1
|
Mézquita AJV, Biavati F, Falk V, Alkadhi H, Hajhosseiny R, Maurovich-Horvat P, Manka R, Kozerke S, Stuber M, Derlin T, Channon KM, Išgum I, Coenen A, Foellmer B, Dey D, Volleberg RHJA, Meinel FG, Dweck MR, Piek JJ, van de Hoef T, Landmesser U, Guagliumi G, Giannopoulos AA, Botnar RM, Khamis R, Williams MC, Newby DE, Dewey M. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat Rev Cardiol 2023; 20:696-714. [PMID: 37277608 DOI: 10.1038/s41569-023-00880-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
The detection and characterization of coronary artery stenosis and atherosclerosis using imaging tools are key for clinical decision-making in patients with known or suspected coronary artery disease. In this regard, imaging-based quantification can be improved by choosing the most appropriate imaging modality for diagnosis, treatment and procedural planning. In this Consensus Statement, we provide clinical consensus recommendations on the optimal use of different imaging techniques in various patient populations and describe the advances in imaging technology. Clinical consensus recommendations on the appropriateness of each imaging technique for direct coronary artery visualization were derived through a three-step, real-time Delphi process that took place before, during and after the Second International Quantitative Cardiovascular Imaging Meeting in September 2022. According to the Delphi survey answers, CT is the method of choice to rule out obstructive stenosis in patients with an intermediate pre-test probability of coronary artery disease and enables quantitative assessment of coronary plaque with respect to dimensions, composition, location and related risk of future cardiovascular events, whereas MRI facilitates the visualization of coronary plaque and can be used in experienced centres as a radiation-free, second-line option for non-invasive coronary angiography. PET has the greatest potential for quantifying inflammation in coronary plaque but SPECT currently has a limited role in clinical coronary artery stenosis and atherosclerosis imaging. Invasive coronary angiography is the reference standard for stenosis assessment but cannot characterize coronary plaques. Finally, intravascular ultrasonography and optical coherence tomography are the most important invasive imaging modalities for the identification of plaques at high risk of rupture. The recommendations made in this Consensus Statement will help clinicians to choose the most appropriate imaging modality on the basis of the specific clinical scenario, individual patient characteristics and the availability of each imaging modality.
Collapse
Affiliation(s)
| | - Federico Biavati
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Robert Manka
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Stuber
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Keith M Channon
- Radcliffe Department of Medicine, University of Oxford and Oxford University Hospitals, Oxford, UK
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan Coenen
- Department of Radiology, Erasmus University, Rotterdam, Netherlands
| | - Bernhard Foellmer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damini Dey
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rick H J A Volleberg
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix G Meinel
- Department of Radiology, University Medical Centre Rostock, Rostock, Germany
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology and Cardiovascular Sciences, Amsterdam UMC, Heart Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tim van de Hoef
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ulf Landmesser
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Cardiology, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giulio Guagliumi
- Division of Cardiology, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany.
- Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
2
|
Detection of Vulnerable Coronary Plaques Using Invasive and Non-Invasive Imaging Modalities. J Clin Med 2022; 11:jcm11051361. [PMID: 35268451 PMCID: PMC8911129 DOI: 10.3390/jcm11051361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Acute coronary syndrome (ACS) mostly arises from so-called vulnerable coronary plaques, particularly prone for rupture. Vulnerable plaques comprise a specific type of plaque, called the thin-cap fibroatheroma (TFCA). A TCFA is characterized by a large lipid-rich necrotic core, a thin fibrous cap, inflammation, neovascularization, intraplaque hemorrhage, microcalcifications or spotty calcifications, and positive remodeling. Vulnerable plaques are often not visible during coronary angiography. However, different plaque features can be visualized with the use of intracoronary imaging techniques, such as intravascular ultrasound (IVUS), potentially with the addition of near-infrared spectroscopy (NIRS), or optical coherence tomography (OCT). Non-invasive imaging techniques, such as computed tomography coronary angiography (CTCA), cardiovascular magnetic resonance (CMR) imaging, and nuclear imaging, can be used as an alternative for these invasive imaging techniques. These invasive and non-invasive imaging modalities can be implemented for screening to guide primary or secondary prevention therapies, leading to a more patient-tailored diagnostic and treatment strategy. Systemic pharmaceutical treatment with lipid-lowering or anti-inflammatory medication leads to plaque stabilization and reduction of cardiovascular events. Additionally, ongoing studies are investigating whether modification of vulnerable plaque features with local invasive treatment options leads to plaque stabilization and subsequent cardiovascular risk reduction.
