1
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
2
|
Yarak N, El Khoury J, Coloby P, Bart S, Abdessater M. Idiopathic recurrent ischemic priapism: a review of current literature and an algorithmic approach to evaluation and management. Basic Clin Androl 2024; 34:21. [PMID: 39627696 PMCID: PMC11616154 DOI: 10.1186/s12610-024-00237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Stuttering priapism is characterized by recurrent, self-limited episodes of penile erection lasting from a few minutes to a maximum of three hours, often resolving spontaneously. These episodes can occur with or without sexual stimulation. If not treated promptly and effectively, stuttering priapism can severely impact a patient's quality of life, leading to significant psychological distress and anxiety related to sexual performance. Although it has been associated with various hematological disorders and pharmacological treatments, many cases of stuttering priapism remain idiopathic, meaning they have no identifiable cause. Currently, no conclusive randomized clinical trials exist on the management of idiopathic stuttering priapism. This study aims to review the existing literature on the pathophysiology and management of idiopathic stuttering priapism and propose an algorithm to assist physicians in its evaluation and treatment. RESULTS A systematic literature review was conducted using the PubMed database, focusing on the terms "idiopathic," "stuttering," "ischemic," and "priapism." The search identified 23 relevant references published between 1991 and 2022. The selection and analysis of these studies adhered to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and results were described qualitatively. Recent research into the effectiveness, sustainability, tolerability, and side effects of various treatments for idiopathic stuttering priapism has enhanced the understanding of its underlying molecular mechanisms. Various treatments, targeting different mechanisms, have been identified that can potentially reduce the frequency and severity of episodes and improve patient outcomes. CONCLUSION Current research predominantly addresses the acute treatment of idiopathic stuttering priapism rather than strategies to alter the disease's overall course. The limited number of treatment reviews, case reports, and the low level of evidence available, combined with the absence of randomized clinical trials, prevent the establishment of a consensus on treatment protocols. As a result, idiopathic stuttering priapism remains under-recognized and under-treated. This review proposes a management framework to help clinicians access and apply the available literature effectively, minimizing the reliance on extensive case reports and review articles.
Collapse
|
3
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
4
|
Warwar R, Zupan AM, Nietupski C, Manzanares M, Hurley EG, Schutte SC. Uterine fibroid cell cytoskeletal organization is affected by altered G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase signaling. F&S SCIENCE 2023; 4:327-338. [PMID: 37797815 DOI: 10.1016/j.xfss.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To determine whether cyclic strain affects fibroid cell cytoskeletal organization, proliferation, and collagen synthesis differently than myometrial cells. DESIGN A basic science study using primary cultures of patient-matched myometrial and fibroid cells. SETTING Academic laboratory. PATIENT(S) Premenopausal women undergoing myomectomy or hysterectomy for the treatment of symptomatic uterine fibroids. INTERVENTION(S) Application of uniaxial strain patterns mimicking periovulation, menses, or dysmenorrhea using the Flexcell tension system or static control. Secondarily, inhibition of G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase. MAIN OUTCOME MEASURE(S) Cell alignment, cell number, and collagen content. RESULT(S) Menses-strained cells demonstrated the most variation in cell alignment, cell proliferation, and procollagen content between myometrial and fibroid cells. Procollagen content decreased in myometrial cells with increasing strain amplitude and decreasing frequency. G protein-coupled estrogen receptor-1 inhibition decreases cellular alignment in the presence of strain. CONCLUSION(S) Mechanotransduction affecting cytoskeletal arrangement through the G protein-coupled estrogen receptor-1-phosphatidylinositol 3-kinase pathway is altered in fibroid cells. These results highlight the importance of incorporating mechanical stimulation into the in vitro study of fibroid pathology.
Collapse
Affiliation(s)
- Rachel Warwar
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andreja Moset Zupan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Carolyn Nietupski
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Maricela Manzanares
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Emily G Hurley
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stacey C Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
5
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
6
|
Celik O, Celik N, Gungor ND, Celik S, Arslan L, Morciano A, Tinelli A. Biomechanical Forces Determine Fibroid Stem Cell Transformation and the Receptivity Status of the Endometrium: A Critical Appraisal. Int J Mol Sci 2022; 23:ijms232214201. [PMID: 36430682 PMCID: PMC9692870 DOI: 10.3390/ijms232214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Myometrium cells are an important reproductive niche in which cyclic mechanical forces of a pico-newton range are produced continuously at millisecond and second intervals. Overproduction and/or underproduction of micro-forces, due to point or epigenetic mutation, aberrant methylation, and abnormal response to hypoxia, may lead to the transformation of fibroid stem cells into fibroid-initiating stem cells. Fibroids are tumors with a high modulus of stiffness disturbing the critical homeostasis of the myometrium and they may cause unfavorable and strong mechanical forces. Micro-mechanical forces and soluble-chemical signals play a critical role in transcriptional and translational processes' maintenance, by regulating communication between the cell nucleus and its organelles. Signals coming from the external environment can stimulate cells in the format of both soluble biochemical signals and mechanical ones. The shape of the cell and the plasma membrane have a significant character in sensing electro-chemical signals, through specialized receptors and generating responses, accordingly. In order for mechanical signals to be perceived by the cell, they must be converted into biological stimuli, through a process called mechanotransduction. Transmission of fibroid-derived mechanical signals to the endometrium and their effects on receptivity modulators are mediated through a pathway known as solid-state signaling. It is not sufficiently clear which type of receptors and mechanical signals impair endometrial receptivity. However, it is known that biomechanical signals reaching the endometrium affect epithelial sodium channels, lysophosphatidic acid receptors or Rho GTPases, leading to conformational changes in endometrial proteins. Translational changes in receptivity modulators may disrupt the selectivity and receptivity functions of the endometrium, resulting in failed implantation or early pregnancy loss. By hypermethylation of the receptivity genes, micro-forces can also negatively affect decidualization and implantation. The purpose of this narrative review is to summarize the state of the art of the biomechanical forces which can determine fibroid stem cell transformation and, thus, affect the receptivity status of the endometrium with regard to fertilization and pregnancy.
Collapse
Affiliation(s)
- Onder Celik
- Department of Obstetrics and Gynecology, Private Clinic, Usak 64000, Turkey
| | - Nilufer Celik
- Department of Biochemistry, Behcet Uz Children’s Hospital, Izmir 35210, Turkey
| | - Nur Dokuzeylul Gungor
- Department of Obstetrics and Gynecology, School of Medicine, Bahcesehir University, Istanbul 34732, Turkey
| | - Sudenaz Celik
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Liya Arslan
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Andrea Morciano
- Department of Obstetrics and Gynecology, “Cardinal Panico” General Hospital, 73020 Lecce, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (Centro di RIcerca Clinica SALentino), “Veris Delli Ponti Hospital”, 73020 Lecce, Italy
- Correspondence:
| |
Collapse
|
7
|
Maher JY, Islam MS, Yin O, Brennan J, Gough E, Driggers P, Segars J. The role of Hippo pathway signaling and A-kinase anchoring protein 13 in primordial follicle activation and inhibition. F&S SCIENCE 2022; 3:118-129. [PMID: 35560009 PMCID: PMC11096729 DOI: 10.1016/j.xfss.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine whether the mechanotransduction and pharmacomanipulation of A-kinase anchoring protein 13 (AKAP13) altered Hippo signaling pathway transcription and growth factors in granulosa cells. Primary ovarian insufficiency is the depletion or dysfunction of primordial ovarian follicles. In vitro activation of ovarian tissue in patients with primary ovarian insufficiency alters the Hippo and phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B/forkhead box O3 pathways. A-kinase anchoring protein 13 is found in granulosa cells and may regulate the Hippo pathway via F-actin polymerization resulting in altered nuclear yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif coactivators and Tea domain family (TEAD) transcription factors. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S) None. INTERVENTION(S) COV434 cells, derived from a primary human granulosa tumor cell line, were studied under different cell density and well stiffness conditions. Cells were transfected with a TEAD-luciferase (TEAD-luc) reporter as well as expression constructs for AKAP13 or AKAP13 mutants and then treated with AKAP13 activators, inhibitors, and follicle-stimulating hormone. MAIN OUTCOME MEASURE(S) TEAD gene activation or inhibition was measured by TEAD-luciferase assays. The messenger ribonucleic acid levels of Hippo pathway signaling molecules, including connective tissue growth factor (CTGF), baculoviral inhibitors of apoptosis repeat-containing 5, Ankyrin repeat domain-containing protein 1, YAP1, and TEAD1, were measured by quantitative real-time polymerase chain reaction. Protein expressions for AKAP13, CTGF, YAP1, and TEAD1 were measured using Western blot. RESULT(S) Increased TEAD-luciferase activity and expression of markers for cellular growth were associated with decreased cell density, increased well stiffness, and AKAP13 activator (A02) treatment. Additionally, decreased TEAD-luc activity and expression of markers for cellular growth were associated with AKAP13 inhibitor (A13) treatment, including a reduced expression of the BIRC5 and ANKRD1 (YAP-responsive genes) transcript levels and CTGF protein levels. There were no changes in TEAD-luc with follicle-stimulating hormone treatment, supporting Hippo pathway involvement in the gonadotropin-independent portion of folliculogenesis. CONCLUSION(S) These findings suggest that AKAP13 mediates Hippo-regulated changes in granulosa cell growth via mechanotransduction and pharmacomanipulation. The AKAP13 regulation of the Hippo pathway may represent a potential target for regulation of follicle activation.
