein response. In this review, we provide an overview of the molecular mechanisms governing mitochondrial quality surveillance and highlight the most recent preclinical and clinical therapeutic approaches to restore mitochondrial fitness during both MI and post-MI heart failure.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Tan Y, Xia F, Li L, Peng X, Liu W, Zhang Y, Fang H, Zeng Z, Chen Z. Novel Insights into the Molecular Features and Regulatory Mechanisms of Mitochondrial Dynamic Disorder in the Pathogenesis of Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6669075. [PMID: 33688392 PMCID: PMC7914101 DOI: 10.1155/2021/6669075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria maintain mitochondrial homeostasis through continuous fusion and fission, that is, mitochondrial dynamics, which is precisely mediated by mitochondrial fission and fusion proteins, including dynamin-related protein 1 (Drp1), mitofusin 1 and 2 (Mfn1/2), and optic atrophy 1 (OPA1). When the mitochondrial fission and fusion of cardiomyocytes are out of balance, they will cause their own morphology and function disorders, which damage the structure and function of the heart, are involved in the occurrence and progression of cardiovascular disease such as ischemia-reperfusion injury (IRI), septic cardiomyopathy, and diabetic cardiomyopathy. In this paper, we focus on the latest findings regarding the molecular features and regulatory mechanisms of mitochondrial dynamic disorder in cardiovascular pathologies. Finally, we will address how these findings can be applied to improve the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqian Liu
- Department of Critical Care Medicine, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells 2021; 10:cells10020443. [PMID: 33669743 PMCID: PMC7922388 DOI: 10.3390/cells10020443] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest health problems affecting people worldwide. Atherosclerosis, in turn, is one of the most common causes of cardiovascular disease. Due to the high mortality rate from cardiovascular diseases, prevention and treatment at the earliest stages become especially important. This requires developing a deep understanding of the mechanisms underlying the development of atherosclerosis. It is well-known that atherogenesis is a complex multi-component process that includes lipid metabolism disorders, inflammation, oxidative stress, autophagy disorders and mitochondrial dysfunction. Autophagy is a cellular control mechanism that is critical to maintaining health and survival. One of the specific forms of autophagy is mitophagy, which aims to control and remove defective mitochondria from the cell. Particularly defective mitophagy has been shown to be associated with atherogenesis. In this review, we consider the role of autophagy, focusing on a special type of it—mitophagy—in the context of its role in the development of atherosclerosis.
Collapse
|
43
|
Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020; 8:584800. [PMID: 33392184 PMCID: PMC7773778 DOI: 10.3389/fcell.2020.584800] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the powerhouse organelles of cells; they participate in ATP generation, calcium homeostasis, oxidative stress response, and apoptosis. Thus, maintenance of mitochondrial function is critical for cellular functions. As highly dynamic organelles, the function of mitochondria is dynamically regulated by their fusion and fission in many cell types, which regulate mitochondrial morphology, number, distribution, metabolism, and biogenesis in cells. Mature rod-shaped cardiomyocytes contain thousands of end-to-end contacted spheroid mitochondria. The movement of mitochondria in these cells is limited, which hinders the impetus for research into mitochondrial dynamics in adult cardiomyocytes. In this review, we discuss the most recent progress in mitochondrial dynamics in mature (adult) cardiomyocytes and the relationship thereof with heart diseases.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Spurlock B, Tullet JMA, Hartman J, Mitra K. Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Exp Gerontol 2020; 135:110919. [PMID: 32220593 PMCID: PMC7808294 DOI: 10.1016/j.exger.2020.110919] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Declining mitochondrial function and homeostasis is a hallmark of aging. It is appreciated that the role of mitochondria is much more complex than generating reactive oxygen species to cause aging-related tissue damage. More recent literature describes that the ability of mitochondria to undergo fission or fusion events with each other impacts aging processes. A dynamic balance of mitochondrial fission and fusion events is required to sustain critical cellular functions including cell cycle. Specifically, cell cycle regulators modulate molecular activities of the mitochondrial fission (and fusion) machinery towards regulating cell cycle progression. In this review, we discus literature leading to our understanding on how shifts in the dynamic balance of mitochondrial fission and fusion can modulate progression through, exit from, and re-entry to the cell cycle or in undergoing senescence. Importantly, core regulators of mitochondrial fission or fusion are emerging as crucial stem cell regulators. We discuss the implication of such regulation in stem cells in the context of aging, given that aberrations in adult stem cells promote aging. We also propose a few hypotheses that may provide direction for further understanding about the roles of mitochondrial fission-fusion dynamics in aging biology.