Collapse
|
3
|
Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, Powell AJ, Raman SV, Pennell DJ. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:76. [PMID: 33161900 PMCID: PMC7649060 DOI: 10.1186/s12968-020-00682-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Society for Cardiovascular Magnetic Resonance (SCMR) last published its comprehensive expert panel report of clinical indications for CMR in 2004. This new Consensus Panel report brings those indications up to date for 2020 and includes the very substantial increase in scanning techniques, clinical applicability and adoption of CMR worldwide. We have used a nearly identical grading system for indications as in 2004 to ensure comparability with the previous report but have added the presence of randomized controlled trials as evidence for level 1 indications. In addition to the text, tables of the consensus indication levels are included for rapid assimilation and illustrative figures of some key techniques are provided.
Collapse
Affiliation(s)
- Tim Leiner
- Department of Radiology, E.01.132, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias G Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
| | - Raad Mohiaddin
- Department of Radiology, Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, Science & Great Ormond Street Hospital for Children, UCL Institute of Cardiovascular, Great Ormond Street, London, WC1N 3JH, UK
| | - Saul Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN, 46202-3082, USA
| | - Dudley J Pennell
- Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Lee SE, Nguyen C, Xie Y, Deng Z, Zhou Z, Li D, Chang HJ. Recent Advances in Cardiac Magnetic Resonance Imaging. Korean Circ J 2018; 49:146-159. [PMID: 30468040 PMCID: PMC6351278 DOI: 10.4070/kcj.2018.0246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging provides accurate anatomic information and advanced soft contrast, making it the reference standard for assessing cardiac volumes and systolic function. In this review, we summarize the recent advances in CMR sequences. New technical development has widened the use of CMR imaging beyond the simple characterization of myocardial scars and assessment of contractility. These novel CMR sequences offer comprehensive assessments of coronary plaque characterization, myocardial fiber orientation, and even metabolic activity, and they can be readily applied in clinical settings. CMR imaging is able to provide new insights into understanding the pathophysiologic process of underlying cardiac disease, and it can help physicians choose the best treatment strategies. Although several limitations, including the high cost and time-consuming process, have limited the widespread clinical use of CMR imaging so far, recent advances in software and hardware technologies have made the future more promising.
Collapse
Affiliation(s)
- Sang Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyuk Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
5
|
Jansen CHP, Perera D, Wiethoff AJ, Phinikaridou A, Razavi RM, Rinaldi A, Marber MS, Greil GF, Nagel E, Maintz D, Redwood S, Botnar RM, Makowski MR. Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS One 2017; 12:e0188292. [PMID: 29190694 PMCID: PMC5708680 DOI: 10.1371/journal.pone.0188292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose X-ray coronary angiography (XCA) is the current gold standard for the assessment of lumen encroaching coronary stenosis but XCA does not allow for early detection of rupture-prone vulnerable plaques, which are thought to be the precursor lesions of most acute myocardial infarctions (AMI) and sudden death. The aim of this study was to investigate the potential of delayed contrast-enhanced magnetic resonance coronary vessel wall imaging (CE-MRCVI) for the detection of culprit lesions in the coronary arteries. Methods 16 patients (13 male, age 61.9±8.6 years) presenting with sub-acute MI underwent CE-MRCVI within 24-72h prior to invasive XCA. CE-MRCVI was performed using a T1-weighted 3D gradient echo inversion recovery sequence (3D IR TFE) 40±4 minutes following the administration of 0.2 mmol/kg gadolinium-diethylenetriamine-pentaacetic acid (DTPA) on a 3T MRI scanner equipped with a 32-channel cardiac coil. Results 14 patients were found to have culprit lesions (7x LAD, 1xLCX, 6xRCA) as identified by XCA. Quantitative CE-MRCVI correctly identified the culprit lesion location with a sensitivity of 79% and excluded culprit lesion formation with a specificity of 99%. The contrast to noise ratio (CNR) of culprit lesions (9.7±4.1) significantly exceeded CNR values of segments without culprit lesions (2.9±1.9, p<0.001). Conclusion CE-MRCVI allows the selective visualization of culprit lesions in patients immediately after myocardial infarction (MI). The pronounced contrast uptake in ruptured plaques may represent a surrogate biomarker of plaque activity and/or vulnerability.