Collapse
Affiliation(s)
- Jacqueline Yano Maher
- Johns Hopkins School of Medicine, Baltimore, Maryland; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Children's National Medical Center, Washington, D.C..
| | | | - Ophelia Yin
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Paul Driggers
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James Segars
- Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
ZHENG HZ, QIU Q, XIONG J, CHEN J, GUAN LC. Moxibustion pretreatment inhibits RhoA/ROCK signaling to prevent lung inflammation in asthmatic rats 艾灸预处理降低RhoA/ROCK信号表达预防哮喘大鼠肺炎. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
miR-199a Targeting PNRC1 to Promote Keratinocyte Proliferation and Invasion in Cholesteatoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1442093. [PMID: 34825000 PMCID: PMC8610695 DOI: 10.1155/2021/1442093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Introduction miR-199a has been reported as an oncogene of various cancers. However, the biological function and regulatory mechanism of miR-199a in keratinocytes of cholesteatoma are still unclear. Methods Detection by qRT-PCR was conducted on miR-199a's expression in both thirty pairs of cholesteatoma tissues and normal skins. For characterizing the function of miR-199a, this research adopted transwell assay, wound healing assay, and CCK8 assays. Under the support of qRT-PCR, efforts were made to investigate the relative expression of candidate target genes. Moreover, the evaluation of the targeting relationship between miR-199a and the candidate target gene was conducted with the dual-luciferase reporter assay. Results The upregulation of miR-199a was found in cholesteatoma tissues, which facilitated the proliferation, migration, and invasion of HaCaT cells, while its downregulation caused opposite results. Conclusions The findings of the present research offer more insights into the molecular mechanism of cholesteatoma progression.
Collapse
|
10
|
Cross CI, Driggers PH, McCarthy BE, Diab M, Brennan J, Segars JH. A-kinase anchoring protein 13 interacts with the vitamin D receptor to alter vitamin D-dependent gene activation in uterine leiomyoma cells. F&S SCIENCE 2021; 2:303-314. [PMID: 35560280 DOI: 10.1016/j.xfss.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine if A-kinase anchoring protein 13 (AKAP13) interacts with the vitamin D receptor (VDR) to alter vitamin D-dependent signaling in fibroid cells. Uterine leiomyomas (fibroids) are characterized by a fibrotic extracellular matrix and are associated with vitamin D deficiency. Treatment with vitamin D (1,25-dihydroxyvitamin D3) reduces fibroid growth and extracellular matrix gene expression. A-kinase anchoring protein 13 is overexpressed in fibroids and interacts with nuclear hormone receptors, but it is not known whether AKAP13 may interact with the VDR to affect vitamin D signaling in fibroids. DESIGN Laboratory studies. SETTING Translational science laboratory. INTERVENTION(S) Human immortalized fibroid or myometrial cells were treated with 1,25-hydroxyvitamin D3 (1,25(OH)2D3) and transfected using expression constructs for AKAP13 or AKAP13 mutants, RhoQL, C3 transferase, or small interfering ribonucleic acids (RNAs). MAIN OUTCOME MEASURE(S) Messenger ribonucleic acid (mRNA) levels of AKAP13, fibromodulin, and versican as measured by quantitative real-time polymerase chain reaction. Glutathione S-transferase-binding assays. Vitamin D-dependent gene activation as measured by luciferase assays. RESULT(S) 1,25(OH)2D3 resulted in a significant reduction in mRNA levels encoding AKAP13, versican, and fibromodulin. Small interfering RNA silencing of AKAP13 decreased both fibromodulin and versican mRNA levels. Glutathione S-transferase-binding assays revealed that AKAP13 bound to the VDR through its nuclear receptor interacting region. Cotransfection of AKAP13 and VDR significantly reduced vitamin D-dependent gene activation. RhoA pathway inhibition partially relieved repression of vitamin D-dependent gene activation by AKAP13. CONCLUSION(S) These data suggest that AKAP13 inhibited the vitamin D receptor activation by a mechanism that required, at least in part, RhoA activation.
Collapse
Affiliation(s)
- Chantel I Cross
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Breanne E McCarthy
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maya Diab
- BS, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joshua Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Do DC, Zhang Y, Tu W, Hu X, Xiao X, Chen J, Hao H, Liu Z, Li J, Huang SK, Wan M, Gao P. Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4. JCI Insight 2021; 6:e148147. [PMID: 34101619 PMCID: PMC8410088 DOI: 10.1172/jci.insight.148147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA–conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell–specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, Sftpc-cre;RhoAfl/fl mice showed a significant reduction in Tgf-β1 levels in BALF and lung tissues, and administration of recombinant Tgf-β1 to the mice rescued Tgf-β1 and alleviated the increased allergic airway inflammation observed in Sftpc-cre;RhoAfl/fl mice. Using RNA sequencing technology, we identified Slc26a4 (pendrin), a transmembrane anion exchange, as the most upregulated gene in RhoA-deficient AT2 cells. The upregulation of SLC26A4 was further confirmed in AT2 cells of asthmatic patients and mouse models and in human airway epithelial cells expressing dominant-negative RHOA (RHOA-N19). SLA26A4 was also elevated in serum from asthmatic patients and negatively associated with the percentage of forced expiratory volume in 1 second (FEV1%). Furthermore, SLC26A4 inhibition promoted epithelial TGF-β1 release and attenuated allergic airway inflammation. Our study reveals a RhoA/SLC26A4 axis in AT2 cells that functions as a protective mechanism against allergic airway inflammation.
Collapse
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jingsi Chen
- Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Haiping Hao
- JHMI Deep Sequencing and Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shau-Ku Huang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Park M, Kim JW, Kim KM, Kang S, Kim W, Kim JK, Cho Y, Lee H, Baek MC, Bae JH, Lee SH, Jeong SB, Lim SC, Jun DW, Cho SY, Kim Y, Choi YJ, Kang KW. Circulating Small Extracellular Vesicles Activate TYRO3 to Drive Cancer Metastasis and Chemoresistance. Cancer Res 2021; 81:3539-3553. [PMID: 33910929 DOI: 10.1158/0008-5472.can-20-3320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EV) in the tumor microenvironment have emerged as crucial mediators that promote proliferation, metastasis, and chemoresistance. However, the role of circulating small EVs (csEV) in cancer progression remains poorly understood. In this study, we report that csEV facilitate cancer progression and determine its molecular mechanism. csEVs strongly promoted the migration of cancer cells via interaction with phosphatidylserine of csEVs. Among the three TAM receptors, TYRO3, AXL, and MerTK, TYRO3 mainly interacted with csEVs. csEV-mediated TYRO3 activation promoted migration and metastasis via the epithelial-mesenchymal transition and stimulation of RhoA in invasive cancer cells. Additionally, csEV-TYRO3 interaction induced YAP activation, which led to increased cell proliferation and chemoresistance. Combination treatment with gefitinib and KRCT-6j, a selective TYRO3 inhibitor, significantly reduced tumor volume in xenografts implanted with gefitinib-resistant non-small cell lung cancer cells. The results of this study show that TYRO3 activation by csEVs facilitates cancer cell migration and chemoresistance by activation of RhoA or YAP, indicating that the csEV/TYRO3 interaction may serve as a potential therapeutic target for aggressive cancers in the clinic. SIGNIFICANCE: These findings demonstrate that circulating extracellular vesicles are a novel driver in migration and survival of aggressive cancer cells via TYRO3 activation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3539/F1.large.jpg.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, California
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Republic of Korea
| | - Seungmin Kang
- Department of Life Science, Division of Molecular and Life Sciences, Ewha Womans University, Seoul, Republic of Korea
- KaiPharm, Seoul, Republic of Korea
| | - Wankyu Kim
- Department of Life Science, Division of Molecular and Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Youngnam Cho
- Biomarker Branch, National Cancer Center, Gyeonggi, Republic of Korea
| | - Hyungjae Lee
- Biomarker Branch, National Cancer Center, Gyeonggi, Republic of Korea
| | - Moon Chang Baek
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Bae
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Hyun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Baek Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sung Yun Cho
- Department of Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yeonji Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Chiu WC, Chiang JY, Chiang FT. Small chemical compounds Y16 and Rhosin can inhibit calcium sensitization pathway in vascular smooth muscle cells of spontaneously hypertensive rats. J Formos Med Assoc 2021; 120:1863-1868. [PMID: 33893012 DOI: 10.1016/j.jfma.2021.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/PURPOSE The small-molecule compounds Y16 and Rhosin can inhibit the activation of leukemia-associated Rho guanine nucleotide exchange factor (LARG) and small G-protein RhoA, respectively, in breast cancer cells and inhibit their growth and migration. However, it remains unclear whether they have inhibitory effects on the vascular smooth muscle cells (VSMCs) of spontaneously hypertensive rats (SHRs). METHODS Primary cultured VSMCs from SHRs were treated with different concentrations of Y16 or Y16 plus Rhosin for 24 h, followed by 10-min stimulation with 10-7 M angiotensin II (Ang II). The cells were then harvested, and the total protein was extracted. The co-immunoprecipitation method, Western blot analysis, and MTT assay were performed to determine the LARG-RhoA interaction, the protein levels of RhoA and MYPT1, and cell viability, respectively. RESULTS Y16 dose-dependently inhibited the LARG-RhoA complex formation induced by Ang II. With 50 μM of Y16, the effect of inhibition was statistically significant. Y16 also reduced the formation of phospho-MYPT1 stimulated by Ang II. With 5 μM of Y16, the inhibitory effect was statistically significant. When 25 μM of Y16 and 25 μM of Rhosin were combined, the inhibitory effect on LARG-RhoA interaction was statistically significant. When Y16 and Rhosin were combined, a significantly reduced concentration could effectively inhibit MYPT1 phosphorylation (2.5 μM compared with 5 μM for Y16 alone). CONCLUSION Treating SHR VSMCs with Y16 can suppress the activation of LARG, prevent LARG binding to RhoA, and decrease the phosphorylation of MYPT1, thus weakening the activation of the calcium (Ca2+) sensitization pathway in SHR VSMCs.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiun-Yang Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan; Fu Jen Catholic University, Taiwan.