Collapse
Affiliation(s)
- B. Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - JMA Tullet
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - J.L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - K. Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA,Corresponding author. (K. Mitra)
| |
Collapse
|
45
|
Acrolein Aggravates Secondary Brain Injury After Intracerebral Hemorrhage Through Drp1-Mediated Mitochondrial Oxidative Damage in Mice. Neurosci Bull 2020; 36:1158-1170. [PMID: 32436179 PMCID: PMC7532238 DOI: 10.1007/s12264-020-00505-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Clinical advances in the treatment of intracranial hemorrhage (ICH) are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury. Acrolein is a highly active unsaturated aldehyde which has been implicated in many nervous system diseases. Our results indicated a significant increase in the level of acrolein after ICH in mouse brain. In primary neurons, acrolein induced an increase in mitochondrial fragmentation, loss of mitochondrial membrane potential, generation of reactive oxidative species, and release of mitochondrial cytochrome c. Mechanistically, acrolein facilitated the translocation of dynamin-related protein1 (Drp1) from the cytoplasm onto the mitochondrial membrane and led to excessive mitochondrial fission. Further studies found that treatment with hydralazine (an acrolein scavenger) significantly reversed Drp1 translocation and the morphological damage of mitochondria after ICH. In parallel, the neural apoptosis, brain edema, and neurological functional deficits induced by ICH were also remarkably alleviated. In conclusion, our results identify acrolein as an important contributor to the secondary brain injury following ICH. Meanwhile, we uncovered a novel mechanism by which Drp1-mediated mitochondrial oxidative damage is involved in acrolein-induced brain injury.
Collapse
|
46
|
Dorn GW. Mitofusins as mitochondrial anchors and tethers. J Mol Cell Cardiol 2020; 142:146-153. [PMID: 32304672 DOI: 10.1016/j.yjmcc.2020.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria have their own genomes and their own agendas. Like their primitive bacterial ancestors, mitochondria interact with their environment and organelle colleagues at their physical interfaces, the outer mitochondrial membrane. Among outer membrane proteins, mitofusins (MFN) are increasingly recognized for their roles as arbiters of mitochondria-mitochondria and mitochondria-reticular interactions. This review examines the roles of MFN1 and MFN2 in the heart and other organs as proteins that tether mitochondria to each other or to other organelles, and as mitochondrial anchoring proteins for various macromolecular complexes. The consequences of MFN-mediated tethering and anchoring on mitochondrial fusion, motility, mitophagy, and mitochondria-ER calcium cross-talk are reviewed. Pathophysiological implications are explored from the perspective of mitofusin common functioning as tethering and anchoring proteins, rather than as mediators of individual processes. Finally, some informed speculation is provided for why mouse MFN knockout studies show severe multi-system phenotypes whereas rare human diseases linked to MFN mutations are limited in scope.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
47
|
The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142:138-145. [PMID: 32302592 DOI: 10.1016/j.yjmcc.2020.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
Maintenance of mitochondrial function and integrity is critical for normal cell survival, particularly in non-dividing cells with a high-energy demand such as cardiomyocytes. Well-coordinated quality control mechanisms in cardiomyocytes, involving mitochondrial biogenesis, mitochondrial dynamics-fission and fusion, and mitophagy, act to protect against mitochondrial dysfunction. Mitochondrial fission, which requires dynamin-related protein 1 (Drp1), is essential for segregation of damaged mitochondria for degradation. Alterations in this process have been linked to cardiomyocyte apoptosis and cardiomyopathy. In this review, we discuss the role of Drp1 in mitophagy and apoptosis in the context of cardiac pathology, including myocardial ischemia and heart failure.