Collapse
Affiliation(s)
- Christian H. P. Jansen
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- * E-mail:
| | - Divaka Perera
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Cardiovascular Centre, Guy’s and St. Thomas’ Hospital, London, United Kingdom
| | - Andrea J. Wiethoff
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- Philips Healthcare, Guildford, United Kingdom
| | - Alkystis Phinikaridou
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Reza M. Razavi
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Wellcome Trust and EPSRC Medical Engineering Center, London, United Kingdom
| | - Aldo Rinaldi
- Cardiovascular Centre, Guy’s and St. Thomas’ Hospital, London, United Kingdom
| | - Mike S. Marber
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Cardiovascular Centre, Guy’s and St. Thomas’ Hospital, London, United Kingdom
| | - Gerald F. Greil
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Eike Nagel
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Wellcome Trust and EPSRC Medical Engineering Center, London, United Kingdom
| | - David Maintz
- Department of Radiology, University Muenster, Muenster, Germany
| | - Simon Redwood
- Cardiovascular Centre, Guy’s and St. Thomas’ Hospital, London, United Kingdom
| | - Rene M. Botnar
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Wellcome Trust and EPSRC Medical Engineering Center, London, United Kingdom
- Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Marcus R. Makowski
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, London, United Kingdom
- NIHR Biomedical Research Centre and King’s College London, London, United Kingdom
- Department of Radiology, Charité, Berlin, Germany
| |
Collapse
|
6
|
Patel K, Tarkin J, Serruys PW, Tenekecioglu E, Foin N, Zhang YJ, Crake T, Moon J, Mathur A, Bourantas CV. Invasive or non-invasive imaging for detecting high-risk coronary lesions? Expert Rev Cardiovasc Ther 2017; 15:165-179. [PMID: 28256179 DOI: 10.1080/14779072.2017.1297231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Advances in our understanding about atherosclerotic evolution have enabled us to identify specific plaque characteristics that are associated with coronary plaque vulnerability and cardiovascular events. With constant improvements in signal and image processing an arsenal of invasive and non-invasive imaging modalities have been developed that are capable of identifying these features allowing in vivo assessment of plaque vulnerability. Areas covered: This review article presents the available and emerging imaging modalities introduced to assess plaque morphology and biology, describes the evidence from the first large scale studies that evaluated the efficacy of invasive and non-invasive imaging in detecting lesions that are likely to progress and cause cardiovascular events and discusses the potential implications of the in vivo assessment of coronary artery pathology in the clinical setting. Expert commentary: Invasive imaging, with its high resolution, and in particular hybrid intravascular imaging appears as the ideal approach to study the mechanisms regulating atherosclerotic disease progression; whereas non-invasive imaging is expected to enable complete assessment of coronary tree pathology, detection of high-risk lesions, more accurate risk stratification and thus to allow a personalized treatment of vulnerable patients.