| |
Collapse
|
14
|
Wang E, Tu W, Do DC, Xiao X, Bhatti SB, Yang L, Sun X, Xu D, Yang P, Huang SK, Gao P, Liu Z. Benzo(a)pyrene Enhanced Dermatophagoides Group 1 (Der f 1)-Induced TGFβ1 Signaling Activation Through the Aryl Hydrocarbon Receptor-RhoA Axis in Asthma. Front Immunol 2021; 12:643260. [PMID: 33936062 PMCID: PMC8081905 DOI: 10.3389/fimmu.2021.643260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced airway inflammation. The underlying mechanism, however, remains undetermined. Here we investigated the molecular mechanisms underlying the potentiation of BaP exposure on Der f 1-induced airway inflammation in asthma. We found that BaP co-exposure potentiated Der f 1-induced TGFβ1 secretion and signaling activation in human bronchial epithelial cells (HBECs) and the airways of asthma mouse model. Moreover, BaP exposure alone or co-exposure with Der f 1-induced aryl hydrocarbon receptor (AhR) activity was determined by using an AhR-dioxin-responsive element reporter plasmid. The BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation were attenuated by either AhR antagonist CH223191 or AhR knockdown in HBECs. Furthermore, AhR knockdown led to the reduction of BaP and Der f 1 co-exposure-induced active RhoA. Inhibition of RhoA signaling with fasudil, a RhoA/ROCK inhibitor, suppressed BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation. This was further confirmed in HBECs expressing constitutively active RhoA (RhoA-L63) or dominant-negative RhoA (RhoA-N19). Luciferase reporter assays showed prominently increased promoter activities for the AhR binding sites in the promoter region of RhoA. Inhibition of RhoA suppressed BaP and Der f 1 co-exposure-induced airway hyper-responsiveness, Th2-associated airway inflammation, and TGFβ1 signaling activation in asthma. Our studies reveal a previously unidentified functional axis of AhR-RhoA in regulating TGFβ1 expression and signaling activation, representing a potential therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Eryi Wang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Tu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danh C. Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shehar B. Bhatti
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liteng Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xizhuo Sun
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Damo Xu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pingchang Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shau-Ku Huang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhigang Liu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
15
|
Mao YJ, Wu JB, Yang ZQ, Zhang YH, Huang ZJ. Nitric oxide donating anti-glaucoma drugs: advances and prospects. Chin J Nat Med 2021; 18:275-283. [PMID: 32402405 DOI: 10.1016/s1875-5364(20)30035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Glaucoma is a disease that causes irreversible blindness. Reducing intraocular pressure (IOP) is the main treatment at present. Nitric oxide (NO), an endogenous gas signaling molecule, can increase aqueous humor outflow facility, inhibit aqueous humor production thereby reducing IOP, as well as regulate eye blood flow and protect the optic nerve. Therefore, NO donating anti-glaucoma drugs have broad research prospects. In this review, we summarize NO-mediated therapy for glaucoma, and the state of the art of some NO donating molecules, including latanoprostene bunod in market and some other candidate compounds, for the intervention of glaucoma, as well as prospects and challenges ahead in this field.
Collapse
Affiliation(s)
- Yu-Jie Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Ze-Qiu Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
17
|
Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao B, Xiu Y. Novel circRNA_0071196/miRNA‑19b‑3p/CIT axis is associated with proliferation and migration of bladder cancer. Int J Oncol 2020; 57:767-779. [PMID: 32705161 PMCID: PMC7384843 DOI: 10.3892/ijo.2020.5093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that are connected at the 3′ and 5′ ends by an exon or intron. Studies increasingly show that circRNAs play an important role in tumorigenesis by acting as a 'sponge' for microRNAs (miRNAs), which abrogates the latter's effect on their target mRNAs. To identify a possible circRNA/miRNA/mRNA network in bladder cancer (BCa), we analyzed the circRNA and mRNA expression profiles of BCa and adjacent normal bladder tissues. A total of 127 circRNAs and 1,612 mRNAs were differentially expressed in the tumor tissues, and were primarily associated with cancer-related pathways. A competing endogenous RNAs (ceRNA) network was then constructed which predicted a regulatory axis of circRNA_0071196, miRNA-19b-3p and its target gene citron Rho-interacting serine/threonine kinase (CIT). Luciferase reporter assay validated the relationship between circRNA_0071196 and miRNA-19b-3p and of the latter with CIT. Furthermore, CIT was overexpressed in the BCa tissues, and was found to be correlated with metastasis and tumor histological grade. Knockdown of CIT in the human bladder cancer cell line 5367 significantly inhibited the proliferation, migration and colony formation capacity of the cells, and also upregulated the mediators of the p53 and RhoA-ROCK signaling cascades that regulate cell cycle and migration. Taken together, our findings indicate that circRNA-0071196 upregulates CIT levels in BCa by sponging off miRNA-19b-3p, and the circRNA_0071196/miRNA-19b-3p/CIT axis is a potential therapeutic target in BCa.
Collapse
Affiliation(s)
- Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shunyao Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dasen Lin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bang Xiao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
18
|
Kelley CA, De Henau S, Bell L, Dansen TB, Cram EJ. Redox signaling modulates Rho activity and tissue contractility in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2020; 31:1486-1497. [PMID: 32374641 PMCID: PMC7359568 DOI: 10.1091/mbc.e20-04-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actomyosin-based contractility in smooth muscle and nonmuscle cells is regulated by signaling through the small GTPase Rho and by calcium-activated pathways. We use the myoepithelial cells of the Caenorhabditis elegans spermatheca to study the mechanisms of coordinated myosin activation in vivo. Here, we show that redox signaling modulates RHO-1/Rho activity in this contractile tissue. Exogenously added as well as endogenously generated hydrogen peroxide decreases spermathecal contractility by inhibition of RHO-1, which depends on a conserved cysteine in its nucleotide binding site (C20). Further, we identify an endogenous gradient of H2O2 across the spermathecal tissue, which depends on the activity of cytosolic superoxide dismutase, SOD-1. Collectively, we show that SOD-1-mediated H2O2 production regulates the redox environment and fine tunes Rho activity across the spermatheca through oxidation of RHO-1 C20.