Collapse
|
48
|
Kataoka K, Bilkei-Gorzo A, Nozaki C, Togo A, Nakamura K, Ohta K, Zimmer A, Asahi T. Age-dependent Alteration in Mitochondrial Dynamics and Autophagy in Hippocampal Neuron of Cannabinoid CB1 Receptor-deficient Mice. Brain Res Bull 2020; 160:40-49. [PMID: 32294520 DOI: 10.1016/j.brainresbull.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoid system activity contributes to the homeostatic defense against aging and thus may counteract the progression of brain aging. The cannabinoid type 1 (CB1) receptor activity declines with aging in the brain, which impairs neuronal network integrity and cognitive functions. However, the underlying mechanisms that link CB1 activity and memory decline remain unknown. Mitochondrial activity profoundly influences neuronal function, and age-dependent mitochondrial activity change is one of the known hallmarks of brain aging. As CB1 receptor is expressed on mitochondria and may regulate neuronal energy metabolism in hippocampus, we hypothesized that CB1 receptors might influence mitochondria in hippocampal neurons. Here, we found that CB1 receptor significantly affected mitochondrial autophagy (mitophagy) and morphology in an age-dependent manner. Serine 65-phosphorylated ubiquitin, a key marker for mitophagy, was reduced in adult CB1-deficient mice (CB1-KO) compared to those in wild type controls, particularly in CA1 pyramidal cell layer. Transmission electron microscopy (TEM) analysis showed reduced mitophagy-like events in hippocampus of adult CB1-KO. TEM analysis also showed that mitochondrial morphology in adult CB1-KO mice was altered shown by an increase in thin and elongated mitochondria in hippocampal neurons. 3D reconstruction of mitochondrial morphology after scanning electron microscopy additionally revealed an enhanced density of interconnected mitochondria. Altogether, these findings suggest that reduced CB1 signaling in CB1-KO mice leads to reduced mitophagy and abnormal mitochondrial morphology in hippocampal neurons during aging. These mitochondrial changes might be due to the impairments in mitochondrial quality control system, which links age-related decline in CB1 activity and impaired memory.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Chihiro Nozaki
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Keiichiro Nakamura
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan.
| |
Collapse
|
49
|
Dai SH, Wu QC, Zhu RR, Wan XM, Zhou XL. Notch1 protects against myocardial ischaemia-reperfusion injury via regulating mitochondrial fusion and function. J Cell Mol Med 2020; 24:3183-3191. [PMID: 31975567 PMCID: PMC7077547 DOI: 10.1111/jcmm.14992] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial fusion and fission dynamic are critical to the myocardial protection against ischaemia‐reperfusion injury. Notch1 signalling plays an important role in heart development, maturation and repair. However, the role of Notch1 in the myocardial mitochondrial fusion and fission dynamic remains elusive. Here, we isolated myocardial cells from rats and established myocardial ischaemia‐reperfusion injury (IRI) model. We modulated Notch1, MFN1 and DRP1 expression levels in myocardial cells via infection with recombinant adenoviruses. The results showed that Notch1 improves the cell viability and mitochondrial fusion in myocardiocytes exposed to IRI. These improvements were dependent on the regulation of MFN1 and DRP1. On the mechanism, we found that MNF1 is transcriptionally activated by RBP‐Jk in myocardiocytes. Notch1 also improves the mitochondrial membrane potential in myocardiocytes exposed to IRI. Moreover, we further confirmed the protection of the Notch1‐MFN1/Drp1 axis on the post‐ischaemic recovery of myocardial performance is associated with the preservation of the mitochondrial structure. In conclusion, this study presented a detailed mechanism by which Notch1 signalling improves mitochondrial fusion during myocardial protection.