Collapse
Affiliation(s)
- Kush Patel
- a Barts Heart Centre, Barts Health NHS Trust , London , UK
| | - Jason Tarkin
- a Barts Heart Centre, Barts Health NHS Trust , London , UK.,b Division of Cardiovascular Medicine , University of Cambridge , Cambridge , UK
| | - Patrick W Serruys
- c Thoraxcenter , Erasmus Medical Centre , Rotterdam , The Netherlands.,d Faculty of Medicine , National Heart & Lung Institute, Imperial College , London , UK
| | | | - Nicolas Foin
- e National Heart Centre Singapore , Duke-NUS Medical School , Singapore
| | - Yao-Jun Zhang
- f Nanjing First Hospital , Nanjing Medical University , Nanjing , China
| | - Tom Crake
- a Barts Heart Centre, Barts Health NHS Trust , London , UK
| | - James Moon
- a Barts Heart Centre, Barts Health NHS Trust , London , UK
| | - Anthony Mathur
- a Barts Heart Centre, Barts Health NHS Trust , London , UK
| | - Christos V Bourantas
- a Barts Heart Centre, Barts Health NHS Trust , London , UK.,g Institute of Cardiovascular Sciences , University College London , London , UK
| |
Collapse
|
7
|
Pozo E, Agudo-Quilez P, Rojas-González A, Alvarado T, Olivera MJ, Jiménez-Borreguero LJ, Alfonso F. Noninvasive diagnosis of vulnerable coronary plaque. World J Cardiol 2016; 8:520-533. [PMID: 27721935 PMCID: PMC5039354 DOI: 10.4330/wjc.v8.i9.520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction and sudden cardiac death are frequently the first manifestation of coronary artery disease. For this reason, screening of asymptomatic coronary atherosclerosis has become an attractive field of research in cardiovascular medicine. Necropsy studies have described histopathological changes associated with the development of acute coronary events. In this regard, thin-cap fibroatheroma has been identified as the main vulnerable coronary plaque feature. Hence, many imaging techniques, such as coronary computed tomography, cardiac magnetic resonance or positron emission tomography, have tried to detect noninvasively these histomorphological characteristics with different approaches. In this article, we review the role of these diagnostic tools in the detection of vulnerable coronary plaque with particular interest in their advantages and limitations as well as the clinical implications of the derived findings.
Collapse
|
8
|
Dweck MR, Puntmann VO, Vesey AT, Fayad ZA, Nagel E. MR Imaging of Coronary Arteries and Plaques. JACC Cardiovasc Imaging 2016; 9:306-16. [DOI: 10.1016/j.jcmg.2015.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
|
9
|
The indication area of a diagnostic test. Part I—discounting gain and loss in diagnostic certainty. J Clin Epidemiol 2015; 68:1120-8. [DOI: 10.1016/j.jclinepi.2015.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 05/02/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
|
10
|
Jiang L, Tu Y, Kimura RH, Habte F, Chen H, Cheng K, Shi H, Gambhir SS, Cheng Z. 64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques. J Nucl Med 2015; 56:939-44. [PMID: 25908832 DOI: 10.2967/jnumed.115.155176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin miniprotein was evaluated in a mouse model for carotid atherosclerotic plaques. METHODS Atherosclerotic plaques in BALB/C mice, maintained on a high-fat diet, were induced with streptozotocin injection and carotid artery ligation and verified by MR imaging. Knottin 3-4A was synthesized by solid-phase peptide synthesis chemistry and coupled to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) before radiolabeling with (64)Cu. PET probe stability in mouse serum was evaluated. Mice with carotid atherosclerotic plaques were injected via the tail vein with (64)Cu-NOTA-3-4A or (18)F-FDG, followed by small-animal PET/CT imaging at different time points. Receptor targeting specificity of the probe was verified by coinjection of c(RGDyK) administered in molar excess. Subsequently, carotid artery dissection and immunofluorescence staining were performed to evaluate target expression. RESULTS (64)Cu-NOTA-3-4A was synthesized in high radiochemical purity and yield and demonstrated molecular stability in both phosphate-buffered saline and mouse serum at 4 h. Small-animal PET/CT showed that (64)Cu-NOTA-3-4A accumulated at significantly higher levels in the neovasculature of carotid atherosclerotic plaques (7.41 ± 1.44 vs. 0.67 ± 0.23 percentage injected dose/gram, P < 0.05) than healthy or normal vessels at 1 h after injection. (18)F-FDG also accumulated in atherosclerotic lesions at 0.5 and 1 h after injection but at lower plaque-to-normal tissue ratios than (64)Cu-NOTA-3-4A. For example, plaque-to-normal carotid artery ratios for (18)F-FDG and (64)Cu-NOTA-3-4A at 1 h after injection were 3.75 and 14.71 (P < 0.05), respectively. Furthermore, uptake of (64)Cu-NOTA-3-4A in atherosclerotic plaques was effectively blocked (∼90% at 1 h after injection) by coinjection of c(RGDyK). Immunostaining confirmed integrin αvβ3 expression in both the infiltrating macrophages and the neovasculature of atherosclerotic plaques. CONCLUSION (64)Cu-NOTA-3-4A demonstrates specific accumulation in carotid atherosclerotic plaques in which macrophage infiltration and angiogenesis are responsible for elevated integrin αvβ3 levels. Therefore, (64)Cu-NOTA-3-4A may demonstrate clinical utility as a PET probe for atherosclerosis imaging or for the evaluation of therapies used to treat atherosclerosis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; and Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Yingfeng Tu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Richard H Kimura