Collapse
Affiliation(s)
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Liam Bell
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
19
|
Yan Y, Zhang Z, Chen Y, Hou B, Liu K, Qin H, Fang L, Du G. Coptisine Alleviates Pristane-Induced Lupus-Like Disease and Associated Kidney and Cardiovascular Complications in Mice. Front Pharmacol 2020; 11:929. [PMID: 32636749 PMCID: PMC7316987 DOI: 10.3389/fphar.2020.00929] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythaematosus (SLE) is a chronic multi-system autoimmune disease with a high prevalence of kidney and cardiovascular complications. Considering that Rho-associated coiled-coil-containing protein kinases (ROCKs) play important roles in SLE, inflammation, and cardiovascular disease, we hypothesized that coptisine, which has been found to inhibit ROCKs, may have an effect on SLE. The effect of coptisine was assessed in female BALB/c mice intraperitoneally injected with 0.5 mL of pristane. Serum autoantibodies were tested every month, blood pressure was measured every 2 months, and serum inflammatory markers, spleen pathologic characteristics, renal injury and vascular function were observed at 6 months. The results showed that coptisine decreased the levels of serum autoantibodies and serum inflammatory markers in the SLE mice, improved the pathologic characteristics of the spleen, and simultaneously improved renal injury, decreased inflammatory responses in the kidneys, reduced blood pressure, and improved vascular endothelial function. Western blot assays revealed that inhibiting the activation of the NF-κB and Rho/ROCK signalling pathways and downstream signalling molecules might be the potential mechanisms of the effects of coptisine. Our findings suggest that therapy with coptisine may be a strategy for preventing SLE and ameliorating associated kidney and cardiovascular complications.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Liu
- Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Hailin Qin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Liu Z, Yan H, Yang Y, Wei L, Xia S, Xiu Y. Down-regulation of CIT can inhibit the growth of human bladder cancer cells. Biomed Pharmacother 2020; 124:109830. [PMID: 31972359 DOI: 10.1016/j.biopha.2020.109830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/24/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Our study is to examine the citron rho-interacting, serine/threonine kinase 21 (CIT) in bladder cancer. METHODS We examined CIT level in human bladder cancer tissues by immunohistochemical staining. To explore the impact of CIT on cell proliferation and apoptosis, we down-regulated its expression in two human bladder cancer cell lines, 5367 and T24. We examined cell growth in 5367 and T24. We also performed in vivo analysis using T24 cells. We further used microarray expression profiling to investigate genes differentially expressed in T24 cells with CIT down-regulated. RESULTS In 100 human samples, CIT was expressed by only 2 of 30 (6.7 %) controls in bladder tissues, whereas by 64 of 70 (91.4 %) cancer patients in tumor tissues (p < 0.001). in vitro analysis demonstrated that CIT knockdown represses cell proliferation by 50 % in both cells and colony formation (77 ± 5 vs. 13 ± 2, p = 0.001 for T24, 58 ± 3 vs. 1 ± 1, p < 0.001 for 5637). We also found CIT knockdown could induce cell cycle arrest, and promote apoptosis in both cells. Tumor-volume monitoring and live in vivo bladder cancer imaging in human xenograft model confirmed that CIT knockdown reduces tumor volume (668.4 ± 333.0 vs. 305.7 ± 170.4 mm3, p = 0.02) and weight (0.27 ± 0.15 vs. 0.57 ± 0.32 g, p = 0.02). Microarray analysis revealed that CIT may regulate cell cycle signalling pathway through various cell cycle regulators. CONCLUSIONS In summary, we provided clinical and experimental evidence that CIT may promote bladder cancer through regulation of cell cycle pathway.
Collapse
Affiliation(s)
- Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiyan Yan
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liangjun Wei
- Departments of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shunyao Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Academy of Medical Sciences, Heilongjiang, China.
| |
Collapse
|
21
|
Wang Q, Li H, Zhou K, Qin X, Wang Q, Li W. Rab7 controls innate immunity by regulating phagocytosis and antimicrobial peptide expression in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2019; 95:259-267. [PMID: 31655268 DOI: 10.1016/j.fsi.2019.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The Rab family is the most significant subfamily of small GTP-binding proteins. These proteins have widespread intracellular localization and play an important role in many biological processes. Rab7 plays a crucial role in the innate immune system of crustaceans. In the present study, we cloned and characterized Rab7 from Chinese mitten crab (Eriocheir sinensis), designated EsRab7. The full-length of the EsRab7 cDNA sequence is 1,257 bp and contains a 618-bp open reading frame encoding a 205-amino acid polypeptide. Bioinformatics analysis showed that the Rab7 protein was highly conserved during evolution. Quantitative real-time PCR showed the highest tissue expression in muscle, followed by hepatopancreas. EsRab7 was significantly upregulated in hemocytes after stimulation by Gram-positive Staphylococcus aureus or Gram-negative Vibrio parahaemolyticus. Further studies showed that EsRab7 knockdown during bacterial stimulation resulted in decreased bacterial phagocytosis. In addition, EsRab7 regulated the expression of antimicrobial peptides via the Toll signaling pathway. Collectively, these results demonstrate that EsRab7 plays critical roles in antimicrobial function in the Chinese mitten crab.
Collapse
Affiliation(s)
- Qiying Wang
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiang Qin
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weiwei Li
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
22
|
Zolotareva O, Saik OV, Königs C, Bragina EY, Goncharova IA, Freidin MB, Dosenko VE, Ivanisenko VA, Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci Rep 2019; 9:16302. [PMID: 31705029 PMCID: PMC6841742 DOI: 10.1038/s41598-019-52762-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research.
Collapse
Affiliation(s)
- Olga Zolotareva
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld, Germany.
| | - Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Cassandra Königs
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ralf Hofestädt
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| |
Collapse
|
23
|
Zhao Y, Zhang Y, Vazirinejad Mehdiabad M, Zhou K, Chen Y, Li L, Guo J, Xu C. Enhanced anti-tumor effect of liposomal Fasudil on hepatocellular carcinoma in vitro and in vivo. PLoS One 2019; 14:e0223232. [PMID: 31581236 PMCID: PMC6776396 DOI: 10.1371/journal.pone.0223232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant cancers and the treatment options for this disease are limited and generally not effective. ROCK has been reported to be highly expressed in many cancer types and its inhibitor Fasudil has shown anti-cancer potential. However, its high toxicity and low solubility restrict its clinical application. Here, we report that Fasudil is effective against HCC and that a liposomal formulation (Lip-Fasudil) can enhance the anti-tumor effects of this drug both in vitro and in vivo. In vitro, Fasudil inhibited HCC cell growth with IC50 values of 0.025–0.04 μg/μL, with Lip-Fasudil showing slightly improved cytotoxicity with IC50 values of 0.02–0.025 μg/μL. Cellular mechanistic analysis indicated that Fasudil induced cell cycle arrest at the G2/M phase and that Lip-Fasudil enhanced this effect. Intriguingly, no apoptosis was detected in Fasudil- or Lip-Fasudil-treated HCC cells. In vivo, Fasudil inhibited the growth of HCC xenografts by 23% in nude mice. However, Lip-fasudil exerted anti-tumor effects (57% tumor inhibition) that were superior to those of Fasudil and similar to those of Topotecan (66%). In addition, Lip-fasudil resulted in an increased distribution of Fasudil in tumor tissues but a reduced distribution in normal organs. In conclusion, our results proved that Fasudil has the potential to be used for HCC treatment and that a liposomal formulation (Lip-Fasudil) could enhance anti-tumor efficacy and reduce systemic toxicity.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Milad Vazirinejad Mehdiabad
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuyuan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Guo
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (CX); (JG)
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (CX); (JG)
| |
Collapse
|
24
|
Affiliation(s)
- Sandra C Christiansen
- From the Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California, San Diego (S.C.C., B.L.Z.), and the Medicine Service, San Diego Veterans Affairs Healthcare (B.L.Z.) - both in San Diego
| | - Bruce L Zuraw
- From the Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California, San Diego (S.C.C., B.L.Z.), and the Medicine Service, San Diego Veterans Affairs Healthcare (B.L.Z.) - both in San Diego
| |
Collapse
|
25
|
Brockmann C, Corkhill C, Jaroslawska E, Dege S, Brockmann T, Kociok N, Joussen AM. Systemic Rho-kinase inhibition using fasudil in mice with oxygen-induced retinopathy. Graefes Arch Clin Exp Ophthalmol 2019; 257:1699-1708. [PMID: 31152312 DOI: 10.1007/s00417-019-04365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the influence of the selective Rho-kinase (ROCK) inhibitor, fasudil, on the mRNA level of proinflammatory factors and the retinal vascular development in mice with oxygen-induced retinopathy (OIR). METHODS C57BL/6J mice underwent standard protocol for OIR induction from postnatal days 7 to 12. Subsequently, they received a daily intraperitoneal injection of fasudil or sodium chloride from P12 to P16. Analyses were performed using vascular staining on retinal flat mounts, RNA expression by qPCR, and immunohistochemistry on paraffin sections. RESULTS On retinal flat mounts, the proportion of avascular area and tuft formation did not differ between the fasudil and NaCl group. Immunohistochemical staining revealed a less intense staining with inflammatory markers after fasudil. Nevertheless, there were no differences on RNA level between the two groups. CONCLUSIONS In conclusion, our findings support that daily systemic application of fasudil does not decrease retinal neovascularization in rodents with oxygen-induced retinopathy. The results of our study together with the controversial results on the effects of different ROCK inhibitors from the literature makes it apparent that effects of ROCK inhibition are more complex, and further studies are necessary to analyze its potential therapeutic effects.