Collapse
Affiliation(s)
- Shao-Hua Dai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Qi-Cai Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Rong-Rong Zhu
- Department of Obstetrics and Gynecology, High-tech hospital, The First Affiliated Hospital, Nanchang University, Nanchang, 330096, China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
50
|
Hu Q, Zhang H, Gutiérrez Cortés N, Wu D, Wang P, Zhang J, Mattison JA, Smith E, Bettcher LF, Wang M, Lakatta EG, Sheu SS, Wang W. Increased Drp1 Acetylation by Lipid Overload Induces Cardiomyocyte Death and Heart Dysfunction. Circ Res 2020; 126:456-470. [PMID: 31896304 DOI: 10.1161/circresaha.119.315252] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Lipid overload-induced heart dysfunction is characterized by cardiomyocyte death, myocardial remodeling, and compromised contractility, but the impact of excessive lipid supply on cardiac function remains poorly understood. OBJECTIVE To investigate the regulation and function of the mitochondrial fission protein Drp1 (dynamin-related protein 1) in lipid overload-induced cardiomyocyte death and heart dysfunction. METHODS AND RESULTS Mice fed a high-fat diet (HFD) developed signs of obesity and type II diabetes mellitus, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and hypertension. HFD for 18 weeks also induced heart hypertrophy, fibrosis, myocardial insulin resistance, and cardiomyocyte death. HFD stimulated mitochondrial fission in mouse hearts. Furthermore, HFD increased the protein level, phosphorylation (at the activating serine 616 sites), oligomerization, mitochondrial translocation, and GTPase activity of Drp1 in mouse hearts, indicating that Drp1 was activated. Monkeys fed a diet high in fat and cholesterol for 2.5 years also exhibited myocardial damage and Drp1 activation in the heart. Interestingly, HFD decreased nicotinamide adenine dinucleotide (oxidized) levels and increased Drp1 acetylation in the heart. In adult cardiomyocytes, palmitate increased Drp1 acetylation, phosphorylation, and protein levels, and these increases were abolished by restoration of the decreased nicotinamide adenine dinucleotide (oxidized) level. Proteomics analysis and in vitro screening revealed that Drp1 acetylation at lysine 642 (K642) was increased by HFD in mouse hearts and by palmitate incubation in cardiomyocytes. The nonacetylated Drp1 mutation (K642R) attenuated palmitate-induced Drp1 activation, its interaction with voltage-dependent anion channel 1, mitochondrial fission, contractile dysfunction, and cardiomyocyte death. CONCLUSIONS These findings uncover a novel mechanism that contributes to lipid overload-induced heart hypertrophy and dysfunction. Excessive lipid supply created an intracellular environment that facilitated Drp1 acetylation, which, in turn, increased its activity and mitochondrial translocation, resulting in cardiomyocyte dysfunction and death. Thus, Drp1 may be a critical mediator of lipid overload-induced heart dysfunction as well as a potential target for therapy.
Collapse
Affiliation(s)
- Qingxun Hu
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle
| | - Huiliang Zhang
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle.,Department of Pathology (H.Z., W.W.), University of Washington, Seattle
| | - Nicolás Gutiérrez Cortés
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle
| | - Dan Wu
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle.,Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (D.W.)
| | - Pei Wang
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle
| | - Jing Zhang
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health Biomedical Research Center (BRC), Baltimore, MD (J.Z., M.W., E.G.L.)
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD (J.A.M.)
| | - Eric Smith
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle
| | - Lisa F Bettcher
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle.,Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (L.F.B.), University of Washington, Seattle
| | - Mingyi Wang
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health Biomedical Research Center (BRC), Baltimore, MD (J.Z., M.W., E.G.L.)
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health Biomedical Research Center (BRC), Baltimore, MD (J.Z., M.W., E.G.L.)
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (S.-S.S.)
| | - Wang Wang
- From the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine (Q.H., H.Z., N.G.C., D.W., P.W., E.S., L.F.B., W.W.), University of Washington, Seattle.,Department of Pathology (H.Z., W.W.), University of Washington, Seattle
| |
Collapse
|