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Frezghi Habte
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Kai Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| |
Collapse
|
11
|
Xie G, Bi X, Liu J, Yang Q, Natsuaki Y, Conte AH, Liu X, Li K, Li D, Fan Z. Three-dimensional coronary dark-blood interleaved with gray-blood (cDIG) magnetic resonance imaging at 3 tesla. Magn Reson Med 2015; 75:997-1007. [PMID: 25858528 DOI: 10.1002/mrm.25585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE Three-dimensional (3D) dark-blood MRI has shown great potential in coronary artery plaque evaluation. However, substantial variability in quantification could result from superficial calcification because of its low signal. To address this issue, a 3D coronary dark-blood interleaved with gray-blood (cDIG) technique was developed. METHODS cDIG is based on a balanced steady-state free precession readout combined with a local re-inversion-based double-inversion-recovery (LocReInv-DIR) preparation. The LocReInv-DIR is applied every two RR intervals. Dark-blood and gray-blood contrasts are collected in the first and second RR interval, respectively. To improve the respiratory gating efficiency, two independent navigators were developed to separately gate the respiratory motion for the two interleaved acquisitions. In vivo experiments in eight healthy subjects and one patient were conducted to validate the technique. RESULTS cDIG provided dual-contrasts without compromise in scan time. The dark-blood images with cDIG demonstrated excellent wall and lumen signal performances and morphological measurements. Advantageously, cDIG yielded a second contrast that was shown to help identify the superficial calcification in the coronary plaque of a patient. CONCLUSION A novel technique was developed for obtaining 3D coronary vessel wall and gray lumen images. The additional contrast may aid in identifying calcified nodules and thus potentially improve the evaluation of coronary plaque burden.
Collapse
Affiliation(s)
- Guoxi Xie
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoming Bi
- Siemens Healthcare, Los Angeles, California, USA
| | - Jiabin Liu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | - Xin Liu
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Keegan J. Coronary artery wall imaging. J Magn Reson Imaging 2014; 41:1190-202. [PMID: 25303707 DOI: 10.1002/jmri.24766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022] Open
Abstract
Like X-Ray contrast angiography, MR coronary angiograms show the vessel lumens rather than the vessels themselves. Consequently, outward remodeling of the vessel wall, which occurs in subclinical coronary disease before luminal narrowing, cannot be seen. The current gold standard for assessing the coronary vessel wall is intravascular ultrasound, and more recently, optical coherence tomography, both of which are invasive and use ionizing radiation. A noninvasive, low-risk technique for assessing the vessel wall would be beneficial to cardiologists interested in the early detection of preclinical disease and for the safe monitoring of the progression or regression of disease in longitudinal studies. In this review article, the current state of the art in MR coronary vessel wall imaging is discussed, together with validation studies and recent developments.
Collapse
Affiliation(s)
- Jennifer Keegan
- Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London
| |
Collapse
|
13
|
A fuzzy multi-stage path-planning method for a robot in a dynamic environment with unknown moving obstacles. ROBOTICA 2014. [DOI: 10.1017/s0263574714001064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPath planning is one of the most important fields in robotics. Only a limited number of articles have proposed a practical way to solve the path-planning problem with moving obstacles. In this paper, a fuzzy path-planning method with two strategies is proposed to navigate a robot among unknown moving obstacles in complex environments. The static form of the environment is assumed to be known, but there is no prior knowledge about the dynamic obstacles. In this situation, an online and real-time approach is essential for avoiding collision. Also, the approach should be efficient in natural complex environments such as blood vessels. To examine the efficiency of the proposed algorithm, a drug delivery nanorobot moving in a complex environment (blood vessels) is supposed. The Monte Carlo simulation with random numbers is used to demonstrate the efficiency of the proposed approach, where the dynamic obstacles are assumed to appear in exponentially distributed random time intervals.