Collapse
Affiliation(s)
- Claudia Brockmann
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany.
| | - Caitlin Corkhill
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany
| | - Elzbieta Jaroslawska
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany.,Department of Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Sabrina Dege
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany
| | - Tobias Brockmann
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Norbert Kociok
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Antonia M Joussen
- Corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Augustenburger Platz, 113353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
26
|
Abbasgholizadeh R, Zhang H, Craft JW, Bryan RM, Bark SJ, Briggs JM, Fox RO, Agarkov A, Zimmer WE, Gilbertson SR, Schwartz RJ. Discovery of vascular Rho kinase (ROCK) inhibitory peptides. Exp Biol Med (Maywood) 2019; 244:940-951. [PMID: 31132884 DOI: 10.1177/1535370219849581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Reza Abbasgholizadeh
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Hua Zhang
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - John W Craft
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Robert M Bryan
- 3 Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Bark
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - James M Briggs
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Robert O Fox
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Anton Agarkov
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Warren E Zimmer
- 5 Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Scott R Gilbertson
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Robert J Schwartz
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| |
Collapse
|
27
|
Bouffard J, Cecchetelli AD, Clifford C, Sethi K, Zaidel-Bar R, Cram EJ. The RhoGAP SPV-1 regulates calcium signaling to control the contractility of the Caenorhabditis elegans spermatheca during embryo transits. Mol Biol Cell 2019; 30:907-922. [PMID: 30726159 PMCID: PMC6589790 DOI: 10.1091/mbc.e18-10-0633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/30/2023] Open
Abstract
Contractility of the nonmuscle and smooth muscle cells that comprise biological tubing is regulated by the Rho-ROCK (Rho-associated protein kinase) and calcium signaling pathways. Although many molecular details about these signaling pathways are known, less is known about how they are coordinated spatiotemporally in biological tubes. The spermatheca of the Caenorhabditis elegans reproductive system enables study of the signaling pathways regulating actomyosin contractility in live adult animals. The RhoGAP (GTPase--activating protein toward Rho family small GTPases) SPV-1 was previously identified as a negative regulator of RHO-1/Rho and spermathecal contractility. Here, we uncover a role for SPV-1 as a key regulator of calcium signaling. spv-1 mutants expressing the calcium indicator GCaMP in the spermatheca exhibit premature calcium release, elevated calcium levels, and disrupted spatial regulation of calcium signaling during spermathecal contraction. Although RHO-1 is required for spermathecal contractility, RHO-1 does not play a significant role in regulating calcium. In contrast, activation of CDC-42 recapitulates many aspects of spv-1 mutant calcium signaling. Depletion of cdc-42 by RNA interference does not suppress the premature or elevated calcium signal seen in spv-1 mutants, suggesting other targets remain to be identified. Our results suggest that SPV-1 works through both the Rho-ROCK and calcium signaling pathways to coordinate cellular contractility.
Collapse
Affiliation(s)
- Jeff Bouffard
- Department of Bioengineering, Northeastern University, Boston, MA 02143
| | | | - Coleman Clifford
- Department of Biology, Northeastern University, Boston, MA 02143
| | - Kriti Sethi
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA 02143
| |
Collapse
|
28
|
Domokos D, Ducza E, Gáspár R. RhoA and Rho-kinase inhibitors modulate cervical resistance: The possible role of RhoA/Rho-kinase signalling pathway in cervical ripening and contractility. Eur J Pharmacol 2019; 843:27-33. [DOI: 10.1016/j.ejphar.2018.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
|
29
|
Cortes E, Sarper M, Robinson B, Lachowski D, Chronopoulos A, Thorpe SD, Lee DA, Del Río Hernández AE. GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment. EMBO Rep 2019; 20:e46556. [PMID: 30538117 PMCID: PMC6322386 DOI: 10.15252/embr.201846556] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
The mechanical properties of the tumor microenvironment are emerging as attractive targets for the development of therapies. Tamoxifen, an agonist of the G protein-coupled estrogen receptor (GPER), is widely used to treat estrogen-positive breast cancer. Here, we show that tamoxifen mechanically reprograms the tumor microenvironment through a newly identified GPER-mediated mechanism. Tamoxifen inhibits the myofibroblastic differentiation of pancreatic stellate cells (PSCs) in the tumor microenvironment of pancreatic cancer in an acto-myosin-dependent manner via RhoA-mediated contractility, YAP deactivation, and GPER signaling. This hampers the ability of PSCs to remodel the extracellular matrix and to promote cancer cell invasion. Tamoxifen also reduces the recruitment and polarization to the M2 phenotype of tumor-associated macrophages. Our results highlight GPER as a mechanical regulator of the tumor microenvironment that targets the three hallmarks of pancreatic cancer: desmoplasia, inflammation, and immune suppression. The well-established safety of tamoxifen in clinics may offer the possibility to redirect the singular focus of tamoxifen on the cancer cells to the greater tumor microenvironment and lead a new strategy of drug repurposing.
Collapse
Affiliation(s)
- Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Muge Sarper
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Stephen D Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - David A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
30
|
Afewerki T, Ahmed S, Warren D. Emerging regulators of vascular smooth muscle cell migration. J Muscle Res Cell Motil 2019; 40:185-196. [PMID: 31254136 PMCID: PMC6726670 DOI: 10.1007/s10974-019-09531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall and normally adopt a quiescent, contractile phenotype. VSMC migration is tightly controlled, however, disease associated changes in the soluble and insoluble environment promote VSMC migration. Classically, studies investigating VSMC migration have described the influence of soluble factors. Emerging data has highlighted the importance of insoluble factors, including extracellular matrix stiffness and porosity. In this review, we will recap on the important signalling pathways that regulate VSMC migration and reflect on the potential importance of emerging regulators of VSMC function.
Collapse
Affiliation(s)
- TecLino Afewerki
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
31
|
Dos Santos TM, Righetti RF, Camargo LDN, Saraiva-Romanholo BM, Aristoteles LRCRB, de Souza FCR, Fukuzaki S, Alonso-Vale MIC, Cruz MM, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of Anti-IL17 Antibody Treatment Alone and in Combination With Rho-Kinase Inhibitor in a Murine Model of Asthma. Front Physiol 2018; 9:1183. [PMID: 30233389 PMCID: PMC6134017 DOI: 10.3389/fphys.2018.01183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Interleukin-17 (IL-17) and Rho-kinase (ROCK) play an important role in regulating the expression of inflammatory mediators, immune cell recruitment, hyper-responsiveness, tissue remodeling, and oxidative stress. Modulation of IL-17 and ROCK proteins may represent a promising approach for the treatment of this disease. Objective: To study the effects of an anti-IL17 neutralizing antibody and ROCK inhibitor treatments, separately and in combination, in a murine model of chronic allergy-induced lung inflammation. Methods: Sixty-four BALBc mice, were divided into eight groups (n = 8): SAL (saline-instilled); OVA (exposed-ovalbumin); SAL-RHOi (saline and ROCK inhibitor), OVA-RHOi (exposed-ovalbumin and ROCK inhibitor); SAL-anti-IL17 (saline and anti-IL17); OVA-anti-IL17 (exposed-ovalbumin and anti-IL17); SAL-RHOi-anti-IL17 (saline, ROCK inhibitor and anti-IL17); and OVA-RHOi-anti-IL17 (exposed-ovalbumin, anti-IL17, and ROCK inhibitor). A 28-day protocol of albumin treatment was used for sensitization and induction of pulmonary inflammation. The anti-IL17A neutralizing antibody (7.5 μg per treatment) was administered by intraperitoneal injection and ROCK inhibitor (Y-27632) intranasally (10 mg/kg), 1 h prior to each ovalbumin challenge (days 22, 24, 26, and 28). Results: Treatment with the anti-IL17 neutralizing antibody and ROCK inhibitor attenuated the percentage of maximal increase of respiratory system resistance and respiratory system elastance after challenge with methacholine and the inflammatory response markers evaluated (CD4+, CD8+, ROCK1, ROCK2, IL-4, IL-5, IL-6, IL-10 IL-13, IL-17, TNF-α, TGF-β, NF-κB, dendritic cells, iNOS, MMP-9, MMP-12, TIMP-1, FOXP3, isoprostane, biglycan, decorin, fibronectin, collagen fibers content and gene expression of IL-17, VAChT, and arginase) compared to the OVA group (p < 0.05). Treatment with anti-IL17 and the ROCK inhibitor together resulted in potentiation in decreasing the percentage of resistance increase after challenge with methacholine, decreased the number of IL-5 positive cells in the airway, and reduced, IL-5, TGF-β, FOXP3, ROCK1 and ROCK2 positive cells in the alveolar septa compared to the OVA-RHOi and OVA-anti-IL17 groups (p < 0.05). Conclusion: Anti-IL17 treatment alone or in conjunction with the ROCK inhibitor, modulates airway responsiveness, inflammation, tissue remodeling, and oxidative stress in mice with chronic allergic lung inflammation.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Renato F Righetti
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Leandro do N Camargo
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Department of Medicine, Laboratory of Experimental Therapeutics, LIM-20, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | | | - Flávia C R de Souza
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Fukuzaki
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | - Maysa M Cruz
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil.,Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Edna A Leick
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Haining AWM, Rahikainen R, Cortes E, Lachowski D, Rice A, von Essen M, Hytönen VP, del Río Hernández A. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol 2018; 16:e2005599. [PMID: 30028837 PMCID: PMC6054372 DOI: 10.1371/journal.pbio.2005599] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Abstract
The mechanical unfolding of proteins is a cellular mechanism for force transduction with potentially broad implications in cell fate. Despite this, the mechanism by which protein unfolding elicits differential downstream signalling pathways remains poorly understood. Here, we used protein engineering, atomic force microscopy, and biophysical tools to delineate how protein unfolding controls cell mechanics. Deleted in liver cancer 1 (DLC1) is a negative regulator of Ras homolog family member A (RhoA) and cell contractility that regulates cell behaviour when localised to focal adhesions bound to folded talin. Using a talin mutant resistant to force-induced unfolding of R8 domain, we show that talin unfolding determines DLC1 downstream signalling and, consequently, cell mechanics. We propose that this new mechanism of mechanotransduction may have implications for a wide variety of associated cellular processes.
Collapse
Affiliation(s)
- Alexander William M. Haining
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rolle Rahikainen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdalena von Essen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Armando del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-κB signalling pathway in human peritoneal mesothelial cells. Eur J Pharmacol 2018; 833:210-220. [PMID: 29883671 DOI: 10.1016/j.ejphar.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
Thymol is one of the most important dietary constituents in the thyme species and has been shown to possess anti-inflammatory properties both in vivo and in vitro. We investigated the protective effects of thymol on the lipopolysaccharide (LPS)-induced inflammatory responses in the human peritoneal mesothelial cell line (HMrSV5) to clarify the potential mechanism. HMrSV5 cells were stimulated with LPS in the presence or absence of thymol. Our results showed that thymol markedly suppressed the production of cytokines such as tumour necrosis factor α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1) and α-smooth muscle actin (α-SMA) in a dose-dependent manner. Western blot analysis indicated that RhoA and ROCK activation; Toll-like receptor 4 (TLR4) expression; and Nuclear factor -kappa B (NF-κB) p65, IKK and IκBα phosphorylation were also inhibited by thymol. Moreover, siRNA knockdown of RhoA suppressed the expression of pro-inflammatory cytokines and phosphorylation of NF-κB p65 and IκBα proteins in LPS-stimulated HMrSV5 cells, but did not affect TLR4 expression. In conclusion, thymol inhibits LPS-induced inflammation in HMrSV5 cells by suppressing TLR4-mediated RhoA-dependent NF-κB signalling pathway. Our study suggests that thymol may be a promising therapeutic agent against peritonitis.
Collapse
|
34
|
Zhou H, Cai L, Zhang X, Li A, Miao Y, Li Q, Qiu X, Wang E. ARHGEF39 promotes tumor progression via activation of Rac1/P38 MAPK/ATF2 signaling and predicts poor prognosis in non-small cell lung cancer patients. J Transl Med 2018; 98:670-681. [PMID: 29382922 DOI: 10.1038/s41374-018-0022-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Rho guanine nucleotide exchange factor 39 (ARHGEF39), also called C9orf100, is a new member of the Dbl-family of guanine nucleotide exchange factors. Although ARHGEF39 has been proven to regulate tumor progression in hepatocellular carcinoma, the downstream signaling pathway of ARHGEF39 and its clinical associations in non-small cell lung cancer (NSCLC) are currently unknown. In the present study, using MTT, colony formation, flow cytometry, mice xenografts, wound healing, and transwell assays, we showed that ARHGEF39 promoted tumor proliferation, migration, and invasion. Furthermore, ARHGEF39 promoted the expression of Cyclin A2, Cyclin D1, and MMP2 by activating Rac1, leading to increased phosphorylation of P38 and ATF2. Treatment with a P38 inhibitor counteracted the effect of ARHGEF39 overexpression on the increase in Cyclin A2, Cyclin D1, and MMP2 expression. Moreover, the elevated levels of p-P38 and p-ATF2 caused by ARHGEF39 overexpression could be inhibited by expression of a dominant negative Rac1 mutant (T17N). In addition, the inhibition of the expression of p-P38 and p-ATF2 by ARHGEF39 RNAi could be restored by the expression of a constitutively active Rac1 mutant (Q61L). A similar impact on cell growth and invasion was observed after ARHGEF39 overexpression combined with the P38 inhibitor, Rac1 T17N, or Rac1 Q61L. Using immunohistochemistry, ARHGEF39 expression was observed to correlate positively with larger tumor size in clinical samples from 109 cases of NSCLC (P = 0.008). The Kaplan-Meier test revealed that ARHGEF39 expression significantly affected the overall survival of patients with NSCLC (52.55 ± 6.40 months vs. 64.30 ± 5.40 months, P = 0.017). In conclusion, we identified that ARHGEF39 promotes tumor growth and invasion by activating the Rac1-P38-ATF2 signaling pathway, as well as increasing the expression of Cyclin A2, Cyclin D1, and MMP2 in NSCLC cells. ARHGEF39 may be a useful marker to predict poor prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Haijing Zhou
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Cai
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Qingchang Li
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The College of Basic Medicine Science and The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Gao Z, Zhu W, Zhang H, Li Z, Cui T. The influence of fasudil on renal proximal tubular cell epithelial-mesenchymal transition induced by parathormone. Ren Fail 2018; 39:575-581. [PMID: 28741985 PMCID: PMC6446168 DOI: 10.1080/0886022x.2017.1349677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway through which a variety of chronic kidney diseases progress to end-stage renal disease. Epithelial-mesenchymal transition (EMT) of renal proximal tubular cells is one of the most important factors in renal fibrosis. This study investigates if fasudil could influence EMT of renal proximal tubular cells. METHODS HK-2 cells in passage 3-4 were used for all experiments. The cells were divided into five groups and treated with different concentrations of PTH and then observe cellular morphological changes at 0, 24 and 48 h using an inverted microscope and investigate the expression of the epithelial cell marker E-cadherin and the renal fibroblast marker α-smooth muscle actin (α-SMA). RESULTS PTH significantly induced EMT, fasudil-inhibited EMT induced by PTH to different degrees, and the inhibitory effect of fasudil was most pronounced at 20 μmol/L. CONCLUSION Monitoring PTH levels, early prevention and control of hyperparathyroidism and reducing the concentration of PTH are important means to improve prognosis and delay the progression of chronic kidney disease. Fasudil can restrain EMT induced by PTH; this conclusion provides experimental data for the application of fasudil in the clinical prevention and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ziqing Gao
- a Department of Ultrasound , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Weiping Zhu
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Hua Zhang
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Zhonghe Li
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Tongxia Cui
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| |
Collapse
|
36
|
Zhang X, Wu N. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:373-381. [PMID: 29503530 PMCID: PMC5825979 DOI: 10.2147/dddt.s147547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells) were observed. The influences on apoptotic protease activity factor-1 (APAF-1)-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9) were measured by Western blotting and gelatin zymography assay. Results Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53-4.66×103 µM). Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Wu
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Domokos D, Fülöp F, Falkay G, Gáspár R. Effects of newly synthetized isoquinoline derivatives on rat uterine contractility and ROCK II activity. Bioorg Med Chem Lett 2018; 28:466-469. [PMID: 29269216 DOI: 10.1016/j.bmcl.2017.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process. We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro. The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil. The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.
Collapse
Affiliation(s)
- D Domokos
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - F Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - G Falkay
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - R Gáspár
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| |
Collapse
|
38
|
Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr 2018; 57:3583-3600. [PMID: 28609115 DOI: 10.1080/10408398.2016.1245649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,b Biotechnology and Microbiology Laboratory, Department of Botany , University of Rajshahi , Rajshahi , Bangladesh
| | - Most Mauluda Akhtar
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,c Department of Clinical and Molecular Sciences , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - James H Segars
- d Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences, Department of Gynecology and Obstetrics , Johns Hopkins School of Medicine , Baltimore , Maryland , USA
| | - Mario Castellucci
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - Pasquapina Ciarmela
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,e Department of Information Engineering , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
39
|
Efficacy of Topically Administered Rho-Kinase Inhibitor AR-12286 in Patients With Exfoliation Syndrome and Ocular Hypertension or Glaucoma. J Glaucoma 2017; 25:e807-14. [PMID: 27552517 DOI: 10.1097/ijg.0000000000000508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the efficacy of rho-associated protein kinase inhibitor, AR-12286 topical solution, for its effect in eyes with exfoliation syndrome (XFS) and ocular hypertension (OHT) or exfoliative glaucoma (XFG) and examine any lasting effect on intraocular pressure (IOP) after discontinuation. METHODS Prospective, double-masked, randomized, interventional study. Patients with XFS and OHT or XFG were enrolled. The study eyes were treated once daily with AR-12286, randomized to 0.5% or 0.7% for 24 weeks. Visits included baseline, 1, 4, and 12 weeks after drug initiation; at 12 weeks AR-12286 was discontinued for 1 week and was resumed at week 13. At the week 24 visit, AR-12286 was discontinued, and a final reexamination was performed at week 25. RESULTS Ten patients were treated. Mean baseline IOP was 25±2.4 mm Hg, mean IOP was reduced to 19.1±2.3 mm Hg at 1 week (P<0.001), 17.5±3.6 mm Hg at 4 weeks (P<0.001), and 17.4±3.6 mm Hg at 12 weeks (P<0.001), yielding an average IOP reduction of 23.6%, 30%, and 30.4%, respectively. At the week 13 visit, 1 week after the drug was discontinued, mean IOP increased to 21.6±5.4 mm Hg (P=0.06 compared with baseline visit). At week 24, the mean IOP was 21.8±7.8 mm Hg (P=0.2, and AR-12286 was discontinued). At week 25, the mean IOP was 21.3±5.3 mm Hg (P=0.06). CONCLUSIONS AR-12286 was well tolerated and provided statistically significant reduction in IOP in patients with XFS and OHT or XFG. This drug may represent an additional therapeutic paradigm for the treatment of XFG.