Collapse
|
14
|
Kuo YS, Kelle S, Lee C, Hinojar R, Nagel E, Botnar R, Puntmann VO. Contrast-enhanced cardiovascular magnetic resonance imaging of coronary vessel wall: state of art. Expert Rev Cardiovasc Ther 2014; 12:255-63. [PMID: 24417398 DOI: 10.1586/14779072.2014.877838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary wall imaging by cardiovascular magnetic resonance (CMR) emerges as a promising method to detect vascular injury and remodeling directly within the coronary vascular wall. In this review, the current evidence on coronary wall enhancement using CMR is presented and summarized, with particular focus on its ability to detect inflammation in atherosclerosis, Takayasu's arteritis, acute coronary syndromes and immune-mediated inflammatory vasculitides. The authors review the possible mechanisms of coronary wall contrast enhancement on CMR and discuss the technical considerations and limitations. Lastly, the potential clinical applications and possibilities for future research are proposed.
Collapse
Affiliation(s)
- Yen-Shu Kuo
- Department of Cardiovascular Imaging, The Rayne Institute, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Makowski MR, Henningsson M, Spuentrup E, Kim WY, Maintz D, Manning WJ, Botnar RM. Characterization of coronary atherosclerosis by magnetic resonance imaging. Circulation 2013; 128:1244-55. [PMID: 24019445 DOI: 10.1161/circulationaha.113.002681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcus R Makowski
- Division of Imaging Sciences and Biomedical Engineering (M.R.M., M.H., R.M.B.), BHF Center of Research Excellence (M.R.M., M.H., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (M.H., R.M.B.), and NIHR Biomedical Research Center (M.H., R.M.B.), King's College London, London, UK; Department of Radiology, Charité, Berlin, Germany (M.R.M.); Department of Radiology and Nuclear Medicine, Hospital Saarbrucken, Saarbrucken, Germany (E.S.); Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Denmark (W.Y.K.); Department of Radiology, University of Cologne, Cologne, Germany (D.M.); and Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (W.J.M.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Yang J, Li T, Cui X, Zhou W, Li X, Zhang X. Optimizing the imaging protocol for ex vivo coronary artery wall using high-resolution MRI: an experimental study on porcine and human. Korean J Radiol 2013; 14:581-8. [PMID: 23901315 PMCID: PMC3725352 DOI: 10.3348/kjr.2013.14.4.581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/24/2013] [Indexed: 11/18/2022] Open
Abstract
Objective To optimize the MR imaging protocol for coronary arterial wall depiction in vitro and characterize the coronary atherosclerotic plaques. Materials and Methods MRI examination was prospectively performed in ten porcine hearts in order to optimize the MR imaging protocol. Various surface coils were used for coronary arterial wall imaging with the same parameters. Then, the image parameters were further optimized for high-resolution coronary wall imaging. The signal-noise ratio (SNR) and contrast-noise ratio (CNR) of images were measured. Finally, 8 human cadaver hearts with coronary atherosclerotic plaques were prospectively performed with MRI examination using optimized protocol in order to characterize the coronary atherosclerotic plaques. Results The SNR and CNR of MR image with temporomandibular coil were the highest of various surface coils. High-resolution and high SNR and CNR for ex vivo coronary artery wall depiction can be achieved using temporomandibular coil with 512 × 512 in matrix. Compared with histopathology, the sensitivity and specificity of MRI for identifying advanced plaques were: type IV-V (lipid, necrosis, fibrosis), 94% and 95%; type VI (hemorrhage), 100% and 98%; type VII (calcification), 91% and 100%; and type VIII (fibrosis without lipid core), 100% and 98%, respectively. Conclusion Temporomandibular coil appears to be dramatically superior to eight-channel head coil and knee coil for ex vivo coronary artery wall imaging, providing higher spatial resolution and improved the SNR. Ex vivo high-resolution MRI has capability to distinguish human coronary atherosclerotic plaque compositions and accurately classify advanced plaques.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Medical, The General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
17
|
Stegger L, Schülke C, Wenning C, Rahbar K, Kies P, Schober O, Schäfers M. Cardiac PET/MRI. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|