Collapse
|
40
|
O'Callaghan J, Cassidy PS, Humphries P. Open-angle glaucoma: therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opin Ther Targets 2017; 21:1037-1050. [PMID: 28952395 DOI: 10.1080/14728222.2017.1386174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Ocular hypertension in open-angle glaucoma is caused by a reduced rate of removal of aqueous humour (AH) from the eye, with the majority of AH draining from the anterior chamber through the conventional outflow pathway, comprising the trabecular meshwork (TM) and Schlemm's Canal. Resistance to outflow is generated, in part, by the extracellular matrix (ECM) of the outflow tissues. Current pressure-lowering topical medications largely suppress AH production, or enhance its clearance through the unconventional pathway. However, therapies targeting the ECM of the conventional pathway in order to decrease intraocular pressure have become a recent focus of attention. Areas covered: We discuss the role of ECM of the TM in outflow homeostasis and its relevance as a target for glaucoma therapy, including progress in development of topical eye formulations, together with gene therapy approaches based on inducible, virally-mediated expression of matrix metalloproteinases to enhance aqueous outflow. Expert opinion: There remains a need for improved glaucoma medications that more specifically act upon sites causative to glaucoma pathogenesis. Emerging strategies targeting the ECM of the conventional outflow pathway, or associated components of the cytoskeleton of TM cells, involving new pharmacological formulations or genetically-based therapies, are promising avenues of future glaucoma treatment.
Collapse
Affiliation(s)
- Jeffrey O'Callaghan
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| | - Paul S Cassidy
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| | - Pete Humphries
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| |
Collapse
|
41
|
Koo JH, Kim TH, Park SY, Joo MS, Han CY, Choi CS, Kim SG. Gα13 ablation reprograms myofibers to oxidative phenotype and enhances whole-body metabolism. J Clin Invest 2017; 127:3845-3860. [PMID: 28920922 DOI: 10.1172/jci92067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/02/2017] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is a key organ in energy homeostasis owing to its high requirement for nutrients. Heterotrimeric G proteins converge signals from cell-surface receptors to potentiate or blunt responses against environmental changes. Here, we show that muscle-specific ablation of Gα13 in mice promotes reprogramming of myofibers to the oxidative type, with resultant increases in mitochondrial biogenesis and cellular respiration. Mechanistically, Gα13 and its downstream effector RhoA suppressed nuclear factor of activated T cells 1 (NFATc1), a chief regulator of myofiber conversion, by increasing Rho-associated kinase 2-mediated (Rock2-mediated) phosphorylation at Ser243. Ser243 phosphorylation of NFATc1 was reduced after exercise, but was higher in obese animals. Consequently, Gα13 ablation in muscles enhanced whole-body energy metabolism and increased insulin sensitivity, thus affording protection from diet-induced obesity and hepatic steatosis. Our results define Gα13 as a switch regulator of myofiber reprogramming, implying that modulations of Gα13 and its downstream effectors in skeletal muscle are a potential therapeutic approach to treating metabolic diseases.
Collapse
Affiliation(s)
- Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, South Korea
| | - Min Sung Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, South Korea.,Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Meekins LC, Rosado-Adames N, Maddala R, Zhao JJ, Rao PV, Afshari NA. Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. Invest Ophthalmol Vis Sci 2017; 57:6731-6738. [PMID: 27951595 PMCID: PMC6018452 DOI: 10.1167/iovs.16-20414] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of Rho-associated kinases (ROCK) in corneal physiology and regeneration, and the effects of suppressing its activity in stimulating corneal endothelial cell proliferation and migration in vitro and in vivo. Methods Immunohistochemistry was performed to detect RhoA and ROCK-1 and ROCK-2 in human corneal tissue. Adult porcine corneal endothelial cells (CECs) were isolated, grown to confluence, and further characterized. Under the treatment of ROCK inhibitors, changes in the cellular distribution profile of ZO-1 and F-actin were examined by immunofluorescence staining. Corneal endothelial cells migration was evaluated by scratch assay and analyzed with Axiovision software. Cell proliferation was quantified using Click-iT EdU HCS Assay. In vivo, the corneal endothelia of rabbits were surgically injured and H-1152 was topically applied for 10 days. Progress of wound healing was evaluated daily by monitoring corneal edema, inflammation, and thickness using slit-lamp examination, photography, and pachymetry. Rabbits were euthanized and enucleated for further evaluation. Results H-1152 exhibited significant stimulatory effect on CEC migration and proliferation in vitro compared with both untreated and Y-27632–treated cells. Furthermore, topical administration of H-1152 led to marked reduction in corneal edema and formation of multinucleate CECs in vivo suggestive of proliferation associated with healing. Conclusions H-1152 exhibited a better stimulatory effect on CEC migration and proliferation in vitro than Y-27632. Our findings suggest that topical administration of H-1152 promotes healing of injured corneal endothelium in vivo. These results demonstrate the efficacy of ROCK inhibitors as a potential topical therapy for patients with corneal endothelial disease.
Collapse
Affiliation(s)
- Landon C Meekins
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Noel Rosado-Adames
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Rupalatha Maddala
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Jiagang J Zhao
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Ponugoti V Rao
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Natalie A Afshari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
43
|
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm's Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther 2017; 34:1049-1069. [PMID: 28349508 PMCID: PMC5427152 DOI: 10.1007/s12325-017-0513-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/23/2022]
Abstract
Schlemm’s canal (SC) is a unique, complex vascular structure responsible for maintaining fluid homeostasis within the anterior segment of the eye by draining the excess of aqueous humour. In glaucoma, a heterogeneous group of eye disorders afflicting approximately 60 million individuals worldwide, the normal outflow of aqueous humour into SC is progressively hindered, leading to a gradual increase in outflow resistance, which gradually results in elevated intraocular pressure (IOP). By and large available antiglaucoma therapies do not target the site of the pathology (SC), but rather aim to decrease IOP by other mechanisms, either reducing aqueous production or by diverting aqueous flow through the unconventional outflow system. The present review first outlines our current understanding on the functional anatomy of SC. It then summarizes existing research on SC cell properties; first in the context of their role in glaucoma development/progression and then as a target of novel and emerging antiglaucoma therapies. Evidence from ongoing research efforts to develop effective antiglaucoma therapies targeting SC suggests that this could become a promising site of future therapeutic interventions.
Collapse
|
44
|
Yeşilova M, Görür K, Ismi O, Özcan C, Büyükafşar K. The Role of Rho/Rho-Kinase Pathway in the Pathogenesis of Cholesteatoma. Otol Neurotol 2017; 38:516-520. [PMID: 28288476 DOI: 10.1097/mao.0000000000001344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the role of Rho/Rho-kinase pathway in the pathogenesis of cholesteatoma. MATERIALS AND METHODS Thirty-eight patients with cholesteatoma, who had gone mastoidectomies were enrolled in this prospective study. Cholesteatomas matrix (CM) and a piece of the external ear canal skin (EECS as control) were taken and transferred to the liquid nitrogen and kept at -86 °C for Rho A and Rho-kinase (ROCK) analysis with Western blotting and commercial ELISA kits (Cell Biolabs Inc., San Diego, CA). The tissues were homogenized by an appropriate ice-cold lysis buffer. Following centrifugation, the supernatant was taken and total protein amount was detected by the Bradford method. Thereafter, tissue homogenates were subjected to sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis electrophoresis then transferred to nitrocellulose membrane where it was treated with specific monoclonal primary antibody against to ROCK-2 and HRP-conjugated seconder antibody, respectively. The protein blots were visualized with commercial x-ray film and dansitometrically analyzed by the Scion Image Program (Cell Biolabs Inc., San Diego, CA). In another series of experiments, Rho-kinase activities were assessed by ROCK-2 ELISA kits. RESULTS There were no statistical differences in Rho A translocation between CM and EECS. However, ROCK activity was found to be lower in CM than EECS as detected by ELISA kits. Furthermore, ROCK protein expression was also significantly lower in CM than EECS as demonstrated by Western blotting. CONCLUSION Given Rho-kinase could take essential roles in cell differentiation, the results of this study implicate that down-regulated Rho-kinase could be responsible for the keratinocyte undifferentiation seen in cholesteatoma pathogenesis.
Collapse
Affiliation(s)
- Mesut Yeşilova
- *ENT Department†Pharmacology Department, Mersin University School of Medicine, Mersin, Turkey
| | | | | | | | | |
Collapse
|
45
|
Wirshing ACE, Cram EJ. Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell 2017; 28:1937-1949. [PMID: 28331075 PMCID: PMC5541844 DOI: 10.1091/mbc.e17-01-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The contractile myoepithelial cells of the Caenorhabditis elegans somatic gonad are stretched by oocyte entry and subsequently contract to expel the fertilized embryo into the uterus. Formation of aligned, parallel actomyosin bundles during the first ovulation is triggered by oocyte entry and regulated by myosin contractility. Stress fibers—contractile actomyosin bundles—are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca is a bag-like organ of 24 myoepithelial cells that houses the sperm and is the site of fertilization. During ovulation, spermathecal cells are stretched by oocyte entry and then coordinately contract to expel the fertilized embryo into the uterus. Here we use four-dimensional confocal microscopy of live animals to observe changes to spermathecal actomyosin network organization during cell stretch and contraction. Oocyte entry is required to trigger cell contraction and concomitant production of parallel actomyosin bundles. Actomyosin bundle size, connectivity, spacing, and orientation are regulated by myosin activity. We conclude that myosin drives actomyosin bundle production and that myosin activity is tightly regulated during ovulation to produce an optimally organized actomyosin network in C. elegans spermathecae.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
46
|
Li Y, Liu J, Liu Y, Yang X, Huang B, Chen M. Inhibitory effect of Ginkgol C17:1 on the biological behavior of tumor cells. Oncol Lett 2017; 13:1873-1879. [PMID: 28454337 PMCID: PMC5403324 DOI: 10.3892/ol.2017.5664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
Ginkgol C17:1 is a bioactive compound derived from Ginkgo biloba. In the present study, the effect and possible mechanisms of action of Ginkgol C17:1 on the biological behaviors of tumor cells were investigated. Whilst cell proliferation was assessed using the MTT assay, the behaviors of cell migration and invasion were explored using Transwell and modified Transwell assays. The results revealed that Ginkgol C17:1 significantly inhibited the proliferation, migration and invasion of human tumor cells in a dose-dependent manner. Furthermore, due to their associations with the biological behaviors of tumor cells, the protein expression of matrix metalloproteinase (MMP)-7, Ras homolog gene family, member A (RhoA) and phosphorylated-protein kinase B (Akt) was analyzed by western blotting. The results showed that the expression of the aforementioned proteins was decreased markedly following Ginkgol C17:1 treatment. The results of the present study suggested that Ginkgol C17:1 suppresses the biological behaviors of tumor cells by inhibiting the activation of the mitogen-activated protein kinase/MMP, Rho/Rho-associated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.
Collapse
Affiliation(s)
- Yueying Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yali Liu
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoming Yang
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bingzhong Huang
- Dantu District Hospital, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
47
|
Min YJ, Ding LLQ, Cheng LH, Xiao WP, He XW, Zhang H, Min ZY, Pei J. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats. Neural Regen Res 2017; 12:276-282. [PMID: 28400811 PMCID: PMC5361513 DOI: 10.4103/1673-5374.200811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36) and Ciliao (BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.
Collapse
Affiliation(s)
- You-Jiang Min
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Li-Li-Qiang Ding
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Hong Cheng
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Wei-Ping Xiao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Xing-Wei He
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Hui Zhang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhi-Yun Min
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Jia Pei
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
48
|
Expression of Wnt11 and Rock2 in esophageal squamous cell carcinoma by activation of the WNT/PCP pathway and its clinical significance. Pathol Res Pract 2016; 212:880-885. [PMID: 27628667 DOI: 10.1016/j.prp.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to investigate the relation between expression of Wnt11, Rho-associated protein kinase 2 (Rock2), and its clinical characteristics in esophageal squamous cell carcinoma (ESCC). Expression of Wnt11 and Rock2 protein was examined by using immunohistochemistry that contained 260 paraffin-embedded specimens of ESCC and its adjacent normal tissues; expression of Wnt11 and Rock2 protein was verified by Western-blotting that contained 20 specimens of ESCC and its adjacent normal tissues. The positive rates of Wnt11 protein in normal esophageal epithelium tissue was 29.8% and in esophageal carcinomas tissue was 31.9%; there was no significant difference between the two groups(P>0.05); The positive rates of Rock2 protein in normal esophageal epithelium tissue was 12.3% and in esophageal carcinomas tissues was 56.5%, there was a significant difference between the two groups (p<0.05). The expression of Rock2 protein was significantly related with the invasion of vascular and there was no significantly difference between the expression of Rock2 protein and ESCC patients' tumor location, differentiation, T stage, and lymph node metastases. The abnormal expression of Rock2 protein may promote tumor cell invasion.
Collapse
|
49
|
Zhang Y, Gao J, Wang CJ, Zhou LJ, Fang XZ, Yang LQ. Low tidal volume ventilation preconditioning ameliorates lipopolysaccharide-induced acute lung injury in rats. Acta Anaesthesiol Scand 2016; 60:780-9. [PMID: 26822955 DOI: 10.1111/aas.12691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/12/2015] [Accepted: 12/26/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Effects of low tidal volume (LTV) ventilation preconditioning in endotoxin-induced acute lung injury (ALI) have not been studied. We investigated the effect of LTV ventilation pre-treatment on ALI induced by lipopolysaccharide (LPS) in rats. METHODS Male Sprague-Dawley rats were assigned to four groups (n = 8 each): (1) sham rats injected (i.p.) with 0.9% (physiologic) saline; sham rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h followed by injection (i.p.) of physiologic saline (mechanical ventilation; MV-saline group); (2) LPS group (rats injected with LPS (i.p.); rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h before injection (i.p.) with LPS (MV-LPS group). Animals were observed for 6 h. ALI extent was evaluated by lung wet-to-dry ratio, Evans Blue Dye extravasation, and histologic examination. We measured levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Apoptotic index (AI) and the expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein in lung alveolar cells was determined. RESULTS Lipopolysaccharide caused severe ALI, as evidenced by increases in ALI extent, impairment of pulmonary functions, and increases in pulmonary levels of TNF-α, IL-1β, IL-6, and AI. LTV ventilation preconditioning mitigated LPS-induced increases in release of pulmonary pro-inflammatory cytokines and AI of alveolar cells. Expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein was upregulated by LPS and reduced by LTV ventilation pre-treatment. CONCLUSION Low tidal volume ventilation preconditioning can attenuate release of pulmonary pro-inflammatory cytokines and decrease the AI induced by severe sepsis. Early protection seems to be mediated partly through inhibition of activation of a Rho pathway.
Collapse
Affiliation(s)
- Y. Zhang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - J. Gao
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - C.-J. Wang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - L.-J. Zhou
- Department of Scientific Research; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - X.-Z. Fang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - L.-Q. Yang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| |
Collapse
|
50
|
Park J, Kim DH, Kim HN, Wang CJ, Kwak MK, Hur E, Suh KY, An SS, Levchenko A. Directed migration of cancer cells guided by the graded texture of the underlying matrix. NATURE MATERIALS 2016; 15:792-801. [PMID: 26974411 PMCID: PMC5517090 DOI: 10.1038/nmat4586] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/27/2016] [Indexed: 05/03/2023]
Abstract
Living cells and the extracellular matrix (ECM) can exhibit complex interactions that define key developmental, physiological and pathological processes. Here, we report a new type of directed migration-which we term 'topotaxis'-guided by the gradient of the nanoscale topographic features in the cells' ECM environment. We show that the direction of topotaxis is reflective of the effective cell stiffness, and that it depends on the balance of the ECM-triggered signalling pathways PI(3)K-Akt and ROCK-MLCK. In melanoma cancer cells, this balance can be altered by different ECM inputs, pharmacological perturbations or genetic alterations, particularly a loss of PTEN in aggressive melanoma cells. We conclude that topotaxis is a product of the material properties of cells and the surrounding ECM, and propose that the invasive capacity of many cancers may depend broadly on topotactic responses, providing a potentially attractive mechanism for controlling invasive and metastatic behaviour.
Collapse
Affiliation(s)
- JinSeok Park
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hong-Nam Kim
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chiaochun Joanne Wang
- Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Moon Kyu Kwak
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eunmi Hur
- Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kahp-Yang Suh
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Steven S. An
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- To whom correspondence should be addressed: Steven S. An, Ph D. (), Andre Levchenko, Ph.D. ()
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- To whom correspondence should be addressed: Steven S. An, Ph D. (), Andre Levchenko, Ph.D. ()
| |
Collapse
|